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A novel antifouling coating based on the polymerization of a polymerisable bicontinuous 

microemulsion (PBM) was developed and applied for commercially available membranes for 

textile wastewater treatment.  PBM coating was produced by polymerizing, on a 

polyethersulfone (PES) membrane, a bicontinuous microemulsion, realized by finely tuning 

its properties in terms of chemical composition and polymerization temperature. In particular, 

the PBM was prepared by using, as the surfactant component, inexpensive and commercially 

available dodecyltrimethylammonium bromide (DTAB). The coating exhibited a more 

hydrophilic and a smoother surface in comparison to uncoated PES surface, making the 

produced PBM membranes more resistant and less prone to be affected by fouling. The anti-

fouling potential of PBM membranes was assessed by using humic acid (HA) as a model 

foulant, evaluating the water permeability decrease as an indicator of the fouling propensity of 

the membranes. PBM membrane performances in terms of dye rejection, when applied for 

model textile wastewater treatment, were also evaluated and compared to PES commercial 

ones. The PBM membranes were finally successfully scaled-up (total membrane area 0.33 

m
2
) and applied in a pilot membrane bioreactor (MBR) unit for the treatment of real textile 

wastewater.  

1. Introduction 

Due to growing demand and limited availability of fresh water, alternative sources of water 

are becoming increasingly important day by day. In this context, reuse of treated wastewater 

offers a viable option to reduce freshwater consumption and, in this regard, membrane 

bioreactor (MBR) technology plays an important role. Since the regulation of wastewater has 

noticeably increased in many countries, MBR can be an attractive option for wastewater 

treatment [1]. The textile industry is considered as one of the most water consuming sectors 

due to its high demand of water for all parts of its processes. The wastewater discharged by 

the textile industry contains large amounts of dissolved organic matter, inorganic substances, 
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has a high pH value and a low BOD/COD ratio [2], dyestuffs and additives, which make it a 

difficult industrial wastewater to treat. The main environmental concern is related to the large 

amount of dyes (used in the dyeing process) which are poorly biodegradable and not 

efficiently removed by conventional activated sludge plants [3]. Moreover, their presence in 

water effluents can have negative effects on the photosynthetic process of aquatic life [4]. 

Biodegradability of dyes as well as the removal of colour is a major issue, which has been  

discussed in the literature [5-7]. Moreover, the removal of dyes from textile wastewater, due 

to its persistent nature and the types of dyes, is not an easy task. To deal with the problems 

associated with textile effluents, several studies have been directed at the treatment of 

polluted streams close to the point of source, as in the integrated approach [8-10] and at the 

treatment of the final effluents (end of pipe approach) [11-14]. MBR technology, which 

combines the benefits of high biomass concentrations with the possibility to run a continuous 

process at controlled biomass retention [2], is recognised as a promising technology to 

provide water with reliable quality for re-use, and it is very attractive for industrial wastewater 

treatment [15-17]. Since the membrane costs have decreased dramatically over the last years 

to currently approximately 50 Euro/m
2
 [18] and energy requirements for aeration of the 

membrane are also fast approaching the normal activated sludge process (ASP) range, this has 

now become an economically feasible solution for wastewater treatment. Due to low 

biodegradability of textile dyes under aerobic conditions in conventional ASP, a large reactor 

volume is necessary, while MBR reduces the required reactor volume [2]. Today MBRs are 

robust, simple to operate and even more affordable. They take up reduced footprint, need 

modest technical support and can remove many contaminants in one step. This makes them 

practical to safely reuse water for non-potable uses. 

However, fouling of membranes used in MBR applications by textile wastewater is still a big 

obstacle. Once the membrane is faced with fouling and the extensive chemical cleaning 

cannot restore the flux [19], the membrane needs to be replaced which may account for up to 
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30-50% of the operation cost. In MBRs, fouling can be attributed to pore blocking (deposition 

within the pores) or to cake layer formation on the membrane surface [20]. Colloidal and 

soluble foulants (SMP) can cause pore blocking and irreversible fouling due to their small 

size. To mitigate fouling problems, many researchers have followed different techniques [15]. 

In addition to those techniques, influent pre-treatment (physical, chemical, biological), 

combination of MBR with other technologies, influent pH adjustment, optimization of 

operation conditions, hydrodynamic control of a filtration system, proper design and 

operation, application of membrane performance enhancer (MOE) etc. can be applied/adapted 

to lower the fouling problems. Moreover, several theoretical models were proposed in order to 

understand the fundamentals of fouling formation in MBRs in order to mitigate this 

phenomenon [21-23]. Suitable membrane surface modification can represent another 

promising approach to mitigate the fouling [24-26]. Different approaches have been proposed 

so far in order to mitigate fouling formation by coating different materials such as other 

polymers (like polyvinyl alcohol (PVA)) [27]; silica nanoparticles [28], dopamine [29] and 

graphene-oxide [30].  

In this contest, we report here a novel low-fouling membrane material based on the 

polymerizable bicontinuous microemulsion (PBM) technology, which makes use of an 

unexpensive and commercially available surfactant dodecyltrimethylammonium bromide 

(DTAB) in PBM preparation.  

Microemulsions were characterized in terms of ternary phase diagram and conductivity 

measurements to identify the proper chemical composition. Further characterizations (SEM, 

AFM and CAM) were aimed to the investigation of membrane surface properties and 

morphology. Preliminary tests with HA were carried out in order to assess the anti-fouling 

potential of PBM membranes. The performances of PBM membranes were also evaluated in 

terms of dye rejection in model textile wastewater.   
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The membranes produced were successfully applied for the first time in a pilot scale operation 

for the treatment of real raw textile wastewater (RTW).  

 

2. Materials and methods 

2.1 Microemulsion composition 

The novel PBM low fouling membrane, used for the MBR treatment, was obtained by 

following the polymerization procedure described by Galiano et al. [25]. The chemicals used 

for preparing PBM membranes were: methyl methacrylate (MMA) used as monomer 

constituting the oil phase of the microemulsion, 2-hydroxyethyl methacrylate (HEMA) used 

as co-surfactant and the commercial dodecyltrimethylammonium bromide (DTAB) used as a 

surfactant for stabilizing the microemulsion. Ethylene glycol dimethacrylate (EGDMA) was 

used as a cross-linking agent. Ammonium persulfate (APS) and N,N,N´N´- 

tetramethylethylenediamine (TMEDA) were used as redox initiators in order to promote the 

polymerization process.  All the chemicals used for preparing microemulsions were purchased 

from Sigma-Aldrich with purity higher than 98% (analytical grade). 

 

2.2 Phase diagram and microemulsion conduxtivity  

To investigate the microemulsion regions with the commercial surfactant (DTAB) a phase 

diagram was constructed by the titration method.  Firstly, a mixture of DTAB and HEMA at 

the weight ratio of 1:4 was prepared. Then, MMA was added to the DTAB/HEMA mixture at 

the weight ratio of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1. The boundaries of the 

microemulsion domains were finally identified by titrating dropwise with water at room 

temperature and classified as microemulsions when they appeared completely transparent. 
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Conductivity measurements for the determination of the microemulsion regions were carried 

out by Eutech Instruments PC 2700. Microemulsions were prepared at different aqueous 

solutions containing 20 wt% of the surfactant DTAB. EGDMA added was 4 wt% based on 

the weight of total MMA and HEMA used. MMA:HEMA ratio was maintained 1:4. The 

measurements were carried out at room temperature (25°C) and each measurement was 

repeated three times and the average was considered. 

2.3 Microemulsion preparation and polymerization 

The microemulsion was prepared in a double-necked round bottom volumetric flask. Firstly, 

the monomer MMA and co-surfactant HEMA were mixed. Next, water was added to the 

system followed by DTAB. The solution was then mechanically stirred for 5 minutes and 

when a clear and transparent system was obtained, the cross-linker EGDMA was added. 

Then, the redox initiator APS and TMEDA were added to a concentration of 0.3 wt% and 20 

mM, respectively. The microemulsion was purged with nitrogen gas and left to react. The 

microemulsion was then cast on a commercial polyethersulfone (PES) ultrafiltration (UF) 

membrane (NADIR
® 

PM UP 150, Microdyn-Nadir, 2015) in an inert N2 gas saturated casting 

chamber.  

The casting knife thickness used was 250 µm. A N2 saturated environment was needed to 

exclude any contact with air or oxygen since it can interfere with the polymerization process. 

The temperature of the casting chamber was varied from 20 to 50°C. The membrane sheets 

with dimensions of 30 cm×30 cm were made and then laminated, in collaboration with 

Microdyn-Nadir (Germany), for the production of the envelopes to be used as MBR module. 

The membrane module, including the 3 envelopes produced, possessed an active membrane 

surface of 0.33 m
2
. The novel coated PBM membranes applied for MBR and the non-coated 

PES membranes applied for MBR were named as PBM MBR and PES MBR modules, 

respectively. All the polymerized membranes were pre-treated before use (to remove the 



  

 

[7] 
 

glycerol used as a pore filling agent for PES commercial membranes) with an initial aqueous 

solution containing 25 wt% of isopropanol followed by further washing with distilled water 

overnight.  

 

2.4 Weight loss determination and contact angle measurements 

In order to determine whether all the material used for microemulsion polymerization was 

polymerised in the coating network, the pure PBM membranes (not coated on PES support) 

were dried up and exposed to subsequent extractions. First, the polymerised membrane was 

dried up in order to remove the water, then it was extracted with toluene for 2h in order to 

remove unpolymerised MMA and HEMA and finally it was extracted with water at 50°C in 

order to remove the unreacted surfactant. The amount of unreacted material was determined 

by measuring the weight loss after each extraction. The loss was calculated by using the 

following equation (Eq. 1): 

 

        
     

  
                                             (1), 

Where: 

Wl is the weight loss, wi is the initial weight of the membrane before each drying or extraction 

and wf  is the final weight of the membrane after each drying or extraction.  

The water contact angle of the produced membranes was measured by the sessile drop method 

using a CAM200 instrument (KSV Instrument LTD, Finland). Water CAM was carried out on 

the top side of PES commercial and on the coating side of PBM membranes. A water droplet 

of 5 μL was deposited on the membrane with a microliter syringe.  For each membrane 

sample, five measurements were taken; average values and standard deviations were then 

calculated.  
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2.5 Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared 

spectroscopy (FT-IR) 

SEM measurements were carried out using a model S-4800 Field Emission SEM (Hitachi, 

Japan). All samples were coated with a thin (approximately 15 nm) layer of gold by sputter 

coating prior to measurement. 

AFM observations were all carried out using a Multimode AFM with a Nanoscope IIIa 

electronic control unit (Veeo, USA). Measurements were all undertaken under ambient 

laboratory conditions using tapping mode. TESP cantilevers (Bruker AXS, nominal spring 

constant 20-80 N/m) were used for all measurements. Image resolution was set at values of 

512x512 pixels. 

The presence and the stability of the PBM coating on PES membrane surface was determined 

by FT-IR ATR Spectrometer (Perkin Elmer, Spectrum One). In case of PBM membrane, the 

FT-IR was carried out before and after wasing the membrane using the following protocol: 

- 1 h washing with an alcoholic solution (25 wt% isopropanol); 

- 72 h washing with distilled water. 

 

2.6 Cross-flow set-up 

The lab scale experiments were performed using a cross-flow auto-controlled set-up 

purchased from SIMA-tec GmbH, Germany (Fig. 1).  This testing unit was equipped with 

heat-exchanger/temperature controller (2) and LabVIEW program based computerized data 

acquisition system. To abate the vibration of the unit, it was equipped with a damping system 

(9) by filling the vibration controller with N2 gas at 16 bar pressure. The experiments with 

this unit were carried out continuously for a longer time period (from some hours to several 

days).  
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For fouling tests, humic acid (HA) was applied since many fundamental studies of the fouling 

phenomena have been done by using the readily analyzed HA as a model foulant [31]. In 

addition, HA is representative of foulants in the biological sludge system.   

The experiment was run for 24h with distilled (DI) water and then, the HA solution was used 

as test media. The test was run for a further 3 h, replacing the running fluid with fresh DI 

water after each hour and the water permeability (WP) regain was calculated using the 

following Eq. (2). 

    
           

   
                                           (2), 

Where, 

WPf = Final water permeability after 3
rd

 cleanings with DI water 

WPi = Initial water permeability after 24h test run with HA 
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1: Pressure control, 2: Temperature control, 3: Feed tank, 4: Membrane module, 5: Permeate sampling valve, 

6: Concentrate sampling valve, 7: Feed sampling valve, 8: drain valve 

 

Fig. 1. Schematic diagram of auto-controlled UF cross-flow cell 

 

 

2.7 MBR pilot plant 

The schematic experimental setup is shown in figure 2. Two aerobic MBRs having working 

volumes of 60 L each were operated in parallel. The first MBR was coupled to commercial 

PES membranes (denoted as PES-MBR) while the second one was operated with novel PBM 

membranes (denoted as PBM-MBR). The operating trans-membrane pressure (TMP) ranged 
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between 70 and 350 mbar. Both membrane modules were equipped with air diffusers and 

sludge drains. The reactors were seeded with 60 L of sludge derived from an industrial 

standard activated sludge plant treating textile wastewaters. The starting mixed liquor 

suspended solids (MLSS) concentration for both reactors was about 6 g/L and the aeration 

rate ranged from 1 to 2m
3
/h. The MBRs were fed through peristaltic pumps (Minipuls 3 

Gilson Model 312, France) synchronized to permeate suction pumps (Watson-Marlow 505U, 

Falmouth, Cornwall TR11 4RU, England). Two pressure gauges (S-Wika EN 837-1, 

Germany) were mounted between the membranes and the permeate pumps to monitor the 

TMP. The reactors were operated at preset flow rates (corresponding to fixed hydraulic 

retention times HRTs) that were controlled by adjusting the rotation speed of the filtration 

pumps.  

 

1: Feed tank; 2: Feed pump; 3: MBR reactor; 4: MBR module; 5: Exhaust valve; 6: Compressed air regulator; 7: Compressor; 8: Pressure 

sensor; 9: Suction pump; 10: Permeate collection tank 

Fig. 2. Schematic diagram of the experimental set-up 

The flux was measured volumetrically in a measuring cylinder by collecting the permeate 

over a known period of time. Membrane cleaning, if required, to maintain the imposed 

permeate flux, was performed by rinsing with tap water. 
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Wastewater, supernatant of the reactor and treated water were sampled either 3 times a week 

or on a day interval, stored at 4°C until analysis and were then analyzed for COD and color 

measurements. 

 

2.8 Textile wastewaters 

2.8.1 Model textile dye wastewater (MTDW) 

The model textile dye wastewater (MTDW) was based on a red reactive dye (Acid Red 4) 

denoted as red, and a blue anthraquinone dye (Remazol Brilliant Blue R), denoted as blue in 

this paper, representing typical industrial dyes widely applied in the textile industry. These 

chemicals were all bought from Sigma Aldrich, Germany. A typical industrial detergent 

(Albatex DBC) (from  Huntsman Textile Effects GmbH, Germany) and glucose (from Merck 

GmbH, Germany) were added as a C-source as well as the following salts: NaCl, NaHCO3 

and NH4Cl (N-source) (Merck GmbH, Germany). The tests with the novel PBM coated 

membrane were carried out in the cross-flow set-up to verify the dye rejections only.  The 

compositions of the applied chemicals are shown in Table 1 below. 

Table 1: Composition of the model textile dye wastewater (MTDW) (15) 

No. Dyestuffs and chemicals Concentration (mg/L) 

1 Remazol Brilliant Blue R 50 

2 Acid Red 4 50 

3 NaCl 2500 

4 NaHCO3 1000 
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5 Glucose 2000 

6 Albatex DBC (Detergent) 50 

7 NH4Cl 300 

 

2.8.2 Industrial textile wastewater 

The study was conducted with real RTW samples supplied from the Tunisian textile factory 

SITEX located in Kasr Hellal, Tunisia. The company production line comprises dying fabrics 

and finishing processes and utilizes different dyes (reactive, direct and sulphur) and chemical 

substances such as detergents, salts, auxiliaries (e.g. surfactants, emulsifiers). Their amounts 

depend on the kind of process that generates different effluents. The aerobic consortium used 

as seed culture for the pilot plant was a sample of the sedimentation sludge from a full-scale 

activated sludge plant treating textile liquid wastes with some organic nutrients from domestic 

wastewater. 

 

2.9 Operation conditions 

The operation conditions of different experimental set ups are given in Table 2. 
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Table 2: Operation conditions of different experimental set up 

Operation conditions of experimental set ups 

Auto controlled cross 

flow set up  

Manually controlled 

cross flow set up  

MBR 

Test media: HA 

dissolved in distilled (DI) 

water 

Concentration: 100 mg/L 

Conductivity of feed 

solution: 60 µS/cm 

pH: 6.5-7 

Temperature: 20 ± 2°C 

TMP: 0.5±0.02 bar 

Operation time: 24h 

Active surface area of the 

used membrane: 86 cm
2
 

 

Test media : MTDW 

pH: 7.5  ± 0.5 

Temperature: 22 ± 2°C 

TMP: 3.0±0.50 bar 

CFV: 1 L/min. 

Operation time: 2 h 

Active surface area of the 

applied membrane: 80 cm
2
 

 

Test media: RTW 

pH: 8 ± 0.2 

Temperature:25 ± 2°C 

TMP: 70-350 mbar 

Operation time: 150 days 

Active surface area of the applied 

membrane: 0.34 m
2 

for PES-MBR 

and 0.31 m
2
 for PBM-MBR 

 

 

2.10 Analytical methods for model textile wastewater 

All COD were analysed with COD cell tests (Model: 1.14541 Merck KGaA, Germany). The 

concentrations of red and blue dyes were determined using a spectrophotometer (Model: UV-

1800; Shimadzu, Japan) using Beer’s law at wavelengths of 505 nm and 595 nm respectively. 

Oxygen sensor (Model: Oxi340i meter and cellOXs 325 O2 electrode;  WTW, Germany) was 

used to measure the dissolved oxygen, pH and temperature values were measured with pH 

meters (Model: pH 323 and Sentixs 41-3 electrode) integrated with temperature sensors 
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(WTW GmbH, Germany). Conductivity measurements were conducted with a conductivity 

meter (Model: Cond 315i meter; WTW). All AFM measurements were performed with a 

Multimode AFM with Nanoscope IIIa controller (Veeco, USA) using manufacturer supplied 

software. Tapping mode measurements in air were performed using TESP (nominal spring 

constant 20-80 N/m) cantilevers (Bruker AXS). 

 

2.11 Analytical methods for industrial textile wastewater 

Conductivity and pH determinations were performed by means of a conductimeter, 

CONSORT C 831 model and pH meter, Istek-NeoMet respectively. Soluble COD was 

estimated as described by Knechtel [32]. Mixed liquor suspended solids (MLSS) was 

measured as the standard method for examination of water and wastewater [33]. Colour was 

measured by spectrophotometric absorbance using UV–visible spectrophotometer (Perkin 

Elmer Lambda 20 UV/VIS Spectrophotometer) at a wavelength of 620 nm in which 

maximum absorbance spectra was obtained. Dye decolourization was determined by 

monitoring the decrease in the absorbance peak at the maximum wavelength for the global 

effluent. 

 

3. Results and discussion 

3.1 Microemulsion phase diagram and conductivity measurements 

Fig. 3 shows the pseudoternary phase diagram made. A phase diagram can be proposed as a 

useful tool for the determination of the single phase region when oil, water and a surfactant 

are mixed together. Each corner of the triangle represents 100% of that respective component. 

For the formulation of microemulsions, generally, a co-surfactant (usually represented by a 

short-chain alcohol) is applied in order to widen the microemulsion single phase region [34].  
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The co-surfactant is an amphiphilic molecule having affinity for both the aqueous phase and 

oil phase contributing, along with the surfactant, to decrease the interfacial tension. Among 

the whole range of possible compositions, it can be noticed that not every combination of the 

components led to the production of a microemulsion. In particular, the shaded area (in grey) 

in Fig. 4 represents the area where microemulsions can be formed. The addition of the co-

surfactant, HEMA certainly promoted the enlarging of the phase region by increasing the 

flexibility of the interfacial film [35]. 

 

Fig. 3. The pseudoternary phase diagram with microemulsion region (grey area) 

The variation of conductivity as a function of DTAB aqueous solution is shown in Fig. 4. 

Conductivity measurements were carried out in order to differentiate the three types of 

microemulsions: W/O (water in oil), O/W (oil in water) and bicontinuous microemulsions. 

The bicontinuous microemulsion range is generally associated with a sharp increase in 

conductivity values [35] and can be identified in the range between 20% and 90% DTAB 

aqueous solution content. Below and beyond this range, W/O and O/W microemulsions can 
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be formed respectively. The same trend in conductivity has been already observed by Chieng 

et al. [36] when DTAB was used as a surfactant for microemulsion preparation. 

 

 

Fig. 4. The variation of conductivity of the microemulsion system as a function of aqueous 

solutions of DTAB 

3.2 Preparation of PBM membranes 

For the preparation of PBM membranes, as pre-screening, the concentration of HEMA (from 

35 to 50 wt%) and the polymerization temperature (from 30 to 50°C) were varied in order to 

evaluate their effect on the permeability and the dye rejection. Produced membranes were 

identified with the codes A-E and reported in Table 3. The different compositions of each 

microemulsion prepared were selected on the basis of the results of pseudoternary phase 

diagram (for the identification of the microemulsion range) and of conductivity measurements 

(for the identification of the bicontiunuous structure). 

Table 3: HEMA concentration and polymerization temperature (Tp) for the PBM membranes 

prepared 
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MEMBRANE 

CODE 

HEMA 

CONC. 

(wt%) 

POLYMERIZATION 

TEMP., Tp (°C) 

A 40 20 

B 35 30 

C 50 20 

D 50 25 

E 50 30 

 

3.3 Weight loss determination 

The quantity of unreacted material in the PBM membranes was determined by evaluating the 

weight loss after different extractions to which the membranes were exposed.  

The water weight loss after drying the membrane in the oven was of about 7 wt%. After 

toluene extraction, the membrane weight loss was null indicating that the whole MMA and 

HEMA were fully copolymerised within the polymeric matrix. After hot water extraction, 

PBM membranes presented a weight loss of about 16 wt% due to the fact that, as expected, 

the non-polymerisable DTAB surfactant was washed away from the membrane matrix. 

 

3.4 Morphological analysis: SEM 

When compared to PES uncoated surface (Fig. 5), PBM membranes presented the typical 

bicontinuous structure [25] made up of an interconnected network of polymer channels (white 

strips) and water channels (dark strips) (Fig. 5 A-E). As can be observed in SEM images, the 
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polymerised bicontinuous structure is clearly visible at magnifications of x 20 000 and higher 

and has a surface structure significantly divergent from that of the untreated PES membrane. 

The PBM surface appears uniform and homogenous with a random distribution of the 

bicontinuous structure. This appearance is typical of the surface structure previously reported 

for other PBM coated membrane surfaces produced by using the alternative surfactant 

acryloyloxyundecyltriethylammonium bromide (AUTEAB) [25, 37]. The coating thickness, 

determined by SEM cross-sections, was about 2-5 µm. 

The polymerization temperature seems to play an important role in the formation of the final 

PBM morphology. In fact, by increasing the polymerization temperature (from 20 to 30°C) 

the water channels (representing the porous region of the membrane) are gradually replaced 

by the white islands (representing the polymer aggregates) as can be, for instance, observed 

for the samples C, D and E (prepared at 20, 25 and 30°C respectively and at constant HEMA 

concentration) and showed in Fig. 5. This phenomenon was already observed and reported by 

Ming et al. [38] for the polymerization of polymethyl methacrylate (PMMA) and explained as  

an higher aggregation of polymer particles at higher temperatures (see also section 3.6.1). 

Also, the increase of HEMA concentration (from 35 to 50 %) led to a decrease of membrane 

porosity, as can be observed for samples B, A and E (prepared with 35, 40 and 50 wt% 

respectively of HEMA concentration and at constant temperature) due to its narrowing effect 

in bicontinuous microemulsion systems [39]. 
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Fig. 5. SEM surface of PBM membrane surfaces A-E, varying the HEMA concentration and 

Tp and PES commercial membrane 

3.5 Surface analysis: AFM, CAM and FT-IR 

 

Fig. 6. a)  1x1 µm AFM surface scans of PBM membranes. Images are labelled according to 

the sample key in Table 3. b) Root mean squared (Rq) roughness for PES and PBM 
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membranes from 1x1 µm AFM scans. Error bars indicate standard error of the mean. Samples 

are labelled according to the key in Table 3. 

AFM scans were carried out using tapping mode in air (Fig. 6a). From the AFM topographies, 

roughness parameters were calculated for several PBM membranes prepared at a range of 

HEMA concentrations and polymerization temperatures and compared with surface roughness 

values obtained from the unmodified commercial PES membrane. Fig. 6b shows the root 

mean square (Rq) values obtained for each membrane obtained from an average of three scans 

at different portions of the membrane surface. All scans were of a 1 x 1 µm size. Membranes 

are coded A-E and Table 3 provides a key to the coding. As can be seen the unmodified PES 

membrane has an Rq value of 6.59 nm. Rq values for the PBM membranes vary from 

comparable with the PES membrane (membranes C) to having significantly lower surface 

roughness at this size scale for the remaining membranes. 

Roughness can play a critical role in the surface fouling of membranes as it changes the 

amount of surface area available for fouling to occur. Much effort has been made into 

combating surface fouling by fabricating smoother membranes, as many observations have 

been reported in the literature that higher surface roughness can lead to increased fouling by 

increasing the interaction area between dissolved and suspended foulants and the membrane 

[40]. However, the effect of roughness on fouling is complex, and can depend on the interplay 

between roughness, foulant particle size and surface morphology [41, 42]. Many researchers 

have found a strong correlation between fouling and surface roughness [43]. For example, 

cellulose acetate membranes are generally more resistant to fouling than rougher polyamide 

membranes [44], which has been in part attributed to lower shear rates over rougher surfaces 

[45]. Rana et al. [46] reported a linear correlation between fouling induced flux reduction and 

surface roughness for modified and unmodified PES membranes. 
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From CAM measurements, PES commercial membranes presented an average contact angle 

of 68° ± 3 while PBM membranes presented a contact angle ranging from 44° to 55°. The 

surface roughness in this case can not be related to the phenomenological model proposed by 

Wenzel [47] where the increase of surface roughness generally corresponds to an increase in 

membrane hydrohilicity.  However, other models have been also studied and proposed putting 

in relation the membrane roughness with membrane contact angle based upon the triple 

contact line (TCL), as illustrated in the works of Liu et al. [48, 49], giving20n the possibility 

of having a fundamental understanding of wetting of rough and heterogeneous substrates.   

Besides membrane roughness, it is important to consider the contribution of the co-surfactant 

HEMA which, being a short-chain alcohol, bears –OH functional groups able to improve the 

affinity of the PBM coated membrane toward water molecules and decreasing, therefore, the 

contact angle value.   

FT-IR measurements were aimed in determining the effective presence of the PBM coating on 

PES membrane surface and its stability once the PBM membrane was subjected to different 

washing protocols. As can be seen from Fig. 7, showing the spectra of the PBM and PES 

membrane, the presence of the relative broad absorption at 1725 cm
-1

 in the PBM membrane, 

clearly indicates the presence of the carbobyl group characteristic of MMA, HEMA and 

EGDMA molecules used for the coating preparation. The same functional group was still 

present after the different washing procedures carried out on the PBM membrane, evidencing 

the stability of the coating on the PES membrane surface.  
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Fig 7. FT-IR spectrum of PES and PBM membrane (before and after washing) 

3.6 Lab scale experiments 

3.6.1 Effect of microemulsion composition and polymerization temperature on membrane 

performances 

The microemulsion composition can have a significant impact on membrane formation 

leading to structures with a more open/closed morphology. For this reason, several sets of 

novel PBM membranes were prepared following the preparation method described in section 

3.3 under different polymerization temperatures i.e. from 20° C until 30° C and HEMA 

concentration ranging from 35% to 50%. The water permeabilities (WP) and dye rejections 

obtained from the manually controlled cross flow set up (Fig. 1) are given in Fig. 8 (a, b). 
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Fig. 8. Water permeability a) and b) colour rejections of the novel PBM membranes 

From Fig. 8 (a) it can be observed that the water permeability of the evaluated membranes 

decreases with an increase in the reaction temperature. 

An explanation of this behavior lies in the fact that the reaction temperature can play a crucial 

role in the determination of particle size and in the subsequent formation of membranes with a 

more or less porous architecture. Ming et al. [38], in fact, demonstrated how the increase of 

polymerization temperature of PMMA led to an increase of latex particle size in comparison 

to systems polymerized at room or lower temperatures. Higher temperatures, in fact, can 

foster the diffusion of MMA into the polymer-containing particles and, at the same time, 

facilitate the collision and aggregation of polymer particles to form larger latex particles. 

The increase of latex particles at higher temperatures, therefore, could have promoted the 

formation of denser membranes due to the occlusion of the water channels by the growing 

polymer particles causing a drastic decrease in membrane water permeability.  Moreover, the 

increase in HEMA concentration from 35 to 50 wt% presented in Fig. 8 (a), negatively 

influenced the water permeability of the prepared membranes. Due to its high solubility in 

water, the co-surfactant  HEMA localizes not only at the interface of MMA and water, but  

also in the water channels of the bicontinuous microemulsion [39]. The presence of HEMA 
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and its copolymers in the water channels is, thus, able to narrow the pores of the membranes 

[50], causing a decrease of water permeability and a consequent increase of dye rejection. 

These results are also in agreement with the different morphology exhibited by PBM 

membranes when observed by SEM. The dye rejection (Fig. 8 (b)) reflects the trend of water 

permeability. Membranes prepared at higher temperatures (30°C) presented the highest 

rejection due to their closer and denser structure. For these reasons, the membrane fabricated 

with 40 wt% of HEMA and 20 °C was selected as the best compromise between permeability 

and rejection and, therefore, chosen as optimal conditions for the following antifouling tests 

with HA and with real textile wastewater in MBR process. This particular membrane 

treatment had a lower roughness than the unmodified PES membrane (membrane A in fig. 5, 

6a, 6b). 

 

3.6.2 Antifouling tests 

To test the fouling propensity of the membranes, HA was used as a model foulant using the 

operating conditions in Table 2. The experiment performed with model foultant HA showed 

that water permeability (WP) with PES membrane reduced to 78% (from 638 L/m
2
 h bar to 

140 L/m
2
 h bar on average), while the reduction of WP with PBM membrane was only 35% 

(from 73 L/m
2
 h bar to 47 L/m

2
 h bar on average), Fig. 9 (a). The results indicate that the 

novel PBM membrane is less prone to fouling by organic substances than the unmodified 

commercial membrane. 
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Fig. 9. a) Water permeability (WP) and b) fouling behaviour of the novel membrane in 

comparison to PES commercial one 

WP regained after the 3
rd

 cleaning operation was approximately 15% for the PBM membrane 

while it was approximately 11% for pristine PES membrane. WP gain indicates the fouling 

reversibility and therefore the removal of HA with DI water from the membrane surface. If it 

is assumed that 78% WP loss of PES membrane is caused by the total fouling (reversible and 

irreversible), while the contribution of reversible fouling is only 11% and the rest (67%) 

represents the irreversible category. Considering a similar hypothesis, PBM membrane 

showed almost 15% reversible fouling after 3 cleaning cycles with DI water whereas the rest 

(20%) falls into the irreversible catagory. This is a further indication of the low fouling effect 

of the PBM membrane is mainly related to reversible fouling. The physical appearance for 

both membranes after 3 cleaning cycles also indicates the different affinity of model foulant 

to the membrane surfaces (Fig. 9 (b)), showing that HA has less affinity to PBM membrane 

compared to PES. The lower tendency of PBM membranes to be affected by fouling in 

comparison to PES commercial membranes can be attributed to two main causes: the 

smoother surface and the superior hydrophilicity of the novel membranes. Membrane 

roughness plays an important role in the formation and evolution of membrane fouling at the 
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surface. Surface roughness, in fact, enhances the attachment of fouling particles on the 

membrane surface as already pointed out by many authors [51, 52, 45]. Rough surfaces are 

able to offer a wider surface area and more contact opportunities between the foulants and the 

membrane surface [44]. Moreover, the troughs created by rough membranes are preferred 

sites of particle accumulation in comparison to smoother surfaces. However, it should be 

noted that the particular membrane used for membrane fouling tests was not smoother to a 

great degree, so roughness can only partly explain the lower fouling behavior of this particular 

membrane. The higher degree of hydrophilicity exhibited by PBM membranes further 

contributed to the lower fouling propensity of the coated membrane in comparison to the 

commercial one. Hydrophilic surfaces are, in fact, considered more resistant to fouling 

phenomena because organic matters in aqueous media tend to be hydrophobic having, thus, 

higher propensity to establish hydrophobic interactions with the surface of hydrophobic 

membranes [53-55]. 

 

3.7 Pilot scale experiment with real textile wastewater  

In Table 4 the main characteristics of sampled RTW are summarized.  

Table 4: Characteristics of RTW 

RTW pH 

EC    

(mS/cm) 

COD    

(mg/L) 

BOD5  

(mg/L) 

TSS         

(g/L) 

VSS        

(g/L) 

1 12 15.01 2880 350 2.35 0.59 

2 12.2 9.11 1946 1050 0.63 0.05 

3 7.3 5.36 3120 1200 0.2 0.1 
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The effluent used to feed the MBRs presented high pH values added to relatively high 

salinity. Such conditions are not favourable for the microbial activity. Therefore, the effluent 

was diluted prior to MBR feeding and the pH was adjusted to 8 in order to ensure maximal 

biological activity. 

3.7.1  Effect of pH and salinity on MBR 

pH is an important parameter in biodegradation and membrane fouling too. It has been 

reported that the rate of membrane fouling is strongly influenced by low pH values thus 

increasing the adsorption of MBR originated EPS onto the membrane [56]. In this context, 

many studies approved that the rate of membrane fouling in MBRs increases at lower pH of 

the mixed liquor [57, 58]. Even though pH between 8 to 9 increases the precipitation of 

CaCO3 [59], moderate amounts of calcium precipitates can be beneficial in controlling 

biofouling due to the bounding and bridging EPS hence enhancing biofloculation. In order to 

avoid fouling, alkalinity is required to buffer the hydrogen ions generated in MBR processes 

[60]. On the other hand, many studies have previously reported that bacterial culture generally 

exhibits maximum decolourisation at a neutral or a slightly alkaline pH value [61]. On the 

basis of these reports, the optimum pH for running the MBR operation was about 8. 

Regarding the salinity, it has been known to have adverse effects on biological systems. In 

MBRs particularly, it has been demonstrated that the presence of salts in the mixed liquor 

cause chemical precipitation and electrostatic attraction towards the surface of the membrane 

[62]. High salinity also modifies the physical and biochemical properties of the biomass 

characteristics by increasing bound EPS and SMPs concentrations and decreasing membrane 

permeability [63]. In our case, the feed presented normal salinity content below 5000 mg/l 

and there was no salt accumulation in both MBRs. It is worth noting that salt concentrations 

below 10 g/L had negligible impact on the removal of organics by MBR [64, 65]. Thus, 

suggesting the biomass adaptation to the salinity condition [66]. Similarly, salinity and pH of 
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the wastewater did not affect the performance of both MBRs as the resulting permeates 

revealed comparable salt content with mean values of 4420 and 4410 mg/l for uncoated and 

coated PBM membranes, respectively. 

3.7.2 Performance comparison of commercial membranes and PBM membranes on COD 

removal  

The MBRs were started with a low mean COD load of 0.7 g COD/L/day to let the biomass 

adapt to the operational conditions during the first two months. After the adaptation phase, the 

volumetric loading rate (VLR) was increased stepwise to 2 g COD/L/day. The sludge 

concentration increased from 5 to 14 g/L and was kept at almost 12 g/L for the rest of the 

MBR operations by periodical sludge withdrawal. 

 

 

Fig. 10. a) Evolution of COD removal performance during MBR treatment: (P1) permeate of 

PES-MBR; (P2) permeate of PBM-MBR. b) Evolution of colour removal performance during 

MBR treatment: (P1) permeate of PES-MBR; (P2) permeate of PBM-MBR. 

 

As shown in Fig. 10a, during the first operational period where a flux of 2 L/h/m
2
 and a VLR 

of 0.7 g COD/l/day were applied, PES-MBR and PBM-MBR exhibited COD removal 
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efficiencies of 94.6% and 94.9%, respectively. At higher flux of 4 L/h/m2 (VLR 1 g 

COD/L/day) both MBRs showed a stable performance with a slight decrease in COD removal 

efficiency recording values of 84.6% and 83.4% for PES- PBM and PBM- MBR, 

respectively. Further flux increase (6 L/h/m2) associated with a VLR of 2 g COD/L/day 

resulted in a better COD removal performance of 87.3% and 88.1% for PES- PBM and PBM- 

MBR. The general assessment of the data shows that both reactors exhibited similar 

performances.  

 

3.7.3 Performance comparison of commercial membranes and PBM membranes on colour 

removal 

To study the performance of the commercial membranes and PBM membranes on colour 

removal throughout the continuous treatment process, the colour of influent and effluent was 

assessed through absorbence at 620 nm. 

 

Table 5. Operating conditions of the MBRs at different stages of the experiment 

HRT (days) 3 2.5 1.7 1.2 

Flux (L/m
2
 h) 2 3 4 6 

Decolourization (%)     

PES MBR 63.5 78.3 82.4 51.4 

PBM MBR 67.0 78.4 83.0 51.0 

 

At the start up of both MBRs (flux 2 L/h/m
2
, HRT 3 days), colour removal was 63.5% and 

67.0% for PES-MBR and PBM-MBR, respectively (Table 5).  Beyond this adaptation phase, 
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applying a HRT of 2.5 days and a flux of 3 L/h/m
2
 resulted in higher colour removal values 

reaching 78.3% for both MBRs (Table 5). Additional flux increase (flux 4 L/h/m
2
) and HRT 

reduction (1.7 days) induced higher colour removal with mean values of 82.4% and 83.0% for 

PES-MBR and PBM-MBR, respectively (Table 5). This suggests the adaptation of the 

biomass to the operating conditions allowing the improvement of the decolourization rate 

even at reduced HRT.  

In order to improve the membrane performances, the flux was increased to 6 L/h/m
2
, and the 

resulting HRT was almost 1 day. Following this change, the decolourization performance 

decreased to 51.4% for PES-MBR and 51.0% for PBM-MBR (Table 5). Obviously, the HRT 

together with the change of the effluent fed to the MBRs affected the permeate quality 

becoming progressively more coloured for both MBRs (Fig. 10b). It can be concluded that the 

minimum appropriate HRT for such complex wastewater is 1.5-2 days. The comparison of the 

PBM coated membranes vs. the commercial membranes in terms of decolourization revealed 

that both membrane performances were also quite similar.  

 

3.7.4 Fouling propensity of commercial membranes and PBM membranes during MBR 

treatment 

Fig. 11 displays the TMP variation of PES- MBR and PBM- MBR at different permeate flux. 

Results showed that both membranes were stable under flux below 5 L/h/m
2
 as the maximum 

observed TMP values was 50 mbar after almost 120 days of continuous treatment (Fig. 11). 
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Fig. 11. Course of TMP and Flux during the entire operation period of PES-MBR and PBM-

MBR 

Increasing permeate flux up to 6-7 L/h/m
2
 led to the rise of TMP values reaching 340 mbar at 

day 134 for commercial membranes against 70 mbar for PBM membranes (Fig. 11). 

Consequently, the commercial membrane module was extracted from PES- MBR and jet 

rinsed with tap water. The TMP regained 200 mbar at day 139 (Fig. 11). However, the 

positive effect of rinsing lasted too short (8 days) and a strong membrane fouling was 

observed as TMP values drastically increased up to 1 bar (Fig. 11). Unlike the commercial 

membranes, PBM membranes showed steady filtration performance under the same flux with 

TMP values not exceeding 150 mbar (Fig. 11).  

Pictures of both membranes were taken at the end of the trials before and after the water 

rinsing and are showed in Fig. 12. As it possible to notice, PBM membranes visually appeared 

much less fouled after MBR trial in comparison to PES ones. Moreover, the water rinsing for 

PBM membranes was more efficient in removing the deposited fouling facilitating the 
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permability restoring. Considering these results, the PBM coating of the membranes lowered 

the tendency to fouling in comparison to the commercial membranes. 

According to the membrane producer of the pristine PES membranes, the lifetime of the 

membrane is around 5 years if the operation protocol is maintained carefully. However, its 

lifetime could be reduced drastically if the membrane faces fouling. From the antifouling test 

(lab test) of uncoated membrane, as described in section 3.6.2, and pilot tests, as described in 

section 3.7.4 (Fig. 11), it is evident that the coated membrane is less prone to fouling which 

ensures the much longer life time and making the PBM coating a very promising approach. 

 

 

Fig. 12. PES and PBM membranes after MBR trial and after rinsing with water 

3.7.5 Comparison between PBM membranes prepared with AUTEAB and DTAB 

The result of the present work has been compared with other two studies in which the PBM 

membrane concept has been developed for water treatment [15, 25]. The PBM membranes 

produced typically differ for the use of a specific surfactant: lab-made and polymerisable 

surfactant AUTEAB in case of the previous studies; and commercial not-polymerisable 
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DTAB surfactant in case of the present work. In table 6 a comparison between PBM 

membranes main characteristics and performances, prepared with AUTEAB and DTAB 

surfactants, is reported.  In particular, the main difference between the two types of PBM 

membranes lies in the type of surfactant used. The lab-made surfactant AUTEAB is, in fact, 

an anti-microbial and polymerisable molecule, which remains entrapped, through co-

polymerization, in the PBM matrix upon polymerization.  This gives to the overall PBM 

membrane important anti-biofouling properties when operated in MBR process. DTAB 

surfactant, despite its anti-microbial activity, however, is not a polymerisable molecule. For 

this reason it cannot be chemically entrapped in the PBM membrane during the 

polymerization process and it cannot exploit any anti-biofouling activity due to its release 

during membrane washing. Nevertheless, PBM membrane coating prepared with DTAB 

allow to fabricate a bicontinous microemulsion structure with similar performance, in terms of 

water permeability, COD removal efficiency in MBR and low fouling properties (when tested 

with HA), in comparison to PBM prepared with AUTEAB. From the cost point of view, PBM 

membranes prepared with DTAB are slightly cheaper due to its commercial availability. 
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Table 6. Comparison between PBM membrane main characteristics and performances   

 

* Costs of chemicals ordered for lab scale synthesis. 

 

 PBM membranes main characteristics PBM membrane performances Cost  
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Polymerisable 

surfactant 

Antimicrobial 

and anti-

biofouling 

activity after 

polymerization 

Tunable 

pore size 

Smoother 

surface 

Water 

permeability 

(L/m
2
 h bar) 

Permeability 

reduction when 

HA is used as 

foulant (%) 

COD 

removal 

efficiency 

in MBR 

(%) 

Cost* of 

PBM 

coating 

per 1 m
2
 

References 

PBM with 

AUTEAB  

Yes Yes Yes Yes 200 ± 75 45 ± 3 95 ± 1  47,00 € [15, 25, 67] 

PBM with 

DTAB  

No No Yes Yes 192 ± 50 35 ± 4 94.9 ± 1  41,00 € This work 
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4. Conclusions 

In this work, PBM membranes, applied as a coating material for PES ultrafiltration 

membranes, have been obtained through the polymerization of a bicontinuous microemulsion. 

The new coating has been realized using commercially available 

dodeyltrimethylammammonium bromide (DTAB) as surfactant and by varying the chemical 

composition and the polymerization temperature of the microemulsion. The microemulsion 

region and the bicontinuous range were determined by phase diagram and conductivity 

measurements, respectively. Different PBM membranes were successfully produced tailoring 

the different properties in terms of morphology allowing a change in water permeability and 

dyes rejection (when tested in model textile wastewater). The concentration of the co-

surfactant HEMA of 40 wt.% and the polymerization temperature (Tp) of 20 °C have been 

selected as the optimal conditions in terms of water permeability (WP) and dye rejection for 

the scale up of PBM membranes. PBM coating presented interesting properties in terms of 

antifouling resistance (when tested with HA) in comparison to PES uncoated membranes. The 

fouling occurring in PBM membranes, in fact, was mainly of the reversible type, allowing a 

higher regain in WP after flushing with water. The MBR pilot scale experiments, carried out 

with real textile wastewater, showed that critical flux was significantly higher for the novel 

PBM coated membranes with respect to the commercial PES membranes resulting in a longer 

life cycle of the produced membranes with less requirements in terms of chemical cleaning 

and operational maintenance costs.
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