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We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spher-
ical bubble contacts a flat wall, by analytically integrating Laplace’s equation in the presence of gravity, in
the limit of small Plateau border sizes. This method has the advantage that it provides closed-form
expressions for the positions and orientations of the Plateau border surfaces. Results are in very good
overall agreement with those obtained from a numerical solution procedure, and are consistent with
experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively
small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a nar-
rowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on
gravity.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A liquid foam is an assembly of gas bubbles bounded by liquid
films. Foams are encountered in many practical applications such
as beverages, toiletries, cleaning products, fire fighting, oil recov-
ery, mixture fractionation, the manufacture of cellular materials,
and ore purification by flotation [1]. The behaviour of a foam with
a low-viscosity liquid phase (e.g., an aqueous foam or a metal foam,
as opposed to a polymeric foam) is dominated by surface tension.
Such foams thus serve as models for systems in which the interfa-
cial area (in three dimensions (3D)) or the perimeter (in two
dimensions (2D)) is minimised at equilibrium. In the limit of a per-
fectly dry foam, such as may be obtained after drainage of most of
its liquid content due to gravity, the films can be approximated as
surfaces of zero thickness endowed with a contractile tendency
that is described by a film tension, denoted 2c (a free energy per
unit length of a 2D film, or per unit area of a 3D film, which is twice
that of the liquid–vapour interface, c). At equilibrium a dry foam
satisfies Plateau’s laws [2]: films of constant mean curvature meet
in triple lines at 2p=3 angles; the triple lines meet in fourfold ver-
tices at the tetrahedral angles; and the different pressures in the
bubbles equilibrate the contractile forces on the films. The energy
of such a foam is just the energy of its films.

In actual moderately dry foams (liquid content below about 5%),
we may still neglect the film thicknesses (of order 100 nm), but the
ll rights reserved.
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triple lines are ‘decorated’ with regions of triangular cross-section
called Plateau borders (of width of order 0.1–1 mm) where most of
the liquid resides. In addition, where a foam meets a confining sur-
face there are wall Plateau borders. These are bounded by two li-
quid surfaces of tension c and one solid surface (the wall) of
tension cWL (the wall–liquid interfacial tension). Wall Plateau bor-
ders affect both the statics and the dynamics of foams: not only do
they contribute to the total foam energy, they also exert consider-
able drag on the walls in foam flow experiments. In perfectly dry
foams the film contact angle at a wall is p=2. In 2D wet foams,
the (circular) film prolongations into a wall PB also meet the wall
at p=2 [3]. However, this appears not to be the case in 3D wet
foams in contact with walls: deviations from p=2 have been re-
ported for a single bubble on a wet porous substrate [4], e.g.,
/ � 85� (measured inside the bubble and extrapolated to the sub-
strate surface – see Fig. 1) for a bubble of radius R ¼ 2:4 mm. The
reason is that the Plateau border possesses curvature in the hori-
zontal direction, due to the axial symmetry of the bubble. Although
generally weaker than that existing in the vertical direction, this
curvature depends on bubble and Plateau border size, and modifies
the contact angle of the bubble.

In an earlier paper [5] the Plateau border shapes and the appar-
ent contact angle of a single bubble at a wall were calculated by
numerical integration of the appropriate Laplace equation. The
usual disparity of scales between the two curvatures, however,
suggests the use of perturbation methods, which would allow
greater insight into the physical mechanism involved. Taking into
account that, in most practical situations, the height of the Plateau
border h is considerably smaller than the radius of the bubble R, in
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Fig. 1. Schematic diagram of the model problem. A bubble, and its associated
Plateau border, are shown. R is the radius of the bubble. h is the height of the
Plateau border. h1 and p� h1 are the contact angles of the Plateau border surfaces as
they intersect the substrate. h2 is the apparent contact angle of the bubble (angle of
the film at the top of the Plateau border). / is the extrapolated contact angle of the
bubble in the absence of a Plateau border. z is the height and x is the radial distance
of the film to its axis of symmetry (the z axis).
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this paper we develop an approximate analytical solution for the
Plateau border shape in powers of h=R. This solution will also be
used to study the relatively weak gravity effects on the Plateau
border (i.e., the difference between sessile and pendant bubbles).
Gravity is important in many aspects of foam research, e.g., drain-
age [1], and assumes ever greater relevance as it becomes increas-
ingly possible to carry out experiments in microgravity
environments, e.g., aboard the International Space Station. The
analytical approach used in the present study has the advantage
of allowing a better control of input conditions, and consequently
an easier and quicker exploration of parameter space, than the
numerical model used in [5] (where gravity effects were not
addressed).

This paper is organised as follows: in Section 2 we describe our
model, the Laplace equation for the Plateau border around a single
spherical bubble at a flat wall, and obtain closed-form expressions
for the inner and outer Plateau border surfaces. Our results for the
apparent contact angle, extrapolated contact angle and Plateau
border shape are discussed in Section 3: we compare results at dif-
ferent orders in h=R with those from numerical solution of the La-
place equation, for different contact angles of the liquid on the
substrate and varying gravity strengths. Comparison is also made
with what is, to our knowledge, the only existing set of experimen-
tal results for this system [4]. Finally, Section 4 contains some
concluding remarks.

2. Theoretical model

The starting point is Laplace’s equation for an axisymmetric
geometry, which may be written:

1þ dx
dz

� �2
" #�3=2

�d2x

dz2 þ
1þ dx

dz

� �2

x

" #
¼ Dp

c
; ð1Þ

where z is the height and x is the distance between the film surface
and its axis of symmetry (here assumed to be the z axis). Dp is the
pressure difference across the film surface (inner minus outer) and
c is the surface tension of the fluid under consideration.

Defining cot h ¼ �dx=dz; h is the angle, measured on a vertical
plane containing the z axis, between the film direction and the hor-
izontal direction. The contact angle at which the outer surface of
the Plateau border intersects the substrate at the bottom of the
bubble will be called h1 ¼ hðz ¼ 0Þ, while the corresponding con-
tact angle of the inner surface is, of course, p� h1. Finally, the
apparent contact angle of the bubble, defined as the angle of the
film at the top of the Plateau border, where both surfaces are tan-
gent, is called h2 ¼ hðz ¼ hÞ (see Fig. 1). Replacing the dependent
variable x by h in Eq. (1), that equation takes the form

� dh
dz
þ 1

R sin h2 þ
R h

z cot hdz

 !
sin h ¼ Dp

c
: ð2Þ

Applying Eq. (2) at the inner and outer surfaces of the Plateau
border yields

� dh
dz
þ 1

R sin h2 þ
R h

z cot hdz

 !
sin h ¼ pi � pb

c
ðinnerÞ; ð3Þ

dh
dz
� 1

R sin h2 þ
R h

z cot hdz

 !
sin h ¼ po � pb

c
ðouterÞ; ð4Þ

where pi;po and pb are the pressures inside the bubble, outside the
bubble, and inside the Plateau border, respectively. The pressure in-
side the Plateau border is assumed to be in hydrostatic equilibrium,
such that

pb ¼ pb0 � qgz; ð5Þ

where pb0 is the pressure at the bottom of the Plateau border, g is
the acceleration of gravity and q is the density of the fluid under
consideration. Additionally, it should be noted that the pressure dif-
ference between the inside and the outside of the bubble is given by

pi � po ¼ 4
c
R
: ð6Þ

In their present form, Eqs. (3) and (4) cannot be solved analyt-
ically. In order to make this possible, they are first inverted, so that
z becomes the dependent variable and h the independent variable.
To do this, it is necessary to change the variable of integration of
the integral from z to h, on noting that, at the surfaces bounding
the Plateau border, h is a monotonic function of z:Z h

z
cot hdz ¼

Z h2

h
cot h

dz
dh

dh: ð7Þ

When this is done, and Eq. (5) is also taken into account, Eqs. (3) and
(4) take the form

pi�pb0

c
þqgz

c
� sinh

Rsinh2þ
R h2

h cothdz
dhdh

 !
dz
dh
¼�sinh ðinnerÞ; ð8Þ

po�pb0

c
þqgz

c
þ sinh

Rsinh2þ
R h2

h cothdz
dhdh

 !
dz
dh
¼sinh ðouterÞ: ð9Þ

At this point, it is useful to make the variables of this problem
dimensionless, so that the orders of magnitude of the various
terms become clearer. h is dimensionless by nature, and takes val-
ues of O(1). Since these equations are going to be integrated over
the Plateau border height, which is h, a normalised height is de-
fined as z0 ¼ z=h. Then, Eqs. (8) and (9) become

ðpi�pb0Þh
c

þh2

R2

qgR2

c
z0 �h

R
sinh

sinh2 1þ h
R

1
sinh2

R h2
h cothdz0

dh dh
� �

2
4

3
5

�dz0

dh
¼�sinh ðinnerÞ; ð10Þ

ðpo�pb0Þh
c

þh2

R2

qgR2

c
z0 þh

R
sinh

sinh2 1þ h
R

1
sinh2

R h2
h cothdz0

dh dh
� �

2
4

3
5

�dz0

dh
¼ sinh ðouterÞ: ð11Þ

These equations are subject to the lower boundary condition
z0ðh ¼ p� h1Þ ¼ 0 (at the inner surface) or z0ðh ¼ h1Þ ¼ 0 (at the out-
er surface) and the upper boundary condition z0ðh ¼ h2Þ ¼ 1 (at both
surfaces).
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Noting that h=R is small, when the factor involving the integral
is expanded in powers of h=R up to first order, Eqs. (10) and (11)
can be written approximately as

ðpi � pb0Þh
c

þ h2

R2

qgR2

c
z0 � h

R
sin h
sin h2

1� h
R

1
sin h2

Z h2

h
cot h

dz0

dh
dh

� �" #

� dz0

dh
¼ � sin h ðinnerÞ; ð12Þ

ðpo � pb0Þh
c

þ h2

R2

qgR2

c
z0 þ h

R
sin h
sin h2

1� h
R

1
sin h2

Z h2

h
cot h

dz0

dh
dh

� �" #

� dz0

dh
¼ sin h ðouterÞ: ð13Þ

In Eqs. (12) and (13), it is clear that only the first term in square
brackets is of O(1), to balance the right-hand side of these equa-
tions, while the third term, related to the horizontal curvature of
the Plateau border, is of Oðh=RÞ. The last term, related to the fact
that the inner surface of the Plateau border is closer to the axis of
symmetry than the outer surface, is of Oðh=RÞ2. Finally, the second
term, related to gravity effects, is also of Oðh=RÞ2. In fact, whether
this term is of second order or not depends on the value of the
dimensionless parameter qgR2=c, but in the cases that will be ad-
dressed – bubbles of radius R � 1—3 mm, as in [4] – this parameter
is indeed of O(1), as required. For these values of R and using
c ¼ 33:6� 10�3 J m�2 (see [4]) gives qgR2=c � 0:3—2:6.

The problem is tackled by expanding both the dimensionless
height z0ðhÞ and the dimensionless inner and outer pressures in
power series of h=R, as follows:

z0 ¼ z00 þ
h
R

� �
z01 þ

h
R

� �2

z02 þ � � � ; ð14Þ

ðpi � pb0Þh
c

¼ p0i0 þ
h
R

� �
p0i1 þ

h
R

� �2

p0i2 þ � � � ; ð15Þ

ðpo � pb0Þh
c

¼ p0o0 þ
h
R

� �
p0o1 þ

h
R

� �2

p0o2 þ � � � : ð16Þ

Although a similar power series solution for h could presumably be
used to solve the equations before inversion (i.e., Eqs. (3) and (4)), cal-
culations would certainly be less straightforward, because h appears
as the argument of sine and cosine functions. Additionally, this would
necessarily impose an a-priori dependence of h2 on h=R (quadratic for
a second-order expansion) which, as will be seen, is not supported by
the numerical simulations. The solution procedure will first be de-
scribed for the inner surface of the Plateau border.

2.1. Inner surface

Once Eqs. (14) and (15) are inserted into Eq. (12), three equa-
tions result, valid at zeroth-, first- and second-order in h=R,
respectively:

p0i0
dz00
dh
¼ � sin h; ð17Þ

p0i0
dz01
dh
þ p0i1 �

sin h
sin h2

� �
dz00
dh
¼ 0; ð18Þ

p0i0
dz02
dh
þ p0i1 �

sin h
sin h2

� �
dz01
dh

þ p0i2 þ
qgR2

c
z00 þ

sin h

sin2 h2

Z h2

h
cot h

dz00
dh

dh

 !
dz00
dh
¼ 0: ð19Þ

These equations must be solved subject to the boundary conditions
z00ðh ¼ p� h1Þ ¼ z01ðh ¼ p� h1Þ ¼ z02ðh ¼ p� h1Þ ¼ 0 and z00ðh ¼ h2Þ
¼ 1, z01ðh ¼ h2Þ ¼ z02ðh ¼ h2Þ ¼ 0. Integrating Eqs. (17)–(19) between
h ¼ p� h1 and h ¼ h2 using these boundary conditions yields the
following expansion coefficients of the inner pressure:
p0i0 ¼ cos h1 þ cos h2; ð20Þ

p0i1 ¼ �
1
2

h2 � pþ h1 � sin h2 cos h2 � sin h1 cos h1

p0i0 sin h2
; ð21Þ

p0i2 ¼ �
1
2

qgR2

c
þ p0i1

p0i0
� p02i1

p0i0
: ð22Þ

In fact, as will be seen later, one does not need to find explicit
expressions for z00; z

0
1 and z02 in order to obtain a relation between

h1, h2 and h=R. However, this is necessary for plotting the actual
shapes of the Plateau border surfaces. To obtain such expressions,
Eqs. (17)–(19) must be integrated instead between h ¼ p� h1 and
a generic h, with the result

z00 ¼
cos hþ cos h1

p0i0
; ð23Þ

z01 ¼ �
p0i1
p02i0
ðcos hþ cos h1Þ �

1
2p02i0 sin h2

� ðh� pþ h1 � sin h cos h� sin h1 cos h1Þ; ð24Þ

z02 ¼ �
1
2

qgR2

c
ðcos hþ cos h1Þ2

p03i0
� p0i2

p02i0
� p02i1

p03i0

� �
ðcos hþ cos h1Þ

þ p0i1
p03i0
� 1

2p03i0

� �
h� pþ h1 � sin h cos h� sin h1 cos h1

sin h2
: ð25Þ

In order to specify the inner surface of the Plateau border, it is also nec-
essary to know its horizontal position. An equation analogous to Eq.
(12) can be obtained if we define x0 ¼ x=h and Dx0 ¼ x0ðh ¼ h2Þ �x0ðhÞ
(where x is the horizontal coordinate of the inner surface). From these
definitions it follows that, although x0 is of OðR=hÞ;Dx0 is of O(1). If we
note that dx0=dz0 ¼ � cot h, then it can be shown from Eq. (12) that

ðpi�pb0Þh
c

þh2

R2

qgR2

c
z0 �h

R
sinh
sinh2

1þh
R

1
sinh2

Dx0
� �" #

dDx0

dh
¼�cosh:

ð26Þ
If Dx0 is expanded in a power series of h=R, as follows:

Dx0 ¼ Dx00 þ
h
R

� �
Dx01 þ

h
R

� �2

Dx02 þ � � � ; ð27Þ

and Eqs. (14) and (15) are also taken into account, three equations
for Dx00;Dx01 and Dx02 are obtained:

p0i0
dDx00

dh
¼�cosh; ð28Þ

p0i0
dDx01

dh
þ p0i1�

sinh
sinh2

� �
dDx00

dh
¼0; ð29Þ

p0i0
dDx02

dh
þ p0i1�

sinh
sinh2

� �
dDx01

dh
þ p0i2þ

qgR2

c
z00�

sinh

sin2 h2

Dx00

 !

�dDx00
dh
¼0: ð30Þ

The solutions to these equations satisfying the boundary conditions
Dx00ðh ¼ h2Þ ¼ Dx01ðh ¼ h2Þ ¼ Dx02ðh ¼ h2Þ ¼ 0 (which result from the
definition of Dx0 and Eq. (27)), are:

Dx00¼
sinh2�sinh

p0i0
; ð31Þ

Dx01¼
1

2p02i0 sinh2
ðsin2 h2�sin2 hÞ�p0i1

p02i0
ðsinh2�sinhÞ; ð32Þ

Dx02¼
1

2p03i0
�p0i1

p03i0

� �
sin2 h2�sin2 h

sinh2
þ p02i1

p03i0
�p0i2

p2
i0

�qgR2

c
cosh1

p03i0

 !

�ðsinh2�sinhÞ�qgR2

c
1

2p03i0
�ðh2�hþsinh2 cosh2�sinhcoshÞ: ð33Þ

This completely specifies the inner surface of the Plateau border.



196 M.A.C. Teixeira, P.I.C. Teixeira / Journal of Colloid and Interface Science 338 (2009) 193–200
2.2. Outer surface

Now the same procedure must be followed for the outer surface
of the Plateau border. Hence, from Eqs. (14), (16) and (13), three
equations result, again valid at zeroth-, first- and second-order in
h=R, respectively:

p0o0
dz00
dh
¼sinh; ð34Þ

p0o0
dz01
dh
þ p0o1þ

sinh
sinh2

� �
dz00
dh
¼0; ð35Þ

p0o0
dz02
dh
þ p0o1þ

sinh
sinh2

� �
dz01
dh
þ p0o2þ

qgR2

c
z00�

sinh

sin2 h2

Z h2

h
coth

dz00
dh

dh

 !

�dz00
dh
¼0: ð36Þ

These equations are subject to the boundary conditions
z00ðh ¼ h1Þ ¼ z01ðh ¼ h1Þ ¼ z02ðh ¼ h1Þ ¼ 0 and z00ðh ¼ h2Þ ¼ 1,
z01ðh ¼ h2Þ ¼ z02ðh ¼ h2Þ ¼ 0. Integrating them between h ¼ h1 and
h ¼ h2 gives

p0o0 ¼ cos h1 � cos h2; ð37Þ

p0o1 ¼ �
1
2

h2 � h1 � sin h2 cos h2 þ sin h1 cos h1

p0o0 sin h2
; ð38Þ

p0o2 ¼ �
1
2

qgR2

c
� p0o1

p0o0
� p02o1

p0o0
: ð39Þ

On the other hand, integrating Eqs. (34)–(36) between h ¼ h1 and a
generic h yields

z00 ¼
cos h1 � cos h

p0o0
; ð40Þ

z01 ¼ �
p0o1

p02o0

ðcos h1 � cos hÞ � 1
2p02o0 sin h2

ðh� h1 � sin h cos h

þ sin h1 cos h1Þ; ð41Þ

z02 ¼ �
1
2

qgR2

c
ðcos h1 � cos hÞ2

p03o0

� p0o2

p02o0

� p02o1

p03o0

� �
ðcos h1 � cos hÞ

þ p0o1

p03o0

þ 1
2p03o0

� �
h� h1 � sin h cos hþ sin h1 cos h1

sin h2
: ð42Þ

An equation analogous to Eq. (26) may be obtained for the hor-
izontal displacement of the outer surface, Dx0 ¼ x0ðh ¼ h2Þ � x0ðhÞ:

ðpo�pb0Þh
c

þh2

R2

qgR2

c
z0 þh

R
sinh
sinh2

1þh
R

1
sinh2

Dx0
� �" #

dDx0

dh
¼cosh:

ð43Þ

Expanding Dx0 in powers of h=R, as in Eq. (27), the following three
equations are obtained from Eq. (43):

p0o0
dDx00

dh
¼ cos h; ð44Þ

p0o0
dDx01

dh
þ p0o1 þ

sin h
sin h2

� �
dDx00

dh
¼ 0; ð45Þ

p0o0
dDx02

dh
þ p0o1 þ

sin h
sin h2

� �
dDx01

dh

þ p0o2 þ
qgR2

c
z00 þ

sin h

sin2 h2

Dx00

 !
dDx00

dh
¼ 0: ð46Þ

Subject to the same boundary conditions as enunciated before for
the inner surface, these equations have the solutions:
Dx00 ¼ �
sin h2 � sin h

p0o0
; ð47Þ

Dx01 ¼
1

2p02o0 sin h2
ðsin2 h2 � sin2 hÞ þ p0o1

p02o0

ðsin h2 � sin hÞ; ð48Þ

Dx02 ¼ �
1

2p03o0

þ p0o1

p03o0

� �
sin2 h2 � sin2 h

sin h2

� p02o1

p03o0

� p0o2

p02o0

� qgR2

c
cos h1

p03o0

 !
ðsin h2 � sin hÞ � qgR2

c

� 1
2p03o0

ðh2 � hþ sin h2 cos h2 � sin h cos hÞ: ð49Þ

This specifies the outer surface completely. It should be noted that,
by design of the solutions, the upper vertex of the Plateau border,
where the inner and outer surfaces meet, is located at Dx0 ¼ 0 and
z0 ¼ 1.

2.3. Relation between h1, h2 and h=R

The relation between the inner and outer pressures (due to the
bubble curvature) allows us to relate h1; h2 and h=R. The dimen-
sionless version of Eq. (6) is

ðpi � poÞh
c

¼ 4
h
R
: ð50Þ

This equation shows that, although the pressure differences be-
tween the inside of the Plateau border and the inside or the outside
of the bubble are of zeroth order in h=R, the difference between
these pressure differences is only of first order. This, of course, is
consistent with the assumed disparity of scales between the curva-
tures of the Plateau border surfaces and of the bubble. Eq. (50),
combined with Eqs. (15) and (16), gives the following equation
for h=R (accurate to second order in h=R),

ðp0i2 � p0o2Þ
h
R

� �2

þ ðp0i1 � p0o1 � 4Þ h
R

� �
þ p0i0 � p0o0 ¼ 0; ð51Þ

which enables us to find h=R as a function of h1 and h2, through the
solution

h
R
¼

4� p0i1 þ p0o1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� p0i1 þ p0o1Þ

2 � 4ðp0i2 � p0o2Þðp0i0 � p0o0Þ
q

2ðp0i2 � p0o2Þ
ð52Þ

(where the pressures are specified by Eqs. (20)–(22) and (37)–(39)).
This formula provides a relation between h=R; h2 and h1 accurate to
second order in h=R. A relation accurate to first-order may be ob-
tained by retaining only the zeroth- and first-order terms in Eq.
(51), which gives:

h
R
¼ p0i0 � p0o0

4� p0i1 þ p0o1
: ð53Þ

Finally, a zeroth-order approximation can be obtained by neglecting
both the first- and the second-order terms in Eq. (51), yielding:

p0i0 ¼ p0o0 ) cos h2 ¼ 0 ) h2 ¼ 90
�
: ð54Þ

Note that in Eq. (52) the physically meaningful root, i.e., the one
that reduces to the first-order approximation as p0i2 and p0o2 tend
to zero, has been selected. This can be checked by rewriting Eq.
(52) as

h
R
¼
ð4� p0i1 þ p0o1Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðp0
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Þðp0
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o2
Þ

ð4�p0
i1
þp0
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Þ2

r	 

2ðp0i2 � p0o2Þ

ð55Þ
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and expanding the term inside the square brackets in a Taylor
series.

Note also that the procedure described above is not part of the
formal power series solution to the problem (where the coeffi-
cients multiplying successive powers of h=R would have to be set
to zero to satisfy Eq. (51)). In fact, these coefficients have been
determined previously in Eqs. (20)–(22) and (37)–(39), so Eq.
(51) is not valid for any arbitrary h=R, but rather defines h=R as a
function of h1 and h2. Eq. (51) and its versions truncated at lower
orders, which give rise to the solutions of Eqs. (52), (53) or (54),
may be viewed as akin to truncating the final result of a perturba-
tion expansion solution at the required order.

In Eq. (51), and unlike what is usual in perturbation expansions,
what is determined is the small parameter h=R as a function of
other problem variables, instead of the other way round. This
was done for simplicity but we believe the procedure to be consis-
tent, as the ensuing results will show, despite the fact that it is not
very standard. Obviously, solutions analogous to Eq. (52) would be
either much lengthier or impossible to obtain analytically using
this approach if the perturbation expansion was extended to third
or higher order.
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Fig. 2. Variation of the apparent contact angle of the bubble with the dimensionless
height of the Plateau border. Lines: analytical model, symbols: numerical or
experimental data. (a) Results without gravity. Upper set of lines: 1st-order
approximation, lower set of lines: 2nd-order approximation. The 0th-order
approximation coincides with the upper horizontal axis. Symbols: numerical
model. (b) Results with gravity from 2nd-order approximation. Filled symbols:
qgR2=c ¼ 2, open symbols: qgR2=c ¼ �2, both from numerical model. (c) Compar-
ison with experimental data (symbols) for h1 ¼ 0� . The point at ð0:10;74�Þ does not
follow the general trend and may not be meaningful.
3. Results

3.1. Apparent contact angle of the bubble

Fig. 2a and b shows the variation of the apparent contact angle
of the bubble h2 with h=R for three values of h1 (the contact angle
between the Plateau border surfaces and the substrate). Results in
Fig. 2a are for zero gravity and those in Fig. 2b for two values of the
gravity parameter (positive and negative, corresponding to sessile
and pendant bubbles, respectively). In Fig. 2a, the zeroth-order
solution, Eq. (54), is coincident with the upper horizontal axis,
the upper set of lines correspond to the first-order solution, Eq.
(53), and the lower set of lines to the second-order solution, Eq.
(52). The symbols are numerical data obtained by the method of
[5], where the approximation h=R� 1 is not made. In Fig. 2b the
filled symbols correspond to qgR2=c ¼ 2 and the open symbols to
qgR2=c ¼ �2. The positive value is within the range of values taken
by qgR2=c in the experiments of Rodrigues et al. [4], as mentioned
previously.

It should be noted first of all that gravity has no effect on the
analytical relation between h=R; h1 and h2, at least at the current or-
der of approximation. This is a consequence of the fact that only
the difference p0i2 � p0o2 appears in Eq. (52), and according to Eqs.
(22) and (39), this difference does not depend on gravity, because
the terms involving gravity cancel exactly.

On the other hand, the zeroth-order solution, which only takes
into account the vertical curvature of the Plateau border, is trivial
and a bad approximation: h2 is not predicted to depend on h=R or
on h1. The first-order approximation, where the horizontal curva-
ture of the Plateau border is taken into account, produces a rea-
sonable prediction for h2, up to h=R ¼ 0:3, with the correct
dependence on h1. Finally, the second-order approximation,
where apart from the physical effects mentioned above, the hor-
izontal thickness of the Plateau border is taken into account,
yields the best predictions. These are quite accurate up to
h=R � 0:45. The analytical solutions nevertheless diverge consid-
erably from the numerical results above these limits, as expected.

In Fig. 2b, the numerical results show that, contrary to what
the analytical model predicts, there is a dependence of h2 on grav-
ity, although this is relatively weak. For a given value of h=R, po-
sitive gravity (corresponding to a sessile bubble) decreases h2,
while negative gravity (corresponding to a pendant bubble) in-
creases it.
Fig. 2c compares the first-order and second-order analytical
solutions and experimental data [4]. Note that this comparison is
carried out over a much smaller range of h=R than in Fig. 2a and
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Fig. 3. Variation of the extrapolated contact angle of the bubble with the
dimensionless height of the Plateau border. Lines: analytical model, symbols:
numerical model. (a) Results without gravity. Upper set of lines: 1st-order
approximation, lower set of lines: 2nd-order approximation. The 0th-order
approximation coincides with the upper horizontal axis. (b) Results with gravity
from 2nd-order approximation. Filled symbols: qgR2=c ¼ 2, open symbols:
qgR2=c ¼ �2.
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b. Experimentally, the bubbles are formed by blowing air through a
hole in a porous glass substrate; the latter can be either ‘dry’, if
only a few drops of surfactant solution are placed on it, or ‘wet’,
if it is connected to the surfactant solution reservoir and therefore
covered with a continuous liquid film [6]. Filled symbols are for
bubbles on a ‘dry’ substrate, whereas open symbols are for bubbles
on a ‘wet’ substrate. A contact angle of h1 ¼ 0� was assumed in
either case, which seemed the most sensible choice, since the bub-
ble was in contact with the fluid in both cases. The error bars were
computed taking into account that the measurement error of R is
0.05 mm, and the error of h2 is 1� [4]. The measurement error of
h was estimated as 0.028 mm [6].

It can be seen that, while the agreement with the second-order
analytical prediction is not very good (it is outside the error bars),
the data approximately follow a straight line (which is consistent
with the analytical results at any order of approximation for this
range of h=R). However, the analytical results considerably overes-
timate h2. The discrepancies might be attributed to a systematic
measurement error, since the value of h was estimated visually
from the optical opacity of the Plateau border. It is plausible that
the upper region of the Plateau border (which determines h) is very
thin, and thus its upper limits are difficult to detect from mere vi-
sual inspection. This could account for an underestimation of h
(and thus also of h=R), although there may of course be other
sources of error. We emphasise that these are the only experimen-
tal data that we know of which are relevant to the present
problem.

3.2. Extrapolated contact angle of the bubble

The extrapolated contact angle of the bubble / is the angle at
which the bubble would intersect the substrate if the bubble’s
hemispherical shape extended for z0 < 1.

This angle is defined, by the use of standard trigonometry, as

cos h2 � cos / ¼ h
R
: ð56Þ

Like h2;/ does not depend on gravity at the current order of approx-
imation. Owing to the way in which it is defined, / is considerably
closer to 90� than h2, with a narrower range of variation, and its rel-
ative error in the analytical approximation developed is thus ex-
pected to be larger.

In Fig. 3 the variation of / with h=R is presented for three values
of h1, for zero gravity (Fig. 3a), and for positive and negative gravity
(Fig. 3b). Lines and symbols have the same meanings as in Fig. 2a
and b. Taking into account Eq. (56), it is clear that the zeroth-order
value of / is equal to the corresponding value of h2, namely
/ ¼ 90�, and therefore does not depend on h1 or on h=R.

In Fig. 3a, it can be seen that the first-order approximation for /
has reasonable accuracy up to h=R ¼ 0:2, and the second-order
approximation is accurate up to about h=R ¼ 0:4. Both first-order
and second-order approximations diverge strongly from the
numerical results for larger values of h=R, but, again, this should
be expected.

In Fig. 3b, it can be seen that the dependence of / on h=R includ-
ing gravity becomes inaccurate at approximately the same values
of h=R as in the zero-gravity case. However, discrepancies are
slightly more marked for negative gravity (which is consistent with
Fig. 2b). For positive gravity, / is somewhat smaller than in Fig. 3a,
staying closer to the prediction of the second-order approximation.
In the case of negative gravity, on the contrary, / is larger, and so
departs more strongly from the second-order result. Qualitatively,
this contrasting behaviour of a sessile and a pendant bubble (i.e.,
positive and negative gravity, respectively) appears intuitive, since
a pendant bubble should portrude more from the substrate due to
its own weight.
3.3. Profiles of the Plateau border surfaces

The solutions for Dx0 and z0 provided by Eqs. (31)–(33) and (23)–
(25) for the inner surface and by Eqs. (47)–(49) and (40)–(42) for
the outer surface are studied next for a bubble with h=R � 0:4. This
large value of h=R is chosen so that the effect of the second-order
corrections is clearly visible, and on the other hand so that we
are still roughly within the limits of applicability of the theory
(as suggested by Figs. 2 and 3).

Fig. 4a shows the zeroth-, first- and second-order solutions for
the shape of the Plateau border (with the bubble to the right). It
is assumed that h1 ¼ 10� and h2 ¼ 60� (for the first- and second-or-
der solutions), which corresponds to h=R ¼ 0:408 accurate to sec-
ond-order in h=R (and h=R ¼ 0:436 accurate to first-order). Also
shown in Fig. 4a is a solution intermediate between the zeroth-or-
der and the first-order solutions, which we have called 1/2th-order
solution. This is equal to the zeroth-order solution, except that we
have prescribed h2 ¼ 60� (as in higher-order solutions), which is
inconsistent at zeroth-order (as Eq. (54) shows). The purpose of
this is to understand more clearly the physical processes involved.

In Fig. 4a it can be seen that in the zeroth-order solution
h2 ¼ 90� (as it must be) and the inner and outer surfaces of the Pla-
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teau border are symmetric arcs of circle. Relative to the zeroth-or-
der solution, in the 1/2th-order solution the inner and outer sur-
faces of the Plateau border are translated to the left, due to the
fact that h2 – 90�. To consistently be able to meet the substrate
at the imposed value of h1, the inner surface must increase its cur-
vature considerably, whereas the outer surface must decrease it.

In the first-order solution, the additional effect of the horizontal
curvature of the bubble is taken into account. This curvature has
the same sign as the curvature of the inner surface, but the oppo-
site sign to the curvature of the outer surface, increasing further
the latter, but decreasing the former (for an approximately con-
stant pressure inside the Plateau border). This effect is especially
important when the surfaces are nearly vertical (i.e., near the
top), while it is much weaker when they are nearly horizontal
(i.e., near the bottom). This explains the slight translation of the
surfaces to the left from the 1/2th- to the first-order solution. This
effect is also stronger in the outer surface than in the inner surface,
because the latter has larger curvature, and thus the relative effect
of this correction is smaller. That explains the larger translation of
the outer surface, and thus the slight widening of the Plateau bor-
der from the 1/2th- to the first-order solution. It is worth noting
that although the changes on going from the zeroth-order to the
1/2th-order solution and from the 1/2th-order solution to the
first-order solution are both of first-order (the former being associ-
ated with the vertical bubble curvature and the latter with the hor-
izontal bubble curvature) in practice the former effect is much
larger than the latter.

Changes on going from the first-order to the second-order solu-
tion are more subtle and difficult to interpret. These changes are
due to the difference between distances of the inner and outer sur-
faces to the axis of symmetry (as was mentioned earlier), but this
effect is not easy to understand in terms of curvature. It can never-
theless be noted that the second-order solution is much closer to
the first-order solution than the latter is to the zeroth-order solu-
tion. This suggests that the power series for Dx0 and z0 are
asymptotic.

In Fig. 4b and c, only results for the second-order solutions (the
most accurate) are shown. Fig. 4b displays the Plateau border sur-
faces for h2 ¼ 60� and h1 ¼ 0�;10�;20�. This corresponds to
h=R ¼ 0:404;h=R ¼ 0:408 and h=R ¼ 0:417, respectively, accurate
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Fig. 5. Schematic diagram illustrating the approximate shape of the Plateau border
of a sessile bubble with (a) weak gravity (b) strong gravity. The convex curvature at
the bottom in (b) is due to the increase in pressure associated with hydrostatic
equilibrium.
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to second-order. The Plateau border widens as h1 decreases (i.e., as
the fluid wets the solid increasingly better), being considerably lar-
ger for h1 ¼ 0� than for h1 ¼ 20�. In Fig. 4b, agreement between the
analytical and numerical solutions is excellent.

Finally, in Fig. 4c, the dependence of the solutions on the gravity
parameter is shown, again for a Plateau border with h1 ¼ 10� and
h2 ¼ 60�, corresponding to h=R ¼ 0:408. The effect of gravity is per-
haps as expected, leading to a widening of the Plateau border for
positive qgR2=c (sessile bubble) and a narrowing for negative
qgR2=c (pendant bubble). This behaviour can be interpreted using
hydrostatic equilibrium. For a positive g, the pressure is lower in
the upper part of the Plateau border than in the lower part. This
leads to an increase in the curvature of the inner and outer surfaces
near the top, and a corresponding reduction near the bottom. It is
straightforward to conclude that this corresponds to a widening.
The converse happens for negative g.

The displacement of the outer surface of the Plateau border due
to the variation of either h1 or gR2=c is much larger than the dis-
placement of the inner surface. This may be due, again, to the fact
that the curvature of the inner surface is considerably larger, and
thus less affected by higher order effects. Another possible cause
is that the inner surface is closer to vertical, and thus a smaller hor-
izontal translation is necessary for it to adjust to the variation of
the parameters.

The agreement between analytical and numerical results,
although qualitatively correct, is not so good for non-zero gravity.
It might be that the values of qgR2=c considered are too high,
although this should not be the case, since they are of O(1). We
used these values so that the differences between the various
curves in Fig. 4c were sufficiently clear (and also because the posi-
tive value is compatible with the experiments of [4], as remarked
above). It should be recalled that gravity is treated here as a sec-
ond-order effect, so when it becomes too large it would probably
be better treated at lower order. But that approach, if feasible,
would certainly increase the mathematical complexity further. A
more fundamental mathematical reason for the worse perfor-
mance of the analytical model including gravity may be the
assumption (made in the description of the theoretical model, in
Section 2) that h is a monotonic function of z. When gravity effects
are relatively large, the numerical simulations show that the curva-
ture of the lower part of the Plateau border in a sessile bubble be-
comes weak and may even change its sign due to the hydrostatic
increase of the pressure (not shown). In this case, h stops being a
monotonic function of z, and thus a one-to-one relation ceases to
exist between these two variables (see Fig. 5).
4. Discussion

It appears that, for an accurate prediction of the contact angle of
relatively small bubbles (i.e., bubbles with sufficiently large h=R), it
is crucial to consider at least a second-order approximation in our
analytical, perturbation expansion, model. This physically corre-
sponds to taking into account not only the horizontal curvature
of the Plateau border (due to the sphericity of the bubble), but also
the difference in distances to the axis of symmetry of the bubble
from the inner and the outer surfaces of the Plateau border.
Although gravity has a considerable impact on the shape of the Pla-
teau border, which is captured by the present theory, its effect on
the relation between h2;h=R and h1 appears to be weak in most sit-
uations. These differing impacts of gravity on different aspects of
Plateau border geometry seem to be corroborated by Fig. 2b and
Fig. 4c. Since bubbles with relatively high h=R are generally small,
and in that case qgR2=c is generally low, the choice of treating
gravity as a second-order effect may not be too inappropriate (it
is in particular adequate for bubbles such as those studied experi-
mentally by Rodrigues et al. [4]). However, in cases where gravity
is more important, the calculations would need to be reformulated,
for example with gravity considered at lower order in the pertur-
bation expansion applied to the equations. Such calculations are,
however, likely to be even more involved than those presented
here. Numerical results also suggest that, when gravity effects
are sufficiently strong, the curvature of the Plateau border surfaces
may change sign locally (see Fig. 5). This would place a much more
definite limit on the range of applicability of the present calcula-
tions, since they rely on the existence of a one-to-one relation be-
tween h and z.

Within their limits of validity, the analytical calculations devel-
oped in the present paper have the advantage of providing closed-
form expressions for the shape of the Plateau border, and an expli-
cit relation between h1; h2 and h=R. This is a considerable improve-
ment over the numerical model used to address a related problem
[5], where numerical solutions must be integrated from the bottom
of one of the Plateau border surfaces, and it is not possible to im-
pose, for example, the coordinates of the upper vertex of the Pla-
teau border. This limitation of the numerical model means that
the contact angle of one of the Plateau border surfaces with the
substrate must be adjusted by trial and error. Besides addressing
the effect of gravity in a simple way, the analytical model proposed
here therefore allows a much more exhaustive exploration of the
parameter space than the numerical model.
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