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a b s t r a c t

Zeta potential is a physico-chemical parameter of particular importance in describing ion adsorption and
electrostatic interactions between charged particles. Nevertheless, this fundamental parameter is ill-
constrained, because its experimental interpretation is complex, particularly for very small and charged
TiO2 nanoparticles. The excess of electrical charge at the interface is responsible for surface conductance,
which can significantly lower the electrophoretic measurements, and hence the apparent zeta potential.
Consequently, the intrinsic zeta potential can have a larger amplitude, even in the case of simple 1:1 elec-
trolytes like NaCl and KCl. Surface conductance of TiO2 nanoparticles immersed in a NaCl solution is esti-
mated using a surface complexation model, and this parameter and particle size are incorporated into
Henry’s model in order to determine a constrained value of the zeta potential from electrophoresis. Inte-
rior conductivity of the agglomerates is calculated using a differential self-consistent model. The ampli-
tude of estimated zeta potential is greater than that derived from the von Smoluchowski equation and
corresponds to the electric potential at the outer Helmholtz plane calculated by our surface complexation
model. Consequently, the shear plane may be located close to the OHP, contradicting the assumption of
the presence of a stagnant diffuse layer at the TiO2/water interface.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Titanium dioxide is widely used as TiO2 nanoparticles and has a
large variety of potential applications in, for example, the biomed-
ical, optical, and electronic fields [1,2]. Due to their small size,
nanoparticles have a very high surface area to volume ratio and
are thus of great scientific interest as they are a bridge between
bulk materials and atomic or molecular structures. The properties
of materials change as their size decreases to nanoscale and the
proportion of surface atoms becomes significant. One of these
properties, the surface ionization of titanium dioxide nanoparticles
in contact with an electrolytic solution, has been studied exten-
sively [1,3–10]. It is well known that the complexation reactions
at the surface of an oxide mineral are strongly influenced by the
development of the surface charge. The primary surface charge is
determined by the reactions of protons with the surface. Surface
complexation reactions between the surface sites and the ions
from the bulk electrolyte at the Stern and in the diffuse layer neu-
tralize the surface charge [11]. Surface charge properties are pri-
marily determined using proton titration data. These data can be
modeled using various electrostatic models such as the diffuse
double layer, basic Stern, triple layer, or CD-MUSIC models
ll rights reserved.
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[1,3–10]. Most sophisticated models are able to reproduce data
for a wide range of experimental conditions but rely on the fitting
of a large number of parameters whose physical significance is not
always easy to justify. Moreover, the uniqueness of a set of param-
eters is not always obvious. On the other hand, less sophisticated
models rely on the fitting of fewer parameters but often fail to
reproduce the data under all of the experimental conditions stud-
ied. At present, there is no consensus on which is the ‘‘best model’’
to represent charged surfaces at oxide–water interfaces.

Of all the physico-chemical parameters characterizing the solid/
water interface, the zeta potential is particularly important. It is
the potential at the supposed slipping plane that separates the sta-
tionary and mobile phases in tangential flow of the liquid with re-
spect to the surface. For example, in the case of a particle
undergoing electrophoresis, because of the electrostatic interac-
tions between the applied electric field and the hydrated counteri-
ons in the diffuse layer, the interface develops a surface of shear
[12]. The electric potential at the slipping plane is of particular
interest if we wish to estimate the critical coagulation concentra-
tion when studying nanoparticle agglomeration, for example
[5,12,13]. The zeta potential is also a key parameter for the study
of the transport properties of electrically charged materials like
oxide and clay minerals [14–16]. It usually makes it possible to
optimize the parameters of the electrostatic surface complexa-
tion models while assimilating the position of the shear plane to
the position of the head end of the diffuse layer [10,17]. This
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interpretation has, however, been challenged by recent studies on
titanium dioxide nanoparticles that show that titration data cannot
be reproduced together with zeta potential values without having
a shear-plane position that changes as a function of the ionic
strength. Bourikas et al. [9] and Panagiotou et al. [1] have shown
that the shear-plane position (in log scale) is linearly dependent
on the log value of the ionic strength. This physical model leads,
however, to a surface representation in which the shear plane
can be as far as 210 Å from the surface at an ionic strength of
10�4 M (Fig. 32 of [1]); the entire volume between the oxide
surface and this shear plane is considered to be ‘‘stagnant.’’ More-
over, this physical representation of the oxide surface rules out any
use of the zeta potential as a constraint for surface charge models.
The nature of the physical property that causes the separation
between the stagnant diffuse layer and the ‘‘mobile’’ diffuse layer
is, however, not given. Molecular dynamics studies and X-ray
measurements on oxide and aluminosilicate surfaces tend to show
that diffuse layer water properties (density, mobility, molecule
orientation) are very similar to those of bulk water [18–20]. Elec-
trophoretic mobility measurements are usually used to determine
the zeta potential. However, zeta potential estimations can be
erroneous due to the uncertainty concerning the value of the con-
version factor used [12]. This could explain the ‘‘observed’’ shift of
the shear-plane position as a function of the ionic strength in sur-
face complexation models. Numerous authors [18–26] emphasize
that the anomalous surface conductivity of particles might explain
the low zeta potential values (in amplitude) determined from elec-
trophoresis compared to values estimated by surface complexation
models at the OHP and electrical conductivity measurements. They
also state that the lateral motion of adsorbed counterions at the
Stern layer must not be disregarded for some materials having a
large excess of electrical charge at their surface (like clay minerals
or latex suspensions). Little work has been done to characterize the
surface conductance due to the Stern layer for titanium dioxide
nanoparticles [27]. In addition, the surface conductivity of TiO2

nanoparticles may be strong due to the small size of the elemen-
tary particles.

The aim of this work is to study the possible influence of TiO2

nanoparticle surface conductivity on its electrophoretic mobility
in the hope that this will lead to zeta potential values in agreement
with those predicted by electrostatic surface complexation models
(without considering large variations of the distance between the
outer boundary of the compact layer and the inner boundary of
the diffuse layer). Surface speciation models are needed to calcu-
late the surface conductance of TiO2. For this reason, the model
developed recently by Panagiotou et al. [1] and alternative models
are critically evaluated in the second chapter of this study. In the
third chapter, we discuss the theories used to convert electropho-
retic mobility to zeta potential and calculate surface conductance
due to the double layer. In the fourth chapter, we describe our
modeling strategy and use the proposed methodology to estimate
the ‘‘intrinsic’’ zeta potential of titanium dioxide P25 in a NaCl elec-
trolyte from electrophoresis.

2. Electrostatic models for titanium oxides

2.1. Panagiotou et al. model (2008)

Panagiotou et al. [1] proposed a triple plane model (TPM, [6])
for the titanium oxide (P25) solid–solution interface in NaNO3

and KNO3 electrolyte solutions. This model is based on a
state-of-the-art description of the TiO2 surface properties with
regard to protonation–deprotonation processes using the recent
ab initio calculations and DFT developments for this material.
Two main surface functional groups were found to be responsible
for the surface reactivity:
Ti2O�0:57 þHþ�Ti2OHþ0:43 log K1; ð1Þ
TiO�0:35 þHþ�TiOHþ0:65 log K2: ð2Þ

Total surface site density was fixed at a value of 5.6 sites nm�2

obtained from crystallographic considerations. Total surface area
was 50 m2 g�1 according to BET measurements.

The surface ionization model was then combined with a triple
plane model, and the predictions were used together with potenti-
ometric titration, microelectrophoresis, and streaming potential
experiments to describe the electro-chemical properties of the
TiO2 surface. Both surface sites were considered to behave simi-
larly with a given cation (Na+ and K+) or anion NO�3

� �
. This simpli-

fication enabled the authors to reduce the number of adjustable
parameters for their model:

Ti2O�0:57 þ Naþ�Ti2O�0:57 � Naþ log KNa; ð3Þ
TiO�0:35 þ Naþ�TiO�0:35 � Naþ log KNa; ð4Þ
Ti2OHþ0:43 þ NO�3 �Ti2OHþ0:43 � NO�3 log KNO3; ð5Þ
TiOHþ0:65 þ NO�3 �TiOHþ0:65 � NO�3 log KNO3: ð6Þ

In the triple plane model, the charge of sorbing cations and an-
ions is not attributed to only one electrostatic plane but is distrib-
uted over the three planes (0, 1, 2), thus adding two additional
fitting parameters (Dz0 and Dz1 or Dz1 and Dz2) for each sorbed
species at each surface site (Fig. 1). Again, both surface sites were
considered to behave similarly with a given cation or anion.

The parameters of this model are given for a NaNO3 electrolyte
background in Table 1. We reproduced their model using PHREEQC
v2.17 [28]. We were not able to reproduce their titration curves
using the parameters in the reference publication. The tabulated
protonation/deprotonation constants (log K1 and log K2) had to
be changed slightly in order to obtain results in full agreement
with the data. Hereafter, we refer to this modified model as ‘‘refer-
ence model’’ (Table 1). Surface charge predictions are given in Fig. 2
together with surface potential at the 2-plane, which is considered
to be the head end of the diffuse layer. This parameter can be com-
pared to the zeta potential.

Panagiotou et al. [1] reported zeta potential values far below the
potential values of the 2-plane (in absolute value). They inter-
preted this to be a consequence of a shift of the shear plane (where
the zeta potential is located) from this 2-plane. While calculating
the distance d from the 2-plane to the shear plane, they found a
log–log linear relationship between the ionic strength I (in M)
and d (in nm):

log d ¼ �0:5115 log I � 0:7229: ð7Þ
2.2. Alternative models

While the data of Panagiotou et al. [1] could be very well repro-
duced by their TPM model, it could also be reproduced with the
simpler basic Stern model (BSM). The BSM parameters (Table 1)
give surface charge results nearly identical to those of the TPM ref-
erence model in NaNO3 electrolyte (Fig. 2), although the BSM re-
quires only five fitting parameters instead of 10 for TPM. This
raises the question of the uniqueness of the TPM parameter set.
In principle, this problem can be overcome by fitting a large range
of data obtained under the same experimental conditions but test-
ing different electrolyte types. Panagiotou et al. [1] provided titra-
tion data in a KNO3 electrolyte background and were able to fit
them adequately only by attributing an association constant (log
KK = �1.1) and a charge distribution (Dz1K = 0, Dz2K = 1) for K+ at
the surface, while keeping the other parameters constant. A good
agreement can also be obtained with the BSM model (Fig. 3) adding
only an association constant (log KK = �1.7) for K+. There is a
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Fig. 1. Schematic drawing of the basic Stern model of Bourikas et al. [9], our basic Stern model, the triple plane model of Panagiotou et al. [1], and our extended Stern model
for a negatively charged surface of titanium dioxide. At a given picture, from left to right: metal ions, surface hydroxyls, primary and secondary water layers, compact layer,
diffuse layer.

Table 1
Surface and interface parameters for the Panagiotou et al. model [1] and alternative models.

Parameters Original Panagiotou et al. model Reference model (TPM) BSM ESM Bidentate

log K1 7.8 7.6 7.6 7.55 7.55
log K2 4.6 4.2 4.2 4.15 4.15
log KNa (K) �1.7 (�1.1) �1.7 (�1.1) �1.7 (�1.7) �1.4 (�1.1) �1
log KNO3 �2.3 �2.3 �99a �1.5 �1.5
Dz0 Na – – – – 0.55
Dz1 Na (K) 0.7 (0) 0.7 (0) n.a. 1 (0.7) 0.45 (0.7)
Dz2 Na (K) 0.3 (1) 0.3 (1) n.a. 0 (0.3) 0 (0.3)
Dz1 NO3 �0.7 �0.7 n.a. �1 �1
Dz2 NO3 �0.3 �0.3 n.a. 0 0
C1 (F m�2) 3.2 3.2 2.5 2.5 2.5
C2 (F m�2) 4.2 4.2 1 1 1

a In the BSM, NO�3 anions act as indifferent anions.
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discrepancy between the titration predictions of the two models at
0.017 M, but the differences increase with salinity, and are there-
fore greater and significant for a salinity of 0.3 M and pH > 9.5.
Consequently, the addition of five fitting parameters for the triple
plane model relies on a very restricted subset of experimental data
points.

The right sides of Figs. 2 and 3 show that the choice of a given
model influences the prediction of the electrical potential at the
head end of the diffuse layer. For these two models, however, pre-
dicted potentials are much higher in amplitude than reported zeta
potentials from electrophoresis [3], corroborating the hypothesis of
a shear plane located in the diffuse layer.

As an alternative model, an extended Stern model (ESM) can
reproduce perfectly the reference TPM for surface charge but
diminishes the potential at the head end of the diffuse layer. One
set of this model’s parameters, among those tested successfully,
is given in Table 1. Corresponding titration and potential curves
are shown in Figs. 2 and 3 for NaNO3 and KNO3 electrolyte back-
grounds, respectively.

According to Panagiotou et al. [1], the high capacitance values of
the reference TPM are in agreement with theoretical and experi-
mental studies concerning the location of the first two water over-
layers and the electrolyte counterions at the rutile surface, taken
here as a good analog of the anatase surface [29–34]. Predota and
Vlcek [33] and Predota et al. [34] showed that the first hydration
layer at the rutile surface is �1.8 Å from the surface terminal
oxygen atoms and that Na+ cations are located at �1–1.8 Å. These
distances are in agreement with the capacitance value
C1 = 3.2 F m�2 that locates the 1-plane at d1 = 1.7 Å from the
0-plane, while considering the following equation with the mean
relative dielectric constant, er,1, equal to 60 (e0 is the dielectric
constant of the vacuum, 8.85 � 10�12 C V�1 m�1):

C1ð2Þ ¼
e0er;1ð2Þ

d1ð2Þ
: ð8Þ
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Fig. 2. TiO2 surface charge and potential at the head end of the diffuse layer predicted by different surface complexation models at three ionic strengths I in NaNO3. Lines
depict the reference model (TPM) results while symbols depict the results of alternative models (BSM, ESM, Bidentate, Table 1).
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Here C2, d2, and er,2 are the capacitance, distance, and the mean rel-
ative dielectric constant between the 1- and 2-planes, respectively.
The proposed ESM model has a lower capacitance C1 = 2.5 F m�2. It
could therefore be considered to not be in agreement with the
above results. However, parameter er,1 is ill-defined. Taking a value
of er,1 = 47 enables us to arrive at the same distance d1 with the ESM
model. Consequently, available data at the molecular level com-
bined with titration data cannot be used to determine which is
the best representative model since both er,1 values are reasonable
[35]. We were, however, not able to achieve a good fit of titration
data with models having a C1 value lower than 2.5 F m�2. This
seems to confirm the presence of a layer with a high capacitance
and Na sorption close to the surface. On the contrary, C2 could be
set at a value as low as 1 F m�2 in the ESM, in marked contrast with
the 4.2 F m�2 value of the reference TPM. The position of the second
plane is also subject to discussion. Panagiotou et al. [1] considered
that the second plane ends the compact layer at a distance of 3.4 Å
from the surface. However, molecular dynamics calculations show
significant water density oscillations up to 12 Å from the surface
associated with continuous viscosity changes [33]. As a conse-
quence, the choice of a precise location for the second plane cannot
be easily justified. Moreover, the calculation of the capacitance va-
lue for the region between the 1- and 2-planes relies heavily on the
modeler’s choice for er,2.

Theoretical calculations indicate that the greatest portion of
sorbed Na+ forms bidentate complexes. We tried to roughly incor-
porate this information by considering the following equilibria in
another alternative model (the bidentate model in Table 1):

2Ti2O�0:57 þ Naþ� ðTi2O�0:57Þ2 � Naþ log KNa; ð9Þ
2TiO�0:35 þ Naþ� ðTiO�0:35Þ2 � Naþ log KNa: ð10Þ

The charge of counter Na+ was attributed partly to the 0-plane
and partly to the 1-plane, since Na+ was also shown to be partly
dehydrated at the surface and engaged in inner sphere complexes
[34]. Fig. 2 again shows that this model can match almost perfectly
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the reference TPM titration predictions. Note also that, depending
on the chosen surface complexation model, i.e., TPM, BSM, ESM,
or bidentate, there may be different locations and then definitions
of the ‘‘stagnant layer’’ (which is not necessarily a monolayer of
sorbed counterions). For example, in the case of a NaNO3 electro-
lyte, the stagnant layer is located between 1 and 2-planes for
TPM, at the 1-plane for BSM, at the 1-plane for ESM and between
the 0 and 1-planes for bidentate.

2.3. Implications for mapping the ‘‘titanium dioxide/electrolyte
solution’’ interface

This analysis shows that titration data combined with surface
complexation models such as TPM or ESM cannot yield a unique
and unambiguous set of interfacial parameters. Theoretical calcu-
lations and modeling at the molecular scale can help us validate
the model likelihood but uncertainties remain.

This suggests that the relationship observed between the posi-
tion of the shear plane and the ionic strength (Eq. (7)) is model
dependent. Figs. 2 and 3 show that the reference TPM and the
BSM predict nearly identical potentials at the head end of the dif-
fuse layer, in agreement with the fact that the reference TPM is an
improvement on the BSM published earlier by Bourikas et al. [9].
However, the proposed ESM and bidentate models predict lower
potentials (in absolute value) than the reference model. Predicted
potentials remain, however, higher in absolute value than com-
monly reported zeta potential from electrophoresis. Consequently,
the question of the position of the shear plane in relation to the
head end of the diffuse layer remains.

Zeta potential calculations from electrophoresis are also model
dependent. In the following section, several models to convert elec-
trophoretic measurements to zeta potentials are briefly reviewed.
3. From the electrophoretic mobility to the zeta potential

3.1. Electrokinetic theories

The most well-known and widely used theory of electrophore-
sis was developed by von Smoluchowski [36,37]. He studied the
movement of the liquid adjacent to a flat, electrically charged sur-
face under the influence of an electric field applied parallel to the
interface. Von Smoluchowski [36] used the Stokes equation and
calculated the electrical (using the Poisson equation) and viscous
forces on an element of volume of the liquid to express the electro-
phoretic mobility as a function of the zeta potential. The von
Smoluchowski equation linearly relates the electrophoretic mobil-
ity le (in m2 s�1 V�1) to the electrical potential at the shear plane
(f, in V):

le ¼
e
g

f: ð11Þ

Here g is the dynamic viscosity (in Pa s; g = 0.895 � 10�3 Pa s at
T = 298 K) and e the dielectric permittivity of water
(e = e0er = 78.3 � 8.85 � 10�12 F m�1 at T = 298 K). The von
Smoluchowski equation is valid only if the thickness of the diffuse
layer is insignificant compared to the size of the particle; i.e. for thin
double layer, ja� 1, where j is the inverse of the Debye length (in
m�1) and a the particle radius (in m). The inverse of the Debye
length is given by

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2P

iz
2
i cb

i

eRT

s
; ð12Þ

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 2� I

eRT

s
; ð13Þ
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where F is the Faraday constant (96,485 C mol�1), R the gas constant
(8.314 J mol�1 K�1), ci the ions concentrations (in mol m�3), zi their
valency, and I the ionic strength. The symbol ‘‘b’’ refers to the bulk
ions.

For small spherical particles having a thick double layer, ja� 1,
the applied electric field is not influenced by the presence of the
particle and the effect of the retardation force due to the double
layer on the migration of the particle is negligible. Hückel [38] con-
sidered that the main retardation force is the frictional resistance
of the medium. He supposed that the electrical conductivity of
the particle is the same as that of the surrounding medium. There-
fore, the electric field is not distorted by the particle. He wrote the
following equation, which is valid for ja� 1:

le ¼
2e
3g

f: ð14Þ

Henry [39,40] revisited Hückel’s theory by considering that the
conductivity of the particle is different from that of the surround-
ing medium. In this case, the applied electric field will be distorted
so that the isopotential values can be around the particle surface.
According to Henry [40], the particle’s conductivity alters the
shape of the potential distribution of the applied field in the liquid,
modifies the fluid motion within the electrical double layer, and
therefore changes the stresses of the fluid exerted on the particle.
Consequently, this conductivity leads to the mutual distortion of
the applied field and the field of the double layer, and hence slows
the electrophoretic motion. For spherical particles with arbitrary
double-layer thickness, Henry [40] wrote

le ¼
2e
3g

Gðja;Kp;KsÞf; ð15Þ

Gðja;Kp;KsÞ ¼ 1þ 2k½f ðjaÞ � 1�; ð16Þ

k ¼ 1� Kp � 2Ks

2þ Kp þ 2Ks
; ð17Þ

Kp ¼
rp

rb
; ð18Þ

Ks ¼
rs

rb
¼ Rs

arb
; ð19Þ

f ðjaÞ ¼ 1þ ðjaÞ2

16
� 5ðjaÞ3

48
� ðjaÞ4

96
þ ðjaÞ5

96
� 11

96
expðjaÞZ ja

1

expð�tÞ
t

dt; for ja < 1; ð20Þ

f ðjaÞ ¼ 3
2
� 9

2ja
þ 75

2j2a2 �
330
j3a3 ; for ja > 1; ð21Þ

where r is the electrical conductivity (in S m�1), R the surface con-
ductance of the electrical double layer, the subscripts ‘‘p’’, ‘‘s’’, and
‘‘b’’ corresponding, respectively, to the particle ‘‘interior’’, the parti-
cle surface, and the surrounding medium (the bulk electrolyte). The
surface conductance expresses the excess of electrical conductivity
at the solid surface compared to that of the bulk electrolyte. Ks cor-
responds to the well-known ‘‘Dukhin number,’’ Du (see [18,41,42]
for more details). According to Eqs. (15)–(17) and by replacing Ks

with Du, we obtain

le ¼
2e
3g

1þ 2
1� Kp � 2Du
2þ Kp þ 2Du

� �
½f ðjaÞ � 1�

� �
f: ð22Þ

In the absence of surface conductance and in the case of an
insulating particle, Henry’s theory leads to von Smoluchowski’s
equation for large ja values (f(ja) = 1.5) and Hückel’s equation
for ja� 1 (thick double layer, f(ja) = 1). For ja� 1, f(ja) = 1.5,
and Eq. (22) reduces to

le ¼
2e
3g

1þ 1� Kp � 2Du
2þ Kp þ 2Du

� �
f: ð23Þ
In the case of insulating particles, Kp = 0, and Eq. (23) corre-
sponds to O’Brien’s formula [43] within the limit of a DC applied
electric field and disregarding the inertial term in his theory.
O’Brien [43] developed a complete picture of the frequency-
dependent dielectric response of a dilute suspension of spheres
with thin double layers. Note that all of the equations presented
here, except Smoluchowski’s equation, consider a Debye–Hückel
ionic atmosphere, i.e., that electric potential in the diffuse layer
follows a Debye–Hückel distribution. Consequently, the analytical
equations that we use to estimate the zeta potential from the
electrophoretic mobility are valid for low zeta potentials
(|f| 6 25.7 mV in the case of 1:1 electrolyte at T = 298 K), but they
can still be applied for zeta potentials of greater amplitude [12].

In addition, Eqs. (11)–(23) do not consider spheroidal particles,
particle volume fraction, polydispersity of the sample, i.e. agglom-
erates of different sizes, and diffuse layer overlapping. Several elec-
trokinetic models make it possible to estimate surface conductance
for spheroidal particles (for example, [44]), consider polydispersiv-
ity of the sample and nanoparticles agglomeration [45], and diffuse
layer overlapping [46]. Moreover, Mangelsdorf and White’s numer-
ical model, which takes into account particle size effects and the
adsorption of ions and their mobility in the inner part of the EDL
[21], can be more accurate than the analytical solutions we use,
especially at low ionic strength and at pH values far from the
PZC where the amplitude of the surface electric potential is high.

However, the electrical conductivity of the particle interior rp

can be determined using the so-called differential self-consistent
model [47,48]. This model considers small contiguity between
the particles and allows the determination of the electrical conduc-
tivity of the agglomerate corresponding to the final concentration
of inclusions (here the elementary nanoparticles of conductivity
re) by addition of infinitesimal portions of inclusions:Z rp

rb

re þ 2r
3rðre � rÞdr ¼

Z 1�/

0

dX
1�X

: ð24Þ

Here / is the intraaggregate porosity and X = v/(v + V) is the volume
fraction of the elementary nanoparticles in the agglomerate with v
and V the total volume (in m3) of elementary particles and of water,
respectively. By integrating Eq. (24), we obtain

rp � re

rb � re

rb

rp

� �D

¼ /; ð25Þ

where D = 1/3 in the case of spherical elementary particles. Eq. (25)
has been generalized to nonspherical particles, but it is not very
practical because it is an equation of the form rp ¼ f ðD;/;rb;

re;rpÞ. Revil [48] found an analytical solution of Eq. (25) by consid-
ering D = 1/2 for disk-shaped particles:

rp ¼
rb

Fo
FoHþ

1
2
ð1�HÞ 1�Hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�HÞ2 þ 4FoH

q� �	 

; ð26Þ

H ¼ re

rb
¼ 2Rs

aerb
; ð27Þ

Fo ¼ /�2: ð28Þ

According to Revil [48], D = 1/2 corresponds to a particle’s shape
usually found in most porous media. In addition, following the ap-
proach of [45], the electrophoretic mobility due to the polydisper-
sity of the sample, le, i.e. to agglomerates possessing different
sizes, can be calculated by

�le ¼
PN

i¼1li
ef ðaiÞa3

i DaiPN
i¼1f ðaiÞa3

i Dai

; ð29Þ

where N is the number of different radii, f(ai) represents the discret-
ized version of the particle size distribution (PSD), Dai the radius
intervals, and li

e the electrophoretic mobility of agglomerates with
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radius ai ± Dai/2. According to Eq. (29), the electrophoretic mobility
of the polydisperse system is the volume average of the mobilities
of particles with different sizes in the distribution.

Henry [40] and O’Brien [43] considered that only the counteri-
ons in the diffuse layer are responsible for the surface conductivity.
They did not consider the influence of the Stern layer on particle
surface conductivity [18–23]. According to these authors, the zeta
potential of (electrically) charged suspensions like polystyrene lat-
tices, determined from electrophoresis, are lower in amplitude
than the zeta potential values estimated from electrical conductiv-
ity measurements. In the case of electrophoresis, these authors as-
sume that the lateral movement of ions at the Stern layer in
response to the applied electric field can explain such discrepancy.
The presence of mobile counterions at the Stern layer and in the
diffuse layer lowers the amplitude of zeta potentials inferred from
mobility measurements and raises those from conductivity mea-
surements, compared to the zeta potentials that correspond to
the intrinsic particle charge.

The ‘‘anomalous’’ surface conductance linked to the Stern layer,
i.e., to ions below the shear plane, can be determined for oxide min-
erals using electrical conductivity measurements [25,27,42,49] or a
surface complexation model like a triple layer model (TLM, [15,50])
where the associated equilibrium sorption constants are calibrated
by titration experiments. Surface complexation models calculate
the excess of counterions at the interface and thereby make it
possible to estimate the (specific) surface conductance of the parti-
cle [50,51].

3.2. Determination of the surface conductance

3.2.1. The diffuse layer surface conductance
The surface conductance of the electrical double layer (EDL) is

the enhanced conductivity due to the presence of a double layer
at the particle surface ([40,49–51]; see Fig. 4). We consider here
the surface conductance due only to the presence of the diffuse
layer at the particle surface. In the following section, we will con-
sider the influence of the Stern layer on the surface conductance.

According to Revil and Glover [51], the surface conductance Rs

(in S) can be described by the individual specific surface conduc-
tance of each ion in the diffuse layer, Rs

i ,

Rs ¼
X

i

eziR
s
i : ð30Þ

The total surface conductance Rs is made up of an electro-
migration, Re

s , and an electroosmotic surface conductance, Ros
s ,

Rs ¼ Re
s þ Ros

s : ð31Þ

The electro-migration surface conductance is due to the excess
of Ohmic conductivity in the EDL [15],

Re
s ¼

Z vD

0
½rðvÞ � rb�dv; ð32Þ

where v represents the surface/solution distance in m and vD is the
total thickness of the diffuse layer (usually, vD = 2j�1). The param-
eters r(v) and rb are the electrical conductivity at the solid/solution
interface and in the bulk pore water defined, respectively, by

rðvÞ ¼
X

i

Fzib
s
i c

s
i ðvÞ; ð33Þ

rb ¼
X

i

Fzib
b
i cb

i ; ð34Þ

where bs;b
i is the ion mobility (in m2 s�1 V�1) at the particle surface

and in the bulk pore water. The electrical conductivity of the solu-
tion due to electro-migration is given by an equivalent Ohm’s law
determined using the generalized Nernst–Planck equations and
the electro-chemical potential equations for the ion species
[14,52] (electroosmosis is neglected). The local electrical conductiv-
ity r(v) is given by analogy with the free electrolyte conductivity
([51]). By incorporating Eqs. (33) and (34) in Eq. (32), we obtain

Re
s ¼

Z vD

0

X
i

Fzi bs
i c

s
i ðvÞ � bb

i cb
i

h i
dv: ð35Þ

According to Eq. (35), by considering the same ion mobility at
the interface (diffuse layer here) and in the bulk pore water, i.e.,
bs

i ¼ bb
i ¼ bi, we can determine Re

s [15,53]:

Re
s ¼ F

X
i

zibi

Z vD

0
cs

i ðvÞ � cb
i

� �
dv; ð36Þ

Re
s ¼ F

X
i

zibic
b
i

Z vD

0
exp ��ziFwðvÞ

RT

	 

� 1

� �
dv; ð37Þ

wðvÞ ¼ wd expð�jvÞ: ð38Þ

Here wd is the electric potential at the head end of the diffuse layer.
The term ± corresponds to the sign of the electrical charge associ-
ated with the species i (‘‘ + ’’ for cations and ‘‘�’’ for anions).

It is relatively easy to find an analytical solution for the ion con-
tribution to the surface conductance using Eqs. (30), (37), and (38)
and linearizing the exponential function of the Boltzmann distribu-
tion ([51] and Eqs. (191) to (194) of [54]):

Re
s 	 2j�1F

X
i

zibic
b
i exp ��ziFwd

2RT

� �
� 1

	 

; ð39Þ

Re
i 	 2j�1biNacb

i exp ��ziFwd

2RT

� �
� 1

	 

: ð40Þ

Here Na is the Avogadro Number (6.022 � 1023 sites mol�1) and by
considering a diffuse layer having a thickness of vD = 2j�1.

At the surface of the titanium dioxide particle (for conditions
other than the IEP and for low ionic strength, typically 60.01 M
for oxide minerals, [10]), counterions are predominant in the dif-
fuse layer. When an electric field is applied, it results in a solvent
convection and, consequently, a surplus conductivity called elec-
troosmotic conductivity. The electroosmotic contribution to the
surface conductance is described by [51]

Ros
s ¼

Z vD

0
qðvÞbosðvÞdv; ð41Þ

Ros
s ¼

X
i

eziR
os
i ; ð42Þ

qðvÞ ¼
X

i

Fð�1Þzics
i ðvÞ; ð43Þ

bosðvÞ ¼
e
g
½wðvÞ � wd�; ð44Þ

where bos is the electroosmotic mobility (in m2 s�1 V�1) and q the
volume charge density in the diffuse layer (in C m�3). According
to Bikerman [55],

Ros
s 	

4eRT
g

j�1Na
X

i

cb
i exp ��ziFwd

2RT

� �
� 1

	 

: ð45Þ

The ion contribution of the electroosmotic surface conductance
is determined using Eqs. (42) and (45):

Ros
i 	

4eRT
gezi

j�1Nacb
i exp ��ziFwd

2RT

� �
� 1

	 

: ð46Þ

By combining Eqs. (40) and (46), the total ion contribution to
the surface conductance is given by

Rs
i ¼ 2j�1BiNacb

i exp ��ziFwd

2RT

� �
� 1

	 

; ð47Þ

Bi ¼ bi þ
2eRT
gezi

: ð48Þ
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In Eqs. (47) and (48), we have assumed that the ion mobilities
are the same in the bulk electrolyte and in the diffuse layer. These
equations correspond to those of Bikerman [55] for characterizing
the ion contribution to the surface conductance of the particle (due
to the applied electric field). In his approach, the mobile counteri-
ons and coions in the diffuse layer are only responsible for the sur-
face conductance. Moreover, according to Eq. (48), the ionic
electroosmotic contribution to the surface conductance must not
be neglected. For example, for a NaCl solution and at T = 298 K,
the Na+ and Cl� ion mobility values in the bulk electrolyte are
5.17 � 10�8 and 7.89 � 10�8 m2 s�1 V�1, respectively [15]. The sec-
ond term in Eq. (48), for zi = 1, e = 78.3 � 8.85 � 10�12 F m�1,
g = 0.895 � 10�3 Pa s, F = 96,485 C mol�1, R = 8.314 J mol�1 K�1,
and T = 298 K, is �3.98 � 10�8 m2 s�1 V�1, which is of the same or-
der of magnitude as the first term.

For a binary symmetric electrolyte, z+ = z� = z, and the surface
conductance is determined using Eqs. (30) and (47):

Rs ¼ 4Fzj�1cbB cosh
Fzwd

2RT
� 1

� �
; ð49Þ

assuming that

BðþÞ ¼ BðþÞ ¼ B; ð50Þ

and

cb
ðþÞ ¼ cb

ð�Þ ¼ cb: ð51Þ

Eq. (49) assumes that both anions and cations have the same
mobility. By using Eqs. (19), (34), (49), and the Nernst–Einstein
relationship for ion diffusivity,

Di ¼
RTbi

Fz
; ð52Þ

we obtain Bikerman’s equation [25,49,55]
Du ¼ 2
ja

cosh
Fzwd

2RT

� �
� 1

	 

1þ 2e

gD
RT
Fz

� �2
" #

: ð53Þ

In Eq. (53), the influence of pH on surface conductivity is not ta-
ken into account. Taking into consideration the presence of H+ and
OH� ions, we obtain the following equation for surface conduc-
tance, according to Eqs. (30), (47), and for a binary symmetric
background electrolyte like NaCl or KCl [50],

Rs ¼ 2j�1Fz cb
ðþÞBðþÞ þ 1000� 10�pHBH


 �
exp

�Fzwd

2RT

� �
� 1

	 
�

þ cb
ð�ÞBð�Þ þ 1000� 10pH�pKf BOH


 �
exp

Fzwd

2RT

� �
� 1

	 
�
; ð54Þ

where pKf is the negative log of the dissociation constant of water
(14 at T = 298 K).

3.2.2. The Stern layer and total surface conductance
For some highly charged minerals like clays, the contribution of

the compact Stern layer to surface conductivity must not be ne-
glected [53]. However, it has not been extensively studied for tita-
nium dioxide nanoparticles. According to several authors (e.g.,
[18–23]), both the diffuse and the Stern layers contribute to the
specific surface conductance:

Rs ¼ Rdiffuse
s þ RStern

s : ð55Þ

The Stern layer contribution can be described by [50,53]

RStern
s ¼

X
i

ziebSt
i CSt

i ; ð56Þ

where the superscript ‘‘St’’ corresponds to the Stern layer, and CSt
i is

the surface site density of adsorbed counterions at the Stern layer
(in sites m�2). Eq. (56) describes the lateral movement of adsorbed
cations and anions [56,57], and consequently assumes that the ion
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species are not immobile in the Stern layer [16]. The ion mobility
values at the Stern layer are still relatively unknown. For clay min-
erals and quartz, Revil and Glover [50] and Revil et al. [58] consid-
ered that the ion mobilities of several cations like Na+, K+, Ca2+ are at
least one order of magnitude smaller than those in the bulk electro-
lyte. For silica minerals, Leroy et al. [15] hypothesized that the sur-
face ion mobilities are similar to those of the bulk. Molecular
dynamics simulations at the solid/water interface must be of partic-
ular importance in characterizing the ion and water mobilities in
the compact layer. For example, in their work concerning the char-
acterization of the surface properties of rutile, Predota et al. [32]
considered a surface water mobility that is 10% of the bulk ion
mobility at 3.7 Å from the surface.

According to Eqs. (54)–(56), the total surface conductance of a
particle can be described by

Rs ¼ 2j�1Fz cb
ðþÞBðþÞ þ 1000� 10�pHBH


 �
exp

�Fzwd

2RT

� �
� 1

	 
�

þ cb
ð�ÞBð�Þ þ 1000� 10pH�pKf BOH


 �
exp

Fzwd

2RT

� �
� 1

	 
�
þ
X

i

ziebSt
i CSt

i : ð57Þ

As seen by Eq. (57), it is easy to estimate surface conductance if
the electrical potential at the head end of the diffuse layer wd and
the surface sites CSt

i are known. These parameters can be estimated
by a complete surface complexation model of the TiO2/water inter-
face. The ion mobilities of the counterions in the compact layer bSt

i

are the only unknown.
Below, we use this approach to determine the zeta potential of

TiO2 nanoparticles using the particle size and the electrophoretic
mobility data of Foissy [3].
4. Comparison with experimental data

4.1. Modeling strategy

First, the function f(ja) is determined according to Eqs. (12),
(20), and (21). Second, titanium dioxide surface complexation
models estimate the surface conductance of the double layer Rs

(Eq. (57)). The subsequent calculation of the electrical conductivity
of the bulk electrolyte based on its ion composition, rb (Eq. (34))
and the radius of an agglomerate made up of elementary particles,
a, make it possible to determine the Dukhin number, Du (Eq. (19)).
Third, the parameter corresponding to the electrical conductivity
of the agglomerate’s interior, Kp, is calculated thanks to Eqs.
(26)–(28) for a given value of the intraaggregate porosity / and
elementary particle’s radius ae. Finally, the zeta potential is esti-
mated from the electrophoretic measurements using the calcu-
lated values of f(ja), Du, Kp, and Eq. (22) for the case of Henry’s
theory (see Fig. 5). By comparison, the von Smoluchowski equation
(Eq. (11)) is also used to convert electrophoretic mobilities to zeta
potential values. The surface complexation calculations were done
with PHREEQC v2.17 [28] and the conversion calculations were
done using a MATLAB routine.

Raw electrophoretic measurements are necessary for these cal-
culations. Unfortunately, only preprocessed zeta potentials are
available in most publications. Foissy [3] provides electrophoretic
measurements for titanium dioxide P25 for a wide range of electro-
lyte concentrations but in a NaCl electrolyte background. Accord-
ing to the comparative modeling of Bourikas et al. [9], NO�3 and
Cl� behave similarly at the TiO2 surface. This could be verified by
satisfactorily reproducing the surface charge data that Ridley
et al. [2] obtained on the anatase ST-01 using the same model as
the ESM listed in Table 1 and the same parameters for Cl� as for
NO�3 (not shown).
4.2. Input data of the electrokinetic model

Foissy [3] did titration and electrophoretic measurements on
TiO2 P25 (Degussa, Germany). The crystalline form is anatase
(95%). The density measured by helium pycnometry after drying
is 3.76 g cm�3. The estimated specific surface area (using N2

adsorption and immersion calorimetry) is 54 ± 3 m2 g�1. The size
of an elementary particle is approximately 30 nm, but P25 nano-
particles can form aggregates measuring several micrometers [1].
Foissy [3] measured electrophoretic mobilities for pH values be-
tween 4 and 11, and salinities (NaCl) of 10�4, 10�3, and 10�2 M.
Furthermore, he used X-ray measurements to obtain the particle
size distribution as a function of pH at 10�3 M.

At 10�3 M, we use a normal distribution in agreement with the
particle size distribution measured by Foissy [3] and calculate the
Debye length to estimate the function f(ja). For other salinities, we
also use a normal distribution for the particle size. Eqs. (12), (48),
and (57) make it possible to calculate the specific surface conduc-
tance using the values of w2 (w2 = wd here), CSt

Na, CSt
Cl determined by

the ESM surface complexation model (Fig. 6). The Na+, Cl�, H+, and
OH� ion mobility values in the bulk and diffuse layer are 5.17, 7.89,
36.20, and 20.49 � 10�8 m2 s�1 V�1, respectively (from PHREEQC’s
phreeqd.dat database). The ion mobilities at the Stern layer remain
unknown. We used bSt

i ¼ bi, according to the surface conductivity
model of Leroy et al. [15] for silica minerals, to estimate surface
conductance. Surface conductance increases significantly with
salinity and with the difference between pH and IEP (6.5 here)
(Fig. 6). Note that we restrict the investigated pH range at 10�4

and 10�3 M to have a constant ionic strength.
According to Eq. (19), the Dukhin number (Du) is determined

using (1) a normal distribution for the particle size a (in agreement
at 10�3 M with the particle size distribution measured by Foissy
[3]), (2) the estimated surface conductance Rs, and (3) the electri-
cal conductivity of the bulk electrolyte rb. The fitting parameters
are the intraaggregate porosity / and the PSD at 10�4 and 10�2 M.
4.3. Zeta potentials from electrophoretic data

According to the particle size measurements of Foissy at 10�3 M
[3] (Fig. 7), titanium dioxide nanoparticles are highly agglomerated
at pH values close to the IEP, leading to 20-lm agglomerates. At ex-
treme pH values (pH 4, pH 10) agglomerates reach sizes between 1
and 3 lm. Thus, ja� 1 and increases significantly at pH values
close to the IEP. As a result, the Dukhin number is low in amplitude
except for basic pH where it increases strongly (Fig. 7). Zeta poten-
tials inferred from electrophoresis using our model are in very
good agreement with the ESM predictions assuming w2 = wd

(Fig. 7). We use / = 0.4, which is in accordance with the intraaggre-
gate porosity value measured recently by Xu et al. [59] for P25 (/
= 0.38) from the N2 desorption isotherm using the cylindrical pore
model (BJH method). The zeta potential calculations using the
Smoluchowski equation are also presented by comparison. Their
amplitudes are not in agreement with the ESM predictions because
the Smoluchowski equation neglects surface conductivity.

PSD found at other salinities seem to be physically realistic
(Fig. 8). The size of agglomerated nanoparticles is pH and salinity
dependent, and increases significantly close to the IEP and at high
ionic strength. The Dukhin number also diminishes significantly
under these physico-chemical conditions. In addition, for 10�4

and 10�2 M, zeta potentials calculated from electrophoresis using
our modeling approach are also in very good agreement with the
ESM predictions (Fig. 9), except for pH values close to the IEP.
We also use / = 0.4.

Our modeling results suggest that the shear plane may be lo-
cated close to the OHP, in contradiction with the hypothesis of a
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stagnant diffuse layer having a salinity-dependent thickness at the
TiO2 water interface [1,9].

5. Conclusions

We have developed an extended Stern layer model to character-
ize the electro-chemical properties of titanium dioxide in a 1:1
electrolyte (NaCl). This model significantly lowers the amplitude
of electrical potential at the OHP compared to that of other recent
surface complexation models [1,9] without altering the quality of
the titration data predictions.
Henry’s model [40] is used to convert electrophoretic mobility
measurements to zeta potential values taking into account
agglomerate size and surface conductance. Electrical conductivity
inside the agglomerate is calculated using the differential self-
consistent model of Sen et al. [47]. The theory of particle’s surface
conductance due to the diffuse and Stern layers is described in
depth.

By combining the excess of electrical charge calculated at the
compact Stern layer and in the diffuse layer with Henry’s equations
[40], we show that the shear plane may be located close to the
OHP, contradicting the assumption of the presence of a stagnant
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diffuse layer at the TiO2/water interface as mentioned by Bourikas
et al. [9] and Panagiotou et al. [1].

In the future, we will use a numerical model to convert electro-
phoretic and electrical conductivity measurements to zeta poten-
tial values under arbitrary conditions including high zeta
potential amplitudes, particle volume fraction, polydispersity of
the sample, diffuse layer overlapping, and surface conductance.
In addition, we will compare our modeling results to a much more
refined set of experiments (spherical and monodisperse/polydis-
perse particles) including electrical conductivity measurements.
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