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We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of
spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged col-
loidal particles and the added counterions released by the particles to the solution that counterbalance
their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the par-
ticles and the dielectric response of the suspension. We find that the Maxwell–Wagner–O’Konski process
associated with the counterions condensation layer is enhanced for moderate to high particle charges,
yielding an increment of the mobility for such frequencies. We also find that the increment of the mobil-
ity grows with ion size and particle charge. All these facts show the importance of including ion size
effects in any extension attempting to improve standard electrokinetic models.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In the last years, there has been a renewed interest in electro-
phoresis. This is in part due to recent advances in nanoscience,
which make possible the separation of macromolecules by size or
charge. Suspended DNA or proteins are driven and separated by
applying dc or ac electric fields [1–3]. Another main application
in the field of nanoscience is the use of gold nanoparticles for drug
delivery or cancer cell detection [4,5]. Measurements of the elec-
trophoretic mobility have been found to be useful to characterize
the surface functionalization of these gold nanoparticles [6]. Usu-
ally particles are charged and suspended together with microions
and a structure of electric double layer (EDL) appears around the
particle [7,8]. The electrophoretic mobility of a suspended particle
is not only dependent on the particle charge or the viscosity of the
medium, but also on the configuration of the EDL.

Most of the theoretical EDL models are based on the classical
Poisson–Boltzmann equation, a mean field approach that takes
into account point-like ions in solution. This theory breaks down
when the crowding of ions becomes significant, and steric repul-
sion and correlations potentially become important. Some authors
have shown that the consideration of finite ion size effects allows
for the crowding of ions near the particle surface [9]. This redistri-
bution of ions modifies the EDL around the particle and conse-
ll rights reserved.
quently its electrophoretic mobility when an external electric
field is applied [10–13].

We can find in the literature different studies dealing with ion
size effects. Some of them concern microscopic descriptions of
ion–ion correlations [14,15]. These approaches are mainly re-
stricted to equilibrium conditions, but are able to predict impor-
tant phenomena like overcharging [16]. Other studies are based
on macroscopic descriptions considering average interactions by
mean field approximations [10,17–20]. In many of these works,
the finite ion size is commonly included by modifying the activity
coefficient of the ions in the electrochemical potential or by incor-
porating entropic contributions related to the excluded volume of
the ions. The macroscopic approaches have been found to work
appreciably well with monovalent electrolytes for high particle
charges and/or large ionic sizes when they have been compared
with some simulation results [21].

Most works in electrokinetics concern suspensions with low
particle concentration, but nowadays it is the concentrated regime
that deserves more attention because of its practical applications.
These systems are difficult to understand due to the inherent com-
plexity associated with the increasing particle–particle electrohy-
drodynamic interactions as particle concentration grows [22,23].
On the other hand, systems with low salt concentration show a
lower screening of the repulsive electrostatic particle–particle
interactions, which favors the generation of colloidal crystals or
glasses. Suspensions just composed of charged particles and their
ionic countercharges (the so-called added counterions) in the
liquid medium are named salt-free suspensions. The interest in
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these systems has increased in recent years from both experimen-
tal and theoretical points of view [24–31].

The dielectric response of colloidal suspensions as a function of
the frequency of the applied external electric field is a powerful
tool. Its analysis provides rich information on the dynamics of
the EDL because it is very sensitive to the particle-solution inter-
face. Carrique et al. have studied the dynamic properties of salt-
free concentrated suspensions with point-like ions when an ac
electric field is applied [29,30]. To our knowledge, the only theoret-
ical work in the frequency domain considering ion size effects is
the one of Aranda-Rascón et al. for dilute suspensions with electro-
lytes [32]. The same authors have shown that the consideration of
a minimum approach distance of ions to the particle surface, not
necessarily equal to their effective radius in the bulk solution,
can predict overcharging for high electrolyte concentrations and
counterion valence [12].

Our aim in this paper is to analyze the influence of finite ion size
effects in the response of a salt-free concentrated suspension to an
oscillating electric field. We will study specially the dynamic elec-
trophoretic mobility of the particles and the dielectric response of
the suspension in the frequency domain. Recently, we have studied
the equilibrium EDL [19] and the response to a static electric field
[13] of this kind of suspensions with ion size effects. In this paper,
we will extend our previous works to ac electric fields following
the treatment of Carrique et al. for salt-free concentrated suspen-
sions with point-like ions [29,30].

The plan of the paper is as follows. In Section 2, we describe the
electrokinetic model to account for ion size effects. We give details
of the resolution method of the electrokinetic equations and define
the quantities we calculate in Section 3. The results of the numer-
ical calculations are shown in Section 4 and analyzed upon chang-
ing particle surface charge density, particle volume fraction, and
size of the counterions. In order to show the realm of the finite
ion size effect in salt-free suspensions, the results are compared
with standard predictions for point-like ions. Conclusions are pre-
sented in Section 5.
2. Model

2.1. Electrokinetic equations

We use a cell model [33,34] to study the macroscopic properties
of the suspension from appropriate averages of local properties in a
representative cell. In this approach, each spherical particle of ra-
dius a is surrounded by a concentric shell of the liquid medium,
having an outer radius b such that the particle/cell volume ratio
in the cell is equal to the particle volume fraction throughout the
entire suspension, that is

/ ¼ a
b

� �3
ð1Þ

In this approximation, we simulate the hydrodynamic and elec-
trical interactions between particles in the suspension by proper
specification of boundary conditions at the outer surface of the cell.

Let us consider a spherical charged particle of radius a, surface
charge density r, mass density qp, and relative permittivity �rp im-
mersed in a salt-free medium of relative permittivity �rs, mass den-
sity qs and viscosity g, with only the presence of the added
counterions of valence zc and drag coefficient kc . We consider finite
size counterions as spheres of radius R with a point charge at their
center. By applying to the system an oscillating electric field E e�ixt

of angular frequency x, the particle moves with a velocity vee�ixt ,
the dynamic electrophoretic velocity. The axes of the spherical
coordinate system (r; h;u) are fixed at the center of the particle,
with the polar axis ðh ¼ 0Þ parallel to the electric field. The solution
of the problem at time t requires the knowledge, at every point r of
the system, of the electric potential, Wðr; tÞ, the number density of
counterions, ncðr; tÞ, their drift velocity, vcðr; tÞ, the fluid velocity,
vðr; tÞ, and the pressure, Pðr; tÞ. The electrokinetic equations
connecting them are [7,35]:

r2Wðr; tÞ ¼ � zce
�0�rs

ncðr; tÞ ð2Þ

gr2vðr; tÞ � rPðr; tÞ � zcencðr; tÞrWðr; tÞ

¼ qs
@

@t
½vðr; tÞ þ ve e�ixt � ð3Þ

r � ½ncðr; tÞvcðr; tÞ� ¼ �
@

@t
½ncðr; tÞ� ð4Þ

ncðr; tÞvcðr; tÞ ¼ ncðr; tÞvðr; tÞ �
1
kc

ncðr; tÞrlcðr; tÞ ð5Þ

r � vðr; tÞ ¼ 0 ð6Þ

In these equations, lcðr; tÞ is the electrochemical potential of
the counterions, �0 is the vacuum permittivity, and e is the elemen-
tary electric charge. The drag coefficient kc is related to the diffu-
sion coefficient by kc ¼ kBT=Dc , where kB is Boltzmann’s constant,
and T is the absolute temperature.

As we are interested in studying the linear response of the sys-
tem to an electric field, we apply a perturbation scheme. Thus, each
quantity X is written as the sum of its equilibrium value, X0, plus a
perturbation term, dX, linearly dependent with the field multiplied
by the term e�ixt , that represents the time dependent sinusoidal re-
sponse of the stationary state [29].

We introduce the finite size of the counterions by considering
their excluded volume and including the entropy of the solvent
molecules in the free energy of the suspension, F ¼ U � TS [19]

U ¼
Z

dr � �0�rs

2
jrW0ðrÞj2 þ zcen0

c ðrÞW
0ðrÞ � l0

c n0
c ðrÞ

� �
ð7Þ

�TS ¼ kBTnmax
c

�
Z

dr
n0

c ðrÞ
nmax

c
ln

n0
c ðrÞ

nmax
c

� �
þ 1� n0

c ðrÞ
nmax

c

� �
ln 1� n0

c ðrÞ
nmax

c

� �� �
ð8Þ

being nmax
c the maximum possible concentration of counterions due

to the excluded volume effect, defined as nmax
c ¼ V�1, where V is the

average volume occupied by an ion in the solution. The last term in
Eq. (8) is the one that accounts for the ion size effect and was pro-
posed earlier by Borukhov et al. [18]. Performing the variations of
the free energy with respect to W0ðrÞ and n0

c ðrÞ, combining both
resulting expressions and applying spherical symmetry, we obtain

d2W0ðrÞ
dr2 þ 2

r
dW0ðrÞ

dr
¼ � zce

�0�rs

bc exp � zceW0ðrÞ
kBT

� �
1þ bc

nmax
c

exp � zc eW0ðrÞ
kBT

� �
� 1

h i ð9Þ

where bc is an unknown coefficient that represents the ionic con-
centration where the equilibrium electric potential is chosen to be
zero. Details about this modified Poisson–Boltzmann equation
including ion size effects can be found in Ref. [19].

To obtain the perturbation terms of the quantities of interest,
due to the symmetry of the problem, we make use of the following
spherical functions: hðrÞ;/cðrÞ, and YðrÞ [36]

vðrÞ ¼ ðv r; vh;vuÞ ¼ �2
r

hðrÞE cos h;
1
r

d
dr
ðrhðrÞÞE sin h;0

� �
ð10Þ

dlcðrÞ ¼ �zce/cðrÞE cos h ð11Þ
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dWðrÞ ¼ �YðrÞE cos h ð12Þ

with E ¼ jEj.
Substituting the above mentioned perturbation scheme into the

differential electrokinetic equations, Eqs. (2)–(6), neglecting
nonlinear perturbations terms, and making use of the symmetry
conditions of the problem, we obtain

LðLhðrÞÞ þ ixqs

g
LhðrÞ ¼ � zce2

kBTgr

� dW0ðrÞ
dr

 !
n0

c ðrÞ /cðrÞ �
n0

c ðrÞ
nmax

c
YðrÞ

� �

ð13Þ

L/cðrÞ þ
ixkc

kBT
/cðrÞ � YðrÞð Þ ¼ e

kBT
dW0ðrÞ

dr

 !

� 1� n0
c ðrÞ

nmax
c

� �
zc

d/cðrÞ
dr

� 2kc

e
hðrÞ

r

� �
ð14Þ

LYðrÞ ¼ � z2
c e2n0

c ðrÞ
�0�rskBT

/cðrÞ � YðrÞð Þ ð15Þ

where the L operator is defined by

L � d2

dr2 þ
2
r

d
dr
� 2

r2 ð16Þ

In the case of a static electric field, x ¼ 0, Eqs. (13)–(15) turn
into the expressions obtained in Ref. [13]. For point-like counteri-
ons, nmax

c ¼ 1, these equations become those of Refs. [29,30].
According to Ref. [10], we incorporate a distance of closest ap-

proach of the counterions to the particle surface, resulting from
their finite size. We assume that the counterions cannot come clo-
ser to the surface of the particle than their effective hydration ra-
dius, R, and, therefore, the ionic concentration will be zero in the
region between the particle surface, r ¼ a, and the spherical sur-
face, r ¼ aþ R, defined by the counterion effective radius. This rea-
soning implies that counterions are considered as spheres of radius
R with a point charge at their center.

With this consideration, we solve the electrokinetic equations,
Eqs. (9), (13)–(15), only between r ¼ aþ R and r ¼ b. When we ad-
dress the problem in the region between r ¼ a and r ¼ aþ R, the
equations to solve turn into the Laplace equation for the equilib-
rium electric potential, and equations LðLhðrÞÞ ¼ 0;/cðrÞ ¼ 0, and
LYðrÞ ¼ 0 for the rest of the spherical functions, because this region
is free of charge. We call FIS + L model this complete model that in-
cludes ion size effects and also considers the distance of closest ap-
proach of the counterions to the charged particle surface.

2.2. Boundary conditions

The boundary conditions needed to solve the electrokinetic
equations are analogous, but dealing with complex quantities, to
those described in Ref. [13] (Section II B) for the response of a
salt-free concentrated suspension to a static electric field including
ion size effects. At the particle surface, we apply the continuity of
the electric potential, the discontinuity of the normal component
of the displacement vector, the non-slip condition for the fluid,
and the impenetrability of ions to the solid surface. On the outer
surface of the cell, we use the Kuwabara’s boundary conditions for
the fluid velocity field and the Shilov–Zharkikh–Borkovskaya condi-
tions for the perturbed electric potential. Finally, if we consider a
distance of closest approach of the counterions to the particle sur-
face, we also need the continuity of the pressure and both normal
and tangential components of the fluid velocity and the vorticity.
A remarkable difference with the static case is that the net force act-
ing on the particle or the unit cell is not zero. Details of the net force
calculation can be found in Ref. [36] or Appendix 1 in Ref. [29].

In terms of the radial functions W0ðrÞ;YðrÞ;/cðrÞ and hðrÞ, the
boundary conditions are:

(i) at the particle surface r ¼ a
dW0ðrÞ
dr

jr¼a ¼ �
r
�0�rs

ð17Þ

dYðrÞ
dr
jr¼a �

�rp

�rs

YðaÞ
a
¼ 0 ð18Þ

hðaÞ ¼ 0 ð19Þ

dhðrÞ
dr
jr¼a ¼ 0 ð20Þ
(ii) at the surface r ¼ aþ R defined by the counterion effective
radius
W0ðaþ R�Þ ¼ W0ðaþ RþÞ ð21Þ

dW0ðrÞ
dr

jr¼aþR� ¼
dW0ðrÞ

dr
jr¼aþRþ ð22Þ

Yðaþ R�Þ ¼ Yðaþ RþÞ ð23Þ

dYðrÞ
dr
jr¼aþR� ¼

dYðrÞ
dr
jr¼aþRþ ð24Þ

d/cðrÞ
dr

jr¼aþRþ ¼ 0 ð25Þ

hðaþ R�Þ ¼ hðaþ RþÞ ð26Þ

dhðrÞ
dr
jr¼aþR� ¼

dhðrÞ
dr
jr¼aþRþ ð27Þ

Lhðaþ R�Þ ¼ Lhðaþ RþÞ ð28Þ

d3hðrÞ
dr3 jr¼aþR� ¼

d3hðrÞ
dr3 jr¼aþRþ �

zce
ðaþ RÞg n0

c ðaþ RþÞYðaþ RþÞ

ð29Þ
(iii) and finally, at the outer surface of the cell r ¼ b
W0ðbÞ ¼ 0 ð30Þ

dW0ðrÞ
dr

jr¼b ¼ 0 ð31Þ

YðbÞ ¼ b ð32Þ

/cðbÞ ¼ b ð33Þ

LhðbÞ ¼ 0 ð34Þ

g
d
dr

rLhðrÞ½ �r¼b � zcebcYðbÞ

¼ ixqs � hðbÞ � 2/
qp � qs

qs
hðbÞ � b

dhðrÞ
dr
jr¼b

� �
ð35Þ
This last boundary condition, Eq. (35), stands for the equation of
motion of the unit cell. In the case of a static electric field, x ¼ 0,
we recover the expression for the net force showed in Ref. [13].
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3. Method and calculated quantities

3.1. Method

We will discuss the results of the proposed FIS + L electrokinetic
model. In order to show the realm of the finite ion size effect in
salt-free suspensions, the results are compared with standard pre-
dictions for point-like ions, PL model [29,30]. The electrokinetic
equations with their boundary conditions form a boundary value
problem that can be solved numerically using the MATLAB routine
bvp4c [37].

For the sake of simplicity, we assume that the average volume
occupied by a counterion is V ¼ ð2RÞ3, being 2R the counterion
effective diameter. With this consideration, the maximum possible
concentration of counterions due to the excluded volume effect is
nmax

c ¼ ð2RÞ�3. This corresponds to a simple cubic package (52%
packing). In molar concentrations, the values used in the calcula-
tions, nmax

c ¼ 22;4 and 1:7 M, correspond approximately to
counterion effective diameters of 2R ¼ 0:425;0:75 and 1 nm,
respectively. These are typical hydrated ionic diameters [38]. We
present in Table 1 the parameter values used in all the calculations.
The chosen parameters correspond to hydrated H+ counterions,
which are commonly found in many experimental conditions with
salt-free suspensions of, for example, negatively charged sulfo-
nated polymer particles, due to the cleaning process of the suspen-
sion with proton exchange resins.

3.2. Calculated quantities

The dynamic electrophoretic mobility l of a spherical particle
in a concentrated colloidal suspension can be defined from the
relation between the electrophoretic velocity of the particle and
the macroscopic electric field. According to Refs. [13,29], it can
be determined through

l ¼ 2hðbÞ
b

ð36Þ

We calculate the nondimensional dynamic electrophoretic
mobility as

l� ¼ 3ge
2�0�rskBT

l ð37Þ

The complex conductivity, K, of the suspension is usually de-
fined in terms of the volume averages of the local electric current
density and electric field in a cell representing the whole suspen-
sion. Following a similar procedure to that described for the dc
conductivity in Ref. [13], we obtain (see also Ref. [30])

K ¼ z2
c e2

kc

d/cðrÞ
dr

jr¼b �
2hðbÞ

b
zce

� �
n0

c ðbÞ � ix�rs�0
dYðrÞ

dr
jr¼b ð38Þ

From the complex conductivity, the real �0rðxÞ and imaginary
�00r ðxÞ components of the complex relative permittivity of the sus-
pension �rðxÞ are calculated by writing

KðxÞ ¼ Kðx ¼ 0Þ � ix�0�rðxÞ ¼ Kðx ¼ 0Þ
þx�0�00r ðxÞ � ix�0�0rðxÞ ð39Þ
Table 1
Parameter values used in the calculations.

T ¼ 298:15 K a ¼ 100 nm

g ¼ 0:89� 10�3 P zc ¼ þ1

�rs ¼ 78:55 Dc ¼ 9:34� 10�9 m2=s
�rp ¼ 2
�0rðxÞ ¼ �
Im½KðxÞ�

x�0
ð40Þ

�00r ðxÞ ¼
Re½KðxÞ� � Kðx ¼ 0Þ

x�0
ð41Þ
4. Results and discussion

4.1. Point-like model

The classical frequency response of a salt-free concentrated sus-
pension with point-like counterions, PL model, is as follows: (i) at
low frequency, the electromigration and diffusion processes have
enough time to be fully developed around the particle and, com-
monly, this fact leads to the generation of an induced electric di-
pole moment that tends to brake the particle motion. In this
frequency region, there is a plateau value of the dynamic electro-
phoretic mobility that coincides with the electrophoretic mobility
in static electric fields; (ii) as the frequency increases, we find a fre-
quency region where the counterions cannot follow the compara-
tively fast field oscillations. Thus, the above mentioned dipolar
moment decreases and, consequently, the dynamic mobility in-
creases. This process is known as Maxwell–Wagner–O’Konski
(MWO) relaxation and takes place whenever the medium and
the charged particles, surrounded by its EDL, present different con-
ductivities and permittivities; and (iii) finally, the frequency can be
so high that the inertia of the particle and fluid restricts the motion
progressively. As a result, the mobility shows a continuous decline
when the frequency rises, which is known as the inertial
relaxation.

There is another classical relaxation mechanism, the alpha
relaxation [7], which is related to the concentration polarization ef-
fect (i.e., the presence of a gradient of neutral electrolyte around
the particle). We do not find any alpha relaxation in a salt-free sus-
pension, as was explained in Ref. [40], because we only have one
ionic species, the added counterions.

In order to clarify the discussion, we will try to separate the
different mechanisms by performing three different variations of
the PL model:

(i) the complete PL model that includes all the mentioned
effects;

(ii) the pure inertial response where we do not allow any pertur-
bation of the ionic atmosphere from the equilibrium values.
So, breaking mechanisms associated with the charge polari-
zation are excluded in this variation; and

(iii) the inertia-free response, where we have eliminated all the
inertial terms in the electrokinetic equations.

In Fig. 1, we show the modulus of the scaled dynamic mobility
for the three last-mentioned PL variations. We use two different
particle volume fractions at a given particle charge density. We
display in solid lines the complete PL model, in dashed lines the
pure inertial response, and in dotted lines the inertia-free response.

The pure inertial response behaves as follows: after an initial low
frequency mobility plateau, the mobility monotonously decreases
with frequency. This plateau has larger values than that of the
complete PL model. The difference between the pure inertial re-
sponse and the PL model is due to the absence of breaking effects
on particle motion associated with the induced dipole moment
(double layer relaxation effect).

In the numerical results corresponding to the inertia-free re-
sponse, we observe one or two successive increments in the
dynamic mobility for high or low particle volume fraction, respec-
tively. These increments are related to one or two successive MWO
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relaxation processes in each case. When we introduce the inertia
(dashed lines) to get the complete PL model (solid lines), these
above mentioned increments become into one or two successive
peaks, as can be observed. The diminution of the dynamic
mobility after the first maximum is therefore due to the inertial
relaxation.

As was expected, once all the MWO processes have relaxed in
the high frequency limit, the mobility in the inertia-free response
curve reaches the same plateau value than the one of the pure iner-
tial response for low frequencies. This is because, when the induced
polarization completely disappears, the counterions distribution
coincides with that of the equilibrium as in the pure inertial
response.

4.2. Maxwell–Wagner–O’Konski relaxations

We have observed that two differenced MWO relaxations can
exist. They will be related to two differenced regions in the EDL.
Through the Wagner formula for a constant dielectric mixture, it
is possible to obtain the frequency and the dielectric increment
of a MWO relaxation [7]

xMWO ¼
ð1� /ÞKp þ ð2þ /ÞKs

ð1� /Þ�0�rp þ ð2þ /Þ�0�rs
ð42Þ

D�MWO ¼
9/ð1� /Þ

ð1� /Þ�rp þ ð2þ /Þ�rs
� �rsKp � �rpKs

ð1� /ÞKp þ ð2þ /ÞKs

� �2

ð43Þ

where Kp and Ks are the conductivities of the particles and the med-
ium, respectively. The particles are assumed to be made of a non-
conducting material. Their conductivity is exclusively associated
with the surface conductivity, Kr, that appears due to an excess of
counterions in the ionic atmosphere, Kp ¼ 2Kr=a [8]. Eqs. (42) and
(43) were derived without allowance of mutual polarization of par-
ticles, and they are valid for suspensions with added electrolyte,
thin EDL, and reasonably low /.

The latter equations predict only one MWO relaxation process.
However, for suspensions of highly charged particles, two different
MWO relaxations have been considered in the literature to explain
their dielectric response. This consideration is based on the exis-
tence of two differenced regions in the EDL, specially when r is
sufficiently high and ion size effects are considered, see Fig. 2 in
Ref. [19]. The first one is a condensate of counterions very close
to the particle surface. The second one is a diffuse layer that
extends from the end of the condensate to the outer surface of
the cell. When we have finite size counterions, the condensate con-
sists in a homogeneous region where counterions are well pack-
aged. In the PL case, such picture of the condensate is not valid,
but there are theoretical evidences of the existence of a thin region
with different behavior in the electric potential and ionic distribu-
tion than in the diffuse layer [39,40]. As was suggested on Ref. [40],
we will consider each region with a different associated MWO
relaxation process and roughly estimate their MWO relaxation fre-
quencies and dielectric increments to qualitatively explain the
behavior of both MWO relaxation processes.

To obtain the relaxation frequency of the condensate, we need
to calculate the surface conductivity of the counterion condensa-
tion layer. Considering this layer with a mean concentration nmax

c

and a thickness d, we obtain

Kr ¼ z2
c e2nmax

c d
kc

ð44Þ

For the study of the condensate relaxation, the conductivity of
the counterions in the diffuse layer, Ks, will be taken equal to zero,
because it has no influence in the condensate relaxation process.
Using Kp ¼ 2Kr=a and �rp � �rs, according to Eq. (42), we obtain a
relaxation frequency

xcond
MWO ¼

2z2
c e2nmax

c dð1� /Þ
�0�rsakcð2þ /Þ ð45Þ

and with Eq. (43) a dielectric increment

D�cond
MWO ¼

9/�rs

ð1� /Þð2þ /Þ ð46Þ

To obtain only the relaxation process of the diffuse layer, we
need to calculate the conductivity of the counterions in this region,
Ks,

Ks ¼
z2

c e2nc

kc
¼ �3zcerdif /

akcð1� /Þ ð47Þ

where nc is the average counterions concentration in the diffuse
layer, and rdif is the charge density at the spherical surface,
r ¼ aþ d, defined by the thickness of the condensation layer. We
now take Kp ¼ 0 because we consider the particle with its conden-
sate as an equivalent particle with less surface charge density, rdif .
Introducing the expression of the conductivity Ks in Eq. (42) and
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considering �rp � �rs, we obtain the relaxation frequency of the dif-
fuse layer

xdif
MWO ¼

�3zcerdif /
�0�rsakcð1� /Þ ð48Þ

and with Eq. (43) the dielectric increment

D�dif
MWO ¼

9/ð1� /Þ�2
rp

ð2þ /Þ3�rs

ð49Þ

As commented before, the previous expressions will be more pre-
cise for reasonably low /. Also, the expression for the MWO relax-
ation frequency of the condensate will be more accurate than the
one for the diffuse layer: the use of an average concentration works
better in the condensate because it is a thin layer with homoge-
neous ionic density.

4.3. Finite ion size

We will jointly study both the dynamic electrophoretic mobility
of the particles and the dielectric response of the suspension as a
function of frequency, because they are strongly interrelated.

4.3.1. Condensate MWO relaxation
Fig. 2 represents the modulus of the scaled dynamic electropho-

retic mobility and Fig. 3 the real (a) and the imaginary (b) parts of
the relative permittivity of a salt-free concentrated suspension as a
function of frequency. We compare the results of the FIS + L model
(dashed lines) at a fixed counterion size, nmax

c ¼ 4 M, with those of
the PL model (solid lines). Different colors stand for different par-
ticle surface charges. The calculations were made at low particle
volume fraction, / ¼ 10�2.

For the low frequency mobility and permittivity plateaus, Figs. 2
and 3a, we observe that there is almost no difference between the
finite size and point-like results for any particle charge at low par-
ticle volume fraction. As was discussed in Ref. [13] for the static
mobility and conductivity, this is because in the case of a dilute
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nmax
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suspension, the inclusion of ion size effects only significantly mod-
ifies the counterions fluxes in the immediate vicinity of the
particle.

The MWO relaxation frequency is defined as that of the maxi-
mum in the imaginary part of the permittivity, as it is well-known.
We note that for a suspension with low volume fraction, depending
on particle surface charge, one or two differenced MWO relax-
ations, Fig. 3, or analogously one or two mobility maximums,
Fig. 2, may take place. As we indicated before, we associate the first
one upon increasing frequency with the MWO relaxation of the dif-
fuse part of the EDL, and the second one with the relaxation of the
condensate.

At low r, there is no condensate of counterions near the particle
surface and therefore no condensate MWO relaxation process is
observed. When we rise the particle charge, almost all the extra
counterions accumulate in the condensate [39], which seriously
grows when also ion size effects are considered [19]. This explains
why ion size effects do not produce any remarkable effect in the
MWO relaxation of the diffuse part of the EDL and why they con-
siderably enhance the condensate MWO relaxation.

According to Eq. (48), the frequency of the MWO of the diffuse
layer changes with rdif . As the counterions concentration in the
diffuse layer has been scarcely altered, xdif

MWO remains basically
the same in Figs. 2 and 3. On the contrary, Fig. 3b shows an incre-
ment of the frequency of the condensate MWO relaxation when
ion size effects are considered. This is in agreement with Eq. (45),
because xcond

MWO increases when the width of the condensate, d,
raises. For the well resolved MWO peaks of the two highest surface
charge curves in Fig. 3b, we observe that the height of the peaks is
nearly independent on both, the surface charge density and the ion
size, in accordance with Eqs. (46) and (49).

In a previous paper, we studied the effects of the electric polar-
ization on the magnitude of the static electrophoretic mobility in a
salt-free concentrated suspension with finite ion size effects [13].
This study was based on a procedure developed by Bradshaw-Ha-
jek et al. [41]. We showed that the induced charge polarization
density was larger when ion size effects were considered. The gen-
eralization of the latter study to ac electric fields leads to similar
conclusions. As the relaxation effect and, correspondingly, the in-
duced dipole moment have been increased with ion size, the sec-
ond mobility maximum in Fig. 2 attains higher values as well.
This is due to the disappearance of breaking mechanisms on the
particle motion of increasing importance as the ion size grows,
causing the dynamic mobility to reach superior values when the
size of the counterions is taken into account.

4.3.2. Overlapping of MWO relaxations
We show the frequency response of the modulus of the scaled

dynamic electrophoretic mobility and the imaginary part of the
relative permittivity of the suspension in Figs. 4 and 5, respectively.
In both Figures, we compare the results of the FIS + L model with
nmax

c ¼ 4 M, dashed lines, with those of the PL model, solid lines,
for different particle volume fractions. All the calculations were
performed at a high particle charge, r ¼ �40 lC=cm2.

We see in Figs. 2 and 3 how two differenced MWO relaxations
take place when surface charge increases in conditions of low vol-
ume fraction. Now, we observe that the MWO relaxations of the
condensate and the diffuse layer in Fig. 5, or analogously the two
mobility maximums in Fig. 4, tend to overlap in frequency for con-
centrated suspensions at high surface charge. According to Eq. (48),
xdif

MWO grows with volume fraction at a rate /=ð1� /Þ. This is in
agreement with the frequency shift observed in the MWO relaxa-
tion of the diffuse layer, indicated with black arrows in Fig. 5. Eq.
(45) predicts a frequency change with volume fraction at a rate
ð1� /Þ=ð2þ /Þ for the condensate MWO relaxation. Then, we find
no significant changes in xcond

MWO for low / values, and a small
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decrease for high volume fractions as shown in Fig. 5. These behav-
iors result in the observed overlapping of the MWO relaxations for
concentrated suspensions.

When we include ion size effects, we find only changes in the
condensate MWO relaxation (enhancement of the corresponding
mobility maximum and small increase in xcond

MWO). These changes
can be explained with the same reasoning used for Figs. 2 and 3:
the consideration of finite size counterions seriously enlarges the
condensate near the particle but does not produce remarkable ef-
fects in the diffuse layer. We also observe the well-known diminu-
tion of mobility with the increase of volume fraction in Fig. 4 due
basically to the larger screening of the particle charge [19]: when
the particle concentration grows, the available space for the coun-
terions inside the cell decreases and, consequently, the screening
of the particle charge is greatly raised, thus reducing the value of
the surface potential and, therefore, the mobility.
4.3.3. Highly charged concentrated suspensions
Figs. 6 and 7 show the modulus of the scaled dynamic electro-

phoretic mobility and the real (a) and imaginary (b) parts of the
relative permittivity of the suspension as a function of frequency
for different particle surface charges. We compare the results of
the FIS + L model with nmax
c ¼ 4 M, dashed lines, with those of the

PL model, solid lines at a high particle volume fraction, / ¼ 0:5.
Besides, Figs. 8 and 9 represent the same quantities at fixed par-

ticle surface charge, r ¼ �40 lC=cm2, and volume fraction,
/ ¼ 0:5. In these figures, we compare the results of the FIS + L mod-
el at different ion sizes (different colored dashed lines) with those
of the PL model (black lines).

As we mentioned before, for this high volume fraction value, the
two MWO relaxations are overlapped in a unique broad peak. We
observe how both the dynamic mobility and relative permittivity
increase when we consider finite size counterions in comparison
with the PL case and when we increase the particle surface charge.
The reason is that the increase in the surface charge or the consid-
eration of ion size effects leads to an enhancement of the overall
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charge polarization in the EDL, resulting in both, higher permittiv-
ity values as can be seen in Figs. 7a and 9a, and larger heights of the
corresponding peaks of the imaginary part, Figs. 7b and 9b. A sim-
ilar explanation applies to the remarkable increment observed in
the mobility maxima, associated with the MWO relaxations, Figs. 6
and 8: the disappearance of the augmented induced dipole mo-
ment gives rise to greater mobility values.

Figs. 7b and 9b display a shift to larger frequencies in the MWO
relaxation when ion size effects are considered. This shift is also
larger the larger the size of the counterions (lower nmax

c value).
The MWO relaxation of the diffuse layer is nearly independent of
the ion size, Eq. (48), and, therefore, the shift observed is entirely
due to the displacement of the condensate MWO relaxation. We
have checked numerically that the expression of the MWO relaxa-
tion frequency of the condensate, Eq. (45), predicts a shift to higher
frequencies with the increase of the ion size through the product
nmax

c d. This is because the width of the condensate d augments in
a higher rate than the parameter nmax
c diminishes upon increasing

ion size [19]. When we increase the particle surface charge, we
are also increasing the surface conductivity Kr of the condensate,
for both PL and FIS + L models and consequently the frequency of
the MWO relaxation rises.

5. Conclusions

By using a cell model approach, we have analyzed the influence
of finite ion size effects in the response of a salt-free concentrated
suspension of spherical particles to an oscillating electric field. We
have derived a mean-field ac electrokinetic model that accounts for
the excluded volume of the counterions.

In the frequency domain, we have studied the dynamic electro-
phoretic mobility of the particles and the dielectric response of
the suspension. For this purpose, we have performed a compara-
tive study of the different physical mechanisms, pure inertia re-
sponse and charge polarization relaxations, to know how they
interplay to give the complete response. This study has allowed
us to characterize the relative importance and relaxation frequen-
cies of each mechanism separately. In the discussion of the
numerical results, two different MWO relaxations have been suc-
cessfully associated with the relaxations of the different ionic pro-
cesses that take place in the diffuse and condensate regions of the
EDL. Furthermore, the inclusion of ion size effects leads to an
overall increment of the dynamic mobility and relative permittiv-
ity in comparison with the point-like case. The enhancement of
the MWO relaxation for moderate to high particle charges, which
is associated with the counterions condensation layer, has yielded
a remarkable increment of the mobility for such frequencies. In
addition, we have found that this increment of the mobility grows
with ion size and particle charge. Besides, we have observed a
shift in the MWO relaxation of the condensate to larger frequen-
cies with ion size.

Some of these calculations can be compared with experimental
results. To perform such comparisons, concentrated suspensions of
highly charged particles are required. These suspensions have been
classically difficult to synthesize, although existing highly charged
sulfonated polystyrene latexes are good candidates. Moreover,
high-frequency experimental setups are needed to work with the
very high frequency region where the MWO relaxation of the con-
densate takes place.
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