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We investigate the initial moments of capillary rise of liquids in a tube. In this period both inertia and
viscous flow losses balance the pressure generated by the meniscus curvature (capillary pressure). It is
known that the very first stage is purely dominated by inertial forces, where subsequently the influence
of viscosity increases (visco-inertial flow). Finally the effect of inertia vanishes and the flow becomes
purely viscous. In this study we derive the times and meniscus heights at which the transition between
the time periods occur. This is done in an attempt to provide a method to determine a priori which terms
of the momentum balance are relevant for a given problem. Analytic solutions known from previous
literature are discussed and the time intervals of their validity compared. The predicted transition times
and the calculated heights show good agreement with experimental results from literature. The results
are also discussed in dimensionless form and the limitations of the calculations are pointed out.
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1. Introduction

When dealing with the problem of capillary rise it is of great
interest to know which forces (e.g. inertia, viscous forces, gravity)
are dominant (see Fig. 1). This is due to the fact that all equations
that can be used to predict the meniscus height have underlying
assumptions. These assumptions are mostly the neglect of certain
forces. This, however, limits the validity of the derived equations
to certain time intervals where these forces can actually be ne-
glected [1-4]. Stange et al. [5,6] separate the individual time stages
by means of dimensionless numbers. There are also approaches
to solve the full momentum balance numerically as done in [7,8].
Ichikawa and Satoda [9] compare several previous works, present
experimental results and conduct a dimensional analysis. Quere
et al. [10,11] investigate the inertia dominated flow period. Some
publications focus on the effect of the dynamic contact angle [12-
14]. Subsequent time stages (t >> 0) with influence of gravity are
discussed in [15,16].

In this paper we now want to shed some light on the differ-
ent stages of capillary rise and the transitions between them. The
momentum balance of a liquid inside a capillary tube shows that
the capillary pressure must be balanced by the inertial forces, the
viscous forces and the hydrostatic pressure (e.g. [4,15])

8uh -

20 cos®  d(phh
2ocos6 _ dlp )+Fh+pgh, (1)

R dt

* Corresponding author.
E-mail address: dreyer@zarm.uni-bremen.de (M. Dreyer).

0021-9797/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2008.08.018

where o refers to the surface tension, R to the inner tube radius,
p to the fluid density, g to gravity and w to the fluid viscosity.
Hereby the assumptions are made that there are no inertia or en-
try effects in the liquid reservoir and that the viscous pressure loss
inside the tube is given by the Hagen-Poiseuille law. Most impor-
tantly it is assumed that the capillary pressure is constant, and it
is calculated using a static contact angle # and the tube radius R.
For a more detailed discussion of this topic please refer to Sec-
tion 5.

2. Analytic solutions for defined time stages

In following several approaches to obtain analytical solutions to
the momentum balance are discussed.
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Fig. 1. Liquid rise in a capillary tube.
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2.1. Purely inertial time stage

For the very first moments after the contact of the tube with
the liquid Quere [10] takes following approach: Neglecting the vis-
cous and the gravity term in Eq. (1) gives
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Quere solves the differential equation giving a capillary rise with
constant velocity
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2.2. Visco-inertial time stage

Bosanquet [4] finds a solution featuring the inertial and viscous
term resulting in following differential equation
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which is also used by Ichikawa and Satoda [9] in dimensionless
form. Note: For t — oo Eq. (7) converges into the Lucas-Washburn
equation which will be presented next.

2.3. Purely viscous time stage

For the intermediate flow period Lucas [1] and Washburn [2]
neglect the influence of inertia and the influence of gravity. They
find
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2.4. Viscous and gravitational time stage

During the later stages of capillary rise gravity can no longer
be neglected. Fries and Dreyer [16] show that for h > 0.1heq grav-
ity has to be considered. heq is the equilibrium height where the
hydrostatic pressure balances the capillary pressure (see Eq. (13)).
Analytic solutions (neglecting inertia) are given by Washburn [2]
in implicit form
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and by Fries and Dreyer [16] in explicit form

h(t) = %[1 + W(—e**f’zf/“)}. (10)
Here W (x) is the Lambert W function. The constants
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are used. Finally one can calculate the equilibrium height (where
capillary pressure equals hydrostatic pressure) to be [1]
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3. Separation of time stages
One can derive three transition times (see Fig. 3):

- t1, the transition time between the purely inertial and the
visco-inertial stage,

- t2,5, the time when the solution by Quere and the Lucas-
Washburn equation provide the same rise rate [5],

- b2, the time when the solution by Quere and the Lucas-
Washburn equation provide the same height [10],

- t3, the transition time between visco-inertial and the purely
viscous stage.

As stated the purely inertial flow period shows a rise with constant
velocity. Both solutions by Quere Eq. (3) and Bosanquet Eq. (7)
show this linear behavior in the beginning. At some point—in con-
trast to the solution by Quere—Eq. (7) deviates to lower values as
viscous effects become more important. We find that point where
viscous effects have to be taken into account by following ap-
proach: To obtain the time when both solutions have reached a
certain level of disagreement (e.g. 3% deviation) we write
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and using Eq. (7) provides
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Stange et al. [5] find the time when the rise rates of the equation
by Quere and Lucas-Washburn are equal (hquere = hrucas—washburn)
to be

1 R%p

fhs=—

=—. 17
2a  16p (17

Quere [10] calculates the time when the heights of his solution and
the Lucas-Washburn equation intersect (hquere = hLucas—Washburn,
see Fig. 2). By equating the heights he obtains
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and Eq. (3) or (8) give
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Quere denotes our tp o as t*. We will however use t; o to pre-
vent confusion with the dimensionless time introduced in the next
chapter. t; 5 and t; o are feasible, “general” indicators for the tran-
sition from the inertial to the viscous time period. However, they
do not provide information on when the influence of inertia is neg-
ligible and the Lucas-Washburn equation is sufficient to describe
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Fig. 2. Comparison of analytic solutions with experimental results by Siebold et al.
(pentane in a glass tube with 191 pm radius). A constant contact angle of 73° (as
found by Siebold et al.) has been used. Note: This angle differs from the static con-
tact angle.

the capillary rise. To obtain such a measure we take the equa-
tion given by Bosanquet [4] (visco-inertial stage) and the Lucas-
Washburn solution (purely viscous). One can show that for t — oo
both solutions converge into each other. One may find the time of
3% deviation in the predicted heights by writing
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By rearranging we find
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Using Eq. (7) gives
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4. Discussion in dimensionless form

We use the dimensionless scaling provided by Ichikawa and
Satoda [9]. They obtain (here shown in rearranged form and writ-
ten with the parameters a and b, see Egs. (5) and (6))
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In Fig. 3 the different equations introduced in the previous chap-
ters are plotted in logarithmic scale. The points of transition be-
tween the time periods are shown. Using the presented scalings
we can give the points of transition (Egs. (15)-(22)) in dimension-
less form, see Table 1.

*

(24)

5. Limitations of the model

For all discussed calculations the influence of the dynamic con-
tact angle is neglected. This assumption may be especially critical
for the initial moments of capillary rise as the flow velocities reach
their maximum value there [12-14]. Empirical equations are avail-
able for the dynamic contact angle 6y; Jiang et al. [17] (based on
data by Hoffman [18]) give
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Fig. 3. Dimensionless diagram showing an overview of the initial time stages of
capillary rise.

Table 1

Dimensionless values of the transition points

g m s Ba hs, 5 h3
0.1856 0.1273 0.5000 2.0000 1.4142 16.921 3.9901

Bracke et al. [19] find
Cc0Sfg — cos b
cosfs +1
Hereby the capillary number can be rearranged to be
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if one uses the maximum theoretical velocity (differentiation of
Eq. (3), 6s as conservative assumption). The obtained capillary
number now allows to calculate the dynamic contact angle using
Eq. (25) or Eq. (26). However, one should keep in mind that even
for cases with high initial velocities these slow down fairly fast and
assuming a constant contact angle becomes feasible for later time
stages again. Another restriction is that the model only applies for
cases where gravity can be neglected. Using large, vertical capillar-
ies one may find that the visco-inertial time stage can be directly
followed by a stage where viscous, inertial and gravitational forces
are dominant. For this special case there is no purely viscous stage
and decaying oscillations around the equilibrium height can be ob-
served. Thus, to have a clear separation of inertia and gravity we
can state the following: hs, the height below which inertia has
to be taken into account, has to be smaller that the height from
which on gravity has to be considered. Using the criterion given in
[16] we can write

= —2Ca%5, (26)

h3 < 0.1heq. (28)
Rearranging gives
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It is interesting to note that the left hand side of Eq. (29) is di-
mensionless and equal to the Bond number Bo multiplied with the
Galileo number Ga defined by
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6. Conclusion

In this note we discuss the different time stages during the
early stages of capillary rise. It is concluded that the purely inertial
and the purely viscous flow period are separated by a visco-inertial
stage where both effects have to be considered. By means of math-
ematical rearrangement we derive the times and heights where
the transition between the time periods occur. This provides a tool
which allows to calculate which terms of the momentum balance
have to be taken into account to obtain a solution of sufficient pre-
cision. Up to now the time where the solution for the inertial and
the viscous rise provided the same height has been used as a mea-
sure. However, we can now state that it takes about 8 times that
time for the flow to become independent of inertial effects.
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Appendix A

The scaling by Ichikawa and Satoda [9], discussed in Section 4
of this paper, can be used to transform some of the analytic solu-
tions into a dimensionless form. The solution by Quere [10] then
reads

h* = (A1)

g‘|-r
N *

The equation by Bosanquet [4] changes to

h*=,/t* — (1 —e=t"), (A2)
and the Lucas-Washburn equation [1,2] reads

h* = V= (A3)
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