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Computer simulations of colloidal suspensions are discussed. The simulations are based on the Langevin
equations, pairwise interaction between colloidal particles and take into account Brownian, hydrodynamic
and colloidal forces. Comparison of two models, one taking into account inertial term in Langevin
equation and another based on diffusional approximation proposed in [D.L. Ermak, J.A. McCammon, J.
Chem. Phys. 69 (1978) 1352], has shown that both models enable the prediction of the correct values of
the diffusion coefficient and residence time of particle in a doublet and are therefore suitable to study the
dynamics of formation and breakage of clusters in colloidal suspensions. It is shown that the appropriate
selection of the time step and taking into account inertia of particles provides also the correct value of
the average kinetic energy of each particle during the simulations, what allows to use the model based on
full Langevin equations as a reference model to verify the validity of the numerical scheme for simulation
using diffusion approximation.
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1. Introduction

Stability is the most important characteristic of colloidal sus-
pensions. It is determined by the balance of forces acting between
the colloidal particles in the suspension, that is, by the poten-
tial of colloidal interaction between particles. DLVO theory and
recent modifications of that theory (including Derjaguin’s struc-
tural forces) are used to describe colloidal interactions between
particles [1,2]. Derjaguin’s approximation [1] is usually used to
calculate forces between colloidal particles. This approximation is
applicable if the radius of action of colloidal forces is much smaller
than the particle radius, a. The latter condition is satisfied in the
case of a ~ 1 pm, which is under consideration here. According
to the modified DLVO theory [1,2] colloidal forces are determined
by three major components: (i) dispersion forces, (ii) electrostatic
forces and (iii) “Derjaguin’s” structural forces, which are due to
the water dipoles orientation. Here we use “structural forces” just
in this sense. In the case of identical particles dispersion forces
always result in attraction and electrostatic forces in repulsion be-
tween particles. The influence of structural forces is still under
debate. The presence of an electrical charge at the particles sur-
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faces and electrical double layer, as well as structural repulsion,
stabilises the suspension due to appearance of the potential barrier
preventing their coagulation in the primary potential well [1,2].

Stable suspensions are usually considered as built up by uni-
formly distributed single particles, whereas clustering is regarded
as an attribute of thermodynamically and kinetically unstable sus-
pensions undergoing irreversible coagulation. However, compre-
hensive experimental studies performed during recent years dis-
covered the existence of stable clusters in colloidal suspensions
stabilised by electrostatic and/or structural repulsion [3-13].

The most detailed study of the formation of stable clusters of
colloidal particles was undertaken for suspensions of polymethyl-
methacrilate monodisperse (polydispersity <5%) spherical particles
with mean radius in the range 212-777 nm in a mixture of cis-
decalin and cycloheptyl bromide [3-9]. The matching densities al-
lowed neglecting the influence of the gravity. The particles were
positively charged in this dispersion medium. Non-adsorbing poly-
mer polystyrene added to the dispersion medium provided the
short range depletion attraction in the system with strength con-
trolled by polymer concentration and molecular mass.

The presence of clusters in colloidal suspensions at equilibrium
with single particles was observed at relatively low polymer con-
centrations and solid volume fractions [6]. An increase of both
polymer concentrations and solid volume fractions resulted in the
increase of the cluster size and finally in formation of gel-like
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structures [4-6]. Using the confocal microscopy allowed the clear
visualisation of clustering [3-6]. According to [3] at polymer con-
centration 3 g/l and molecular mass 212.4 kDa, the equilibrium
cluster aggregation number increased from about 3 at the solid
volume fraction of ¢ = 0.025 to more than 20 at the solid volume
fraction of ¢ =0.15.

The stable cluster formation was also observed in aqueous sus-
pensions of inorganic particles: of iron oxyhydroxide [10], sodium
cloisite clay [11], and crystalline quartz [12] as well as in aqueous
suspensions of influenza viruses [13]. Note, that clusters observed
in [3-13] are very stable structures, as they did not show any no-
ticeable growth during long periods of observation (from hundreds
of hours to months).

The basic concept in explanation of stable cluster formation is
the balance of competing forces between short range attraction,
usually dispersion, van der Waals or depletion interactions, and
long range repulsion, usually screened electrostatic forces.

One of the approaches adopted in the literature is the employ-
ment of capillarity approximation, where the clusters are treated
as uniform droplets [14]. The driving force for the cluster growth
in this approach is the decrease of the surface energy of the sys-
tem whereas the stabilising factor is the Coulomb repulsion.

Another approach is based on the calculation of ground state
energy depending on the number of particles in the cluster [15,16].
The pair potential of the interparticle interaction was approxi-
mated as the sum of Lennard-Jones (attraction) and Yukava (re-
pulsion) potentials. It was found that there is a minimum on the
curve representing dependence of ground-state energy per parti-
cle on the number of particles in the cluster. That means that the
clusters containing a certain number of particles (about 20 for the
parameter set chosen in [16]) are thermodynamically stable in this
case.

At the same time the concept of importance of long range elec-
trostatic repulsion for the cluster formation conflicts with some
experimental results, as, for example, in [9,12] the clusters were
observed at salt concentrations high enough to eliminate any long
range electrostatic repulsion. In [12] the cluster formation was
explained by competition between van der Waals attraction and
structural repulsion, which are less sensitive to the salt concentra-
tion in comparison to electrostatic forces. It can be also assumed
that not only the presence of the repulsion barrier enables the for-
mation of stable clusters, but also the finite depth of the secondary
potential well, comparable with the thermal energy kT. In this case
the cluster equilibrium size distribution is the result of competition
between aggregation due to colloidal attraction forces and frag-
mentation caused, in the absence of external forces, by Brownian
motion of colloidal particles.

Computer simulations are widely used in theoretical treatment
of the reversible aggregation of colloidal suspensions [17-19]. In
[17] Monte Carlo simulations were carried out of an ensemble of
diffusing particles. It was assumed that the diffusion coefficient is
inversely proportional to the cluster radius, and the bonds between
particles in the cluster can be broken with a probability depend-
ing on the bond energy and number of bonds per particle. Under
those assumptions Monte Carlo simulation [17] enabled the pre-
diction of the dynamics of cluster growth and their structure at
different values of bond energy and volume fraction of particles in
the suspension.

Another way to simulate the aggregation kinetics is the numer-
ical solution of the population balance equations with appropriate
aggregation and fragmentation kernels [18]. The mean cluster size
was found to be proportional to the inverse of the bond break up
probability. To improve the accuracy of the model parameters in
[19] it was complemented by Brownian dynamic simulation of the
behaviour of the ensemble of soft-core particles using the Langevin
equations [19]. Simulations were performed for the volume frac-

tion of particles ¢ = 0.001 and different strength of attraction in
approximation of Stokes hydrodynamic resistance to the particles
motion.

Results obtained in [19] showed that the direct computer sim-
ulation of the evolution of the particle ensemble is a powerful
tool for the comprehensive study of clustering processes. It re-
veals detailed information on the mechanism of cluster formation
and main parameters controlling this process. However, the use
of the Stokes equation for the hydrodynamic resistance is too ap-
proximate when clustering is considered. Indeed, to form a cluster
particles must be drawn close together (within nanometre range),
where the colloidal forces begin to act. It is well known, that the
hydrodynamic interaction between particles becomes significant
even at separations of order of their radius and increases rapidly at
smaller separations [20]. The hydrodynamic resistance in this case
becomes significantly higher than that given by Stokes equation.
Moreover, it is no longer a scalar constant but a tensor with com-
ponents depending on the particle positions and velocities [21].

The aim of the present study is the direct computer simulation
of the reversible coagulation of colloidal particles. Therefore an im-
proved mathematical model for Brownian dynamic simulation of
the reversible aggregation in the colloidal suspension is proposed
below with detailed discussion on the validity of approximations
and parameters used. The most challenging problem in the mod-
elling of the reversible aggregation is, in our opinion, the correct
simulation of residence time of a particle in the potential well.
This can be checked by monitoring the mean residence time. As
any mathematical model of colloid behaviour inevitably uses many
approximations, one should be sure, that the mean residence time
is reasonably accurately modelled and there are no artificial ef-
fects in the simulation. It is difficult to check the mean residence
time itself during the simulation. Hence we have to select suitable
parameters, which can be easily estimated and are related to the
mean residence time. The escape of the particle from the poten-
tial well is determined by the relation between the depth of the
potential well and the instantaneous value of the kinetic energy of
the particle. Therefore, the mean kinetic energy of the particles is
used below as the system control parameter. The constant value of
the mean kinetic energy of the particles indicates that no artificial
energy is created or dissipated in the system and therefore one can
expect the correct description of the particle behaviour in the po-
tential well. To correctly model the system kinetic energy the full
Langevin equations, including the inertial terms are used below.

2. Mathematical statement of the model

The colloidal suspension under consideration below is built up
by N monodisperse spherical particles moving in two dimensions x
and y. To describe the particles motion the Brownian dynamic ap-
proach is used, based on the well-known Langevin equations [22]:

v 2N 2N 2N
mT;:_ZS‘ijVj'f’Zaijfj‘f‘ZFijy (1)
j=1 j=1 j=1

where i, j=1,...,2N, m= 3ma?(pp + 0.5p) is the mass of the
particle (including the added mass), a is the radius of the particle,
pp is the density of the particle material, p; is the density of the
suspending liquid, V is the particle velocity, gj; is the element of
the hydrodynamic resistance matrix, & f represents the Brownian
forces, with f; being a random quantity, normally distributed, with

(fiy=0, (2)
(fi fi(t))=28;8( —t). (3)

F represents the colloidal forces, see the definition of the matrix
of Brownian coefficients, &, below.
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The matrix of hydrodynamic resistance coefficients, &, and
matrix of Brownian coefficients, &, are related according to the
fluctuation-dissipation theorem [23]:

1
Sii =7 Zanau, (4)
]

where k is the Boltzmann constant, T is the absolute temperature.
It is possible to show that the fluctuation-dissipation relation (4)
is independent of the colloidal forces F in Egs. (1)

For a single spherical particle in an unbounded liquid (or for
particles, at the distances much larger than their size) ¢ is a scalar
determined by the Stokes law:

¢ =6mpua, (5)

where u is the dynamic viscosity of the suspending liquid.

When particles approach each other the flow field caused by
their motion acts upon other particles and ¢ becomes a symmetric
matrix. It is assumed below that all forces, including hydrodynamic
forces, are pairwise additive, and for any pair of particles the hy-
drodynamic interaction depends only on distance between them
and their relative velocities:

Fy1 = —gx(V1 = V3), (6)
Frz = =gy (Vo = Va), (7)

where Fyy, Fyp are the hydrodynamic force components acting on
the particle 1 in the particle pair local coordinate, where axis x
is parallel to the line connecting the particle centres, y is in the
tangential direction. Note, V1 and V5 are x and y velocity compo-
nents of particle 1, V3 and V4 are x and y velocity components of
particle 2. It is assumed that the effects of particle rotation can be
neglected.

The equations proposed by Cox [24] are used to calculate the
coefficients ¢y and ¢y at the small separation between the parti-
cles surfaces h < 0.1a:

2

3
gxzzn,u%, at h <0.1a, (8)
gyznualn(%), at h <0.1a. (9)

Calculation of a logarithmic function is time consuming in numeri-
cal simulations, therefore the following approximation of Eq. (9) is
used:

2
¢ = —:ma(1.8043 + 0.05% —3x 10—61‘1—2), ath<0.1a. (9a)
It is assumed that the hydrodynamic interaction becomes negli-
gible at h > 2.5a. The interaction forces for 0.1a < h < 2.5a were
fitted to enable a smooth transition between forces at h < 0.1a
and 0 at h = 2.5a.

Taking into account Egs. (5)-(7) the matrix of hydrodynamic
resistance for two interacting particles can be written as follows:

S+ 6x 0 —Gx 0
A 0 ¢+gy O =Sy
= : 10
s —Gx 0 S +Sx 0 (10)
0 —Gy 0 S+gy

i.e. it contains the only 4 different elements gy, ¢y, ¢ + ¢x and
¢ + 6y. The matrix of Brownian coefficients has the same form as
the matrix of hydrodynamic coefficients (see Appendix A):

o 0 a3 O
A 0 o2 0 024
a= oz 0 ay 0 | (11)

0 oy 0 axp

The corresponding coefficients of the latter matrix are found by
solving the set of Egs. (4) for elements of matrices (10) and (11) as
shown in Appendix A:

i = 3 VRT(VE Vs + 25
ars = S VRT(JE — /s 126
an = SVRT (/S + 5+ 25y

= JVRT (VS — 5 725y (12

Following [26,27], the random functions f; obeying Egs. (2), (3)
were modelled below as

fi:\/%RND» (13)

where dt is the time step to be chosen for computer simulations,
Rnp is a random number with a normal distribution (the mean
value is equal to zero and standard deviation is equal to 1).
According to the Derjaguin approximation [1,25] the colloidal
force acting along the centre line between particles is equal to

),
)

)

F(h):na/[‘[(h)dh, (14)
h

where I7(h) is the disjoining pressure between corresponding flat
interfaces. Equation (14) is valid if h, < a, where h; is the range
of surface forces action. The latter inequality is valid for particles
a~ 1 pm, which are under consideration below.

To simplify the calculations at this stage we model the dis-
joining pressure I7(h) in the simplest possible way (see Fig. 1a),
which still keeps the main features of the real disjoining pressure:
presence of both repulsion and attraction as well as the presence
of a potential well (see below). The distances between particles
corresponding to the zeros of disjoining pressure, h; and hy, dis-
tance corresponding to the minimum of disjoining pressure, hg,
and depth of the potential well, Uy, are used as parameters to
describe the disjoining pressure curve:

2Umin h1 —h

1 = , O0<h<ho, 15
maR hy —hg =h=To (153)
2Umin ho —h

I1 = h h<h 15b
2GR Ty —ho’ o<h<hy, (15b)

where

s (ha —ho)? — (hy — ho)?

R= hy —h1)(S+ho—h

3ty — o) 3 + (h2 —h1)(S +ho — h1)

and
S =+/(ho — hy)(hz — hy).

According to Derjaguin’s approximation (14) the interparticle
force, F (Fig. 1b), is as follows:

Umin (hl_h)2
F = ———+hy—h O<h<h 16
R[h1—h0+2 1|, 0<h<ho, (16a)
Umin (hZ_h)Z
F = - ho<h<h 16b
R hh_ho o<h<hy, (16b)
and the interaction energy U(h) = fhoo F(h)dh (Fig. 1c):
Umin (hl_h)3
= ———— +(hy —hy)(thg—h
R [3(h1 “ho) + (ha — h1)(ho — h)
hy — hg)? + (hy — hg)?
_ (h1—ho) -;-(2 0) ] 0<h<ho. (17a)
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Fig. 1. Colloidal interaction between particles used in the computer simulations: (a) disjoining pressure, (b) force of interaction, (c) interaction energy. The selected values of
parameters are: hy = 1.6 x 107¢ cm, hg =2.0 x 107 cm, hy =3.0 x 107® cm, Upyin = 10 kT.

_ Unin (ha—h)?
"~ R 3(hy—ho)’

ho <h < hy. (17b)

The curves presented in Fig. 1 are drawn for the following typ-
ical values hy = 1.6 x 107% cm, hy = 3.0 x 1076 cm, hg = 2.0 x
1076 c¢m, Upin = 10 kT. Such an approximation for colloidal forces
is a simplification, hence we plan to use more realistic data for in-
terparticle interaction, obtained by direct atomic force microscopy
measurements of colloidal forces between particles in the future.
Note, the simplified form of the disjoining pressure adopted above
allows us to draw a number of important qualitative conclusions
(see below).

Equations (1) were solved by the finite difference Euler’s
method using the approximation of pairwise additivity of forces
and taking into account the interaction of a particle with nearest
neighbours (with centre-to-centre distance <4 - (a + hy)). Periodic
boundary conditions were imposed on the whole system to sim-
ulate the behaviour of an unbounded colloidal suspension. A ran-
dom initial distribution of particles over the 2-D lattice was used.

The initial particles velocities, V;, were generated according to the
Maxwell distribution.

3. Results and discussion
3.1. Selection of the time step

According to [26] the Langevin equations (1) are applicable only
if the correlation time for the Brownian force is much smaller, than
the correlation time for momentum, tp, to use correctly the model
described in the previous section. If Brownian force is modelled
as a stepwise function obeying Eq. (13), the latter condition be-
comes [26]

dt <ty =" (18)
S
In the case of a free moving particle in water (¢ = 67 a),

tp =3.3x 1077 s and dt = 1078 s seems to be a reasonable choice.
Note, lower value of the time step should be used in the case of
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Fig. 2. Normalised mean kinetic energy of a single free moving particle vs the time
step used in computer simulations: (1) liquid viscosity ;=1 cP; (2) liquid viscosity
=10 cP; (3) liquid viscosity ;« =1 cP. The inertia term in Eq. (1) is neglected.

clustering due to higher hydrodynamic interactions between par-
ticles at small separations. If the liquid has a higher viscosity the
time step should also be reduced.

To investigate the influence of the choice of the time step, the
mean value (over time) of the kinetic energy of a free moving par-
ticle was calculated. The calculated kinetic energy normalised by
the thermal energy, kT, is presented in Fig. 2 (curves 1 and 2)
as a function of the selected time step. These curves are con-
sistent with the above discussion. At the viscosity of dispersion
medium of 1 cP (pure water or aqueous solutions) the normalised
kinetic energy of the free moving particle approaches unity (theo-
retically correct) if the time step dt < 10~ s. At a tenfold higher
viscosity of the dispersion medium the time step should be de-
creased to dt < 1078 s, to keep the normalised kinetic energy of
particle close to 1. During clustering the distance between parti-
cles becomes very small and therefore, the hydrodynamic resis-
tance increases considerably (about 10 times higher than predicted
by Stokes law). Hence, the time step dt = 1072 s chosen in our
simulations below, as a compromise between accuracy and run-
time. The normalised mean value of the kinetic energy of each
particle was monitored in our simulations, as a control para-
meter.

3.2. Influence of inertia

Frequently the diffusion approximation is used for the com-
puter simulation of the motion of the Brownian particles. The
advantage of this approximation is the possibility (i) of using
a time step which is much larger than the momentum relax-
ation time and (ii) neglecting the inertial term in the Langevin
equations (1) [21,23]. These simplify the calculations considerably
providing nevertheless correct enough simulation results. How-
ever, Fig. 2 (curve 3) shows that neglecting the inertial term
results in a strong dependency of the simulated value of the
mean particle energy on the time step chosen. At dt > 1075 s
the simulated value of the particles kinetic energy becomes neg-
ligible compared to kT. That means, that in diffusion approxi-
mation the particles velocities calculated using Egs. (1) should
be considered as formal parameters only (velocities of a diffu-
sional drift), which have no relation to the particles kinetic ener-
gies. Therefore, the latter approximation does not allow the par-
ticles kinetic energy to be used as the system control parame-
ter.
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Fig. 3. Normalised diffusion coefficient of a single particle on the number of ensem-
bles used for averaging.

3.3. Diffusion coefficient

For further validation of the proposed mathematical model, the
diffusion coefficient of a single particle freely moving in water was
calculated according to the following equation [22]:

((x—x0)* + (¥ — ¥0)*)

4t
where xo and yg are the initial coordinates of the particle, x and
y its coordinates at time t > tp, averaging is performed over the
ensemble of particles. Below D is normalised by the theoretical
value

D= , (19)

kT
Do = .
67 na

(20)

The results of computer simulations of diffusion coefficient are
presented in Fig. 3 as a function of the number of ensembles
over which the averaging was performed. Fig. 3 shows that the
computer simulations predict the correct value of the diffusion
coefficient. Note, that computer simulations performed using the
diffusion approximation neglecting the inertial term also predict
the correct value of the diffusion coefficient.

3.4. Residence time in the potential well

The mathematical model described above correctly models the
particles kinetic energy, hence, it is expected that this model
should also correctly describe particle motion under the action of
colloidal forces without the introduction of extra parameters, such
as a probability of bond breakage [17].

Let us consider pair of interacting particle. The latter means
that there is only one particle in the potential well. Then the prob-
ability of escape of that particle from the potential well can be
calculated using the Smoluchowski equation for the flux of parti-
cles in the field of force F(x) = —dU /dx [28]:

. 1 dw 1 dU kT dw
j=—Fw-D—=———w— — —, (21)

S dx
where j is the particles steady state flux, s™*, w(x) is the particles
probability distribution function, cm~!, D is the particles diffusion
coefficient, ¢17 is determined by Eqgs. (5), (8) and (10), and U (x) is
given by Eq. (17).

Equation (21) should be solved with the following boundary
conditions:

w(hy) =0 (22)

1
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and
hy

/w(x)dx: 1.

0

(23)

The first boundary condition (22) means that all particles disap-
pear from the potential well after reaching the end of the zone
where the surface forces act. The second boundary condition (23)
means that precisely one particle is located in the zone of the sur-
face forces action. Direct solution of Eq. (21) with two boundary
conditions (22)-(23) and taking into account that D = kT /¢y re-
sults in the following expression for the mean particle residence
time in the potential well:

o= 1_ (fc?z exp(—%)dxthz su ) exp(Ulg/))dx/)
i kT

. (24)

The mean residence times in the potential well calculated ac-
cording to Eq. (24) are presented in Table 1 (the second row)
and compared with results of the computer simulations accord-
ing to the model based on Eq. (1) taking the inertia into account
(the third row) and according to the diffusional approximation de-
scribed by Eq. (15) in Ref. [23] neglecting the inertial term in
Langevin equations (the fourth row). The simulated mean resi-
dence times were obtained in the following way. Two particles
were placed initially at the distance corresponding to the mini-
mum of the potential well and simulation of their relative motion
was performed until the instant, when the distance between par-
ticles exceeded the range of colloidal interaction, hy. The mean
residence time was calculated from 20 simulations for each poten-
tial well depth for the model equation (1) and from 40 simulations
for the model of Ref. [23].

Table 1 shows that the results of the computer simulation per-
formed according to Eq. (1) are very close to those obtained by
diffusion approximation and the both simulations results are in
good agreement with those calculated using Eq. (24). Equation (1)
slightly underestimates the residence time because at the selected

x10™ U=0, t=1s
4,
3,
2_
it
e
o of
=
Kl
-2 .
.3-
4 i L . L
‘4 3 2 KT 0 1 2 3 4
X, cm x10™
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Table 1

The potential well depth, kT 1 3 5 7
The mean residence time calculated 0.044 0.12 0.50 2.7
according to Eq. (24), s

The mean residence time obtained by 0.024 0.11 0.46 24
direct computer simulations according

to Eq. (1), s

The mean residence time obtained by 0.048 0.11 0.55 2.8

direct computer simulations according
to Eq. (15) in Ref. [23], s?

2 Simulations were performed with the time step dt =107 s.

time step the mean kinetic energy of particles was overestimated
by about 3%. Such an artificial increase of the kinetic energy is
more significant for smaller potential well depth as can be no-
ticed from Table 1: there is more significant difference between
simulated and analytical results at the potential well depth equal
to 1 kT. The results presented in Table 1 confirm that the pre-
sented mathematical model, as well as diffusional model proposed
in Ref. [23] enable the simulation of clustering behaviour based
solely on first principles without any empirical fit. The drawback
of the presented model in comparison to diffusion approximation
is much smaller time step. However, the presented model allows
monitoring the energy of each particle during the simulation pro-
cess and therefore it can be used as a reference model to verify
the validity of the numerical scheme providing further simulations
employing diffusion approximation.

3.5. Behaviour of clusters

The behaviour of a small cluster composed of 4 colloidal par-
ticles, simulated using the above model is presented in Fig. 4.
Initially each particle was located in the potential wells of its
two nearest neighbours. The cluster breaks very quickly in the
absence of colloidal interactions. For 4 kT potential well depth
the cluster also disaggregates relatively quickly, but one dou-
blet remains unbroken even after 4 s. At a larger potential well

" U=0, t=4s

y, cm

-2

-3+
4 ‘ ‘ . ‘ . ‘ .
5 -4 3 2 -1 0 1 2 3
X, cm x10"

Fig. 4. Time evolution of ensemble of 4 colloidal particles depending on the depth of the potential well of colloidal forces. Initially particles are located at separations
corresponding to the minimum of the potential well: (a) without colloidal interaction, (b) Unmin =4 kT, (¢) Umin = 10 kT. Radius of the particles: a =10~% cm.



N. Kovalchuk et al. / Journal of Colloid and Interface Science 325 (2008) 377-385

- U=4 kT, t=1s
4_
Sf
2k
1;
£
S of
>
.1H
.2._
.3._
-4 L L 1 1 1 L 1 1
-4 3 2 1 0 1 2 3 4
X, cm x10*
i U=10 kT, t=1's
470
3_
2_
1_
£
S of
=
At
_2.
.3_
i -3 2 - 0 1 2 3 4
X, cm x10*

383

4 U=4 kT, t=4 s

y, cm
e

I 1 L 1 L L 1

-2 -1 0 1 2 3
X, cm x10*

4 U=10KT, t=4 s

y, cm
=d

-4 L 1 L L 1 £
-4

x10"

Fig. 4. (continued)

depth, 10 kT, the cluster remains stable, with particles mov-
ing tangentially inside the cluster, which changes slowly its
shape.

A computer simulation for a larger system, composed of 170
particles, was also performed. Initially particles were randomly
distributed over a 2D lattice, but far enough from each other to en-
sure no particle interactions. The particle volume fraction selected
was about 30% as shown in Fig. 5a. The changes in the system con-
figuration over 20 s were then simulated for two cases: (i) in the
absence of colloidal interactions. In this case the particles become
redistributed more uniformly over the available 2D space (Fig. 5b),
(ii) at strong colloidal interactions (potential well depth of 20 kT).

In this case the particles combined into clusters (Fig. 5c), i.e. in
this case the computer simulation allows observation of the onset
of the coagulation process.

4. Conclusions

The self-consistent mathematical model of the behaviour of col-
loidal suspensions based on the Langevin equations and pairwise
interaction between colloidal particles can provide quantitative in-
formation on clustering in colloidal suspensions. Calculations based
on this model yield valid energies, particle diffusion coefficients
and residence times of colloidal particles inside the potential well.
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Fig. 5. Structure formation in colloidal suspension (170 particles): (a) initial random particle distribution, (b) structure after 20 s without colloidal interaction, (c) structure
after 20 s with colloidal interaction potential well depth of 20 kT. Radius of the particles: a =10~% cm.

That means, that in the framework of this model, colloidal sus-
pensions can be fully described using the Langevin equations only
and theoretical hydrodynamic and colloidal interactions. The pre-
sented model allows monitoring the energy of each particle during
the simulation process and therefore it can be used as a reference
model to verify the validity of the numerical scheme for simulation
using diffusion approximation.

The computer simulations performed using the proposed model
enabled the monitoring of formation and breakage of clusters in a
suspension caused by competing colloidal interactions and ther-
mal particle motion. In the case of a very deep potential well the

computer simulation showed an onset of the coagulation of the
suspension as expected.
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Appendix A

Let us calculate the square of the matrix (11):
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o1 0 a3 O 21 0 a3 O
a2 = 0 o 0 0 ax 0 o
a3 0 app O a3 0 app O
0 o 0 0 oy 0 ax
Oé% +O{%3 0 20110013 0
0 O[%2 + Ol%4 0 200020024
= s (A1)
211013 0 aq +ag, 0
0 200020004 0 Ol%z + 0154

The latter shows that &> and the resistance matrix ¢ (10) have
the identical structure. Substituting expressions (A.1) and (10) in
Eq. (4) one obtains the following set of equations for unknown
values ;j:

o +afy =kT(S + ).
2011013 = —kT Gy,
a2, + a2, =kT(s + gy),
200020004 = —kTgy.

(A2)

Adding and subtracting Eqs. (1) and (2) as well as Egs. (3) and (4)
in the system of equations (A.2) we conclude:

(an +a3)®> =kTg,

(o — e13)> = KT (g +26y). (A3)
(@22 + 024)* =kT g, '
(@22 — 0024)*> =kT (5 + 25y).

Selecting the positive roots for o171 + 13, &2 + @24 and taking into
account that |oq1| > |13], 22| > |o24| we arrive to Eq. (12).

Appendix B. List of symbols

a the radius of the particle

dt the time step chosen for computer simulations

D the diffusion coefficient

Do the diffusion coefficient of freely moving single particle

fi a random quantity representing the Brownian force

F the colloidal force between two particles

Fy the force of the hydrodynamic interaction between two
particles

h the distance between the particles surfaces

ho the distances between the surfaces of the two particles

where disjoining pressure has the minimum

hy, hp  the distances between the surfaces of the two particles
where disjoining pressure is equal to zero

j the steady state particles flux from the potential well

k the Boltzmann constant

m the mass of the particle

RnD a random number from normal distribution with mean
equal to zero and standard deviation equal to 1

R, S parameters in equations describing colloidal interaction
between two particles

t time

tp the correlation time for momentum

tr the mean time of a particle residence in the potential
well

T the absolute temperature

u the pair potential of the colloidal interaction between
two particles

U min the minimum of the pair potential

Vv the particle velocity

w the particles probability distribution function inside the
potential well

X,y the coordinates

X0, Yo the initial coordinates of the particle (at t =0)

Greek symbols

a the matrix of the Brownian coefficients

ojj the element of the Brownian coefficients matrix

% the dynamic viscosity of the suspending liquid

I disjoining pressure between two particles

01 the density of the suspending liquid

Op the density of the particle material

¢ the matrix of the hydrodynamic resistance

I the hydrodynamic resistance for the single particle (ac-

cording to the Stokes law)

Cx the hydrodynamic resistance due to motion of two parti-
cles along the centre-to-centre line

Sy the hydrodynamic resistance due to motion of two parti-
cles transversely to the centre-to-centre line

Sij the element of the hydrodynamic resistance matrix
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