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The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding
along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting
between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was
employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding
along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1�.
Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our exper-
imental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a
theory developed by two of us [2] which considers surface forces to play a significant role. Our experi-
mental results demonstrate that the terminal velocity of the bubble not only varies with the angle of
inclination and the bubble size but also with the salt concentration, particularly at low inclination angles
of �1–5�, indicating that double-layer forces between the bubble and the wall influence the sliding
behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoin-
ing pressure.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction a gently inclined plane. The theory determines the thickness ho, of
Many industrial processes such as mineral flotation, water
treatment, and emulsification, are carried out under conditions of
multiphase flow, in which bubbles play a key role in determining
the process efficiency. Hence, the motion of bubbles in different
configurations has been studied extensively in order to understand
the kinetics of bubbles interacting with solid surfaces. A large
number of studies has been conducted on vertically rising bubbles
in unbounded or confined geometries [3–22] which have provided
insights on air–liquid interfaces of free rising bubbles and bubbles
influenced by solid surfaces. Since a lot of processes in reality in-
volve not only vertical movement of bubbles but also bubble mo-
tion along angled surfaces in liquid media, studies of bubbles
moving parallel to inclined surfaces [23–41] are also of significant
interest in different fields such as engineering, medicine and vari-
ous industries including petroleum and food.

To understand the kinetics of bubbles sliding along solid sur-
faces, it is essential to identify the relevant forces acting on the
bubble. The only pertinent theory we found in the literature is that
of Hodges et al. [1] which considers gravitational and hydrody-
namic forces in predicting the behavior of drops sedimenting down
ll rights reserved.

nishi).
the thin liquid film separating the drop (or bubble) and the solid
wall, from a normal force balance of buoyancy against hydrody-
namic pressure forces. Hodges et al. compared the velocities pre-
dicted by their theory with an experimental study on air bubbles
sliding along inclined planes in viscous liquid (silicone oil) per-
formed by Aussillous and Quéré [31]. The velocities predicted by
the theory of Hodges et al. were greater than the experimental
measurements of Aussillous and Quéré, indicating that the theory
has not captured all of the physics in this system.

Another type of force that could be affecting the sliding velocity,
albeit indirectly, is a surface force acting between the bubble and
the wall, such as a van der Waals force or an electrical double-layer
repulsion. The effect of such forces, expressed as an additional ‘‘dis-
joining’’ pressure in the thin layer of liquid between the bubble and
wall, would be to deform the bubble, thereby changing the hydro-
dynamic forces acting on it. Of course hydrodynamic forces can
also deform the bubble, as discussed by Hodges et al., making a
theory that incorporates both disjoining and hydrodynamic pres-
sures quite complex.

A bare glass surface (without modification/capping by chemical
reagents) in water (pH 5–7) is negatively charged, since the iso-
electric point of glass is observed to be around pH 2 [42,43]. The
surface potential of an air–water interface is generally negative
[44–51]. Since glass surfaces and air–water interfaces are both
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Fig. 1. Sliding bubble apparatus employed to generate bubbles sliding at different
speeds and to measure their sizes and terminal velocities: (a) schematic illustration
of the experiment; (b) an illustration showing the measurable parameters: angle of
inclination, /, bubble terminal velocity UT, and bubble radius, A.
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negatively charged in water, one could expect some influence from
electrical double layer interaction between them. Thus we think
that disjoining pressure could play a role in the dynamics of a bub-
ble sliding along inclined glass surfaces in aqueous liquid. To inves-
tigate this, we initiated a two-pronged attack based on
experiments and theoretical development.

The theory assumes, as its starting point, that the bubble is
effectively flattened by its DLVO interaction with the wall, so that
the thickness ho of a uniform thin film separating the bubble
(approximated by a truncated sphere) is determined by the surface
charges on the wall and the bubble, and the electrolyte concentra-
tion in the aqueous phase. The terminal velocity UT of a bubble
sliding along an inclined surface is found to depend on the radius
A of the bubble, the angle of inclination / of the surface, and ho [2].

In parallel with the theoretical development, we also explored
experimentally whether disjoining pressure has an effect on the
terminal velocity of the sliding bubble in aqueous solutions. To
achieve this we employed a simple sliding bubble apparatus to
measure the terminal velocity of a bubble sliding under the force
of gravity along an inclined surface in an aqueous medium, with
various concentrations of electrolyte because this is well known
to influence double-layer forces.

The body of literature on bubbles sliding along inclined surfaces
in liquid mostly reports on effects of bubble size [27,31,33,37,40],
bubble shape [25], size of liquid channel [24–26,30], angle of incli-
nation [23–28,30,31,33,36–38,41], surfactants [33,34,40], gas type
[40], liquid temperature [26,40,52], and other liquid properties
[23,24,26,28,30,31,52] such as viscosity, density, and surface ten-
sion on the dynamics of the sliding bubble. However, salt concen-
trations of liquid media, to our knowledge, have not yet been a
parameter of any study in bubbles sliding along inclined surfaces.

In this article we present our experimental observations on the
effects of salt concentration together with that of the bubble size
and angle of inclination on the terminal velocity of the sliding bub-
ble. We also present a comparison between our experimental re-
sults and the two theories discussed above, those due to Hodges
et al. [1] and White and Carnie [2].
2. Materials and methods

2.1. Sliding bubble apparatus

The sliding bubble apparatus employed in this study (Fig. 1)
was the same device used in bubble coalescence experiments re-
ported previously [53] to investigate the effects of salt concentra-
tion and speed of approach on the coalescence time of a bubble
rising to meet the surface of the liquid. The experimental set-up
consisted of a sealed graduated glass cylinder (100 ml, Pyrex, Eng-
land), containing the liquid medium, attached parallel to a tilting
platform. The cylindrical geometry ensures that the sliding bubble
follows a straight path, while the internal diameter of the cylinder
(37 mm) is large enough that curvature of the solid surface is neg-
ligible on the mm scale of the bubble. A Teflon cap sealing the cyl-
inder had two holes: one where a long stainless steel needle
(Hamilton, 26 s gauge, 38 mm long) is fitted and the other one
(0.47 mm) acting as a very small air vent. A bubble, formed by
turning the screw-threaded plunger of an airtight glass syringe
(1 ml, Gastight #1001, Hamilton, USA), was released at the lower
end of the cylinder via the needle and rose until it reached the cyl-
inder wall. As the bubble slid up along the top wall of the cylinder,
its size and terminal velocity were measured with the aid of a high
speed camera (CMOS Ultra II, 1.3 megapixel with NMV-6 Navitar
6 mm f1.4 lens) attached to the platform. Images of bubbles sliding
at the middle part of the cylinder where the bubble has already at-
tained terminal velocity were captured with frame rates and spa-
tial resolutions depending on the angle of inclination: 91 frames
per second at a spatial resolution of 768 � 568 pixels for low angles
of inclination (/ = 0.6–4.2�); and 147 frames per second at
500 � 550 pixels for higher angles (/ = 10–40�). Graduations on
the outside of the cylinder were used to calibrate the camera mag-
nification and to identify the position of the bubble as a function of
time. The angle of inclination was varied by a screw mechanism,
and determined by measuring the height of a laser spot, projected
by a laser pointer attached parallel to the platform, at a known dis-
tance 1–2 m away from the pivot point. A backlight (white LED
backlight NT57-820, Edmund Optics) and two soft fiber optic lights
(Fibreoptic Illuminator Model 15001, Fibreoptic Lightguides, Aus-
tralia) were positioned as shown in the figure to obtain sharp
and shadowless bubble images.

ImageJ freeware (Ver. 1.38x, downloaded from http://rsweb.-
nih.gov/download.html) was used to measure the size and speed
of the bubbles. Estimated errors were ±0.02 mm in diameter; a
maximum of ±0.1� in inclination angle for / < 10� and a maximum
of ±0.2� for / > 10�. For the speed, estimated errors depend on the
speed range: ±0.01 mm/s at very low speeds (UT � 1–3 mm/s);
±0.33 mm/s for UT � 10 mm/s; 7.1 mm/s for UT � 100 mm/s.

We determined UT by monitoring the velocity of a bubble after
it was released from the end of the needle. It was observed that the
released bubble initially bounced several times or moved in a non-
linear (zigzag) path for a distance of �10 mm before sliding paral-
lel to the wall. When the bubble started sliding parallel to the wall
the sliding velocity was unstable during the first �40 mm of travel.
For example, for a bubble with radius of 1.2 mm sliding along a
wall inclined at / = 5�, the speed varied from �43 mm/s to
77 mm/s over a distance of �40 mm. The sliding velocity was sta-
bilised (�64 mm/s) after the bubble has travelled �50 mm. Since
all sliding velocities were stabilised at a distance of �50 mm from
the point the bubbles first touched the wall, we took the velocity at
a distance of �55 mm from that point as UT.

2.2. Water, salt and cleaning procedures

Water was taken from a high-purity water system (MilliQ, Ele-
ment) with a resistivity reading (while the water was still in the
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MilliQ chamber) of 18.2 MX cm. Surface tension of the resultant
water was 72.7 mN/m at 22.1 �C. ‘‘Fresh’’ water refers to freshly
collected high purity (MilliQ) water. ‘‘Aged’’ water refers to MilliQ
water that has been stored in the sealed glass cylinder for 5 days.
The potassium chloride (Sigma–Aldrich, Analytical Reagent) used
to make up electrolyte solutions was calcined for 9 h at 550 �C to
remove possible organic trace contaminants followed by recrystal-
lization and re-calcination for 14 h at 550 �C. All glassware and the
Teflon cap, pre-cleaned with high purity water, were immersed in a
1 M KOH solution for 1.5 h and thoroughly rinsed with copious
amounts of high purity water. The stainless steel needle, pre-
cleaned with high purity water, was immersed in 10% HNO3 for
at least 30 min. After the process, the needle was rinsed thoroughly
with high purity water and kept in ethanol (100% undenatured,
Analytical Reagent) before use.
Fig. 2. Bubble terminal velocity versus bubble size in different salt concentrations:
fresh Milli-Q water (diamonds: with arrows for 3.6� and 4.2�), 5 day-old Milli-Q
water (squares), 10 mM KCl (circles), 100 mM KCl (triangles) and estimated values
from Stoke’s law at low Reynolds numbers for 3.6� and 4.2� (crosses). For better
visual clarity, the data has been divided into two groups by angle of inclination: (a)
1.1�, 2.1�, 3.6�; and (b) 0.6�, 1.6�, 2.6 �, 4.2�. Trend lines are least squares second-
order polynomial fits to sets of data points: dotted lines for 5 day-old Milli-Q water:
dashed lines for 10 mM KCl: and solid lines for 100 mM KCl. The correlation
coefficient (R2) for each line is: (a) 0.974 (1.1�), 0.988 (2.1�), 0.998 (3.6�) for water;
0.958 (1.1�), 0.991 (2.1�), 0.993 (3.6�) for 10 mM KCl; 0.988 (1.1�), 0.997 (2.1�),
0.996 (3.6�) for 100 mM KCl: (b) 0.946 (0.6�), 0.983 (1.6�), 0.998 (2.6�), 0.999 (4.2�)
for water; 0.990 (0.6�), 0.997 (1.6�), 1.000 (2.6�), 0.997 (4.2�) for 10 mM KCl; 0.999
(0.6�), 0.997 (1.6�), 0.999 (2.6�), 0.996 (4.2�) for 100 mM KCl. Note that there is a
limited range of bubble size using the freshly-prepared Milli-Q water thus fitting a
line to each set was not possible.
3. Results and discussion

3.1. Effects of inclination angle and bubble size on terminal velocity of
the bubble

The speed of single bubbles sliding along the underside of an in-
clined surface has been measured for inclination angles from 0.6�
to 40.1� in different salt concentrations. Fig. 2 shows all experi-
mental data measured for inclination angles less than 5�. The data
for higher angles (10–40�) are plotted in Fig. 3. These figures
illustrate two predictable features.

The first feature is that, in the range of bubble size and inclina-
tion angle studied, the terminal velocity UT increases as inclination
angle is increased. This is because the buoyancy force acting paral-
lel to the motion of the bubble sliding under an inclined surface is
dependent on the sine of the angle. This trend has been observed
by several researchers [23,25–28,31,37,52,54,55] from their exper-
iments using a wide range of bubble radius from the smallest of
�0.85 mm by Masliyah and his co-workers [28] to elongated bub-
bles with equivalent radius of �2.4 cm by Zukoski [23] and by
Maxworthy [27]. In their independent studies, both Zukoski [23]
and Maxworthy [27] observed a maximum velocity at an
inclination angle of 45�. We note in Fig. 2a and b that for small
bubbles (A � 0.3–0.7 mm) the increase in UT with / is minimal
(�1–4 mm/s/�) whereas for the bigger bubbles (A � 0.8–1.5 mm)
the increase in UT is more significant (�6–36 mm/s/�). Perron
et al. [37] studied the influence of / on UT for larger bubbles with
radii of �4–12.5 mm at inclination angles of 2–10�, and reported
more complex behavior for these more deformable bubbles.

The second feature is the increase in bubble terminal velocity UT

as the size of the bubble is increased. Although not simple to calcu-
late for a sliding bubble, the terminal velocity for a bubble far from
the wall is proportional to the square of its radius, as explained by
a simple force balance between the Stokes drag force Fd = �3pgAUT

(g is the dynamic viscosity) being proportional to A, and the buoy-
ancy force Fb being proportional to A3: Fb = (pgDqA3)/6 (Dq is the
density difference between medium and particle, g is the gravita-
tional constant). The values of UT thus estimated from Stokes’
law (assuming low Reynolds numbers: UT = A2Dqg/18g for /
= 3.6�, 4.2�, and 40.1� are shown in Figs. 2 and 3. This calculation
assumes immobile boundary conditions at the air–water interface
(see next section). Assuming mobile boundary conditions would
result in calculated terminal velocities being 50% higher.
3.2. The terminal velocity of the bubble in fresh and aged water

An interesting feature observed at the angles between 2.1� and
4.2� (Fig. 2) is that freshly collected Milli-Q water exhibited a
slightly higher UT compared to the Milli-Q water which has been
stored for 5 days in the closed glass chamber. Note that correlation
coefficients (R2) of the trend lines for water at 3.6� and 4.2� are
0.998 and 0.999. A possible explanation is that over time, trace
amount of impurities could have entered the water through the
small air vent or by leaching out of the glass. The introduction of
even a very small amount of impurity (surfactant/ion) into the
clean water could alter the boundary condition at the air–water
interface, from fully mobile which is expected for ultra-clean
water, particularly at this speed range (UT � 10–50 mm/s) as we
have shown in a separate study on bubble coalescence [53], to par-
tially or fully-immobile. The presence of trace amounts of surface-
active contaminants/ions could cause surface tension gradients to
develop along the surface of the bubble or on the thin liquid film
between the bubble and the glass wall as a result of the coupling
between flow and surface concentration distribution of the ions/
contaminants. This could cause partial immobilization of the bub-
ble’s surface and eliminate internal circulation, thereby signifi-
cantly increasing the drag, as discussed by Clift et al. [56],
leading to a decrease in the bubble’s speed. This phenomenon



Fig. 3. Bubble terminal velocity versus bubble size for higher angles of inclination
(/ between 10.4� and 40.1�) for different salt concentrations: water (squares),
10 mM KCl (circles), 100 mM KCl (triangles), and estimated values from Stoke’s law
at low Reynolds numbers for 40.1� (crosses). Trend lines are least squares second-
order polynomial fits to sets of data points: dotted lines for water: dashed lines for
10 mM KCl: and solid lines for 100 mM KCl. The correlation coefficient (R2) for each
line is: 0.912 (10.4�), 0.607 (15.3�), 0.900 (20.1�), 0.982 (29.4�), 0.973 (40.1�) for
water; 0.975 (10.4�), 0.780 (15.3�), 0.969 (29.4�), 0.874 (40.1�) for 10 mM KCl; 0.965
(10.4�), 0.986 (15.3�), 0.991 (20.1�), 0.965 (29.4�), 0.971 (40.1�) for 100 mM KCl.
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has been experimentally observed and explained in a number of
papers [57–61]. Systems which exhibit high interfacial tensions,
like air–water, are especially affected by minute amounts of impu-
rity. Intentional addition of surfactants to clean water has been
demonstrated experimentally by various authors [12,17,56,62,63]
to change the boundary condition at the air–liquid interface from
mobile to partially or fully immobile thereby lowering the speed
of a rising bubble.
Fig. 4. Experimental and theoretical relationships between terminal velocity and
bubble radius in dimensionless forms (capillary number, Ca, and square root of
Bond number, B1/2) for different salt concentrations (water [squares], 10 mM KCl
[circles], and 100 mM KCl [triangles]) at an inclination angle of 2.1�. The thin and
thick solid lines are predictions according to Hodges et al. [1] for spherical and
flattened bubbles, respectively. The dashed and dotted lines are White and Carnie’s
theoretical predictions [2] for ho = 100 and 10 nm. The limits of validity for each ho

are shown with dash-dotted lines.
3.3. Effect of salt concentration on the terminal velocity of the bubble

The most significant feature, observed for the first time to our
knowledge, is that UT is influenced by salt concentration of the
medium. This behavior is particularly obvious at the angles of incli-
nation between 1.6� and 4.2� as shown in Fig. 2 which reveals that
UT decreases with increase in the salt concentration. The trend be-
comes more pronounced in larger bubbles. Since salt at these con-
centrations has negligible effects on solution density or on the
bubble’s surface tension, these observations imply that the disjoin-
ing pressure due to double-layer interaction between the bubble
and glass surface has an influence on UT. This is consistent with
the theoretical development of White and Carnie, which finds that
a bubble’s velocity is a function of its radius, the angle of inclina-
tion and the film thickness, ho. As the salt concentration is in-
creased, the range of electric double-layer repulsion decreases
due to screening. This results in a decrease in ho and an increase
in viscous drag due to the thinner film between the bubble and
glass surface.

The data for higher angles between 10.4� and 40.1�, shown in
Fig. 3, on the other hand, does not show a clear dependence of
speed with salt concentration. Note that correlation coefficients
(R2) of the trend lines at higher angles are smaller than those at
lower angles. This could be due to two factors: First, the range of
errors in speed and inclination at these angles is greater than that
in the lower angles because the bubble images in this speed range
are less clear. Second, the effect of hydrodynamic forces could be-
come more dominant than the effect of disjoining pressure in high-
er speed ranges. In the next section, we discuss the influences of
hydrodynamic and disjoining pressures on UT by comparing the
experimental results with two theories.
3.4. Comparison between experimental results and two theories

Two dimensionless numbers, the Bond number, B, and the cap-
illary number, Ca, are used for convenience to compare experimen-
tal results with theories. For small bubbles, where surface tension
dominates gravity (small B), the dependence of bubble velocity on
bubble radius can be re-cast using dimensional analysis into a rela-
tionship between the Ca (a scaled velocity) and B1/2. The Bond
number is given by:

B ¼ DqgA2

c
ð1Þ

in which c is the surface tension. The Bond number represents the
ratio of buoyancy forces to surface tension forces. Because the buoy-
ancy force is proportional to the bubble area (which is a function of
square radius, A2), B1/2 is proportional to bubble radius, A. Therefore
B1/2 can be considered as a dimensionless (scaled) radius.

The scaled velocity can be expressed in terms of the capillary
number,

Ca ¼ gU
c

ð2Þ

where g is the dynamic viscosity. The capillary number represents
the ratio of viscous drag forces to surface tension forces. There are
some reports in the literature that g may be different from the bulk
viscosity at film thicknesses less than 2 nm [64,65], while other re-
ports state that g remains the same as the bulk [66–69]. In this
study, we employed the value of bulk viscosity for g since even if
the claims of increased viscosity in thin films are correct, we are
dealing with capillary numbers estimated for film thicknesses well
above the thickness where the increase of viscosity has been
claimed [64–69].

The relation between bubble radius and terminal velocity ex-
pressed in these dimensionless terms also allows us to compare
our results with those of other systems, including experiments
using different bubble sizes in various media such as viscous sili-
cone oil [37], as will be shown later in Fig. 5a.

The theory of Hodges et al. [1] considers the steady state sedi-
mentation under gravity of a viscous drop suspended in another
liquid with a different viscosity along a gently inclined plane. It
predicts a terminal velocity of bubbles/drops from the viscosity
ratio k of drops and media (for air bubbles, k� 1). The theory
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determines the film thickness between a bubble and a solid plane
from a normal force balance of buoyancy against hydrodynamic
forces. Therefore, the predictions of Hodges et al. are of the form
Ca = f(B,/,k) having different ranges of Bond number and viscosity
ratio. They have shown that a three-dimensional drop, with low
capillary number motion, may exhibit eleven asymptotically dis-
tinct types of motion, with the corresponding predicted shapes.

Of these, only two cases are relevant to our experiments: (Case
1) a slipping spherical bubble (denoted as the case SI3 in their pa-
per [1]) which occurs for B < /2; and (Case 2) a slipping flattened
bubble (their case FIII2) for /2 < B < 1.

The sliding velocity in dimensionless terms is given by:

Ca ¼ 10
9

B/= log B�1/�2
� �

ð3Þ

for very small bubbles, B < /2; and

Ca ¼ 0:474ðB/2Þ3=4 ð4Þ

for larger bubbles, /2 < B 6 1.
Fig. 5. Experimental and theoretical relationship between terminal velocity and
bubble radius in dimensionless forms (capillary number, Ca, and square root of
Bond number, B1/2) for different angles of inclination in water (squares), 10 mM KCl
(circles); and 100 mM KCl (triangles). (a) Experimental data for / = 0.6� (pink), 4.2�
(blue), and 10.4� (orange) and data reproduced from Aussillous and Quéré [31] for
the corresponding angle as labelled are included (exes for / = 0.7�; crosses for /
= 5.7�). (b) Experimental results for angles between 0.6� to 4.2�. Hodges’s
theoretical predictions are shown with solid lines (thick lines for hydrodynamic,
spherical; thin lines for hydrodynamic, flattened shape). White and Carnie’s
theoretical predictions for ho = 100 nm are shown with dashed lines, and for
ho = 10 nm with / = 0.6� is shown with a dotted line. To make the plot less busy, we
omitted the White–Carnie predictions for ho = 10 nm at other angles. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
An alternative theory has been developed by White and Carnie
[2]. In this theory it is assumed that an air bubble in liquid medium
sliding along the underside of an inclined surface, has a flattened
region separated from the wall by a uniform film thickness, ho,
which is not affected by hydrodynamic forces but is determined
by a balance between buoyancy, surface tension and disjoining
pressure, P(ho). The functional form of the theory gives the pre-
dicted UT in terms of A, ho and /: UT = f(A,/;ho). The film thickness
ho can be expressed as a ratio to the radius

e ¼ ho

A
: ð5Þ

In terms of these dimensionless numbers, the theory can then be
presented as Ca = f(B,/,e). Here we only show the resultant equa-
tions; the detailed derivation will be reported separately by White
and Carnie [2]. For given values of ho, the theory predicts a sliding
velocity given in dimensionless terms by

Ca ¼ ð2=3Þ B sin /
1

10 log 3
B

� �
þ 1:708þ 9p

16
ffiffi
2
p B

3

� �1=2 1
e1=2 � 1

2 logðeÞ
ð6Þ

The theory is only valid for velocities in the range given by:

Ca <
32
3p

e3=2 � 3e3=2: ð7Þ

This domain of validity is derived as follows: assuming the bub-
ble has the shape of a truncated sphere, the theory determines the
hydrodynamic pressure distribution in the film between bubble
and wall. Because the drop shape is assumed constant, the theory
is only valid if the hydrodynamic pressure is much less than the
disjoining pressure, which at equilibrium is just the Laplace pres-
sure (PL = 2c/A). In the simplest case, the pressure is largest at
the front entrance to the film, i.e. where the film just starts to devi-
ate from the equilibrium thickness. The requirement that the max-
imum hydrodynamic pressure is less than the Laplace pressure
becomes the restriction on Ca given by Eq. (7).

Fig. 4 shows a comparison between one set of experimental
data at a fixed inclination angle (/ = 2.1�) and the predictions of
the two theories. We have employed 10 nm and 100 nm for the
representative values of ho for the White–Carnie theory as it is
reasonable equilibrium separation determined by balancing the
Laplace pressure of the bubble with the disjoining pressure. For
example, using a standard approximation for double layer disjoin-
ing pressure gives ho = 125 nm for a 1 mm bubble with estimated
surface potentials of glass = �100 mV and bubble = �50 mV at
10�3 M, and ho = 30 nm assuming surface potentials of glass =
�50 mV and bubble = �5 mV at 10�5 M.

Strictly speaking, ho should not be constant but increase slightly
as bubble radius increases because the value of ho comes from a
balance between a repulsive disjoining pressure and the Laplace
pressure. However, the effect is very weak as it is logarithmic in
bubble radius (for example, as the radius increases from 0.1 to
1 mm, ho increases by 23 nm). Hence we have shown White–Carnie
theoretical curves with constant ho (10,100 nm) for simplicity. The
limits of validity (which are below the dashed–dotted lines) of the
White–Carnie theory at ho = 10 and 100 nm are also shown in the
figure. It can be seen that our experimental data are out of the re-
gime of validity of this theory, that is, the sizes of the bubbles used
are larger and/or the sliding velocities are faster than the regime of
validity, hence we are not able to make a conclusive statement on
whether hydrodynamic or electrostatic forces are dominant in
influencing the motion of the bubble sliding parallel to the glass
in liquid. Nevertheless, it is interesting to find that our experimen-
tal data fall in between the predictions of the hydrodynamic-dom-
inant and the disjoining pressure-dominant theories. Following the
White–Carnie theory for ho = 100 nm (which is a reasonable
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approximation for water since it is close to equilibrium separation
at 10�5 M as described above) up to experimental values of B, it ap-
pears that the White–Carnie theoretical line will be closer to
experimental data than the case of the flattened bubbles of Hodges
et al.’s theory, which predicts much faster bubbles for the same
bubble size. On the other hand, extrapolating an empirical power
law fit to the experimental data for water at / = 2.1� to where
the theory is valid, a terminal velocity of �0.9 mm/s can be esti-
mated for a bubble radius of 0.23 mm, compared to a theoretical
prediction of 2.2 mm/s, a discrepancy of around 2. Unfortunately,
neither extrapolation is strictly valid.

The slope of the data in Fig. 4 is close to that of the hydrody-
namic model, but the magnitudes differ by at least a factor of 5.
Clearly, neither theory is capturing every feature of the data in
the region of bubble radii investigated here. At very small radii,
the theories are so close that it would be difficult to distinguish be-
tween them with any data.

Fig. 5a shows our experimental data for three different inclina-
tion angles together with experimental results reported by Aussil-
lous and Quéré [31]. As Aussillous and Quéré examined bubbles in
silicone oil sliding along an inclined surface in a gravity-driven sys-
tem, it is interesting to compare their experimental data with ours
at a similar range of inclination angles (/ < 10�). It is observed that
dimensionless terminal velocities in aqueous solutions are similar
to those in silicone oil at similar inclination angles. The dimension-
less terminal velocities at inclination angle of 0.6� in aqueous solu-
tions are in the same order of magnitude as the results at 0.7� in
silicone oil. The results at 5.7� in silicone oil fall between the air
bubble data sets at 4.2� and 10.4� in aqueous solutions. Note how-
ever that the data of Aussillous and Quéré was obtained in region
with B > 1 in which drops are expected to adopt a pancake shape,
whereas our data corresponds to B < 1.

The present results at inclination angles from 0.6� to 10.4�
(Fig. 5b) show the same tendency described for an inclination angle
at 2.1� in Fig. 4. i.e., measured terminal velocities are closer to the
predictions of the White and Carnie theory at smaller B (although
the data are beyond the limit of validity) while closer to the theory
of Hodges et al. for flattened bubbles at greater B.

It was seen in Fig. 2 that the measured velocities are reduced by
the addition of electrolyte, which is qualitatively consistent with
the White–Carnie model. Added electrolyte would decrease the
range of electrical double-layer forces acting between the wall
and the bubble surface, thereby reducing ho and increasing viscous
drag in the thin film. Hence this experimental observation gives
some support to the White–Carnie conjecture that disjoining pres-
sure should be included when modelling sliding velocity, espe-
cially at small inclination angles, although quantitatively White
and Carnie predict a stronger influence of disjoining pressure than
indicated by the present results.

The experimental results fall between the theories that consider
only effects of hydrodynamics (Hodges et al.) or consider that con-
tributions from disjoining pressure play a significant role in deter-
mining sliding velocity (White–Carnie); neither can accurately
predict the behavior of a bubble sliding under gently inclined sur-
faces in aqueous solutions. In the light of our data we can now dis-
cuss the main effects that are missing from the two models.

The Hodges et al. model neglects disjoining pressure, which, as
our data show, can have a noticeable effect at low B, where the
Hodges theory is further away from the data that it is at large B.
We note that White’s theory assumes a constant bubble shape
and a constant film thickness. The assumption of a constant bubble
shape requires that the hydrodynamic pressure is much less than
the disjoining pressure. This limits the theory to small velocities
(Ca in dimensionless terms) with either very small bubbles or very
small angles of inclination. White and Carnie assume that the film
thickness ho is determined only by disjoining pressure, ignoring
hydrodynamic lift that would increase ho, hence reduce drag and
increase UT. Including the lift effect would close the gap toward
the experimental data. Furthermore, it may be that a change in
the film profile due to the distribution of hydrodynamic pressure
in the film should be accounted for. This type of film with non-uni-
form thickness has been observed and described in studies of lubri-
cation by liquids [70,71]. Denkov et al. [72] have demonstrated the
undulation of the film experimentally and theoretically for a sur-
factant-laden system of a bubble in a glass capillary tube whose in-
ner diameter is 10% larger than the bubble diameter. Griggs et al.
[38] have theoretically examined a deformable drop or bubble slid-
ing near an inclined plane at low Reynolds number and reported
non-uniform film thickness at medium (15�) to higher (75�) incli-
nation angles. Denkov et al. [72] reported that the ho becomes con-
stant at very low velocities of Ca less than 10�6, while another
theoretical model by Saugey et al. [73] reported the onset of irreg-
ularity in the ho at Ca � 6.72 � 10�4. As the White–Carnie theory
assumes a constant bubble shape and a constant film thickness,
the theory cannot apply for estimating the speed of a bubble in
the region where the sliding bubble may bounce off the wall or
when the film thickness is non-uniform. A model considering the
region where bubbles slide and bounce has been reported by Pod-
vin et al. [74].

The White–Carnie theory also assumes that the total drag is
insensitive to the details of the shape at the rim where the flat-
tened area joins the spherical surface of the remainder of the bub-
ble. In the region just outside the rim, the disjoining pressure
decays from its uniform value P(ho) to zero, and the local curvature
would not be constant (as for a spherical surface). Both the hydro-
dynamic and disjoining pressures are affected by the altered bub-
ble shape in this region. Hence for better modelling, it might be
necessary to go beyond the truncated sphere approximation and
consider this region in more detail.

Finally, it is worth noting that both theories assume mobile
interfaces: air–liquid for White–Carnie and liquid–liquid for Hod-
ges et al. Any modification of this boundary condition would result
in increased hydrodynamic drag and a reduced sliding velocity at
all values of B. This would bring the Hodges model closer to the
data. As discussed above, the speeds predicted from White–Carnie
theory were higher than the experimental speeds extrapolated into
the domain of validity of the theory, and so a partially or fully
immobile interface may improve the fit in this region, but it would
not bring the extrapolated theoretical curves closer to the data in
the experimental region. The presence of surface contaminants,
for example surfactants at low concentration, would render the
fluid–fluid interface partially or fully immobile, and it may be that
the higher interfacial energy of air–water compared to silicone oil–
water makes the bubbles more susceptible to contamination than
the oil drops. An alternative mechanism that attributes surface
immobilisation to electrokinetic effects that couple ion distribution
to the flow field has been proposed by Yaminsky et al. [59,60]. A
consequence of this coupling is that interfacial tension would be
spatially inhomogeneous, with surface tension gradients influenc-
ing the flow field (a form of Marangoni effect). This would add con-
siderable complexity to the modelling.
4. Conclusions

Terminal velocities of single bubbles sliding along the underside
of an inclined surface have been measured in water and aqueous
KCl solutions. The bubble size, angle of inclination, and salt concen-
tration were all varied and their effects on the bubble terminal
velocity were determined. We observed, particularly at the angle
range of �1–5�, that bubble terminal velocity is not only influenced
by the bubble size and angle of inclination, but also by the salt
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concentration of the media. This shows that the terminal velocity is
influenced by disjoining pressure, which in this case is dominated
by electrostatic double-layer forces. The data were compared with
two theories: predictions from a hydrodynamic model by Hodges
et al., and predictions from a model that includes disjoining pres-
sure effects (considering electrostatic double-layer forces) by
White and Carnie. Although our experimental results are beyond
the regime where the White–Carnie theory is valid, the experimen-
tal results are closer to this theory with smaller bubbles, but vary
with bubble size in a way that it more consistent with Hodges
et al.’s theory. The overall conclusion is that neither theory con-
tains all of mechanisms that are acting to determine the terminal
velocity of bubbles sliding past a solid wall.
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