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We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration
of partial wetting (liquid wedge on a solid substrate) via evaporation–condensation, when an inert gas is
present in the atmosphere above the liquid. The no-slip condition is imposed at the solid–liquid interface
and the system is assumed to be isothermal. The mass exchange dynamics is controlled by vapor diffu-
sion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curva-
ture and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate
moves at a steady velocity with respect to the liquid wedge. A multi-scale analysis is performed. The liq-
uid dynamics description in the phase-change-controlled microregion and visco-capillary intermediate
region is based on the lubrication equations. The vapor diffusion is considered in the gas phase. It is
shown that from the mathematical point of view, the phase exchange relieves the contact line singularity.
The liquid mass is conserved: evaporation existing on a part of the meniscus and condensation occurring
over another part compensate exactly each other. However, numerical estimations carried out for three
common fluids (ethanol, water and glycerol) at the ambient conditions show that the characteristic
length scales are tiny.
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1. Introduction

Since the seminal article by Huh and Scriven [1], it is well
known that the standard hydrodynamics fails in describing the
motion of the triple liquid-gas–solid contact line in a configuration
of partial wetting. Their hydrodynamic model based on classical
hydrodynamics with the no-slip condition at the solid–liquid inter-
face and the imposed to be straight liquid–gas surface predicts infi-
nitely large viscous dissipation. If the normal stress balance is
considered at the free surface, such a problem has no solution at
all [2]. As an immediate consequence, a droplet cannot slide over
an inclined plate, or a solid cannot be immersed into a liquid.

Despite the fact that this paradox is known for decades, it is still
a subject of intense debate (see for instance [3]).

Contact line motion is in fact a multi-scale problem, and
microscopic effects must be considered in the vicinity of the con-
tact line to solve the above-mentioned paradox (see [4,5] for
reviews). One can make a distinction between approaches for
which the dissipation is located at the contact line itself, from
models where dissipation is assumed to be of viscous origin,
inside the liquid. In the former class of models, referred as molec-
ular kinetic theory, the contact line motion is driven by jumps of
molecules close to the contact line [6]. In the latter approach,
based on hydrodynamics, some microscopic features are to be
included. Hocking [7], Anderson and Davis [8], Nikolayev [9]
solved such a problem by incorporating the hydrodynamic slip.
In the complete wetting case, the van der Waals forces cause a
thin adsorbed film over the substrate, which relieves the singular-
ity. For such a case, Moosman and Homsy [10], DasGupta et al.
[11], Morris [12], Rednikov and Colinet [13] considered the pure
vapor atmosphere and the substrate superheating. Poulard et al.
[14], Pham et al. [15], Eggers and Pismen [16], Doumenc and
Guerrier [17], Morris [18] investigated the diffusion-limited
evaporation, when an inert gas is present in the under-
saturated atmosphere. Up to now, the case of partial wetting
and diffusion-controlled phase change received less attention.
Berteloot et al. [19] proposed an approximate solution for an
infinite liquid wedge on a solid substrate using the expression
of the evaporation flux given by Deegan et al. [20]. The singularity
is avoided by assuming a finite liquid height at a microscopic
cut-off distance, imposed a priori.

Wayner [21] suggested that the contact line could move by
condensation and evaporation while the liquid mass is con-
served. During the advancing motion, for instance, the condensa-
tion may occur to the liquid meniscus near the contact line while
the compensating evaporation occurs at another portion of the
meniscus. Such an approach seemed very attractive [22,23] since
it could provide a model with no singularity although completely
macroscopic, avoiding microscopic ingredients such as slip length
or intermolecular interactions. Rigorous demonstrations of the
fact that change of phase regularizes the contact line singularity
has been done recently by two independent groups [24–26], for
the configuration of a liquid surrounded by its pure vapor. In this
configuration, evaporation or condensation rate is controlled by
the heat and mass exchange phenomena in the liquid. Such a
situation occurs e.g. for bubbles in boiling. The Kelvin effect
has proved to be very important because it provided a coupling
between the liquid meniscus shape and mass exchange. In
the present work, we explore a possibility of relaxation of the
contact line singularity by the phase change in the contact line
vicinity in a common situation where a volatile liquid droplet
is surrounded by an atmosphere of other gases like air. This case
is more challenging than the case of the pure vapor, because the
evaporation or condensation rate is controlled by the vapor
diffusion in the gas, which results in non-local evaporation or
condensation fluxes [16].
The following physical phenomena need to be accounted for in
such a problem.

� The concentrational Kelvin effect, i.e. a dependence of the satu-
ration vapor concentration on the meniscus curvature. This
effect is expected to be important in a small region of the liquid
meniscus very close to the contact line, that we call microregion
(Fig. 1d). In this region, high meniscus curvature is associated to
the strong evaporation or condensation. The microregion size is
expected to be below 10–100 nm.

� A region of mm scale, where the surface curvature is controlled
by the surface tension, and (depending on the concrete macro-
scopic meniscus shape) gravity or inertia (Fig. 1b). The viscous
stresses associated with the contact line motion and phase
change are negligible here.

� A region of intermediate scale (Fig. 1c), where both capillary
forces and viscous stresses are important. This region is known
to be described by the Cox–Voinov relation [27,28]
h0ðxÞ3 ¼ h3V þ 9Ca lnðx=‘V Þ; ð1Þ
with h0ðxÞ the liquid slope at a distance x from the contact line
and Ca ¼ lU=r the capillary number (l is the liquid viscosity,
r the surface tension and U the contact line velocity, assumed
to be positive for the advancing contact line). It is a solution of
Stokes equations in lubrication approximation that satisfies the
boundary condition of vanishing curvature at large x. Note that
large at the intermediate scale x remains small at the macro-
scopic scale associated with the macroscopic radius L of menis-
cus curvature (defined e.g. by the drop size when controlled by
capillarity). Similarly, the curvature L�1 can be considered as
negligible with respect to curvatures induced by strong viscous
stresses in the intermediate region. Eq. (1) is valid for small cap-
illary numbers, below the Landau–Levich transition for the
receding contact line [5]. ‘V is a length of the order of the
microregion size and is called the Voinov length while hV is
the Voinov angle. The Cox–Voinov relation provides a good
description of the intermediate region because of the strong
scale separation between the capillarity controlled region and
microregion. In contact line motion models, the Voinov length
and angle can be obtained by the asymptotic matching to the
microregion, while the asymptotic matching to the capillarity
controlled region provides the following relation for the effective
contact angle heff (cf. Fig. 1b),

h3eff ¼ h3V þ 9Ca lnðL=‘V Þ: ð2Þ
The L value depends on the concrete macroscopic meniscus
shape [5]. Since we are interested in the relaxation of the contact
line singularity, the capillarity-controlled region is not consid-
ered here, and the liquid meniscus is assumed to be a liquid
wedge in both the intermediate region and microregion.

� Because of the long range of the concentration field controlled
by vapor diffusion in the air, one needs to consider one more
scale much larger than that of the liquid meniscus. In the fol-
lowing, we assume that at this scale the liquid meniscus is a
semi-infinite (x 2 ½0;1�) layer of the negligibly small height
that covers the solid substrate (Fig. 1a).

2. Problem statement

The problem to be considered is a liquid wedge posed on a flat
and homogeneous substrate moving at constant velocity U, in a sit-
uation of partial wetting. The atmosphere surrounding the sub-
strate and the liquid consists of an inert gas saturated with the
vapor of the liquid, cf. Fig. 1a (an instance of such an atmosphere
is wet air at atmospheric pressure, room temperature and relative
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Fig. 1. Hierarchy of scales considered in the article and geometries for the vapor
diffusion and hydrodynamic problems. The curved arrows in the microregion (d)
show the vapor diffusion fluxes associated with evaporation–condensation.
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humidity of 100%). The problem is assumed to be isothermal,
which may be justified when the substrate is a good thermal con-
ductor. The vapor concentration is imposed at an infinite (at the
scale of Fig. 1a) distance from the substrate, and corresponds to
the saturated vapor pressure. Therefore, the system is at equilib-
rium when U ¼ 0. When the substrate moves, viscous pressure
drop induces free surface bending and a non zero curvature
(Fig. 1c and d). Because of the Kelvin effect, this deformation
results in a change of the equilibrium vapor pressure above the
gas/liquid interface, leading to evaporation and condensation
(Fig. 1d). The model considers the vapor diffusion in the gas phase,
as well as the kinetic interfacial resistance.
2.1. Governing equations

2.1.1. Liquid phase
Within the lubrication approximation (small contact angles) the

governing equation in the contact line reference is

d
dx

h3

3l
dðrjÞ
dx

 !
¼ �U

dh
dx

� j
q
; ð3Þ

where h is the liquid height, l the liquid viscosity, r the surface ten-

sion, j the curvature (j ’ d2h=dx2 in the framework of small slope
approximation), U the substrate velocity (U > 0 for an advancing
contact line), q the liquid density, and j the interfacial mass flux
(j > 0 for evaporation).

Note that Eq. (3) can be rewritten as dq=dx ¼ �j=q, where qðxÞ is
the fluid volume flux in the liquid layer vertical section.

Boundary conditions for the liquid phase are the following:
� For x ¼ 0 (contact line):
h ¼ 0;
dh
dx

¼ h; ð4Þ

where h is the equilibrium contact angle imposed by intermolec-
ular interactions at micro scale.
� For x ! 1:
d2h

dx2
¼ 0: ð5Þ
In addition, since we are interested in regularization through
evaporation/condensation, we look for regular solutions. In
other words, the mass flux jðxÞ, the curvature jðxÞ and
djðxÞ=dx (and thus the pressure gradient) are assumed to be
finite at x ¼ 0.
2.1.2. Gas phase and mass flux
In the gas phase, the equation for vapor diffusion reads

@2c
@x2

þ @2c
@y2

¼ 0; ð6Þ

where cðx; yÞ is the vapor concentration. In the framework of the
small wedge slope approximation, the liquid gas interface seen
from the large scale of the gas atmosphere is assumed to coincide
with the line y ¼ 0; x P 0, as shown in Fig. 1a. The boundary condi-
tions in partial wetting configuration are:

� For x ! �1 or y ! 1:
cðx; yÞ ¼ ceq; ð7Þ
where ceq is the vapor concentration at thermodynamic equilib-
rium for a flat (with j ¼ 0) liquid–gas interface.

� For y ¼ 0 and x < 0:
@c
@y

¼ 0: ð8Þ
� For y ¼ 0 and x P 0:
j ¼ ci;eq � ci
Ri

¼ �Dg
@c
@y

����
y¼0

; ð9Þ

where ci ¼ cðx; y ¼ 0Þ is the vapor concentration at the liquid–
gas interface and ci;eq is the equilibrium interfacial vapor concen-
tration that depends on the interface curvature j through the
concentrational Kelvin equation that reads

ci;eq � ceq ¼ � Mceq
qRgT

rj ð10Þ

in its linearized version [16]. Dg is the vapor diffusion coefficient
in the gas phase and Ri is the kinetic resistance given by the
Hertz–Knudsen relation [29,30],

R�1
i ¼ 2f

2� f

ffiffiffiffiffiffiffiffiffiffiffi
RgT
2pM

r
; ð11Þ

where f is the accommodation factor close to unity, Rg is the
ideal gas constant, T is the temperature andM is the molar mass.

2.1.3. Kelvin length and dimensionless equations
Let us determine the Kelvin length ‘, a characteristic size of a

region dominated by the Kelvin effect, with the following scaling
analysis. The dimensionless abscissa is ~x ¼ x=‘ and, accordingly
to the wedge geometry, the liquid height scales as H ¼ h=ðh‘Þ.



332 V. Janeček et al. / Journal of Colloid and Interface Science 460 (2015) 329–338
The dimensionless curvature is hence K ¼ ‘j=h. Introducing these
expressions in Eq. (3) brings out the modified capillary number
d ¼ 3Ca=h3 and a characteristic scale J ¼ h4rq=ð3lÞ for the mass

flux (~j ¼ j=J):

d
d~x

H3 dK
d~x

� �
¼ �d

dH
d~x

�~j: ð12Þ

The vapor concentration above the liquid/gas interface, ci, is
related to the film curvature j via the Kelvin effect. Therefore, ci
also varies in x-direction over a length of the order of ‘. Moreover,
due to the Laplace equation in the gas phase, the length scales for x
and y directions should be the same, thus ~y ¼ y=‘. Concentration
deviation is reduced as ~c ¼ ðc � ceqÞ=C. By using Eq. (10), one gets
the C value

C ¼ Mrhceq
qRgT‘

and ~ci;eq ¼ �K: ð13Þ

One notes that C and J are the typical scales of the concentration
deviation from equilibrium and mass flux caused by the Kelvin

effect, so that both ~j and K are considered to be of the order 1 for
the scaling analysis purposes.

Scaling analysis of Eq. (9) reads

j � ci;eq � ci
Ri

� Dg
ci � ceq

‘
:

By using Eq. (13), one gets in scaled variables

JR‘

CDg

� �
~j � ðK þ ~ciÞ � R~ci; ð14Þ

where R ¼ RiDg=‘ is the dimensionless interfacial resistance. To get

the scaling of ~j, a balance of three terms is to be discussed,

K; ~ci; R~ci½ �: ð15Þ
One can distinguish two limiting cases.

� Case 1,R � 1: the kinetic resistance Ri dominates the vapor dif-
fusion resistance ‘=Dg to the mass transfer at the interface. The
second term in the set (15) is negligible with respect to the
third. The balance between the curvature (first term related to
the Kelvin effect) and the third term reads ~ci � K=R. From Eq.
(14) one thus has
~j � CDgK
J‘R : ð16Þ
Since both K and ~j are of the order unity, one can obtain from Eq.
(16) the characteristic length ‘ that we call ‘R for this case:
‘R ¼ CDg

JR ¼ 3lMceq
h3q2RgTRi

:

� Case 2, R � 1: this is the opposite case corresponding to the
negligible kinetic resistance (Ri � ‘=Dg), the second term in
the set (15) has to balance the curvature:
~ci � K thus ~j � CDgK
J‘

from Eq:ð14Þ;

which leads to the characteristic length

‘D ¼ CDg

J
¼ 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lMceqDg

h3RgT

s
:

One can see that ‘D is the Kelvin length for the diffusion regime,
while ‘R ¼ ‘D=R is the Kelvin length for the kinetic regime.
Throughout the rest of the paper, we choose ‘ ¼ ‘D to make the
equations dimensionless. Numerical estimations of the relevant
scales are given in Section 6 for three common fluids for the ambi-
ent conditions.

The dimensionless lubrication Eq. (3) reads

d
d~x

H3 dK
d~x

� �
¼ �d

dH
d~x

�~j; ð17Þ

with the following boundary conditions:

� For ~x ¼ 0 : H ¼ 0; H0 ¼ 1,
� For ~x ! 1 : K ¼ H00 ¼ 0.

The dimensionless diffusion equation in the gas phase is

D~c 	 @2~c
@~x2

þ @2~c
@~y2

¼ 0; ð18Þ

with the following boundary conditions:

� For ~x ! �1 or ~y ! 1:
~c ¼ 0; ð19Þ

� For ~y ¼ 0 and ~x < 0:
@~c
@~y

¼ 0; ð20Þ
� For ~y ¼ 0 and ~x P 0:
~j ¼ �Kþ ~c
R ¼ � @~c

@~y
: ð21Þ
2.2. Mass conservation issue

Before solving the problem, let us consider the mass conserva-
tion issue in the gas domain D, cf. the upper half plane in Fig. 1a.
Let us apply the divergence (Gauss) theorem to r~c,Z
D
D~cð~rÞd~r ¼

I
L

@~c
@~n

dl; ð22Þ

where L is the boundary of D, and @~c=@~n 	~n 
 r~c. The contour L
consists of the x-axis and a half-circle C of infinite radius in the
upper half-plane. From the vapor diffusion Eq. (18), one obtains
the mass conservation in D:I
L

@~c
@~n

dl ¼ 0: ð23Þ

We show below that the manifestation of the mass conservation isZ 1

0

~jð~xÞd~x ¼ 0; ð24Þ

i.e. the flux through C is zero (cf. Eq. (20)).
Let QðrÞ be the flux through Cr , a half circle of radius r that tends

to C when r ! 1,

QðrÞ ¼
Z
Cr

@~c
@~n

dl ¼
Z p

0

@~c
@r

r d/; ð25Þ

with / the polar angle. After dividing both members of Eq. (25) by r,
and integrating over r from some arbitrary value r0 to 1, one gets
because of the condition (19)Z 1

r0

QðrÞ
r

dr ¼ �
Z p

0
~cðr0;/Þ d/; ð26Þ

where the right hand side is finite. The integral in the left hand side
can only be convergent if QðrÞ ! 0 when r ! 1 which proves
Eq. (24). It means that the overall mass flux transferred to the gas
environment is zero, which is consistent with the assumption of
thermodynamic equilibrium at r ! 1. This conclusion is quite
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important. It means that the evaporation and condensation fluxes
compensate exactly each other during the contact line motion so
that the liquid mass is conserved. Since the exact compensation is
due to the vapor diffusion, it may be violated in its absence (inter-
facial resistance-controlled phase change).

The vanishing at infinity flux QðrÞ implies that @~c=@r goes to
zero faster than r�1 when r ! 1, cf. Eq. (25). This fact is used in
Appendix A to derive the governing equation.

2.3. First order approximation

The variables are expanded in a regular perturbation series in
the modified capillary number d. At the zero order corresponding
to motionless substrate and thermodynamic equilibrium, obvi-

ously K0 ¼ 0;H0 ¼ ~x;~j0 ¼ 0 and ~c0 ¼ 0, thus

K ¼ dK1 þ 
 
 
 ;
H ¼ ~xþ dH1 þ 
 
 
 ;
~j ¼ d~j1 þ 
 
 
 ;
~c ¼ d~c1 þ 
 
 
 :

ð27Þ

The lubrication Eq. (17) at the first order reads

d
d~x

~x3
dK1

d~x

� �
¼ �1�~j1; ð28Þ

with the following boundary conditions:

� For ~x ¼ 0 : H1 ¼ 0;H0
1 ¼ 0,

� For ~x ! 1 : K1 ¼ H00
1 ¼ 0.

The first order problem for the diffusion in the gas phase coin-
cides with that for ~c, Eqs. (18)–(21).
3. Asymptotic solution in the intermediate region

As mentioned in the introduction, the intermediate region
(Fig. 1c) is characterized by a balance between viscous stress and
capillary pressure. From the scaling analysis in Section 2.1.3, one
infers that the cross-over between the microregion (dominated
by Kelvin effect) and the intermediate region should occur at
~x � 1 in the diffusive regime (R � 1) and ~x � 1=R in the kinetic
regime (1 � R). Evaporation/condensation fluxes are induced by
Kelvin effect only. Therefore, for ~x � minð1;1=RÞ, the absence of

the Kelvin effect implies ~j1 ¼ 0 and the problem becomes that of
Cox–Voinov. Eq. (28) may be integrated over the intermediate
region resulting in

~q1ð~xÞ 	 ~x3
dK1

d~x
þ ~x ¼ a; ð29Þ

where a is an integration constant.
The overall evaporation and condensation in the microregion

compensate each other, see Section 2.2, so that there is no flow
at the upper microregion boundary (that corresponds to ~x ! 0 in
the intermediate region). The horizontal flow flux ~q1ð~xÞ must thus
vanish in the beginning of intermediate region. This fixes a ¼ 0 and
an integration of Eq. (29) results in

K1 ¼ 1
~x
þ b: ð30Þ

The vanishing curvature at infinity fixes b ¼ 0. The curvature
diverges at small ~x as expected, since Eq. (30) is not supposed to
be valid in the microregion. One more integration results in the
expression
dH1

d~x
¼ ln

~x
n

� �
; ð31Þ

where n is an integration constant. By returning back to the dimen-
sional variables, we get the linearized version of the Cox-Voinov
Eq. (1)

dh
dx

¼ hþ 3Ul
rh2

ln
x
‘V

� �
; ð32Þ

where the Voinov length ‘V 	 ‘Dn must be deduced from matching
to the microregion problem. The Voinov angle hV is equal to h
because this value of dh=dx corresponds to U ¼ 0.

4. Behavior in micro- and intermediate regions

4.1. Governing equations

Assuming that dK1=d~x is finite at ~x ¼ 0, integration of Eq. (28)
gives:

~x3
dK1

d~x
¼ �~x�

Z ~x

0

~j1d~x: ð33Þ

The first of equalities (21) results in

K1 ¼ �~ci;1 �R~j1: ð34Þ

The first order concentration in the gas phase at the interface,
~ci;1ð~xÞ ¼ ~c1ð~x; ~y ¼ 0Þ, can be expressed analytically (see Appendix
A, Eqs. (A.1) and (A.15)) as a functional of mass flux,

~ci;1ð~xÞ ¼ � 1
p

Z 1

0
ln j~x� ~x0j~j1ð~x0Þd~x0: ð35Þ

Eq. (34) thus reads

K1 ¼ 1
p

Z 1

0
ln j~x� ~x0j~j1ð~x0Þd~x0 � R~j1; ð36Þ

and

dK1

d~x
¼ 1
p

Z 1

0

~j1ð~x0Þ
~x� ~x0

d~x0 � Rd~j1
d~x

: ð37Þ

Finally, the integro-differential equation governing the mass flux ~j1
is

~x3
1
p

Z 1

0

~j1ð~x0Þ
~x� ~x0

d~x0 � Rd~j1
d~x

 !
¼ �~x�

Z ~x

0

~j1ð~x0Þd~x0: ð38Þ

For arbitrary R, no analytical approach is available and Eq. (38) is

solved numerically, see Appendix B. Once~j1 is known, concentration
~ci;1 and curvature K1 are obtained through equations (35) and (36)
as explained in Appendix C. The slope dH1=d~x and the height H1 are
then obtained by successive integrations of K1.

4.2. Purely kinetic regime (R ! 1)

For the case dominated by kinetic resistance, it is possible to
solve the problem analytically. When R � 1, the diffusion induced
resistance to vapor transfer can be neglected. Concentration at the
interface thus tends to the equilibrium concentration, ~ci;1 ! 0, and

Eq. (34) reduces to K1 ¼ �R~j1. Eq. (28)

d
d~x

�~x3
d~j1
d~x

R
" #

¼ �1�~j1 ð39Þ

can be then solved analytically,



Fig. 2. First order curvature term K1. Solid lines: solutions of Eq. (38) for R ¼ 0;30.
Open circles: purely kinetic regime, Eq. (42) with R ¼ 30. Dashed line: asymptotics
(30).
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~j1 ¼ �1þ a
2I2 2=

ffiffiffiffiffiffiffi
~xR

p� �
R~x

þ b
2K2 2=

ffiffiffiffiffiffiffi
~xR

p� �
R~x

; ð40Þ

where Ið
Þ;Kð
Þ are the modified Bessel functions of the first and the
second order, respectively. We are looking for a regular solution at
~x ¼ 0, so a ¼ 0.

At large ~x, we get

~j1ð~x ! 1Þ ’ �1þ b� b
R~x

;

with b ¼ 1 to satisfy the flux vanishing at infinity. The solution is
thus

~j1 ¼ �1þ
2K2 2=

ffiffiffiffiffiffiffi
~xR

p� �
R~x

: ð41Þ

The curvature K1 ¼ �R~j1 then reads

K1 ¼ �
2K2 2=

ffiffiffiffiffiffiffi
~xR

p� �
~x

þR: ð42Þ
Slope -3/2

Fig. 3. First order mass flux term~j1. Small (a) and large (b) ~x behavior forR ¼ 0 and
30. Open circles in (a) correspond to the purely kinetic regime, Eq. (41) withR ¼ 30.
Only positive values are shown in (b).
4.3. Curvature and mass flux behavior

First order terms for curvature K1 and mass flux ~j1 are com-
puted by solving numerically Eq. (38). They are displayed in Figs. 2
and 3, respectively.

In the microregion (for ~x < n), the curvature is nearly constant,
the pressure gradient goes to zero at the contact line, and the
hydrodynamic singularity is relieved. The contact line motion
and associated evaporation–condensation induce the wedge curva-
ture that is quite large in the contact line vicinity. The contact line
curvature grows with R. The solution for R ! 1 turns out to be a
very good approximation for finiteR � 1: the solutions forR ! 1
and R ¼ 30 nearly coincide. Whatever the value of R, the curva-
ture follows the Cox–Voinov asymptotics (30) for ~x ! 1.

The mass flux at the contact line is finite too, cf. Fig. 3. The
mechanism proposed qualitatively by Wayner [21] to explain con-
tact line motion can be easily visualized. For any finite R, the mass
flux is negative (i.e. condensation for advancing, evaporation for
receding) close to the contact line, while its sign changes at the
remaining part of the interface. The overall mass exchange is zero.

From the numerical simulations, ~j1ð~xÞ � ~x�3=2 at large ~x (see
Fig. 3b).

The flux behavior is different for the infinite R (purely kineti-
cally controlled case). The flux (41) remains negative and scales

as ~j1ð~xÞ � �~x�1 at large ~x. The vapor mass conservation (provided
by the diffusion equation that does not apply to this case, cf. Sec-
tion 2.2) is not satisfied in the purely kinetically controlled case.

For large but finite R; ~j1ð~xÞ follows the purely kinetic curve (see
Fig. 3a) until some ~x where a crossover to the purely diffusive
regime (R ¼ 0) occurs (see Fig. 3b), after a sign reversal. This shows
the importance of the diffusion effect that provides the vapor (and
therefore liquid) mass conservation during the contact line motion.

5. Voinov length

Fig. 4 shows an example of the meniscus slope variation calcu-
lated forR ¼ 0. One can see that at ~x ! 1 the solution matches the
classical asymptotics (31). From the latter, it is evident that the
Voinov length n corresponds to the intersection of the ~x ! 1
asymptote with the ~x axis. For a finiteR, the slope variation is sim-
ilar to Fig. 4. However, increasing R reduces the Voinov length.

The Voinov length can be obtained analytically for the purely
kinetic case where the slope is easily deduced from Eq. (42) by
integration,
dH1

d~x
¼ �2

ffiffiffiffiffiffiffi
~xR

p
K1

2ffiffiffiffiffiffiffi
~xR

p
� �

þR~xþ a: ð43Þ

dH1=d~x goes to zero for ~x ! 0 which fixes a ¼ 0.



Microregion I

Fig. 4. Voinov length determination. Solid line: first order slope dH1=d~x; dashed
line: intermediate region asymptotics (31); vertical dash-dotted line: boundary
between micro- and intermediate regions.

Fig. 5. Dimensionless Voinov length n as a function of R; circles: numerical result;
the solid line is obtained numerically for the purely diffusive regime (R ¼ 0, see
Fig. 4); the dashed line is Eq. (45).
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A series expansion of Eq. (43) at ~x ! 1 gives

dH1

d~x
’ ln

~x
n

� �
þ ln e3=2 ~x=n

� 	
2e2c�1 ~x=n

ð44Þ
Table 1
Physical properties [31,32], kinetic resistance Ri (using Eq. (11) with f ¼ 2=3), mass flux an
resistance R, Voinov length ‘V and liquid height in the microregion ‘Vh, for ethanol, wate

Ethanol Water

q (kg m�3) 785 997

Dg (mm2 s�1) 12 26
l (mPa s) 1.08 0.890
r (mN m�1) 21.9 71.8

ceq (kg m�3) 0.147 0.0230

M (g mol�1) 46.07 18.02

Ri (s m�1) 0.011 0.0068
h 1� 5� 1�

Jðkg m�2 s�1Þ 4:92� 10�4 0.308 2:49� 1
Cðkg m�3Þ 7:38� 10�6 4:12� 10�4 4:49� 1
‘D (nm) 180 16 47
‘R (nm) 249 2.0 13
R 0.72 8.1 3.7
‘V (nm) 72 1.9 9.5
‘Vh (nm) 1.3 0.16 0.16
with

n ¼ e2c�1

R ’ 1:167
R ; ð45Þ

where c ’ 0:577216 is the Euler–Mascheroni constant. The first
term of the development (44) is exactly the asymptotic solution
(31) in the intermediate region. The second term is negligible com-
pared to the first for ~x � n, which means that for large R, the Kelvin
effect is dominant over a distance of the order of n.

The Voinov length is given in Fig. 5 as a function of R. Two
regimes can be observed: for small R, when the diffusion domi-
nates, n � 1. For large R; n decreases as 1=R, as predicted by the
analytical Eq. (45). The crossover R value is around unity, as
expected. n vanishes and relaxation of the contact line singularity
is not possible when R is infinite because the mass flux is brought
to zero by the infinite kinetic resistance.
6. Numerical estimations

We have shown that, from the mathematical point of view, the
Kelvin effect regularizes the problem. However this is not enough
to conclude on the validity of this approach. It is important to find
out by estimation if the continuum theory we developed is valid.
We perform numerical estimations for three common fluids (etha-
nol, water and glycerol) at ambient temperature (T ¼ 298:15 K)
and pressure (P ¼ 1 bar). The results are gathered in Table 1, for
two values of the equilibrium contact angle h.

In the framework of continuummechanics approach considered
in this paper, two conditions must be fulfilled. First, when diffusion
is the dominant mechanism, the Voinov length ‘V must be greater
than the mean free path in the gas. Second, the liquid height ‘Vh in
the microregion, where Kelvin effect acts, must be larger than the
liquid molecule size, of the order of 1 nm.

The first condition is not restrictive. Indeed, following standard
results from gas kinetic theory, Ri � v�1

T and Dg � vT‘p, with vT the
thermal velocity and ‘p the mean free path of the molecules. There-
fore, ‘p=‘D � R, and the condition ‘p � ‘D is always fulfilled when
diffusion dominates (R � 1). In the opposite case (R � 1), the
contact line motion is controlled by the kinetic resistance and dif-
fusion can be disregarded.

On the contrary, one can see from Table 1 that the second con-
dition is not fulfilled, at least for the considered fluids at ambient
conditions, as the height h‘V is never much larger than 1 nm, and
much lower in most cases. Notice that the lowest values are
obtained with glycerol, mainly because of its low volatility (the
d concentration scales J and C, characteristic lengths ‘D and ‘R , dimensionless kinetic
r and glycerol at ambient conditions (T ¼ 298:15 K and P ¼ 1 bar).

Glycerol

1258
8.8
945
63.3

7:43� 10�7

92.10

0.015
5� 1� 5�

0�3 1.55 2:61� 10�6 1:63� 10�3

0�6 2:51� 10�4 2:68� 10�9 1:50� 10�7

4.2 9.0 0.81
0.10 0.61 0.0049
42 15 166
0.12 0.63 0.0057
0.01 0.01 0.0005
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Voinov length ‘V goes to zero for vanishing saturation vapor
pressure).

7. Conclusion

A geometrical contact line singularity appearing in the partial
wetting regime manifests itself in the hydrodynamic problem and
should be relaxed in any theoretical approach. By considering the
volatile fluid case, we address in this article a possibility to relax it
by the interfacial phase change (evaporation–condensation), which
is a mechanism first outlined by Wayner [21]. We propose a rigor-
ous solution for the case of diffusion-controlled evaporation, when
an inert gas is present in the atmosphere. Our work follows recent
studies dedicated to the case of a liquid surrounded by its pure
vapor [24–26], where the phase change is controlled by the latent
heat effect.

An account of the Kelvin effect is necessary to couple the vapor
concentration variation and the liquid meniscus curvature in the
contact line vicinity. It has been found that within a continuum
mechanics formulation, based on the lubrication approximation
for the liquid dynamics and stationary vapor diffusion in the satu-
rated atmosphere, the contact line singularity is relieved and all
the physical quantities (meniscus curvature, mass flux, etc.)
become large but finite at the contact line. Since the mass flux is
large there, accounting for the interfacial resistance to evapora-
tion/condensation is necessary. During the contact line advancing
motion over the dry substrate, condensation occurs at the liquid
wedge tip, while exactly the same quantity of liquid is evaporated
from the other part of the liquid meniscus so that the liquid mass is
conserved. The opposite mass transfer occurs at the receding
motion. The obtained wedge slope matches the Cox–Voinov classi-
cal solution far from the contact line (in the intermediate asymp-
totic region). A characteristic (Voinov) length of such a process
corresponds to a distance at which the mass transfer occurs. The
Voinov length is found as a function of the relative contribution
of diffusion and interfacial resistance effects defined by a dimen-
sionless parameter. In a case where the mass transfer is dominated
by the interfacial resistance an analytical solution is found.

Numerical estimations show however that for three common
fluids (ethanol, water and glycerol) under the ambient conditions,
the Voinov length is very small, leading to inconsistency of the
model with the continuum mechanics (in framework of which it
is however developed). It is not however excluded that the phase
change solves the singularity at the molecular scale, within a dis-
crete, e.g. molecular dynamics approach.

The behavior observed with the contact line singularity relax-
ation by the diffusion-controlled phase change is qualitatively sim-
ilar to previous results [24–26] obtained for the pure vapor
atmosphere. In the latter case, the phase change regularizes the
contact line singularity and the approach is consistent with the
continuum model for small contact angles [26].
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Appendix A. Governing equation for the vapor concentration
field

The tilde denoting dimensionless quantities is omitted in this
appendix. Here is the derivation of the equation connecting the
reduced vapor concentration c at the interface and the mass flux:
cðx0; y0 ¼ 0Þ ¼ �
Z 1

0
Gðx; x0ÞjðxÞdx; ðA:1Þ

where G is the Green function. The starting point for the formula
(A.1) derivation is Green’s second identityZ
D
½cð~rÞDrGð~r;~r0Þ � Gð~r;~r0ÞDcð~rÞ�d~r

¼
I
L
½cð~rÞrrGð~r;~r0Þ � Gð~r;~r0Þrcð~rÞ� 
~ndlr; ðA:2Þ

where L is the boundary of a domain D with the outward unit nor-
mal~n. The boundary consists of the x axis Lx and the line C, which is
a half-circle of infinite radius in the upper half-plane. The differen-
tiation in all differential operators is assumed hereafter to be per-
formed over the components of the vector~r rather than those of ~r0.

The equation for c is

Dc ¼ 0 ðA:3Þ
with the boundary conditions at~r 2 Lx,

@c
@y

¼ 0; x < 0

@c
@y

¼ �jðxÞ; x > 0
ðA:4Þ

and

cð~rÞ ¼ 0 ðA:5Þ

at ~r 2 C. The corresponding to this problem Green function
G ¼ Gð~r;~r0Þ satisfies the equation

DGð~r;~r0Þ ¼ dð~r �~r0Þ: ðA:6Þ
Its general solution in 2D is

Gð~r;~r0Þ ¼ 1
2p

ln j~r �~r0j þ Hð~r;~r0Þ; ðA:7Þ

where H satisfies the equation DH ¼ 0 in D so it is nonsingular
when ~r ¼ ~r0. It is determined from the boundary conditions for G.
Eq. (A.7) can be easily derived from the divergence theorem (22)
applied to Gðj~r �~r0jÞ inside a circle of radius R centered at ~r0.
Eq. (22) reduces to

1 ¼ 2pRdGðRÞ
dR

;

from which one obtains directly (A.7).
Let us solve Eq. (A.6) with the boundary condition

@G
@~n

����
~r2Lx

¼ 0: ðA:8Þ

Wemust find H for the domain Dwhich is the upper half plane. One
may use the mirror reflection method. One places another source at
the point ~r00 ¼ ðx0;�y0Þ that situates in the lower half plane (i.e. one
solves DHð~r; ~r00Þ ¼ dð~r � ~r00Þ), which permits to satisfy the condition
(A.8). One obtains

Gðx; x0; y; y0Þ ¼ 1
2p

ðln j~r �~r0j þ ln j~r � ~r00jÞ

	 1
4p

lnf½ðx� x0Þ2 þ ðy� y0Þ2�½ðx� x0Þ2

þ ðyþ y0Þ2�g: ðA:9Þ

Evidently, the condition DH ¼ 0 is satisfied in the upper half plane
because y0 > 0.

The substitution of Eqs. (A.3) and (A.6) into the lhs of (A.2)
results in the equality
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cð~r0Þ; ~r0 2 D
0; otherwise

( )
¼
Z
Lx

½cð~rÞrrGð~r;~r0Þ � Gð~r;~r0Þrcð~rÞ� 
~ndlr :

ðA:10Þ
Note that the contribution of the infinite half-circle C to the contour
integral is zero. Indeed, the first term vanishes because of the con-
dition (A.5). The second term is zero because the flux @c=@r vanishes
at r ! 1 faster than r�1, as demonstrated in Section 2.2.

To obtain (A.1), one needs to apply (A.10) at y0 ¼ 0, i.e. with ~r0

situating exactly at the D boundary. The boundary integral theory
suggests that there might be surprises there because of singularity
of the kernel rrGð~r;~r0Þ when~r ¼ ~r0. To check it, let us replace the
contour Lx by a contour �Lx [ Le shown in Fig. A.6, where Le is a half
circle of radius e centered at ~r0. The new domain De lies above the
contour and becomesD in the limit e ! 0. Let us apply Eq. (A.10) to
the domain De. Since ~r0 does not belong to it, the lhs is 0. Let us cal-
culate the integral in rhs over Le in the limit e! 0. It is evident that

rrGð~r;~r0Þ ¼
~r �~r0

pj~r �~r0j2
: ðA:11Þ

It is taken into account here that at the considered boundary ~r0 ¼ ~r00;
the above value is thus double of its counterpart that would be
obtained if the free space Green function were used. Note also that
the condition

@G
@~n

¼ 0 ðA:12Þ

holds at j~rj ! 1.
One can see now that in the limit e! 0Z

Le
cð~rÞrrGð~r;~r0Þ 
~ndlr ¼ cð~r0Þ

Z p

0

�e
pe2 ed/ ¼ �cð~r0Þ; ðA:13Þ

where / is the polar angle because dlr ¼ ed/ and ð~r �~r0Þ 
~n ¼ �e.
Note that, if the Green function for the infinite space were used like
in the boundary integral theory, the factor 1=2 would appear near c.

It is easy to check that the contribution of the second term of Eq.
(A.10) (of the integral over Le) is Oðe ln eÞ ! 0. When e! 0, the
contour �Lx tends to Lx and one obtains finally that the first option
of Eq. (A.10) is valid also when ~r0 2 Lx,

cð~r0Þ ¼
Z
Lx

½cð~rÞrrGð~r;~r0Þ � Gð~r;~r0Þrcð~rÞ� 
~ndlr

¼
Z 1

�1
Gðx; y ¼ 0; x0; y0 ¼ 0Þdc

dy

����
y¼0

dx: ðA:14Þ

The latter equality is valid because of the condition (A.8). Note that
the integral should be taken in Cauchy’s Principal Value sense (since
it is a limit of the integral over the �Lx contour). By using the condi-
tions (A.4), Eq. (A.14) reduces to (A.1). The function

Gðx; y ¼ 0; x0; y0 ¼ 0Þ ¼ 1
p

ln jx� x0j ðA:15Þ

obtained with the Green function (A.9) can be used in Eq. (35).
Fig. A.6. A contour sketch.
Appendix B. Solution method for the integro-differential
equation

The tilde denoting dimensionless quantities is omitted in this
appendix. Eq. (38) is solved numerically. The unknown function
j1ðxÞ is interpolated in the domain ½0; Lc�, and is assumed to follow
a power law in ½Lc;1�, with a cut-off Lc � 1. The interpolation in
the domain ½0; Lc� is performed by splitting this interval into N
subintervals of length ki (i ¼ 1 to N), and by using the interpolation
functions UiðxÞ ¼ Hðxi � ki=2Þ � Hðxi þ ki=2Þ, with HðxÞ the Heav-
iside function and xi the center of the ith subinterval (see
Fig. B.7). The approximate expression of j1ðxÞ then reads

j1ðxÞ ¼
XN
i¼1

jiUiðxÞ þ Hðx� LcÞax�p: ðB:1Þ

The hypothesis about the power law behavior at large x is based on
the preliminary numerical studies with a ¼ 0 and increasingly large
Lc . They suggested the power law behavior but converged poorly.

One needs to determine ðN þ 2Þ unknowns: ji for i ¼ 1 . . .N;a
and p. N equations are provided by writing Eq. (38) at the nodes
x ¼ xi, one more by the continuity of solution at x ¼ Lc , and the last
by the mass balance (24).

The integrals in Eq. (38) are expressed using relation (B.1),Z 1

0

j1ðx0Þ
xi � x0

dx0 ¼
XN
m¼1

jm

Z xmþkm=2

xm�km=2

dx0

xi � x0
þ a

Z 1

Lc

dx0

x0pðxi � x0Þ : ðB:2Þ

Note that a vanishing for i ¼ m denominator under the first integral
in the r.h.s. is not a problem: the integral has a zero Cauchy princi-
pal value. Finally, the integral readsZ 1

0

j1ðx0Þ
xi � x0

dx0 ¼
XN
m¼1

jm ln
xm � xi � km=2
xm � xi þ km=2

����
����

� ax�p
i Beta

xi
Lc

;p;0
� �

; ðB:3Þ

with Betaðz; a; bÞ ¼ R z
0 ta�1ð1� tÞb�1dt the incomplete Beta function.

The second integral of Eq. (38) readsZ xi

0
j1ðx0Þdx0 ¼

Xi�1

m¼1

jmkm þ ji
ki
2
: ðB:4Þ

The interfacial resistance term in (38) is discretized with the first
order finite difference scheme

�Rx3
dj1
dx

� �
i
’ �Rx3i

jiþ1 � ji
xiþ1 � xi

; ðB:5Þ

with xNþ1 ¼ Lc and jNþ1 ¼ aL�p
c . Eq. (38) is discretized using relations

(B.3)–(B.5), to get N equations

x3i
p
XN
m¼1

jm ln
xm � xi � km=2
xm � xi þ km=2

����
�����Rx3i

jiþ1 � ji
xiþ1 � xi

þ
Xi�1

m¼1

jmkm þ ji
ki
2

¼ �xi þ a
x�pþ3
i

p
Beta

xi
Lc

;p;0
� �

: ðB:6Þ
Fig. B.7. Mesh and interpolation function UiðxÞ.



Fig. B.8. Convergence test of the numerical algorithm. Exponent p (top) and
prefactor a (bottom) as functions of the cut-off Lc for three values ofR. Dashed lines
represent the asymptotes reached at large Lc .
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The continuity with the power law at large x could be insured by
simply writing ðN þ 1Þ-th equation as jN ¼ ax�p

N . However, to
improve the algorithm convergence, we use instead a weaker con-
dition imposed on the last nf node values. Minimizing the function

SðaÞ ¼PN
m¼N�nf

ðax�p
m � jmÞ2 gives the ðN þ 1Þ-th algebraic equation

XN
m¼N�nf

jmx
�p
m ¼ a

XN
m¼N�nf

x�2p
m : ðB:7Þ

Finally, the ðN þ 2Þ-th algebraic equation is obtained by discretizing
the liquid mass balance (24) that reduces to

R1
0 j1ðxÞdx ¼ 0,

XN
m¼1

jmkm ¼ a
L1�p
c

1� p
: ðB:8Þ

The latter expression assumes p– 1.
To test the validity of the numerical approach, the convergence

of the prefactor a and the exponent p with respect to the cut-off Lc
have been checked, see Fig. B.8. Convergence is attained for
Lc J300 for R ¼ 0 and 3, and Lc J104 for R ¼ 30. Fig. B.8 shows
p ¼ 1:5 which corresponds to the power law behavior at large x
in Fig. 3b.

Appendix C. Numerical procedure to get K1 from j1

The tilde denoting dimensionless quantities is omitted in this
appendix. Computing the curvature K1ðxiÞ from Eq. (36) requires
numerical evaluation of an integral (A.15) which involves the
Green function Gðxi; x0Þ. Using the discretization of j1 given by Eq.
(B.1), one getsZ 1

0
Gðxi; x0Þj1ðx0Þdx0 ’

XN
m¼1

jm

Z xmþkm=2

xm�km=2
Gðxi; x0Þdx0

þ a
Z 1

Lc

Gðxi; x0Þ
x0p

dx0: ðC:1Þ

A Cauchy principal value can be assigned to the first integral of the
r.h.s. of Eq. (C.1) when m ¼ i. Both integrals can be computed
analytically,Z xmþkm=2

xm�km=2
Gðxi;x0Þdx0 ¼ 1

p
xm�xiþkm

2

� �
ln xm�xiþkm

2

����
����




� xm�xi�km
2

� �
ln xm�xi�km

2

����
�����km

�
; ðC:2Þ
Z 1

Lc

Gðxi;x0Þ
x0p

dx0 ¼ 1
pðp�1Þ L1�p

c lnðLc�xiÞþx1�p
i Beta

xi
Lc
;p�1;0

� �
 �
:

ðC:3Þ
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[26] V. Janeček, B. Andreotti, D. Pražák, T. Bárta, V.S. Nikolayev, Moving contact line
of a volatile fluid, Phys. Rev. E 88 (2013) 060404.

[27] O. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11 (5) (1976) 714–721.
[28] R.G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1.

Viscous flow, J. Fluid Mech. 168 (1986) 169–194.
[29] G. Barnes, The effects of monolayers on the evaporation of liquids, Adv. Colloid

Interface Sci. 25 (1986) 89–200.
[30] V.P. Carey, Liquid–Vapor Phase Change Phenomena, Hemisphere, Washington,

DC, 1992.
[31] Y. Marcus, The properties of solvents, Wiley Series in Solution Chemistry, vol.

1, Wiley, Baffins Lane, 1998.
[32] E.L. Cussler, Diffusion, in: Mass Transfer in Fluid Systems, Cambridge

University Press, Cambridge, 1997.

http://refhub.elsevier.com/S0021-9797(15)30157-0/h0005
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0005
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0010
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0010
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0020
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0020
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0025
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0025
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0030
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0030
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0035
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0035
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0040
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0040
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0045
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0045
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0050
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0050
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0055
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0055
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0055
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0060
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0060
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0065
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0065
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0070
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0070
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0075
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0075
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0080
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0080
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0085
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0085
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0085
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0090
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0090
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0095
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0095
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0095
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0100
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0100
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0105
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0105
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0110
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0110
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0115
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0115
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0120
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0120
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0125
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0125
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0130
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0130
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0135
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0140
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0140
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0145
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0145
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0150
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0150
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0150
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0155
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0155
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0155
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0160
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0160
http://refhub.elsevier.com/S0021-9797(15)30157-0/h0160

	Can hydrodynamic contact line paradox be solv
	1 Introduction
	2 Problem statement
	2.1 Governing equations
	2.1.1 Liquid phase
	2.1.2 Gas phase and mass flux
	2.1.3 Kelvin length and dimensionless equations

	2.2 Mass conservation issue
	2.3 First order approximation

	3 Asymptotic solution in the intermediate reg
	4 Behavior in micro- and intermediate regions
	4.1 Governing equations
	4.2 Purely kinetic regime \([$]{\cal{R}} \to 
	4.3 Curvature and mass flux behavior

	5 Voinov length
	6 Numerical estimations
	7 Conclusion
	Acknowledgements
	Appendix A Governing equation for the vapor c
	Appendix B Solution method for the integro-di
	Appendix C Numerical procedure to get [$]{{\c
	References


