
Journal of Colloid and Interface Science 251, 109–119 (2002)
doi:10.1006/jcis.2002.8393

Sedimentation of Concentrated Spherical Particles
with a Charge-Regulated Surface

Eric Lee, Tsai-Shih Tong, Ming-Hui Chih, and Jyh-Ping Hsu1

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China

Received January 14, 2002; accepted March 25, 2002; published online June 3, 2002

The sedimentation of a concentrated colloidal dispersion is ex-
amined for the case of an arbitrary double-layer thickness. Here, a
general mixed-type condition on particle surface is assumed, and
the classic models, which assume constant surface properties, can be
recovered as the special cases of the present analysis. In particular,
the behavior of biological cells, which carry dissociable functional
groups on their surfaces, and particles, which are capable of ex-
changing ions with the surrounding medium, can be simulated by
the present model. The mixed-type boundary condition leads to sev-
eral interesting results in both sedimentation velocity and sedimen-
tation potential as double-layer thickness and the concentration of
particles vary. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Gravitational sedimentation of charged colloidal particles is a
classic problem, which, together with electrophoresis and elec-
troosmotic flow, consists of the so-called electrokinetic phenom-
ena. Here, the charged condition on a particle surface plays
a significant role in the determination of its behavior. Von
Smoluchowski (1), for example, concluded that if the electri-
cal double layer surrounding a particle is infinitely thin, then
its sedimentation velocity is slower than that of an uncharged
particle by a term proportional to the square of surface potential.
The problem involves an arbitrary thick double layer discussed
by Booth (2, 3), Overbeek (4), and Saville (5). The sedimenta-
tion of charged particles in an infinite medium was investigated
by Ohshima et al. (6). They showed that an approximate ana-
lytical expression for both the sedimentation potential and the
sedimentation velocity can be derived if the surface potential is
low and the double layer is thin. A numerical scheme is nec-
essary, however, for the case of arbitrary surface potential and
double-layer thickness. Keh and Ding (7) considered the sed-
imentation of a concentrated dispersion of spherical particles
under the condition of low surface potential. To examine the ef-
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fect of the presence of a boundary on sedimentation, Pujar and
Zydney (8) considered a charged particle in a spherical cavity
under the conditions of small Peclet number and low surface po-
tential. The cavity was found to have the effect of increasing the
magnitude of the excess force if the double layer surrounding
the particle is thin, but the reverse is true if the double layer is
thick.

Previous analyses are almost always based on either constant
surface potential or constant surface charge. These conditions,
although making the mathematical treatment simpler, represent
only limiting or idealized cases, which can be unrealistic in
practice (9). In the case of biocolloids or particles covered by an
artificial membrane, for example, the charged conditions on the
particle surface are governed by the degree of dissociation of
the functional groups as a response to the variation in the nearby
environment (9–16). Here, the constant surface potential and the
constant surface charge models correspond, respectively, to the
cases when the dissociation reactions of the functional groups
are infinitely fast and infinitely slow. Ding and Keh (17) analyzed
the problem of concentrated spherical dispersion for the case of
arbitrary double-layer thickness. Although a charge-regulation
condition is adopted, it is considered as a perturbed term rather
than as an actual condition on the particle surface.

In the present study, the sedimentation of monodispersed
spherical colloids is discussed. The surface charge of a parti-
cle arises from the dissociation of the functional groups on its
surface. This leads to a mixed-type boundary condition on the
particle surface, which is a generalization of the conventional
constant surface potential and constant surface-charged density
models (18). Furthermore, both the concentration of the dis-
persed phase and the thickness of the double layer surrounding
a particle can be arbitrary. The latter implies that the interac-
tion between neighboring double layers needs to be taken into
account.

THEORY

Let us consider monodispersed spherical particles of radius
a in a z1 : z2 electrolyte solution, z1 and z2 being the valences
of cations and anions, respectively. The concentration of the
dispersed phase may be appreciable so that the interaction
9 0021-9797/02 $35.00
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FIG. 1. Schematic representation of the cell model. A representative particle
of radius a is enclosed by a concentric liquid spherical shell of radius b. U is the
sedimentation velocity of the particle, g is gravity, and E is the induced electric
field.

between adjacent particles needs to be considered. Suppose that
the surface of a particle contains dissociable functional group
AH, which is capable of undergoing the dissociation reaction

AH ⇔ A− + H+. [1]

Note that this yields a negatively charged surface. Let Ns be
the concentration of AH. As illustrated in Fig. 1, the cell model
of Kuwabara (19), where the system under consideration com-
prises spherical particles each enclosed by a concentric spherical
liquid shell of radius b, is applied. The volume fraction of the
dispersed phase can be measured by the ratio λ = (a/b)3. Due to
the influence of gravity g, the particles in the dispersion move in
the −z direction, and an electric field E that is in the z direction
is induced. The spherical coordinates (r, θ, ϕ) with the origin
located at the center of a representative particle are adopted.

At steady state, the conservation of ionic species j in the liquid
phase leads to

∇ •
[

D j

[
∇n j + z j en j

kBT
∇φ

]
− n j v

]
= 0, j = 1, 2, [2]

where ∇ is the gradient operator; D j , n j , and z j are respectively
the diffusivity, the number concentration, and the valence of
ionic species j ; e, kB, and T denote respectively the elementary
charge, the Boltzmann constant, and the absolute temperature;
and φ and v are respectively the electrical potential and the ve-
locity. If we let n10 and n20 be the equilibrium concentrations of

cations and anions respectively, then the electroneutrality in the
bulk liquid phase requires that n20 = (n10/α) with α = −z2/z1.
T AL.

Suppose that the spatial variation of the electrical potential
at equilibrium can be described by the Poisson–Boltzmann
equation

∇2φ = −ρ

ε
= −

2∑
j=1

z j en j

ε
, [3]

where ε is the permittivty of the liquid phase, and ρ is the space
charge density.

In the creeping flow regime the flow field can be described by

∇ • v = 0 [4]

η∇2v − ∇ p − ρ∇φ = 0, [5]

where p and η denote respectively the pressure and the viscosity
of liquid phase. Here we assume that the latter is incompressible
and has constant physical properties.

Following the treatment of O’Brien and White (20), the elec-
trical potential φ is decomposed into two terms, namely, the
electrical potential that would exist in the absence of the in-
duced electric field (or the equilibrium electrical potential), φ1,
and the electrical potential arising from the induced electric field,
φ2; that is, φ = φ1 + φ2. Suppose that the spatial distribution of
ionic species j can be described by (20)

n j = n j0 exp

(
− z j e(φ1 + φ2 + g j )

kBT

)
, j = 1, 2, [6]

where the perturbed function g j simulates the effect of flow field
on the spatial distribution of ion concentration. If the induced
electric field is weak, then both φ2 and g j are small compared
to φ1 (20). In this case Eq. [6] can be approximated by

n∗
j = exp(−z jφ

∗
1 )[1 − z j (φ

∗
2 + g∗

j )], j = 1, 2, [7]

where n∗
j = n j/n j0, φ∗

j = φ j/(kBT/e), and g∗
j = g j/(kBT/e).

For a simpler mathematical treatment the governing equations
are rewritten in scaled forms. Here, particle radius a is chosen
as the scale factor for length, the velocity of a particle predicted
by the Smoluchowski theory when an electric field of strength
[(kBT /e)/a] is applied, UE = [ε(kBT /e)2/ηa] is chosen as the
scaled factor for velocity, and (kBT /e) is adopted as the scaled
factor for electrical potential. It can be shown (21) that the fol-
lowing equations need to be solved simultaneously (see also the
Appendix):

∇2φ∗
1 = − (κa)2

(1 + α)
[exp(−φ∗

1 ) − exp(αφ∗
1 )] [8]

[
L − (κa)2

1 + α
[exp(−φ∗

1 ) + α exp(αφ∗
1 )]

]
�2

2

= (κa)

1 + α
[G1 exp(−φ∗

1 ) + αG2 exp(αφ∗
1 )] [9]
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LG1 − dφ∗
1

dr∗
dG1

dr∗ = Pe1v
∗
r

dφ∗
1

dr∗ [10]

LG2 + α
dφ∗

1

dr∗
dG2

dr∗ = Pe2v
∗
r

dφ∗
1

dr∗ [11]

D4� = − (κa)2

1 + α

[
(exp(−φ∗

1 )G1 + α exp(αφ∗
1 )G2)

dφ∗
1

dr∗

]
. [12]

In these expressions Pe j = ε(z j e/kBT )2/ηD j , j = 1, 2, is the
electric Peclet number for ion species j , and G1(r ) and G2(r )
are respectively the radial part of g∗

1 and that of g∗
2 . The recip-

rocal Debye length, κ , and the operators L and D4 are defined
by

κ =
[

2∑
j=1

n j0(ez j )
2/εkBT

]1/2

[13]

L ≡ d2

dr∗2
+ 2

r∗
d

dr∗ − 2

r∗2
[14]

D4 = (D2)2 =
(

d2

dr∗2
− 2

r∗2

)2

. [15]

The boundary conditions associated with Eqs. [8]–[12] are

dφ∗
1

dr∗ = A

1 + B exp(−φ∗
1 )

, r∗ = 1 [16]

dφ∗
1

dr∗ = 0, r∗ = b/a [17]

d�2

dr∗ = 0, r∗ = 1 [18]

d�2

dr∗ = −E∗
z , r∗ = b/a [19]

dG j

dr∗ = 0, r∗ = 1, j = 1, 2 [20]

G j = −�2, r∗ = b/a, j = 1, 2 [21]

� = −1

2
U ∗r∗2 and

d�

dr∗ = −U ∗r∗, r∗ = 1 [22]

� = 0 and � =
[

1

r∗
d2�

dr∗2
− 2

r∗3

]
� = 0, r∗ = b/a. [23]

In these expressions, E∗
z = Eza/(kBT /e), and U ∗ = U/UE , Ez

and U being respectively the z component of the electrical field
and the terminal velocity of a particle. The origin of Eq. [16]
is elaborated in the Appendix. Equation [17] implies that the
unit cell as a whole is electrically neutral. Equation [18] is
a Neumann-type condition (22), which implies that the parti-
cle is nonconductive, and its surface is impermeable to ions.
Equation [19] denotes the applied electric field. Equation [20]
suggests the surface of a particle is impenetrable to liquid phase.

Equation [21] implies that there is no net ionic flux across the
virtual surface, which leads to gi + φ2 = 0. Equations [22] and
RATED SPHERICAL PARTICLES 111

[23] describe the condition of the flow field. At steady state, the
magnitude of the velocity of a particle being U at the virtual sur-
face (r = b) remains constant and satisfies Kuwabara’s model
of zero vorticity.

The scaled sedimentation potential, E∗/U ∗, can be evaluated
based on the fact that the sedimentation of particles generates
no net current. Employing this condition on the horizontal plane
θ = π/2 yields (23)

〈i〉 = 0 = 2π

∫ b

a
r · iθ dr

∣∣∣∣
θ=π/2

= 2π

∫ b

a
r ·

(
2∑

j=1

z j en jv jθ

)
dr

∣∣∣∣∣
θ=π/2

, [24]

where iθ and v jθ are the θ component of the electric current i
and that of the flow velocity of the j th ionic species, v j , defined
respectively as

i =
2∑

j=1

z j en j v j [25]

and

v j = v − D j

(
z j e

kBT
∇φ + ∇n j

n j

)
. [26]

It can be shown that (23)

i = ε2

ηa3

(
kBT

e

)3 (κa)2

(1 + α)

{
[exp(−φ∗

1 ) + exp(αφ∗
1 )]v∗

+
[

1

Pe1
exp(−φ∗

1 )∇∗g∗
1 + α

Pe2
exp(αφ∗

1 )∇∗g∗
2

]}
[27]

iθ = ε2

ηa3

(
kBT

e

)3 (κa)2

(1 + α)

{
[exp(−φ∗

1 ) + exp(αφ∗
1 )]

d�

dr∗

−
[

1

Pe1
exp(−φ∗

1 )G∗
1 + α

Pe2
exp(αφ∗

1 )G∗
1

]}
sin θ

r∗ . [28]

This expression can be rewritten as

iθ = Ia Iθ (r∗)
sin θ

r∗ , [29]

where

Ia = ε2

ηa3

(
kBT

z1e

)3 (κa)2

(1 + α)
, [30]

Iθ (r∗) =
{

[exp(−φ∗
1 ) + exp(αφ∗

1 )]
d�

dr∗[
1 ∗ 1 ∗

]}

−

Pe1
exp(−φ1 )G1 + α

Pe2
exp(αφ1 )G2 . [31]
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Substituting Eq. [28] into Eq. [24], we obtain

〈i〉 = 0 = 2πa2 Ia

∫ b/a

1
Iθ (r∗) dr∗

. [32]

Equation [31] suggests that Iθ (r∗) comprises the current due to
the convective motion of the liquid phase, Iθ,c, and that due to
the diffusion of ionic species, Iθ,d, where

Iθ,c = [exp(−φ∗
1 ) − exp(αφ∗

1 )]
d�

dr∗ [33]

Iθ,d = −
[

1

Pe1
exp(−φ∗

1 )G1 + α

Pe2
exp(αφ∗

1 )G2

]
. [34]

The phenomenon under consideration can be decomposed
into two problems (20, 21). In the first problem a representative
particle moves at a constant velocity in the absence of the induced
electric field. In the second problem the representative particle
remains fixed in the prescene of the induced electric field. It can
be shown that 〈i〉1 = δU ∗ and 〈i〉2 = βE∗, where 〈i〉1 and 〈i〉2

are the net currents across the plane θ = π/2 in problems 1 and
2, respectively. Since the net current vanishes on θ = π/2, we
have E∗/U ∗ = −δ/β. Let FEz and FDz be the electric force and
the hydrodynamic forces acting on the representative particle,
and Fg be the gravitational force. Then (23)

FEz = 8

3
πε

(
kBT

e

)2 (
r∗ dφ∗

1

dr∗ �2

)
r∗=1

= 8

3
πε

(
kBT

e

)2

F∗
Ez [35]

FDz = 4

3
πε

(
kBT

e

)2(
r∗4 ∂

∂r∗

(
D2�

r∗2

))
r∗=1

+ 4

3
πε

(
kBT

e

)2

× (κa)2

(1 + α)
[r∗2[exp(−φ∗

1 ) − exp(αφ∗
1 )]�2]r∗=1

= 4

3
πε

(
kBT

e

)2

(F∗
Dhz + F∗

Dez) [36]

Fg = 4

3
πa3(ρp − ρ f )g. [37]

In these expressions

F∗
Ez =

(
r∗ dφ∗

1

dr∗ �2

)
r∗=1

[38]

F∗
Dhz =

(
r∗4 ∂

∂r∗

(
D2�

r∗2

))
r∗=1

[39]
F∗
Dez = (κa)2

(1 + α)
[r∗2[exp(−φ∗

1 ) − exp(αφ∗
1 )]�2]r∗=1. [40]
AL.

The net force acting on a particle vanishes at steady state, that is,

4

3
πε

kBT

e
( f1U ∗ + f2 E∗) + 4

3
πa3(ρp − ρf)g = 0, [41]

where f1 is the summation of forces, 2F∗
Ez , F∗

Dhz , and F∗
Dez ,

associated with problem 1, and f2 is that associated with problem
2. Equation [41] gives

U = −a2(ρp − ρf)g

η

(
f1 − δ

β
f2

)−1

. [42]

The magnitude of the sedimentation velocity of an isolated
uncharged sphere of radius a, U0, is

U0 = −2

9

a2(ρp − ρf)g

η
. [43]

Combining Eqs. [42] and [43], we have

U

U0
= 9

2

(
f1 − δ

β
f2

)−1

. [44]

RESULTS AND DISCUSSION

The effects of several key parameters on the behavior of the
phenomenon under consideration are examined through numer-
ical simulation. These include the parameter that characterizes
the concentration of the dissociable functional groups on particle
surface, A, the parameter that measures the degree of dissocia-
tion of the functional groups, B, and the volume fraction of the
particle.

Effect of A

Figure 2 illustrates the variation of the scaled surface potential
φ∗

1S as a function of κa at various A (=e2 Nsa/εkBT ). This figure
reveals that for a fixed κa, the larger the value of A, the higher
the value of |φ∗

1S|. This is because the larger the value of A, the
higher the concentration of the dissociable functional groups on
the particle surface Ns, and, therefore, the higher the surface
charge density. Figure 2 also suggests that for a fixed A, |φ∗

1S|
decreases with the increase in κa. This is because the larger the
value of κa, the thinner the double layer, which implies the less
the available space for mobile ions. This leads to a less degree
of dissociation of functional groups.

Figure 3 shows the variation of the scaled sedimentation ve-
locity, U/U0, as a function ofκa at various A. The corresponding
variation in the force ratio f2/ f1, f1 and f2 being respectively
the total forces in problems 1 and 2, is illustrated in Fig. 4, and
that in the scaled sedimentation potential E∗/U ∗ is presented in
Fig. 5. It is interesting to note that U/U0 exhibits both a local
minimum and a local maximum as κa varies. This is due to the

complicated behavior of the electric and hydrodynamic forces
exerted on a particle and that of the sedimentation potential.
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1S as a function of κa at

U/U0 can be expressed as

U 9
[ (

f E∗ )]−1
= f 1 + 2
. [44] ness of the double layer. The presence of the double layer has the
U0 2
1

f1 U ∗

κa

U
/U

0

10-2 10-1 100 101

0.221

0.2215

0.222

0.2225

A=1000

500

300

200

100

10

κa

U
/U

0

10-2 10-1 100 10
1

0.22176

0.22184

0.22192

A=100

10

effect of retarding the movement of the particle. If κa is small,
IG. 3. Variation of scaled sedimentation velocity U/U0 as a function of κa a
son–Boltzmann equation.
arious A for the case of B = 10. Key: λ = (0.5)3, and Pe1 = Pe2 = 0.01.

Both the electric force and the hydrodynamic force experienced
by a particle depend on both its surface potential and the thick-
t various A for the case of Fig. 2. Dashed lines are results based on the linearized
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FIG. 4. Variation of force ratio f2/ f1 as a function of κa for the case of
Fig. 2.

the double layer is thick, and the interaction between adjacent
double layers leads to a large f1. On the other hand, if κa is
large, the double layer is thin, the absolute rate of variation in
electrical potential near particle surface is large, which leads to
a large f2. However, as suggested by Fig. 2, a large κa leads to a
low |φ∗

1S|, which yields a low degree of dissociation of functional
groups, and therefore, a slow sedimentation velocity. Figure 3

also suggests that U/U0 approaches a constant value for both

κa
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FIG. 6. Variation of scaled surface potential φ∗
1S as a function of κa at

various B for the case A = 100. Key: λ = (0.5)3, and Pe1 = Pe2 = 0.01.

κa → 0 and κa → ∞; the limiting values are independent of
A. The former can be explained by the result shown in Fig. 4.
As κa → 0, the double layer surrounding a particle becomes
infinitely thick, and the overlapping between adjacent double
layers makes the movement of a particle difficult. In this case,
the hydrodynamic drag force, which has the effect of reducing
at various A for the case B = 10. Dashed lines are results based on the linearized
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becomes insignificant. The latter arises from the fact that the
gradient of electrical potential becomes negligible as the double
layer becomes infinitely thin. Figure 5 reveals that if κa → 0,
E∗/U ∗ approaches a constant value, which is independent of A.
This is because if κa → 0, the double layer is infinitely thick,
and in this case the current is mainly contributed by the con-
vective motion of ions (21), which is not directly related to A.
Figure 5 suggests that for a fixed κa, |E∗/U ∗| increases with
the increase in A. Since the larger the value of A, the higher the
|φ∗

1S|, as discussed for Fig. 2, this is consistent with the result
of Lee et al. (21), in which the sedimentation potential of a par-
ticle is found to be linearly dependent on its surface potential.
Figure 5 indicates that if A is small, |E∗/U ∗| decreases mono-
tonically with the increase in κa. However, if A is sufficiently
large, |E∗/U ∗| may have a local maximum as κa varies. The
calculation of |E∗/U ∗| is based on the fact that the net current
passing the plane θ = π/2 vanishes. According to Eq. [27], the
current comprises two elements, namely, the convective motion
and the diffusive motion of ions. As pointed out by Lee et al.
(21), for the case of low electrical potential, the competition
between these two elements leads to a local minimum in sed-
imentation potential as κa varies. For fixed surface potential,
the sedimentation potential increases with κa due to the cur-
rent arising from the diffusive element increasing with κa. The
local maximum of |E∗/U ∗| in Fig. 5 can be explained by the
dependence of the sedimentation potential on both the surface
potential and the thickness of the double layer.

For comparison, the values of U/U0 and E∗/U ∗ under the
Debye–Hückel condition, that is, the nonlinear function of φ∗

1 in
Eq. [7] is linearized, are also presented in Figs. 3 and 5. These
figures suggest that using the linearized Poisson–Boltzmann
equation is inappropriate if A is large.

The variation of scaled surface potential φ∗
1S as a function of

κa at various B (=[H+]0/Ka) is shown in Fig. 6. As can be
seen from this figure, for a fixed κa the smaller the value of
B, the higher the value of |φ∗

1S|. This is because the larger the
value of B, the higher the bulk concentration of H+ (or the lower
the pH), which yields a higher surface concentration of H+ as
suggested by Eq. [A2], and a lower [A−] according to Eq. [1],
and, therefore, a lower surface charge density.

Effect of B

Figure 7 shows the variation of the scaled sedimentation ve-
locity, U/U0, as a function of κa at various B. This figure re-
veals that U/U0 has a local minimum and a local maximum as
κa varies. This can be explained by a reasoning similar to that
presented in the discussion of Fig. 3.

The variation of the scaled sedimentation potential, E∗/U ∗, as
a function of κa at various B is illustrated in Fig. 8. This figures
reveals that if B is small, E∗/U ∗ has a local minimum as κa
varies. However, if B is large, E∗/U ∗ increases monotonically

with κa. This can be explained by a reasoning similar to that
presented in the discussion of Fig. 5.
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FIG. 9. Variation of scaled sedimentation velocity U/U0 (a) and scaled
sedimentation potential E∗/U∗ (b) as a function of λ at various A for the case
κa = 1.0, B = 10, and Pe1 = Pe2 = 0.01.

Effect of Volume Fraction

Figure 9 shows the variation of the scaled sedimentation ve-
locity U/U0 and the scaled sedimentation potential E∗/U ∗ as
a function of the concentration of particle λ at various A for the
case of a smaller κa, and that for a larger κa is illustrated in
Fig. 10a. Figures 9a and 10a reveal that U/U0 decreases with
the increase in λ. This is mainly due to the fact that the larger
the concentration of particles, the more serious the interaction
between neighboring particles. Figures 9a and 10a also indi-
cate that the effect of κa on U/U0 is much less significant than
that of λ. As can be seen from Fig. 10b, |E∗/U ∗| increases
with the increase in λ. According to its definition, the scaled

sedimentation potential can be expressed as the ratio 〈i〉1/〈i〉2,
〈i〉1 and 〈i〉2 being the net currents across the plane θ = π/2 in
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problems 1 and 2, respectively. The former is proportional to
the sedimentation velocity, and the latter is proportional to the
induced electric strength. The net current comprises that con-
tributed by the ions inside the double layer and that contributed
by the ions outside the double layer. If κa is large, the latter
dominates. As λ increases, since the amount of electrolyte out-
side the double layer decreases, the absolute current decreases
accordingly. Also, this effect is more significant in problem 2
than that in problem 1, and therefore, |E∗/U ∗| increases with
the increase in λ. In Fig. 9b, κa = 1, which implies that the dou-
ble layer is much thicker than that in Fig. 10b. In this case, the
contribution of ions inside double layer to net current becomes
more significant than that in Fig. 10b. If A is small, the result
shown in Fig. 9b is similar to that shown in Fig. 10b. However,
if A is large, |E∗/U ∗| has a local maximum as λ varies. This can
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FIG. 10. Variation of scaled sedimentation velocity U/U0 (a) and scaled

sedimentation potential E∗/U∗ (b) as a function of λ at various A for the case
κa = 10, B = 10, and Pe1 = Pe2 = 0.01.
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be explained as follows. As pointed above, the amount of elec-
trolyte outside the double layer decreases with the increase in λ,
and the absolute current decreases. However, as λ increases, the
overlapping between adjacent double layers is significant, and
the contribution to the current by the electrolyte outside the dou-
ble layer becomes unimportant. The current inside the double
layer is determined mainly by the surface potential of a particle.
As shown in Fig. 2, the smaller the value of A, the lower the
absolute surface potential, and therefore, the less significant its
effect on the current. On the other hand, if A is large, the abso-
lute surface potential becomes high. In this case, the larger the λ,
the greater the gradient of electrical potential, which leads to a
larger absolute current contributed by counterions, as illustrated
in Fig. 11, where

I 2
θ,d1 = −Pe1 exp(−φ∗

1 )G1 [45]

is the current arising from the diffusive motion of cations in
problem 2. Again, this effect for the case of problem 2 is more
significant than that for the case of problem 1.

CONCLUSION

The sedimentation of concentrated, charge-regulated spher-
ical particles is analyzed theoretically. We show that, due to
the complicated behaviors of the electric and hydrodynamic
forces exerted on a particle, the sedimentation velocity of a
particle exhibits both a local minimum and a local maximum
as the thickness of the double layer κa varies. The sedimenta-
tion velocity approaches a constant value for both κa → 0 and
κa → ∞; the limiting values are independent of the concentra-
tion of the dissociable functional groups on the particle surface,

Ns. As κa → 0, the sedimentation potential approaches a con-
stant value, which is also independent of Ns. If Ns is small, the
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absolute sedimentation potential decreases monotonically with
κa. However, if Ns is large, it may have a local maximum as
κa varies. If pH is high, the sedimentation potential has a lo-
cal minimum as κa varies. However, if pH is low, it increases
monotonically with κa. The sedimentation velocity decreases
with the concentration of particle λ. If Ns is small, the absolute
sedimentation potential increases with the increase in λ, but if
Ns is large, it exhibits a local maximum as λ varies.

APPENDIX

The equilibrium constant of the dissociation reaction ex-
pressed in Eq. [1] can be expressed as

Ka = [A−][H+]s

[AH]
, [A1]

where a symbol enclosed in square brackets represents the con-
centration, [H+]s is the concentration of H+ at the particle sur-
face. We assume that the spatial distribution of [H+] can be
described by the Boltzmann distribution

[H+]s = [H+]0 exp(−eφ1/kBT ), [A2]

where [H+]0 is the equilibrium value of [H+]. The concentration
of the functional groups on particle surface, Ns, can be evaluated
by

Ns = [A−] + [AH] . [A3]

Equations [A1]–[A3] lead to

[A−] = Ns

1 + ([H+]0/Ka) exp(−eφ1/kBT )
. [A4]

The charge density on particle surface, σ , can be expressed by

σ = −e[A−]. [A5]

Substituting Eq. [A3] into Eq. [A4], we obtain

σ = − eNs

1 + ([H+]0/Ka) exp(−eφ1/kBT )
. [A6]

Suppose that the relative permittivity of the liquid phase is much
larger than that of the dispersed phase. Then

σ = −ε

(
dφ1

dr

)
r=a

. [A7]

Equations [A6] and [A7] yield

dφ∗
1

dr∗ = e2 Nsa/εkBT

1 + ([H+]0/Ka) exp(−φ∗
1 )
= A

1 + B exp(−φ∗
1 )

, r∗ = 1, [A8]
AL.

where r∗ = r/a, φ∗
1 = φ1/(kBT/e), A = e2 Nsa/εkBT , and

B = [H+]0/Ka . Note that if Ka → ∞, B → 0, and Eq. [A8] be-
comes

dφ∗
1

dr∗ = A, r∗ = 1, [A9]

which corresponds to a constant charge boundary condition. On
the other hand, if Ka → 0, B → ∞, and Eq. [A8] reduces to

dφ∗
1

dr∗ = 0, r∗ = 1, [A10]

which implies that φ∗
1 is constant.

We introduce the stream function representation to eliminate
the pressure term in Eq. [5], and the result is

iφ E4ψ = − 1

η
sin θ∇ × (ρ∇(φ1 + φ2)), [A11]

where ψ is the stream function, iφ is the unit vector in the φ

direction, E4 = E2 E2 with

E2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. [A12]

In the discussion below, scaled variables, which are repre-
sented by a symbol with an asterisk, are used. The applied elec-
tric field is assumed to be weak so that the relevant governing
equations can be linearized. Suppose that the scaled equilibrium
potential, φ∗

1 , can be described by the scaled form of Eq. [3]
with the scaled number concentrations of ions n∗

1 = exp(−φ∗
1 )

and n∗
2 = exp(αφ∗

1 ) as

∇∗2φ∗
1 = − (κa)2

(1 + α)
[exp(−φ∗

1 ) − exp(αφ∗
1 )]. [A13]

Since ∇∗2φ2 = ∇∗2φ − ∇∗2φ1, applying Eqs. [3], [7], and
Eq. [A12] gives

∇∗2φ∗
2 − (κa)2

(1 + α)
[exp(−φ∗

1 ) + α exp(αφ∗
1 )]φ∗

2

= (κa)2

(1 + α)
[exp(−φ∗

1 )g∗
1 + exp(αφ∗

1 )αg∗
2 ]. [A14]

Substituting Eq. [7] into Eq. [2] and neglecting the terms that
involve the product of two perturbed terms yields

∇∗2g∗
1 − ∇∗φ∗

1 • ∇∗g∗
1 = Pe1v∗ • ∇∗φ∗

1 [A15]
∇∗2g∗
2 + α∇∗φ∗

1 • ∇∗g∗
2 = Pe2v∗ • ∇∗φ∗

1 . [A16]
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Substituting Eq. [7] into Eq. [A11] gives

E∗4ψ∗ = (κa)2

(1 + α)

[(
∂g∗

1

∂θ
n∗

1 + ∂g∗
2

∂θ
αn∗

2

)
∂φ∗

1

∂r∗

]
sin θ. [A17]

Equations [9]–[12] can be recovered by applying the relations
φ∗

2 = �2(r ) cos θ , g∗
1 = G1(r ) cos θ , g∗

2 = G2(r ) cos θ , and
ψ∗ = �(r ) sin2 θ to Eqs. [A13]–[A17].
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