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Hysteresis has been observed in adsorption isotherms for a
number of gas–solid systems and, generally, is attributed to ad-
sorption in mesoporous materials with capillary condensation.
This behavior is classified as Type IV or Type V in the IUPAC
classification scheme. Here, lattice theory is used to predict ad-
sorption behavior in pores. The Ono–Kondo theory is used with
appropriate boundary conditions for fluid adsorption in infinite
and semi-finite slit-like pores. It is shown that there can be phase
transitions in the adsorbed phase which lead to hysteresis in
kinetically controlled experiments. However, hysteresis in equilib-
rium behavior is exhibited only in pores of finite length. For
finite-length pores, the interface geometry is predicted to be dif-
ferent during the processes of adsorption and desorption and this
difference in interface shape leads to hysteresis. This simple mo-
lecular model is able to predict the change in the interface geom-
etry without invoking the Kelvin equation or the macroscopic
concept of surface tension. © 1998 Academic Press
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INTRODUCTION

Adsorption on porous solids is an important phenomenon for
many practical applications, including purification of gases (1)
and liquids (2), decolorizing sugar (3), chromatography (4),
membrane technology (5), and catalysis (6). Classical models
for adsorption of single-component gas (7–9) consider mono-
layer behavior (in particular, the Langmuir and Frumkin mod-
els (10, 11)) or a semi-infinite adsorbate at a flat boundary (for
example, the BET (12) and Frenkel–Halsey–Hill models (13–
15)). The pore structures of adsorbent materials have been
taken into account by empirical approaches such as Polanyi
theory (16), its various modifications (17), and by fractal
analysis (18). However, these empirical theories do not de-
scribe hysteresis due to differences between the adsorption and
desorption branches of the isotherms (7, 8). To describe hys-
teresis, these empirical models need an additional equation
(such as the Kelvin equation) which does not come from the
adsorption model. This additional equation contains additional
parameters (such as surface tension and contact angle).

The classical model of adsorption hysteresis (7) is based on
considering a pore of some shape (say, cylindrical of radiusr).

In the adsorption branch of the isotherm, there is monolayer
adsorption on the wall of the pore for small pressures. Increas-
ing pressure causes multilayer adsorption and eventually con-
densation of the adsorbate. During desorption, the geometry of
the interface is assumed to be different, as illustrated in Fig. 1.
In this case, the desorption branch is different because the
pressure during evaporation from the meniscus,p, given by the
Kelvin equation (7),

ln
p

ps
5 2

2gV

rRT
cosf, [1]

is different from the saturation vapor pressure,ps. In this
equationg is the surface tension andV is the molar volume of
the liquid adsorbate;f is the contact angle between the liquid
and the wall of the pore;R is the universal gas constant, andT
is the absolute temperature. In other words, adsorption occurs
at p 5 ps andr 5 `, but desorption occurs for a smallr and at
p , ps given by Eq. [1]. Though the statistical mechanical
foundations of the Kelvin equation have been analyzed in
detail (9), its application to the qualitative interpretation of
adsorption hysteresis has been empirical (7, 8).

The current IUPAC classification of adsorption isotherms
(19) gives four types of hysteresis loops designated as H1, H2,
H3, and H4. These types are illustrated in Fig. 2. Types H1 and
H4 are characterized as the “extreme types” where branches
are “almost vertical (H1) and nearly parallel (H4) over an
appreciable range of gas uptake” (19). Types H2 and H3 are
“intermediate between these two extremes.” However, this
characterization does not relate the shape of hysteresis loops to
the fundamental parameters of adsorption (such as pore size
and molecule–molecule and molecule–surface interactions) be-
cause “the effect of various factors on adsorption hysteresis is
not fully understood” (19, p. 613).

Modern methods (simulations (20), density functional the-
ory (21–23), self-consistent field theory (24)), are able, in
principle, to predict adsorption hysteresis without invoking the
Kelvin equation. However, these methods do not give analyt-
ical solutions and they require tedious numerical calculations.
Consequently, there never has been a rigorous, systematic
analysis of hysteresis behavior.

Here we present an analysis of adsorption hysteresis using
lattice theory concepts based on ideas of Ono and Kondo (25).1 To whom correspondence should be addressed.
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The Ono–Kondo approach originally was derived as a one-
dimensional theory for a semi-infinite fluid with a flat boundary
to describe density gradients at vapor–liquid (26) and liquid–
solid (27) interfaces. Recently, this approach has been gener-
alized to three dimensions (28). This generalization allows one
to describe adsorption equilibria for arbitrary boundary condi-

tions. In this paper, this new approach is used to analyze
adsorption hysteresis in slit-like pores.

LATTICE MODEL

Here we consider lattice theory for a one-component fluid
where i, j, andk are the three dimensions of the lattice coor-
dinates. We assume that the lattice fluid is in contact with the
walls of a porous adsorbent. There are interactions between
nearest neighbors withe being the energy of adsorbate–adsor-

FIG. 1. Classical model of adsorption and desorption in pores.

FIG. 2. The current IUPAC classification of hysteresis loops.

FIG. 3. The Gibbs adsorption isotherms in infinite-size slit-like pores for
e/kBT 5 1.0, es/kBT 5 4.0, and different pore widths,n.

FIG. 4. Finite-width, finite-length slit-like pore.
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FIG. 5. Adsorption in finite-size, slit-like pore fore/kBT 5 es/kBT 5 1.0.

123ADSORPTION HYSTERESIS IN POROUS SOLIDS



FIG. 6. Desorption in finite-size, slit-like pore fore/kBT 5 es/kBT 5 1.0.
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FIG. 7. Adsorption in finite-size, slit-like pore fore/kBT 5 1.0 andes/kBT 5 3.0.
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FIG. 8. Desorption in finite-size, slit-like pore fore/kBT 5 1.0 andes/kBT 5 3.0.
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bate interactions, andeSbeing the energy for adsorbate–surface
interactions.

The classical Ono–Kondo theory of thermodynamic equi-
librium for a semi-infinite adsorbate at a flat boundary gives
a one-dimensional density distribution near the surface. For
a porous adsorbent, it is necessary to consider the Ono–
Kondo equations in three dimensions and to couple them to
boundary conditions that describe the surface (energy) to-
pology.

Consider taking an adsorbate molecule at a site with coor-
dinatesi, j, k and moving it to an empty site in the bulk (outside
the pore). This is equivalent to the exchange of a molecule with
a vacancy,

Ai, j,k 1 V`3 Vi, j,k 1 A`, [2]

whereA is the adsorbate molecule andV is the vacancy (empty
site) that it fills (and vice versa). If this exchange occurs at
equilibrium, then

DH 2 TDS5 0, [3]

whereDH andDSare the enthalpy and entropy changes, andT
is the absolute temperature.

Value of DS can be represented in the form

DS5 kBln W1 2 kBln W2, [4]

whereW1 is the number of configurations where the site with
coordinatesi, j, k is occupied by an adsorbate molecule and the
infinitely distant site is empty, andW2 is the number of con-
figurations where the infinitely distant site is occupied by an
adsorbate molecule and the site with coordinatesi, j, k is
empty. HerekB is Boltzmann’s constant.

FIG. 9. Isotherm of the Gibbs adsorption fore/kBT 5 1.0 andes/kBT
5 3.0.

FIG. 10. The Gibbs adsorption isotherms form 5 18, n 5 8, es/kBT 5 1.3, and differente/kBT: 1.0 (a), 1.1 (b), 1.2 (c), and 1.3 (d).
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If the overall number of configurations for the system isW0,
then in mean-field lattice approximation

W1/W0 5 xi, j,k~1 2 x`! [5]

and

W2/W0 5 ~1 2 xi, j,k! x`, [6]

wherexi,j,k is the probability that the site with coordinatesi, j,
k is occupied by an adsorbate molecule, andx` is the bulk mole
fraction of adsorbate.

Substituting Eqs. [5] and [6] into Eq. [4] we have

DS5 kBln$@ xi, j,k~1 2 x`!#/@~1 2 xi, j,k! x`#%. [7]

The change in enthalpy can be calculated in the mean-field
approximation for a simple cubic lattice by considering the
number of neighboring sites that are occupied near the surface
compared to the bulk. Then,

DH 5 2~ xi11, j,k 1 xi21, j,k 1 xi, j11,k 1 xi, j21,k

1 xi, j,k11 1 xi, j,k21 2 6x`!e. [8]

From Eq. [3] and Eqs. [7] and [8] it follows that

ln$@ xi, j,k~1 2 x`!#/@~1 2 xi, j,k! x`#%

1 ~ xi11, j,k 1 xi21, j,k 1 xi, j11,k 1 xi, j21,k

1 xi, j,k11 1 xi, j,k21 2 6x`!e/kBT 5 0. [9]

Equation [9] is the Ono–Kondo equation for three dimensions.
It relates the local density in each site (i, j, k) to the density in
the bulk.

NUMERICAL CALCULATIONS

Boundary Conditions

Obtaining the density distribution from Eq. [9] requires
appropriate boundary conditions. Consider the exchange given
in Eq. [2] for a molecule at the surface. Then, instead of Eq.
[9], we get

ln$@ xs~1 2 x`!#/@~1 2 xs!x`#%

1 ~O
q51

N

xsq 2 6x`!e/kBT 1 Mes/kBT 5 0, [10]

FIG. 11. The Gibbs adsorption isotherms form 5 18, n 5 8, e/kBT 5 1.3, and differentes/kBT: 1.3 (a), 1.5 (b), 1.7 (c), and 2.0 (d).
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where xs is the probability that the site on the surface is
occupied by an adsorbate molecule (s5 { i, j, k} for sites on the
surface),xsq is the probability that theqth neighboring site is
occupied by an adsorbate molecule (sq 5 { i 6 1, j 6 1, k 6
1} for possible neighbors of thes site), M is the number of
bonds between a molecule and surface, andN is the coordina-
tion number for molecules on the surface.

The boundary condition given in Eq. [10] was to calculate
density distributions in slit-like pores. This density distribution
leads to the Gibbs adsorption,G,

G 5 O
V

~ xi, j,k 2 x`!, [11]

where summation is done over the entire volume of the
pore(s),V.

Equation [11] is the adsorption isotherm representing the
Gibbs adsorption versus the reduced density,x`. For one-
component gas, the density is a function of pressure and
temperature,

x` 5 f~ p, T!, [12]

wheref is the equation of state for the one-component gas. For
an ideal gas,x` 5 p/RT.

Infinite Slit-Like Pores

Consider a finite-width, slit-like pore with infinite walls. The
width of the pore can be characterized by the number of layers,
n, between walls. Because of symmetry, Eqs. [9] and [10] give
only one equation forn 5 1 andn 5 2. For a one-layer pore
this equation can be written as

ln$@ x1~1 2 x`!#/@~1 2 x1! x`#%

1 ~4x1 2 6x`!e/kBT 1 2es/kBT 5 0, [13]

wherex1 is the probability that a site in the pore is occupied by
an adsorbate molecule. For a two-layer pore, this equation has
the following form:

ln$@ x1~1 2 x`!#/@~1 2 x1! x`#%

1 ~5x1 2 6x`!e/kBT 1 es/kBT 5 0. [14]

For n 5 3, Eqs. [9] and [10] yield the set of equations

ln$@ x1~1 2 x`!#/@~1 2 x1! x`#%

1 ~ x2 1 4x1 2 6x`!e/kBT 1 es/kBT 5 0 [15]

ln$@ x2~1 2 x`!#/@~1 2 x2! x`#%

1 ~2x1 1 4x2 2 6x`!e/kBT 5 0, [16]

wherex2 characterizes the composition in the second (central)
layer.

In general, for arbitrary value ofn, we have Eq. [15] as a
boundary condition and the coupled equations

ln$@ xi ~1 2 x`!#/@~1 2 xi! x`#%

1 ~ xi21 1 4xi 1 xi11 2 6x`!e/kBT 5 0, [17]

where 2# i # n 2 1. In addition, we have the condition of
symmetry

xi 5 xn2i11. [18]

Figure 3 illustrates the Gibbs adsorption isotherms calcu-
lated from Eqs. [11], [14], and [17] for different pore widths,
n. As illustrated in Fig. 3, the isotherms can have steps result-
ing from two-dimensional phase transitions in layers. These
phase transitions could exhibit hysteresis in kinetically con-
trolled experiments. However, there is no hysteresis in the
equilibrium behavior for infinite pores.

Finite-Length, Slit Pores

There are a wide variety of different boundary conditions
that can be applied to Eq. [9]. These conditions can take into
account surface heterogeneity (as in Ref. (28)), or they can
reflect the three-dimensional geometry of the pore structure.
Here we consider the simplest example of a finite pore. Con-
sider a pore withn being the width (in the units of numbers of
layers) in thei direction andm being the length of pore walls
in the j direction. The pore is infinite in thek direction as
illustrated in Fig. 4. This geometry implies that there is an
energy of molecule–surface interaction,es, at the sites where
0 , j , m1 1. Also we assumexi ,0,k 5 xi ,m11,k 5 x` for any
i andk. Numerical solutions of Eq. [9] with these conditions
were found by the method of successive substitutions (29,
Section 20.2.2).

Figures 5 and 6 demonstrate different behavior for adsorp-
tion and desorption ate/kBT 5 es/kBT 5 1.0 for a pore 8
molecular diameters wide and 18 molecular diameters long.
Though the results shown in Figs. 5 and 6 are calculated with
the same set of coupled equations, the adsorption and desorp-
tion behaviors differ because of the different initial conditions.
For adsorption, the calculations start from zero density and the
adsorption is calculated as the density increases. This leads to
growth in a layer-by-layer fashion on the walls. For desorption,
the calculations start with the pore filled by the adsorption
process and desorption occurs as the external pressure or
density is decreased. During desorption, the evaporation also
occurs in a layer-by-layer fashion, but from the ends of the
pore inward.

Figures 7 and 8 show adsorption and desorption ate/kBT 5
1.0, andes/kBT 5 3.0. Here the molecule–surface interactions
are much stronger than in Figs. 5 and 6. During adsorption,
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layers grow on walls, eventually filling the pore volume (Fig.
7). During desorption, evaporation of molecules occurs from
the free surfaces, and only near the end of the desorption
process are there layers on the walls (Fig. 8). Figure 9 illus-
trates the Gibbs adsorption isotherm for the processes shown in
Figs. 7 and 8. As seen from Fig. 9, there is a hysteresis loop
indicating different behavior during adsorption and desorption.

Figure 10 shows the Gibbs adsorption isotherms form 5
18, n 5 8, es/kBT 5 1.3, and differente/kBT: 1.0 (a), 1.1 (b),
1.2 (c), and 1.3 (d). As seen from Fig. 10, the edges of the
hysteresis loop become steeper ase/kBT goes up. Figure 11
illustrates the Gibbs adsorption isotherms form 5 18, n 5
8, e/kBT 5 1.3, and differentes/kBT: 1.3 (a), 1.5 (b), 1.7 (c),
and 2.0 (d). As seen from Fig. 11, the shape of the adsorp-
tion branch changes dramatically from relatively smooth
monotonic behavior (ates/kBT 5 1.3) to stepped behavior
(at es/kBT 5 2.0).

CONCLUSION

The Ono–Kondo lattice theory with appropriate boundary
conditions is able to predict adsorption hysteresis for fluid in
semi-finite, slit-like pores. It is shown that there can be phase
transitions in the adsorbed phase which lead to hysteresis in
kinetically controlled experiments. However, hysteresis in
equilibrium behavior is exhibited only in pores of finite length.
For finite-length pores, the interface geometry is predicted to
be different during the processes of adsorption and desorption,
and this difference in interface shape leads to hysteresis.

This simple molecular model is able to predict the change in
the interface geometry without invoking the Kelvin equation or
the macroscopic concept of surface tension.
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