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Abstract

Employing an iterative method in functional theory, the electrical potential distribution for the case of a cylindrical surface is
Although the analytical result derived is of aniterative nature, the second-order solution is found to be sufficiently accurate under conditio
of practical significance. For the case of constant surface potential, the radius and the surface potential of a cylindrical surface can be estim
based on the extreme of the electrical potential distribution. The effects of the key parameters, including the number and the vale
ions on a surface, the length of a particle, the relative permittivity of the liquid phase, the temperature, and the concentration of elect
on the surface potential, are examined. The general behavior of these effects is similar to that for a spherical surface, except that
potential of a cylindrical surface is independent of the electrolyte concentration. The present approach is also applicable to the ca
cylindrical surface remains at a constant charge density.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The spatial variation of the electrical potential for
charged surface in an electrolyte solution can be descr
by a Poisson–Boltzmann equation [1,2], a nonlinear pa
differential equation. Although this equation is of an appr
imate nature, its performance is found to be satisfactory
symmetric, univalent electrolytes at concentrations of pra
cal significance [3]. In spite of itssimple mathematical form
the only exactly analytically solvable Poisson–Boltzma
equation is that for an infinite planar surface in a symm
ric electrolyte solution. Other than this case, it can be so
only numerically or approximately only. For instance, un
the Debye–Hückel condition, that is, sufficiently low elec
cal potential, a Poisson–Boltzmann equation can be app
imated by a linearized equation, which can then be so
analytically for simple geometries and boundary condition
[1,2]. Seeking the solution of a Poisson–Boltzmann eq
tion is of fundamental significance in colloid and interfa
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science. The evaluation of the stability behavior of a d
persion, the calculation of the rate of adsorption of enti
to a surface, and the description of electrokinetic phen
ena such as electrophoresis, to name a few example
involve this procedure. Apparently, to establish a system
approach to the resolution of a Poisson–Boltzmann equa
is highly desirable. One possible approach is that base
the functional theory. It was pointed out that the Poiss
Boltzmann equation for a symmetric electrolyte could
solved with the iterative method in the functional theo
for an arbitrary level of electrical potential [4–6]. Wan
et al. [7], for example, adopted this approach to solve
Poisson–Boltzmann equation for a spherical surface. T
claimed that this approach is superior to the conventio
methods because it is applicable to a general electrical po
tential level and is capable of providing information ab
the radius and the surface potential of a spherical collo
particle [8,9].

In this study, the analysis of Wang et al. [8,9] is exten
to a cylindrical surface. An attempt is made to derive
analytical, iterative solution, which is sufficiently accurat
for the description of the electrical potential distribution
a cylindrical double layer. Also, the influence of the phy
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cal properties of a cylindrical particle and those of the liq
phase on the surface potential of a particle is discussed.

2. Analysis

The electrical potentialψ(r) in the diffuse double laye
near a charged surface can be described by the Pois
Boltzmann equation [1,2],

(1)∇2ψ(r) = −ρ(r)

ε
,

where∇2, ρ, andε denote, respectively, the Laplace op
ator, the space charge density, and the relative permitt
of the medium. Let us considerthe electrical potential out
side a nonconductive, infinitely long cylinder of radiusR

immersed in an electrolyte solution. In this case, Eq. (1)
comes

(2)
1

r

d

dr

(
r
dψ

dr

)
= −ρ(r)

ε
, R < r.

The boundary conditions associated with this equation
assumed to be

(3a)ψ → 0, R � r,

(3b)ψ = ψ(R), r = R,

whereψ(R) is the surface potential. For the case of az:z
electrolyte with a number concentrationn0, Eq. (2) becomes

(4)∇2ψ(r) = −2zen0

ε
sinh

(
− zeψ

kBT

)
, R < r.

Under the Debye–Hückel condition, the solution to t
equation subject to Eq. (3a) is

(5)ψ(r) = AK0(κr), R < r,

whereA is a constant,K0 is the zeroth order Bessel fun
tion of the second kind, andκ = (2000e2NAcz2/εkBT )1/2

is the reciprocal Debye length,e, NA, c, z, kB , andT being,
respectively, the elementary charge, Avogadro’s number
molar bulk ion concentration, the valence of bulk ions,
Boltzmann constant, and the absolute temperature. Ap
ing Eq. (3b) to Eq. (5) gives

(6)ψ(r) = ψ(R)
K0(κr)

K0(κR)
, R < r,

whereR andψ(R) can be determined experimentally. A
ternatively, if the cylindrical particle is infinitely thin and th
electrolyte solution is infinitely dilute, then it can be show
that Eq. (5) yields (Appendix A)

(7)ψ(r) = 2σ

ε
K0(κr),

whereσ is the linear charge density (C/m) of the particle.
While the exact analytical solution to Eq. (4) under gene
conditions cannot be derived at the present stage, an iter
–

solution based on the functional theory and Eq. (7) can
obtained.

Let us consider a setC, which comprises the function
(ψ,φ, . . .). These functions are continuous, and have at l
second-order derivatives in an open interval(a, b), wherea

andb are two different real numbers. The maximum no
of a functionψ is defined as [5,6]

(8)‖ψ‖ = max
a<r<b

∣∣ψ(r)
∣∣.

It can be shown that, for any two functionsψ andφ in C

andλ a real number,

(9a)‖ψ‖ � 0,

(9b)‖ψ‖ + ‖φ‖ � ‖ψ + φ‖,
(9c)‖λψ‖ = |λ|‖ψ‖.

According to the functional theory, the setC forms a Ba-
nach spaceB. We consider the operator̂P , which has the
property

(10)ψ = P̂ψ, ψ ∈ B.

Also, if P̂ satisfies the Lipschitz condition, then

(11)
∥∥P̂ψ − P̂ φ

∥∥ � α‖ψ − φ‖, ψ,φ ∈ B,

whereα is the Lipschitz constant(0 � α < 1). Then, begin-
ning with an arbitrary functionψ0 ∈ B, we have [5]

(12)ψn+1 = P̂ψn, n = 0,1,2, . . .

and

(13)lim
n→∞ ψn(r) = ψ(r).

Here,ψn(r) is thenth-order iterative approximate solutio
of Eq. (12), andψ(r) is the exact solution of the equation

(14)ψ(r) = P̂ψ(r).

As will be illustrated latter, this approach is applicable to
case of cylindrical coordinates. If Eq. (4) is expressed in
form of Eq. (10), thenP̂ can be constructed as

P̂ = kBT

ze
sinh−1

[
ε

2n0ze
∇2

r

]

(15)= kBT

ze
sinh−1

[
ze

kBT κ2
∇2

r

]
.

It can be also shown [8] that

P̂ψ = kBT

ze
sinh−1

[
ze

kBT κ2∇2
r

]
ψ

(16)= kBT

ze
sinh−1

[
ze

kBT κ2
∇2

r ψ

]
.

Here, Eq. (7) is adopted as the initial or zeroth-order ite
tive solutionψ0(r), and the higher-order iterative solution
ψn(r), n = 1,2, . . . , are generated by Eqs. (12) and (1
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Among these, the first three iterative solutions are, res
tively,

(17)

ψ1(r) = P̂ψ0(r) = kBT

ze
sinh−1

[
ze

kBT
ψ0(r)

]

= kBT

ze
sinh−1 f,

(18)

ψ2(r) = P̂ψ1(r)

= kBT

ze
sinh−1

{
f√

1+ f 2

[
1− 1

1+ f 2

(
1

κ

df

dr

)2
]}

,

(19)

ψ3(r) = P̂ψ2(r)

= kBT

ze
sinh−1

{
1

κ2
√

1+ g2

[
2

r

dg

dr
+ d2g

dr2

− g

1+ g2

(
dg

dr

)2
]}

,

wheref = zeψ0/kBT ,

(19a)g = f√
1+ f 2

[
1− 1

1+ f 2

(
1

κ

df

dr

)2
]
,

(19b)
dg

dr
= (2f 2 − 1)

( df
dr

)3 + (1+ f 2)
df
dr

[
κ2 − 2f

d2f

dr2

]
κ2(1+ f 2)5/2

,

(19c)

d2g

dr2 =
([

5(−1+ f 2 + 2f 4)

(
df

dr

)2

+ κ2(1+ f 2)2

]
d2f

dr2

+ (9f − 6f 3)

(
df

dr

)4

− 3κ2f (1+ f 2)

(
df

dr

)2

− 2f (1+ f 2)2

[
df

dr

d3f

dr3 +
(

d2f

dr2

)2
])

/
κ2(1+ f 2)7/2.

It should be indicated that the choice ofψ0 ∈ B is arbi-
trary but the rate of convergence ofψn(r) to ψ(r) is highly
dependent upon this choice, as will be discussed latter. F
spherical surface, it is known that ifψ0(r) is properly chosen
andP̂ is well-constructed, then the second-order iterative
lution is sufficiently accurate [9]. Fig. 1 shows the first fo
iterative solutions,ψ0(r), ψ1(r), ψ2(r), andψ3(r). For com-
parison, the exact numerical solution is also presented in
figure. As can be seen in Fig. 1, the second-order itera
solutionψ2(r) is also sufficiently accurate for a cylindric
surface. As for the case of a spherical surface,ψn(r), n � 2,
exhibits a local maximum atR. This nature can be used
judge the radius of a particle [8,9]. Note that the value
ψn(r), n � 2, for r < R has mathematical, but no physic
meaning. Equation (17) can be rewritten as

(20)sinh

[
ze

ψ1(r)

]
= ze

ψ0(r).

kBT kBT
Fig. 1. Variation of electrical potentialψ as a function of the distanc
from the center of a cylinderr . ψ0 is the value ofψ under the De-
bye–Hückel condition.ψ1, ψ2, andψ3 are the first-, the second-, and t
third-order iterative solution, respectively. Parameters used areZp = 1,
ma = 100,c = 0.01 M, T = 298.16 K, ε = 6.954× 10−10 CV−1/m, and
L = 200 nm. Short dashed curve, the exact numerical result for the
whenR = 10.65 nm andψ(R) = 12.4 mV.

Under the Debye–Hückel condition, expanding the left-h
side of this expression in Taylor series in terms ofψ1(r) and
retaining the linear term, we obtain

(21)ψ1(r) ∼= ψ0(r).

Similarly, it can be shown that under the Debye–Hückel c
dition,ψn(r) ∼= ψn−1(r), which implies thatψn(r) ∼= ψ0(r).
Fig. 1 also indicates that ifr is large,ψ0(r) is satisfactory,
which is expected becauseψ is low if r is large, and the
Debye–Hückel condition is automatically satisfied. Note t
while bothψ0 andψ1 increase rapidly asr decreases, whic
is certainly unrealistic,ψ2 approachesψ(R), the exact nu-
merical solution, asr → R.

In general, the solution of the Poisson–Boltzmann eq
tion based on the Debye–Hückel condition will overestim
the potential near a charged surface. This is illustrate
Fig. 1, whereψ2(r) < ψ1(r) < ψ0(r). Because the opera
tor P̂ is constructed based on the Poisson–Boltzmann th
and the Debye–Hückel resultψ0(r) is the zeroth-order so
lution, among the approximate solutions,ψ1(r) andψ2(r)

must be more accurate thanψ0(r), andψ2(r) more accurate
thanψ1(r), according to the functional theory [6], and th
is justified in Fig. 1. In fact, it can be shown thatψn+1(r) is
more accurate thanψn(r), n � 0. Note that in the derivatio
of Eq. (7), a cylindrical particle is treated as a charged
segment in an infinitely dilute electrolyte solution. In th
case, since the distance from the center of the particle,r, is
much greater than the particle radius,R, the Debye–Hücke
condition is satisfied. This explains why all the iterative so
tions coincide ifr is sufficiently large. On the other hand,
the potential is high orr is small, the solution of the Poisson
Boltzmann equation will deviate from that under the Deb
Hückel condition. Fig. 1 shows that although bothψ0 andψ1
seem to diverge asr → R, ψ2 andψ3 approach a maximum
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asr → R. Note that since the interior of a particle is free
charge,ψ(r) should be flat forr < R, which is justified by
the exact numerical solution presented in Fig. 1. This pr
erty can be used to estimate the surface potentialψ(R). To
illustrate,ψ2(r) is regarded as the exact electrical potent
the same arguments are applicable to higher order solu
if they are available. Because the electrical potential is
for r < R, we have

(22)
dψ2(r)

dr
= 0, r = R.

Substituting Eq. (18) into this expression yields

dψ2(r)

dr
= µ2K2

1(κr) + µ4K2
0(κr)

(
K2

0(κr) − 2K2
1(κr)

)

(23)
+ µ2K0(κr)K2(κr)

(
1+ µ2K2

0(κr)
) − 1= 0,

where µ = zeA/kBT . This nonlinear algebraic equatio
needs to be solved numerically. The Newton–Raph
method is found to be effective, usingR = 5/κ as an initial
estimate. Usually, a convergent root can be obtained
a few iterations.

3. Results and discussion

Assume that an ion on the surface of a cylindrical pa
cle carriesZp elementary charges andthe particle comprise
ma ions; then the constantA in Eq. (7) can be expressed
A = 2σ/ε ∼= 2Q/εL = 2maZpe/εL, whereQ andL are, re-
spectively, the total amount of charge and the length of
particle. Therefore, Eq. (7) becomes

(24)ψ(r) = 2maZpe

εL
K0(κr).

That is, the surface potentialψ(R) may be dependent upo
Zp,ma, c, T , ε, and L. Note that, becauseψ(r) = ψ(R)

for r � R,R can be viewed as the characteristic length
the radial direction at whichψ(r) begins to become fla
as r decreases. This idea was proposed by Wang e
[8,9] for the estimation of the radius of a spherical s
face.

The influences of the key parameters of the system
der consideration, including the number of ions on a surf
ma , the length of a cylinderL, the relative permittivity of
the liquid phaseε, the valence of the ions on a surfaceZp,
the absolute temperatureT , and the concentration of ele
trolyte c, on the variation of the surface potentialψ(R) are
presented in Fig. 2 through Fig. 7, respectively. Fig. 2
veals thatψ(R) increases with the increase inma , which
is expected because the larger thema the more the amoun
of charges on a surface. However, under the conditions
sumed, the rate of increase inψ(R) decreases rapidly whe
ma reaches about 200. Similar behavior was also obse
by Wang et al. for the case of a spherical surface [9]. Fi
indicates that for a fixed amount of surface charge,ψ(R)

decreases withL. This is because the longer the particle,
Fig. 2. Variation of surface potential as a function of the number of i
on particle surface for the case whenZp = 1, c = 0.01 M, T = 298.16 K,
ε = 6.954× 10−10 CV−1/m, andL = 200 nm.

Fig. 3. Variation of surface potential as a function of particle length for
case whenZp = 1, ma = 100,c = 0.01 M, T = 298.16 K, andε = 6.954
× 10−10 CV−1/m.

lower the linear charge density. Note thatψ(R) is nonlin-
early dependent onL. As illustrated in Fig. 4 through Fig. 6
ψ(R) decreases with the increase inε or Zp, but increases
roughly linearly with the increase inT . Similar behavior
was also observed for a spherical surface [9]. Fig. 7 rev
that ψ(R) is independent of the electrolyte concentrati
which differs from that that observed by Wang et al. [9] fo
spherical surface, where the surface potential increases
5.6 to 8.3 mV as the concentration of electrolyte varies fr
10−6 to 1 mol/l.

For the case a surface is remained at constant charge
sity, the boundary condition expressed in Eq. (3) should
rewritten in terms of the surface charge densityσS as

(25)σS = −ε
dψ

, r = R.

dr



222 S. Tseng et al. / Journal of Colloid and Interface Science 273 (2004) 218–223

tiv-

the

re

en-

eek-

of

oth

-
di-

-
ses

ex-
d
als

e

the
lec-
ar-
ch
und
-
in
Fig. 4. Variation of surface potential as a function of relative permit
ity of the medium for the case whenZp = 1, ma = 100, c = 0.01 M,
T = 298.16 K, andL = 200 nm.

Fig. 5. Variation of surface potential as a function of ionic valence for
case whenma = 100, c = 0.01 M, T = 298.16 K, ε = 6.954× 10−10

CV−1/m, andL = 200 nm.

Fig. 6. Variation of surface potential as a function of absolute temperatu
for the case whenZp = 1, ma = 100, c = 0.01 M, ε = 6.954× 10−10

CV−1/m, andL = 200 nm.
Fig. 7. Variation of surface potential as a function of electrolyte conc
tration for the case whenZp = 1, ma = 100, T = 298.16 K, ε = 6.954
× 10−10 CV−1/m, andL = 200 nm.

In this case the surface potential can be estimated by s
ing the unique positive root of the equation

dψ2(r)

dr
= µ2K2

1(κr) + µ4K2
0(κr)

(
K2

0(κr) − 2K2
1(κr)

)
+ µ2K0(κr)K2(κr)

(
1+ µ2K2

0(κr)
) − 1

(26)= −σS/ε.

It can shown that the maximum norms‖ψn − ψ‖ and
‖ψ1 − ψ0‖ follows the relation [6,10]

(27)‖ψn − ψ‖ � αn

1− α
‖ψ1 − ψ0‖,

where the Lipschitz constant can be estimated byα =
‖ψ2 − ψ1‖/‖ψ1 − ψ0‖. Therefore, the smaller the value
αn/(1 − α), the more accurate thenth-order solutionψn is.
Table 1 shows the estimated values ofα and αn/(1 − α)

at various radii of a particle. This table reveals that b
α andαn/(1 − α) are smaller than unity, andαn/(1 − α)

decreases with the increase inn. These imply that the op
eratorP̂ defined in Eq. (15) satisfies the Lipschitz con
tion, andψn is convergent asn → ∞. The influence of the
choice of the zeroth-order solution,ψ0, on the rate of con
vergence is illustrated in Table 2. For illustration, three ca
are considered:ψ0 = AK0(κr) in case I,ψ0 = A[ln(2/r) −
0.5772](1+ r2/4) in case II, andψ0 = A ln(2/r) in case III.
The ψ0 in case II and that in case III are approximate
pressions forAK0(κr), obtained by expanding it aroun
r = 0 and truncating higher-order terms. Table 2 reve
that the rate of convergence ofψn follows the order cas
I > case II> case III.

In summary, the Poisson–Boltzmann equation for
case of a cylindrical surface immersed in a symmetric e
trolyte is solved by a functional theory approach for an
bitrary level of electrical potential. Although this approa
is of an iterative nature, the second-order solution is fo
to be sufficiently accurate, and therefore, it provides an ef
ficient way of solving the Poisson–Boltzmann equation
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Table 1
Variation of Lipschitz constantα and relative errors in electrical potential
various particle radiusR, which is obtained by varying the number of ion
on particle surfacema

R (nm) 8.50 9.53 10.65

‖ψ1(r) − ψ0(r)‖ (mV) 84.67 55.36 34.6
‖ψ2(r) − ψ1(r)‖ (mV) 19.98 16.12 12.80
α 0.236 0.291 0.370
α/(1− α) 0.309 0.410 0.587
α2/(1− α) 0.073 0.119 0.217
α3/(1− α) 0.017 0.035 0.080

Key: Zp = 1, c = 0.01 M, T = 298.16 K, ε = 6.954× 10−10 CV−1/m,
andL = 200 nm.

Table 2
Variation of Lipschitz constant and relative errors in electrical potential
various choices ofψ0

ψ0 AK0(κr) A[ln(2/r) − 0.5772](1+ r2/4) Aln(2/r)

R(nm) 8.50 8.71 9.14
‖ψ1(r) − ψ0(r)‖ 84.67 85.99 90.41
(mV)
‖ψ2(r) − ψ1(r)‖ 19.98 21.67 24.50
(mV)
α 0.236 0.252 0.271
α/(1− α) 0.309 0.337 0.371
α2/(1− α) 0.073 0.085 0.101
α3/(1− α) 0.017 0.021 0.027

Key: same as in Table 1.

cylindrical coordinates. Unlike the conventional approa
where a differential equation is solved subject to sp
fied boundary conditions, the present approach allows
timating both the surface potential and the radius o
cylindrical particle. That is, the physical properties of
particle can be deduced from the solution of the co
sponding Poisson–Boltzmann equation. The present
ative solution is of uniform convergence nature; that
the higher the order of a solution the more accurate i
The other iterative approaches do not (or cannot be pro
to) have this nice property. In addition, the other iterat
approaches usually use the curvature of a surface o
thickness of a double layer as perturbed parameter; the
their rate of convergence depends on the physical p
erties of a system, which is not the case for the pre
approach.
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Appendix A

According to Gauss’s law,

(A.1)
∫
S

E · d	 = Qenclosed

ε
,

whereE andQenclosedare, respectively, the electric field an
the charge in a volume enclosed by surfaceS. Suppose tha
the radius of the cylindrical particle is infinitely small an
the electrolyte solution is infinitely dilute. Then Eqs. (5) a
(A.1) yield

(A.2)A = 2Q

εL
,

whereL andQ are, respectively, the length of the partic
and the total amount of charge on its surface. Here, the
tion

(A.3)lim
r→0

[
rK1(κr)

] = 1/κ

is applied. Defining the linear charge densityσ = Q/L,
Eq. (7) in the text can be recovered.
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