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Abstract

Employing an iterative method in functional theory, the electrical potential distribution for the case of a cylindrical surface is solved.
Although the analytical result derived is of @erative nature, the second-order solatis found to be sufficiently accurate under conditions
of practical significance. For the case of constant surface potentiahdhesrand the surface potential of a cylindrical surface can be estimated
based on the extreme of the electrical potential distribution. The effects of the key parameters, including the number and the valence of th
ions on a surface, the length of a particle, thatiee permittivity of the liquid phase, the temperature, and the concentration of electrolyte
on the surface potential, are examined. The general behavior of these effects is similar to that for a spherical surface, except that the surfa
potential of a cylindrical surface is independent of the electrolyte concentration. The present approach is also applicable to the case where
cylindrical surface remains at a constant charge density.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction science. The evaluation of the stability behavior of a dis-
persion, the calculation of the rate of adsorption of entities
The spatial variation of the electrical potential for a to a surface, and the descri.ption of electrokinetic phenom-
charged surface in an electrolyte solution can be described®"? SUCh_ as electrophoresis, to name a few examples, .aII
by a Poisson—Boltzmann equation [1,2], a nonlinear partial involve this procedure. Apparently, to establish a systemapc
differential equation. Although this equation is of an approx- .aprr]).rorﬁchdto t'hebrles%utlon of gbIIDO|sson—B<;It;rr:ﬁn{1l)ezquaC:lon
imate nature, its performance is found to be satisfactory for IS highly desirable. Une possible approach IS that based on

symmetric, univalent electrolytes at concentrations of practi- g]e| functional the'ory.flt was pomteq oult thatlthe PO'TSOS_
cal significance [3]. In spite of itsimple mathematical form, oltzmann equation for a symmetric electrolyte could be

the only exactly analytically solvable Poisson—Boltzmann fSOIVEd W'tt)h the :teraltlv$ nreth(?d Im the f'urllctéllonal '\[/r\lleory
equation is that for an infinite planar surface in a symmet- or an arbitrary level of electrical potential [4-6]. Wang

ric electrolyte solution. Other than this case, it can be solved et _al' [71, fo: example, adgptEd this aEprgatih o solve thhe
only numerically or approximately only. For instance, under Po!sson—Bo tzmann equat|o.n for a spherica surface. T ey
the Debye—Hyiickel condition, that is, sufficiently low electri- claimed that this approach is superior to the conventional

cal potential, a Poisson—Boltzmann equation can be approx-Téthods because it is applidatio a general electrical po-
imated by a linearized equation, which can then be solved ©€Ntial level and is capable of providing information about
analytically for simple gemetries and boundary conditions the radius and the surface potential of a spherical colloidal

[1,2]. Seeking the solution of a Poisson—-Boltzmann equa- particle. [8,9]. ) )
tion is of fundamental significance in colloid and interface ! this study, the analysis of Wang et al. [8,9] is extended
to a cylindrical surface. An attempt is made to derive an

analytical, iterative soludin, which is sufficiently accurate
* Corresponding author. for the dgscription of the electrical potential distribution i|j
E-mail address: tseng@math.tku.edu.tw (S. Tseng). a cylindrical double layer. Also, the influence of the physi-
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cal properties of a cylindrical particle and those of the liquid solution based on the functional theory and Eq. (7) can be

phase on the surface potential of a particle is discussed.

2. Analysis

The electrical potential (r) in the diffuse double layer

near a charged surface can be described by the Poisson—

Boltzmann equation [1,2],

p(r)

VA (r) = — 1)

whereV?, p, ande denote, respectively, the Laplace oper-

ator, the space charge density, and the relative permittivit

of the medium. Let us considéne electrical potential out-
side a nonconductive, infinitely long cylinder of radiis

immersed in an electrolyte solution. In this case, Eq. (1) be-

comes

rdr(

R <r.

ay\ _ p(r)
dr > g’ @

The boundary conditions associated with this equation arel/f =Py, Y e€B.

assumed to be
v —0, R, (3a)
v =v(R), r=R, (3b)

wherey(R) is the surface potential. For the case of:a
electrolyte with a number concentratiog, Eq. (2) becomes

2zeno sin h( Zew> R <r.
)

V2 (r)=— (4)

kgT

Under the Debye—Hiickel condition, the solution to this

equation subject to Eq. (3a) is

v(r)= ()

where A is a constantKg is the zeroth order Bessel func-
tion of the second kind, and = (2002N scz2/ckpT)/?
is the reciprocal Debye length, N4, ¢, z, kg, andT being,

AKo(kr), R<r,

obtained.

Let us consider a sef, which comprises the functions
(¥, ¢, ...). These functions are continuous, and have at least
second-order derivatives in an open interialb), wherea
andb are two different real numbers. The maximum norm
of a functionys is defined as [5,6]

Iyl = max|1/f(r)| (8)

It can be shown that, for any two functiogisand¢ in C
andx a real number,

Iyl =0, (9a)
W1+ Il = 1y + g, (9b)
Iyl = A, (9c)

According to the functional theory, the sétforms a Ba-
nach space3. We consider the operatdt, which has the

property
(10)
Also, if P satisfies the Lipschitz condition, then

| By — Po| <ally —oll, ¥.¢€B,

whereq is the Lipschitz constan® < « < 1). Then, begin-
ning with an arbitrary functionyo € B, we have [5]

(11)

Yni1=Py,, n=0,1,2,... (12)
and
Nim 3, (r) = ¢ (r). (13)

Here, v, (r) is thenth-order iterative approximate solution
of Eq. (12), andy (r) is the exact solution of the equation

Y(r)=Py(r).
As will be illustrated latter, this approach is applicable to the

(14)

respectively, the elementary charge, Avogadro’s number, thecase of cylindrical coordinates. If Eq. (4) is expressed in the
molar bulk ion concentration, the valence of bulk ions, the form of Eq. (10), thenP can be constructed as

Boltzmann constant, and the absolute temperature. Apply-

ing Eg. (3b) to Eq. (5) gives

Ko(xr)

V(R)—— Ko R)

where R and(R) can be determined experimentally. Al-

ternatively, if the cylindrical particle is infinitely thin and the

electrolyte solution is infinitely dilute, then it can be shown
that Eq. (5) yields (Appendix A)

Yr) = R <r,

v(r) = —KO(KV) (7)

whereo is the linear charge density (@) of the patrticle.

. kpT
P =2 ginn?

LVZ
2noze "
ze

2
= e

It can be also shown [8] that

(15)

A kBT . _1 ze 2
Py = ——sinh \Y
v="2 [kBTKz 2ly

kpT [ VZW}

= ——sinh™
kpTk?2 "

Here, Eq. (7) is adopted as the initial or zeroth-order itera-

(16)

While the exact analytical solution to Eq. (4) under general tive solutionyg(r), and the higher-order iterative solutions,

conditions cannot be derived at the present stage, an iterativef,, (r), n = 1,2,...,

are generated by Eqgs. (12) and (16).
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Among these, the first three iterative solutions are, respec-
tively,

A kgT .
Ya(r) = Pyo(r) = == smh—l[—ze lﬂo(r)}
ze kgT

_ kel sinh ! f, 17)
ze
Y2(r) = Py (r)
_ kT 1) _ 1 1dfN?
ze sinh !\/1+f2|:1 1~|—f2</<dr> :|}’
(18)
Y3(r) = Pya(r)
=kB—Tsinh‘l 1 |2dg d%
ze sz/l—i—gz rdr dr?
_L<d_g>2
1+ g2\ dr ’
(19)
where f = zeyo/kpT,
_ [ 1 [1df\?
g‘m[l_ 1+f2<25> } (192)
dg _ @A -V +a+ AEE 28]
dr 2(1+ f2)5/2 . (19b)
&— 5(—1+f2+2f4)<ﬁ>2+,<2(1+f2)2 dz_f
dr? dr dr?

af

2
dr)

4
o692 ) —aetra+ s
—2f@+ f2>2[

3 2 2
df Pf (ﬂ) ])
/K2(1+ A"

dr dr3 dr?
It should be indicated that the choice ¥ € B is arbi-
trary but the rate of convergencef (r) to ¥ (r) is highly

(19¢)
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exact numerical solution

16 18 20 22 24

r (nm)

14

Fig. 1. Variation of electrical potentiay as a function of the distance
from the center of a cylinder. yq is the value ofy under the De-
bye—Hiickel conditionyr1, ¥, andy3 are the first-, the second-, and the
third-order iterative solution, respectively. Parameters usedZgre= 1,

mg = 100,c =0.01 M, T = 29816 K, ¢ = 6.954x 10-10 cv—1/m, and

L =200 nm. Short dashed curve, the exact numerical result for the case
whenR = 10.65 nm andy/(R) = 124 mV.

Under the Debye—Hiuickel condition, expanding the left-hand
side of this expression in Taylor series in termg/afr) and
retaining the linear term, we obtain

Yi(r) = Yo(r). 21)

Similarly, it can be shown that under the Debye—Huickel con-
dition, ¥, (r) = ¥,—1(r), which implies that/,, (r) = ¥o(r).

Fig. 1 also indicates that if is large,yo(r) is satisfactory,
which is expected because is low if r is large, and the
Debye—Hiickel condition is automatically satisfied. Note that
while bothvq andyr1 increase rapidly asdecreases, which

is certainly unrealisticy» approacheg (R), the exact nu-
merical solution, as — R.

In general, the solution of the Poisson—Boltzmann equa-
tion based on the Debye—Hiickel condition will overestimate
the potential near a charged surface. This is illustrated in
Fig. 1, wherey»(r) < ¥1(r) < yo(r). Because the opera-
tor P is constructed based on the Poisson—Boltzmann theory
and the Debye—Huckel resulty(r) is the zeroth-order so-

dependent upon this choice, as will be discussed latter. For g tion among the approximate solutions (r) and y2(r)

spherical surface, it is known thatyjio(r) is properly chosen
and? is well-constructed, then the second-order iterative so-
lution is sufficiently accurate [9]. Fig. 1 shows the first four
iterative solutionsyo(r), ¥1(r), Y2(r), andyr3(r). For com-
parison, the exact numerical solution is also presented in this
figure. As can be seen in Fig. 1, the second-order iterative
solutiony»(r) is also sufficiently accurate for a cylindrical
surface. As for the case of a spherical surfaggy), n > 2,
exhibits a local maximum aR. This nature can be used to
judge the radius of a particle [8,9]. Note that the value of
Y, (r), n > 2, forr < R has mathematical, but no physical
meaning. Equation (17) can be rewritten as

. ze ze
smh[kB—Ti/fl(r)} = kB—Ti/fo(r). (20)

must be more accurate tha(r), andy2(r) more accurate
thanyr1(r), according to the functional theory [6], and this
is justified in Fig. 1. In fact, it can be shown th@f1(r) is
more accurate thaw, (r), n > 0. Note that in the derivation
of Eq. (7), a cylindrical particle is treated as a charged line
segment in an infinitely dilute electrolyte solution. In this
case, since the distance from the center of the particis,
much greater than the particle radids,the Debye—Huckel
condition is satisfied. This explains why all the iterative solu-
tions coincide ifr is sufficiently large. On the other hand, if
the potential is high ar is small, the solution of the Poisson—
Boltzmann equation will deviate from that under the Debye—
Huckel condition. Fig. 1 shows that although bgihandyq
seem to diverge as— R, v andys3 approach a maximum
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asr — R. Note that since the interior of a particle is free of
charge (r) should be flat forr < R, which is justified by

the exact numerical solution presented in Fig. 1. This prop- 201
erty can be used to estimate the surface poteti®). To —
illustrate,y»(r) is regarded as the exact electrical potential; >
the same arguments are applicable to higher order solutions=
if they are available. Because the electrical potential is flat ~

15

m

for r < R, we have B0
>
dira(r)
=0, =R. 22

dr r ( ) 5 4
Substituting Eg. (18) into this expression yields
d [ e e L S e e B e L e e e S S s

1/;2(;') — M2K12(Kr) + ,LL4K§(Kr)(Kg(Kr) _ 2K12(/<r)) 200 400 m, 600 800 1000

r
2 212
+ 1" Ko(kr)Ka(kr) (1+ nKg (Kr)) -1=0, Fig. 2. Variation of surface potential as a function of the number of ions
(23) on particle surface for the case whép =1, ¢ = 0.01 M, T = 29816 K,

where . = zeA/kgT. This nonlinear algebraic equation ¢=6.954x 1071%Cv~1/m, andL =200 nm.
needs to be solved numerically. The Newton—-Raphson
method is found to be effective, usiiy= 5/« as an initial
estimate. Usually, a convergent root can be obtained after
a few iterations.
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3. Resultsand discussion

Assume that an ion on the surface of a cylindrical parti-
cle carriesZ, elementary charges atiie particle comprises 10
mg ions; then the constant in Eq. (7) can be expressed as
A=20/e=2Q/eL =2my,Zye/cL, whereQ andL are, re-
spectively, the total amount of charge and the length of the
particle. Therefore, Eq. (7) becomes

Y(R) (mV)

V() = 2mqZpe Ko(kr). (24) 0 200 400 600 800 1000
eL L (nm)
That is, the surface potentigl(R) may be dependent upon
Zp, mg,c, T, e, and L. Note that, becausw(r) = ¥ (R) Fig. 3. Variation of surface potential as a function of particle length for the
for » < R, R can be viewed as the characteristic length in 3¢ "herp =1.ma =100,c =0.01 M, 7 = 29816 K, andz = 6.954
the radial direction at whichy(r) begins to become flat x 107 eVTE/m.
as r decreases. This idea was proposed by Wang et al.
[8,9] for the estimation of the radius of a spherical sur-
face. lower the linear charge density. Note thatR) is nonlin-

The influences of the key parameters of the system un-early dependentoh. As illustrated in Fig. 4 through Fig. 6,
der consideration, including the number of ions on a surface ¥ (R) decreases with the increasesror Z,,, but increases
mg, the length of a cylindeL, the relative permittivity of roughly linearly with the increase if. Similar behavior
the liquid phase, the valence of the ions on a surfagg, was also observed for a spherical surface [9]. Fig. 7 reveals
the absolute temperatuf@® and the concentration of elec- that /(R) is independent of the electrolyte concentration,
trolyte ¢, on the variation of the surface potentia(R) are which differs from that that observed by Wang et al. [9] for a
presented in Fig. 2 through Fig. 7, respectively. Fig. 2 re- spherical surface, where the surface potential increases from
veals thaty(R) increases with the increase #n,, which 5.6 to 8.3 mV as the concentration of electrolyte varies from
is expected because the larger thg the more the amount 1076 to 1 mol/!I.
of charges on a surface. However, under the conditions as-  For the case a surface is remained at constant charge den-
sumed, the rate of increaseyn(R) decreases rapidly when  sity, the boundary condition expressed in Eq. (3) should be
m, reaches about 200. Similar behavior was also observedrewritten in terms of the surface charge densigyas
by Wang et al. for the case of a spherical surface [9]. Fig. 3
indicates that for a fixed amount of surface chargéRr) dr

decreases witlh. This is because the longer the particle, the os = _SE’ r=R. (25)
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Fig. 7. Variation of surface potential as a function of electrolyte concen-

tration for the case whe#, = 1, my = 100, T = 29816 K, ¢ = 6.954
x 10710 cv=1/m, andL =200 nm.

In this case the surface potential can be estimated by seek-
ing the unique positive root of the equation

) _ 22y + K3l (K3lwr) — 2K )

+ 1P Ko(kr)Ka(kr) (1 + u?K(kr)) — 1

It can shown that the maximum norniig,, — | and
llvr1 — Yol follows the relation [6,10]

an

1 = Vil < 37— 1 = voll.
—

where the Lipschitz constant can be estimatedoby-
12 — ¥1ll/lIv1 — ¥oll. Therefore, the smaller the value of
a" /(1 — «), the more accurate theh-order solutiony,, is.
Table 1 shows the estimated valuesecofind o /(1 — &)
at various radii of a particle. This table reveals that both
a anda” /(1 — «) are smaller than unity, ane’ /(1 — «)
decreases with the increaserinThese imply that the op-
erator P defined in Eq. (15) satisfies the Lipschitz condi-
tion, andy, is convergent as — oo. The influence of the
choice of the zeroth-order solutiotip, on the rate of con-
vergence is illustrated in Table 2. For illustration, three cases
are consideredfg = AKo(xr) in case lyo = A[In(2/r) —
0.5772/(1+r?/4) in case Il, andjp = AIn(2/r) in case lII.
The g in case Il and that in case lll are approximate ex-
pressions forAKo(xr), obtained by expanding it around
r = 0 and truncating higher-order terms. Table 2 reveals
that the rate of convergence ¢f, follows the order case
| > case II> case Il

In summary, the Poisson—Boltzmann equation for the
case of a cylindrical surface immersed in a symmetric elec-
trolyte is solved by a functional theory approach for an ar-
bitrary level of electrical potential. Although this approach
is of an iterative nature, the second-order solution is found
to be sufficiently accurate, anddtefore, it provides an ef-
ficient way of solving the Poisson—Boltzmann equation in

(27)
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Table 1

Variation of Lipschitz constant and relative errors in electrical potential at
various patrticle radiu®, which is obtained by varying the number of ions
on particle surfacer,

R (nm) 8.50 9.53 10.65
1 () — Yo ()] (MV) 84.67 55.36 34.6
[W2(r) — Y1 ()] (MV) 19.98 16.12 12.80
a 0.236 0.291 0.370
a/(1—a) 0.309 0.410 0.587
a?/(1-a) 0.073 0.119 0.217
a3/(1-a) 0.017 0.035 0.080

Key: Zp =1,¢ =001 M, T = 29816 K, ¢ = 6.954x 10710 cv—1/m,
andL = 200 nm.

Table 2
Variation of Lipschitz constant and relative errors in electrical potential for
various choices of/q

Yo AKq(kcr) AlN(2/r) —0.5772(1+r2/4) Aln2/r)
R(nm) 850 871 914
IW1(r) — Yol 8467 8599 9041
(mV)

Wa(r) — ¥ ()] 19.98 2167 2450
(mV)

o 0.236 Q252 Q271
a/(1—a) 0.309 Q337 Q371
a?/(1—a) 0.073 Q085 Q101
a3/(1—a) 0.017 Q021 Q027

Key: same as in Table 1.

cylindrical coordinates. Unlike the conventional approach,
where a differential equation is solved subject to speci-
fied boundary conditions, the present approach allows es-
timating both the surface potential and the radius of a
cylindrical particle. That is, the physical properties of a
particle can be deduced from the solution of the corre-
sponding Poisson-Boltzmann equation. The present iter-
ative solution is of uniform convergence nature; that is,
the higher the order of a solution the more accurate it is.
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Appendix A

According to Gauss’s law,

_ Qenclosed

s

/E .dQ (A.1)

S
whereE and Qenclosed@re, respectively, the electric field and
the charge in a volume enclosed by surfSc&uppose that

the radius of the cylindrical particle is infinitely small and

the electrolyte solution is infinitely dilute. Then Egs. (5) and
(A.1) yield

_2%0
eL’
whereL and Q are, respectively, the length of the particle

and the total amount of charge on its surface. Here, the rela-
tion

(A.2)

rIiLT]O[rKl(Kr)] =1/« (A.3)

is applied. Defining the linear charge density= Q/L,
Eq. (7) in the text can be recovered.
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