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The effect of macromolecule shape on the depletion attraction be-
tween two hard spherical particles in a solution with nonadsorbing
hard spheroidal macromolecules of arbitrary size and aspect ratio
was investigated using a modified form of the force-balance model
of J. Y.Walzand A. Sharma (1994, J. Colloid Interface Sci. 168 495).
The macromolecules were represented as general spheroids, which
could be either charged or uncharged. For the uncharged case, a set
of analytical expressions describing the depletion attraction, valid
for particles much larger than the characteristic macromolecule
size, was developed. Comparisons with the case of spherical macro-
molecules were made under the condition of either constant macro-
molecule number density, oy, or constant volume fraction, ¢. It was
found that increasing the spheroidal macromolecule aspect ratio
(major axis length/minor axis length) decreases the depletion at-
traction at constant pp, but increases the interaction at constant
¢. In the latter case, the interaction produced by prolate macro-
molecules is greater than that produced by oblate macromolecules
of equal axis lengths, while the opposite is true at constant pp,. A sim-
ple scaling analysis is used to explain these trends. Surface charge
is found to increase both the range and the magnitude of the deple-
tion attraction; however, the general trends are the same as those
found in the uncharged systems. Finally, the effect of the depletion
attraction produced by spherical and spheroidal macromolecules
on the stability of a dispersion of charged particles was examined.
It was found that charged spheroids at concentrations of order 1%
volume can produce secondary energy wells of sufficient magnitude
to induce flocculation in a dispersion of charged spherical particles.
© 2000 Academic Press

Key Words: colloidal forces; depletion forces; depletion interac-
tion; depletion attraction; nonspherical particles.

INTRODUCTION

and colloid—colloid mixtures (22—29), and to modify the bend
ing modulus of membranes and bilayers (30-32).

The depletion interaction was first satisfactorily explained b
Asakura and Oosawa in the mid-1950s (33, 34). These authc
showed that a volume exclusion mechanism could lead to a r
attraction between two hard, parallel plates in solution with rigi
macromolecules. More recent work has shown that the depleti
attraction is actually the short-range component of a more ge
eral structural interaction (35—-40). In one sense, the depletic
effect can thus be viewed as a first-order approximation to tr
structural interaction. When higher order effects are considert
(i.e., interactions between the nonadsorbing material), lon
range repulsions and even oscillations have been both predict
and observed (32, 36, 39-43, 45). This repulsionis thought to |
the primary cause of the so-called depletion stabilization effe
observed at higher depletant concentrations (3-5, 16—20).

Although Asakura and Oosawa later extended their origing
work to the cases of charged and nonspherical depletants (i.
spheroidal, rod-like, and flexible chain macromolecules wer
considered), the majority of modeling work completed to-dat
has focused on systems of hard, uncharged spherical mac
molecules. Only very recently have rod-like macromolecule
been considered in the context of depletion interactions, eve
though such macromolecules are present in a large variety
natural and synthetic systems (22, 46—48). For example, M:
etal.investigated the depletion interaction between large spher
(radiusR) caused by mutually avoiding thin hard rods of length
L, diameterD, and bulk number density, (45). The osmotic
pressure exerted on a hard wall by a solution of these rods w
calculated from the density of rod ends in contact with the wa
(the analog of Henderson’s formula for the case of hard spher
(49)). The force between two spherical particles was then four

The depletion interaction, which arises between colloidal pdtY @PPlying the Derjaguin approximation (50, 51). The magni
ticles in the presence of a nonadsorbing material (depletant), H4&€ Of the attraction at contact between the particles was ¢

been the subject of much research over the past 50 years. A

B‘HE_ order ofppkTRL?, which is the same scaling as the de-

mary reason for this research is the widespread importance of fgtion energy produced by small spheres with diameter equ
interaction in various colloidal processes. For example, depl@-the rod length. Furthermore, because the number density
tion forces have been found to alter the stability of colloidal subds can greatly exceed the number density of spheres for
pensions (1—21), to control phase transitions in colloid—polym&tme volume fraction, much larger attractions are possible wi
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rods than with spheres (34, 45, 52). This was confirmed expe
imentally by Koenderinlet al. (26), who found evidence for a
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depletion-induced fluid—solid transition in a mixture of silicanolecules of any size. The primary assumption is that the maci
spheres and silica-coated boehmite rods in dimethylformamia®lecule concentration is low enough that second-order co
solutions at rod concentrations well below the isotropic—nematientration effects arising from interactions between the macr
transition (volume fractions from 0.33 to 0.50%). molecules themselves can be ignored. In the case of hard,

In a later publication, Maet al. (40) solved a self-consistentcharged systems, we compare our numerical results to analyti
integral equation describing the density profile of rods betweerpressions for the depletion interaction between two large p:
two parallel plates. Again, the Derjaguin approximation watcles in a solution of spheroidal macromolecules for the limitin
used to extend this result to the interaction of two sphericehse wherx (the largest dimension of the macromolecules) i
particles. Their calculations, correct to the third order in rochuch less thatR (the particle radius).
concentration, indicate that typical colloidal sphere/rod mixtures We have also extended this model to the case where both 1
will exhibit a smaller repulsive barrier than the thermal energparticles and the spheroidal macromolecules possess a net
KT, throughout the semidilute concentration range of the rodace charge. Electrostatic interactions between the particle a
It should be noted, however, that these calculations apply omhacromolecule are calculated using the perturbation expansi
in the L/D > 1 limit and are subject to corrections of ordemethod of Hsu and Liu (55, 56) for the case of constant potenti
D/L. Furthermore, use of the Derjaguin approximation restricssirfaces. Comparisons between the charged and the unchar
applicability of this method to particles that are large comparegystems containing spheroidal macromolecules are presente
to the rod length.

Yamanet al.(30, 53) developed a model for depletion interac- THEORY
tions between spherical particlesimmersedin a dilute solutionl%c
rigid rods without this limitation in rod dimensions (i.&,~ R
was permitted). The authors found the Derjaguin approximationThe force balance model used here follows the same approc
to be quite accurate as longlagR « 1 (i.e., forL/R < 0.05), presented by Walz and Sharma (42). The schematic of the syst
but large and systematic deviations appear with incredsjiR) is depicted in Fig. 1, where two spherical particles of radis
ratios. For example, fdr /R values of 0.2 and 1.0, the deviationseparated by gap width are immersed in an isotropic solution
was 10 and 50%, respectively. of nonadsorbing spheroidal macromolecules of semimajor al

The model of Yamaret al. was based on the calculation ofsemiminor axis lengthe andg, respectively, and bulk number
the excess surface energy for two surfaces in contact with a ehsity (number/volumepy. For the similar system spherical
solution. The depletion force was calculated from the deriveracromolecules, the total force exerted on particle 1 can |
tive of the free energy with respect to the separation distancgiculated as (42)
between these two interacting surfaces. Because rod—rod inter-

_actions were ignpred, this quel is correct only to firs_t order Fi(h) = /p(X)VlEl(X) dx, 1]

in rod concentration and predicts no long-range repulsion. The

excess surface energy can also be calculated with the model of
Grohet al. (32), correct to second order in rod concentration.
Because steric interactions between rods are taken into accour
the results from the Groht al. model are applicable to more
concentrated solutions (i.e., the semidilute regime below the
isotropicnematic transition). It should be noted that although
the models mentioned above apply to infinitely thin rods, they
may nonetheless be fairly accurate even for aspect radtias)

as small as 10 (54).

In this paper, we modify the force balance model of Walz and
Sharma (42) to calculate depletion interactions between spheri
cal particles in a solution with spheroidal macromolecules cor-
rectto firstorderin macromolecule concentration. One major ad-
vantage of using the general spheroidal shape is that a wide ranc
of macromolecule shapes can be accommodated (i.e., needleg
thin disks, spheres, and prolate or oblate spheroids of arbitrary
aspect ratio). This facilitates modeling of many real systemsFiG. 1. Schematic defining the variables used in the depletion force equ
such as polymers in low-salt solutions (rod-like shapes), natigns. Two spherical particles of radiésare interacting across gap widitin a

ral and synthetic clay suspensions (disk-like shapes) and \;&lgtion of spheroidal macromolecules at bulk concentraiipi he bulk solu-
ious biological svstems (e viruses with different s ,heroidﬁqn is isotropic, consisting of uniform macromolecules in random orientation
9 Y 9 p ﬁ The vectorx defines the position of a macromolecule relative to the cente

shapes). Moreover, becayse th? Derjaguin apprOXimation IS BiQFarticle 1, while parametetsandg represent the macromolecule semimajor
employed, the method is applicable to particles and mactd semiminor axes, respectively.

rce Balance on a Colloidal Particle

X
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wherep(x) is the number density of macromolecules at positidforms of the Particle/Macromolecule Interaction

x and V1 E;(x) is the gradient of the interaction energy with . |
respect to the surface of particle 1. This equation is the result tBefore the equations presented above can be evaluated for

; . %pletion force, expressions for the interaction energies betwe
a simple force balance over all macromolecules present in {

. . . a macromolecule and the two particl&s(x, £2) andEy(x, €2),
solution. In the limit of low macromolecule concentrations, the : ; |
o ; . needto be defined. For the case of simple hard spheres in solut
macromolecule distribution around the two particles will follow : . .
S with hard spheroids, these can be written as

a Boltzmann distribution of the form

_ Exk(x, ) = Exns(X, €2)
E(X)
p(x) = poexp — = (2] {+oo for particle-macromolecule overlaph]

0 otherwise
wherepy, is the macromolecule concentration in the bulk, kT is _ _ _
the thermal energy, arﬂ(x) is the potentiaj energy ofa macro_Wherek IS Qqual tO either 1 or 2. Although these eXpress.lonS al
molecule at positiox. When two such particles, 1 and 2, arénathematically simple, they can be a poor representation of tl

present (see Fig. 1), the resulting energy can be approximai@@ractions in variety of real systems. In agqueous solutions, fi
as the sum of the two individual energies: example, many surfaces acquire a net electric charge, resulti
in long-range electrostatic forces. The expression&fgx, €2)
E(x) = E1(X) + Ex(%). (3] °an then be written as

Ex(x, ) = E X, Q)+ E X, 2), 8
Substituting Eqgs. [2] and [3] into [1] yields (x €2) = Eiris(x. ) + Eceiec (. 2) (8]
(Ex00 0] where Ey giec (X, 2) is the electrostatic potential energy of the
E1(X) + Ea(X spheroidal macromolecule and tkidn spherical particle at po-
Fi(h) = expl ————  ViEi(x) dx. [4 P P P P
1 /'Ob p{ kT } 1B [4] sitionx and in orientatior{.

. o Electrostatic Interactions
This result can be extended to systems containing spheroidal

macromolecules in a straightforward manner. Again, if it is as- An approximate method for predicting the electrostatic fret
sumed that interactions between macromolecules are not sigrifiergy of interaction between two charged colloidal particles |
cant (valid for low volume fractionsg), then the depletion forces the linear superposition approximation (LSA), where it is as
produced by macromolecules having different orientations c&4med that two particles are sufficiently spaced such that tt
be added. Now, the integration must be performed over all pdgtal electric potential at any point between them can be appro

sible macromolecule positions and orientations. Thus, imated as the sum of the potentials produced from each partic
Thus,
[E1(x, ©2) + Ea(x, )]
Fl(h) = // Pb exp{_ KT WEIec(r, Q) = IpSphere(r) + 1/fSpheroi((r7 Q)v [9]
Q X
x V1E1(x, Q) dx d€2, 5] where yspherdl) and ¥spheroidr’, 2) represent the electrostatic

potentials at a point arising from a spherical particle and a
. L ) heroidal macromolecule in orientati€?y r ively. Th
where the macromolecule orientation is defined by ve€tor spheroidal macromolecule in orientatiéh respectively. The

while E;(x, £2) and Ex(x, 2) denote the orientation—dependen{‘SA approach has been found to yl_eld accurate re_sults of t
. Interaction energy between two particles for gap widths large

mtgractl_on energies between macromolecules N agiven oneiln approximately one Debye length (59). However, since tf
tation with particles 1 and 2, respectively. ; C . . .
; ; . : integration in Eq. [5] is performed over the entire solution vol-
Once the depletion force is known, the interaction energy can . : ) ;
: ume (therefore all separation distances), using Eq. [9] will resu
be calculated using ; . . . .
in some error. As discussed in an earlier paper though, this err
N will tend to be minimal provided that the particles and macro
Epep(h) = — / Frec(h)dh, [6] molgcules carry a like surface charge and are thus_repulswe 5
oo In this caseE(x) in Eq. [2] or E1(X, 2) andEx(x, 2) in Eq. [5]
will have large positive values at small gap widths (the region i
whereF, c-c is the component of the forde, acting along the which LSA slightly overestimates the interaction energy) and th
line of centers between the two particles. Note that the forcerresponding exponentials in these equations will tend to zer
balance model was modified in a similar manner by Walz (5%) other words, the concentration of macromolecules within
and Piech and Walz (58) to calculate the effect of polydispersiigw Debye lengths of the particle surface will be small and thu
on the depletion interaction in purely spherical systems. contribute negligibly to the total depletion force.
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The expression of Bed#lt al.was used to calculate the electromerically solving a set of linear second-order nonhomogenol
static potential distribution around a spherical particle of radiymrtial differential equations (56). For the present study, only tf
R and surface potentialg spherein @ solution having Debye first and second terms in the expansion were used.

length equal tac—* (59), It should be pointed out that represents the electrical poten-
tial distribution next to a flat plate; thog can be considered as
Yspherdl') = Yspherdl') the first-order correction for curvature effects. This perturbatio

2600, sphere R method is thus most acgurate for thin double' layers (compar

= 4tan)'<’—>— exp[-«(r — R)], [10] to the macromolecule size) and can be applied to moderate

KT r thick double layers as long as the spheroid aspect ratio (lenc

of semimajor axis/length of semiminor axis) stays sufficientl

whereyspherdr) = (2222 is the dimensionless potential at darge. Applicability of this model to the current problem is dis-
radial distance from the center of the particle is the pro- cussed further under Discussion.

ton charge, andis the valency of the symmetric electrolyte. As  Once the potential distributions around the particle and macr

stated by Beletal, this equation is believed to be the correctlimmolecule are known, the interaction force between them can|

iting form of the potential fok R > 10 andyr sphere< 200 MV calculated by integrating the total stress tensor over a midpoi

(59). If smaller particles are used such th& < 10, alternative plane, perpendicular to a line segment connecting the points

expressions foyspherdr') are provided in the Beltt al. paper.  closest approach between the sphere and spheroid. Thus
The electrical potential distribution around a spheroidal

macromolecule can be approximated with the expressions of KT\ 2 v\ 2
Hsu and Liu (55, 56), which were derived using a perturbation F = f<_> / {sz[coshy — 1]+ <_y>

method to solve the nonlinear Poisson—Boltzmann equation. In 2\ ze Y
this approach, the dimensionless potential at any position in a ay 2 dy 2
symmetric electrolyte solution can be written as + <ﬁ) - (ﬁ) } dg, [13a]
o0
YSpheroi((ra Q) = YSpheroi({é’) = Z)\nYna [11] where
n=0
where¢ is a function of two spheroidal coordinate variables and Y = Ysperdr) + Yspheroid , €2). [13b]

represents a dimensionless distance from the spheroid surface,

Y, denotes thath-order perturbation term, aridis the pertur- HereE denotes the midpoint planeijs the dielectric permittiv-
bation parameter, defined as the ratio of the Debye length to theof the solution, and; is the sum of the sphere and spheroic
length of the spheroid semimajor axis £ «~1/«). Hsu and potentials at a point on th& plane. In theX, Y, Z, coordi-
Liu (55, 56) derived the following analytical expressions for theate system referred to here, tKeaxis lies along the segment

first two terms in this series connecting the points of closest approach ahis the Y-Z
plane.
Yo = 21In 1+ nexp¢) [12a] The energy of interaction between the particle and macr
1—nexp¢) molecule for a given macromolecule orientation was foun

by integrating Eq. [13] from infinite separation to any desire
and position.

Yo 3lny . (Yo Yo :
Y, = f1| —csc > +Tsmh > In{ tan 7 Analytical Method for Uncharged Systems

In this section, analytical expressions for the depletion enert

I Y, . Y Y . . .
— % coth(?o) — smh(é)) Inz(tan?(ZO))] between two hard, uncharged spheres in solution with hard, u
charged, spheroidal macromolecules are presented. This is d
Yo o1 Yo . (Yo by first calculating the change in the surface free energy of
—2f CSCI—<_> + E[Cc’th<?> T Smh(?) hard flat plate in a solution of hard, nonadsorbing spheroid

This expression is then extended to the case of two paral
x In(tan)—(ﬁ))] +0 sinh(ﬁ), [12b] plates, separated by gap widthThe depletion force between
4 2 the plates is given by the derivative of this free energy with re
spect toh. Finally, the interaction between two large spheres i

wheren = tanhf/o spheroid4), andyo, spheroid= Ze‘”%{’“‘*’“‘” is the found through application of the Derjaguin approximation.
dimensionless surface potential. Explanations of the other term&amanet al. (30) showed that the change in surface free er
in the equations above can be found in (56). Higher-order pergy (per unit area)Ay, for any general shape produced by &
turbation terms appearing in Eq. [11] can be obtained by nmacromolecule interacting with the surface can be calculate
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using For oblate spheroids, the integration is carried out from & to

and from 0O to—#6/, where
X Q

poKT 4 Lo o a2 —p2
o = 5~ sec T,BZ . [16b]

where the volume integral runs over the space available to the

solution, Sis the surface area, atthy(x, 2) is the interaction Carrying out the integrations in Eq. [15] yields the following
energy between the surface and a macromolecule at positéxpressions for the surface free energy for the cases of prolz
X in orientation{2. In the case of spheroidal macromoleculeand oblate spheroids

between two parallel plates separated by gamd interacting

by hard collisions only, this expression reduces to AyppprolatdX)
,OkaOl
Arer(h) X for x < 2A-1
,Oka X + 1 <|n [AX+ /(AX)2—4]
h forh < 28 AVAZ -1 2
— {2/ [1-1) snode]dz for2p<h<2« | _ AX\/(/:X)Z—“) for2A-1 < x < 2
2[5 [1— 3/, sinodo]dz forh > 2a, 14 In[,:+A«/2A2I1] for x > 2
15 T
[13] [17a]
wherex andg are the spheroid semimajor and semiminor axed.yProblaidX)
respectivelyz is the distance of the macromolecule center from ppKTo
one plate, andh is the gap width. (Because of symmetry, it is X for x < 2A-1

necessary to integrate over only half of the gap region.) The
. . . ; . A XvV4-x2 _ 1 1

inner integration is performed over all allowable configurations m( a tanm” [m]
characterized by a range 6fvalues (see Fig. 2). For prolate— T x L L
spheroids, the integration limits a#eand r — 6;), where +tan” [ﬂ]) + A for2A™  <x <2

A T —1 1 -1
g (3 Es]) At forx=2
6, = sec?t 7= | [16a]

wherex = g is the dimensionless gap width ard= % is the
spheroid aspect ratio.

[17b]

R b The depletion force between the plates can be found using
Fpp(X 1a(A
y a | v pel¥) __La(Ay) (28]
4 ; S o 0X
¥ ; ” where S is the plate surface area. Substituting Egs. [17a] an
) 7 j [17b]into [18] yields the following expressions for the depletion
' force:
é 5 -g1- _é =
%k % a5 -1 forx < 2A~1
A% 41 F X
w7 B FerproadX) _ 141 /B4 for2Al <x <2
] A PpSKT
A 7 0 forx > 2
[19a]
o . o _ -1 forx < 2A!
FIG. 2. Schematic illustrating the allowable configurations for a spheroid E
between two hard parallel plates at gap widtla) Prolate spheroids can access PROb'ate(X) —]_A 42—_X2 for2A 1 <x <2
configurations characterized by all angles betw&emd r — 6;). (b) Orienta- OpSKT 2V A-1 -
tions accessible to oblate spheroids lie betw&end—6;. Notice the different 0 forx > 2.

definitions of angle#; andé/ in the two cases. In each drawing, the dark line
through the spheroid center denotes its axis of revolution. [19Db]
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Substituting these expressions into Eq. [6] and integrating yiellss oplai(X)

91

the following equations for the depletion energy: oo RKT a2
_4_ % -l 2p-2
EPP,ProIatéx) 3 2 XA 3A
opSKTa Ax (7 ol -1
+ —m<2 tan [—mD forx < 2A
X —1— IA+VA 1) forx < 2A~1
AVAZ 1 = Ax (z _ tan—l[ X ]
/ — /4 — x2
1 1 (At /(A =4 A-12 4-x
_ A Azfl[ <2<A+ AH)) R V‘H) for2A" <x <2
_AX—\/(':‘X)Z_“:I for2A-1<x <2 0 forx > 2.
[21b]
0 forx > 2
[20a] , : ,
It should be pointed out that expressions for small gap width
Epp.oblatdX) (x < 2A~1) were published previously by Asakura and Oo-
PrSKTa sawa in a slightly different form (34). However, the equa
X — A tions in the region 2~ < x < 2 are reported here for the first
A2-1 time.
x [z — tan—l( 1 )] Al forx < 2A-1 The expressions presented above can be greatly simplifi
2 A1 for the limiting cases of rod-like, disk-like, and spherical macro
= g\ [x_«/44—><2 molecules. Inthe first two casggs = 0 and Egs. [21a] and [21b]
At reduce to
+tan‘1< 4X_X2) - %] for2At <x <2
0 for x > 2. ESSNeedléh)
ppm RKTL2
[20Db]
%(%—1)3 forh <L iR L -
Note that Eq. [20] is essentially the same as Eq. [17], with the - forh > L anaiR > [22]
only difference being the energy reference state. In Eq. [17], -
the excess surface free energy is zero at contact between the
plates & = 0) and finite positive at infinite separation. On thend
other hand, the depletion energy given by Eg. [20] is set to zero
at infinte gap width and has a negative value at contact. Tiée ()
functional dependence on gap width, however, is exactly the>SDisk )
; ; pp RKT D2
same in both equations.
Finally, applying the Derjaguin approximation (50, 51) to L(z —sint ﬂ)
. . . 2D\ 2 D
Eq. [20] yields the depletion energy between two spheres in
thellmltR>>Ol = _%<2+B_2) 1_3_2 forh < D
andR> D
ESSProIatéX) 0 forh >D
op7 RKT o2 [23]
e R EE L
_ for infinitely thin rods (needles) and disks, respectively. In thes
X /A2 _1 1
+ /;«/Azfl In(A+vA2—1) forx < 2A equationsL is the rod length an® is the disk diameter. Finally,
X—% — % — %A*Z for spherical macromolecules of radiasA = 1 and Eqs. [21a]
and [21b] simplify to
= (A2 +8ly/(A? 4 (2Ab] smply
+ 12A2/A2 -1
+ X |n<2 A+VA2Z-1 ) for 2A—1 <X 2 M
AVAZ—1 Ax++/(AX)2—4 =7= pp RkTa?
0 forx > 2 2-2 4 forh<2a
- =_ a t o = andR > a, [24]
[214a] 0 forh > 2a
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which is an approximation to the more general expression 0.2 T | . .
:
2
Essspherdh) 2-5 %3-’_ ® T Z;B _)1:; (needle
ppr RkTa? - N % + 12212R forh <2a  [29] o a/g=5 .'//
0 forh > 2a, L 02 - =2 / L // .
E | —— wB=133 //‘. /
derived by Asakura and Oosawa (33) for systems containing g4 |  ¢P~!(pherd) /,_,/ S // ]
spherical particles and spherical macromolecules of arbitrmé i / /
size (i.e., for alla/R values). e // E /
g 06 /e // .
S f /A /
RESULTS K as | e S - ’, |
Depletion Interactions in Hard Systems—Analytical Model - / // . ,’
The dimensionless depletion force between parallel plate  -1.0 . : sphere 7
predicted by Egs. [19a] and [19b] is shown in Fig. 3 for var- -
ious prolate and oblate spheroidal macromolecules. The macr . ! ‘ ! , ! s !
molecules are modeled as nonadsorbing, hard, and uncharg 0.0 0.5 1.0 1.5 2.0 2.5
spheroids that interact with the plates only. With the dimen Separation Distance, Ao
sionless separation distance between the plates defire@das
the depletion attraction vanishes fofe > 2, i.e., when the gap 0.2 b T T T ;
width is larger than twice the length of the macromolecule semi L
major axis. Furthermore, when the spheroid aspect ratio excee 00 L
10, the results approach those for needles and thin disks calc
lated with Egs. [19a] and [19b] in the limit ¢gf = 0. Figure 4 I B — o (disk)
depicts the dimensionless depletion energy between the plat -0 — - /B=10 .
for prolate and oblate macromolecules (Egs. [20a] and [20b]:§ L —— wB=5 /
As can be seen, the force and energy produced by oblaé o4l Cap=2 / |
spheroids are significantly closer to those for spherical macrcg —— wp=133 /_-'/
molecules than the force and energy produced by prolaf® - T %/B=1(sphere) -
spheroids, which is addressed further under Discussion. Tt -0.6 |- //— // -
spherical macromolecule results shown in the Figs. 3 and 4 a5, L ) S
computed from Egs. [19] and [20] by settidg= 1. i sl disk / / |
The depletion interactions between twqus-radius spher- - N /
ical particles in solution with various prolate and oblate i T /
spheroidal macromolecules are illustrated in Figs. 5 and 6. F¢  -1.0 === ohere .
this and all subsequent graphs, the depletion energy is scal L P
by the thermal energy, kT. The particles are treated as har o
uncharged spheres, while the macromolecules are modeled '1'20.0 05 1.0 15 20 25

nonadsorbing, hard, and uncharged spheroids with the semirnr
jor axis length equal to 100 nm. For these cases, we will present

Separation Distance, A/o

the effect of spheroid size at two different conditions. In Fig. 5,FIG. 3. The effect of macromolecule shape on the depletion force be
for example, the macromolecule number density is held coieen two parallel plates in an uncharged, hard system of prolate (a) and obl:

stant as the macromolecule shape (i.e., the spheroid aspect r%}l@?
changes. In this case, the macromolecule volume fraction is

heroids. Here, the dimensionless depletion force is plotted as a function
mensionless gap width. The different curves shown correspond to vario
pect ratiosy/ 8, of the spheroids. The results for spheriegif = 1), needle-

lowed to vary andiecreasinghe spheroid aspect ratio enhancege, and disk-like &/ — oo) macromolecules are presented for comparison.

the depletion attraction. The volume fractignpccupied by the

spheroids is related to the bulk number density,as

4 2

Pprolate = éﬂaﬁ Pb [26a]
4 2

Poblae = Z7C Boo. [26b]

By comparison, in Fig. 6 the macromolecule volume fractior
stays fixed with varying aspect ratio. Now the number densit
changes anithcreasinghe spheroid aspectratio significantly en-
hances the depletion effect. Similar to the case of the spheroic
macromolecules between two plates, the force and energy p!
duced by oblate spheroids (Figs. 5b and 6b) are significant
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a ' ' ' ' Particle—Macromolecule Interactions in Charged Systems

When the particles and macromolecules possess a net chal
the particle—macromolecule interaction energy becomes a cc
tinuous function of the relative orientation anghe,Figure 7a

i | . T
=
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5
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Separation Distance, A/o ! —— o/p=5
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FIG. 4. The effect of macromolecule shape on the depletion energy be -3.0 —— o/p=133 pp=1x107" /m .
tween two parallel plates in an uncharged, hard system of prolate (a) and oble i —— /B =1 (sphere) o =100 nm
(b) spheroids. Here, the dimensionless depletion energy is plotted as a function
the dimensionless gap width. The different curves shown correspond to variol ~ -3-5 ; ' ; : : : ;
aspect ratiosy/ 8, of the spheroids. The results for spheriegl§ = 1), needle- 0 30 100 150 200
like, and disk-like &/8 — oo) macromolecules are presented for comparison. Separation Distance, nm

FIG.5. The effect of macromolecule shape on the depletion interaction be

tween two 5um-radius spherical particles in a solution of prolate (a) and oblat:

closer to those for spherical macromolecules than the force dbhidspheroids. The macromolecules and particles are treated as hard spher
energy produced by prolate spheroids (FigS. 5a and 6a). -|(|’L|g) nm semimajor axis length) and hard spheres, respectively. The macro-

spherical macromolecule results shown in Fias. 5 and 6 w nI]OIecuIe number densityf, = 1.0 x 10'° macromolecules/f) remains fixed
P gs. i the volume fraction is allowed to vary with varying aspect ratjg. In

computed using Eq. [25]. A summary of the data presentedyit cases, the results for spherical macromoleculgg & 1) are presented
Figs. 5 and 6 is given in Table 1. for comparison.
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- ' ' length equal to 100 nm. Both surfaces are assumed to have c
4 | Prolate Spheroids . ’ -
op _ m— stant surface potentials ef50 mV, while the solution Debye
e - length,« 1, is kept at 10 nm (approximately equal to 1 mM of
- monovalent electrolyte). Equations [8]-[13] were used to calct
25k 2 late the interaction energy as a function of the spheroid orier
ya tation angled at a fixed particle—macromolecule center—cente
5 Y. distance of 5.124m. Because of the symmetry of the sphere-
& s i spheroid system, the orientation can be described with only o
E i / angle and only the results férbetween 0 andg /2 need to be
g ; computed. At a given particle—macromolecule separation, tt
3 : interaction energy reaches a maximumdoe 0 and decreases
= | y
& 75 / very rapidly with increasing. Moreover, the energy is higher
/ 6 ! i and decreases less rapidly for lower aspect ratio spheroids.
,/ —— a/f=10 0 100 200 Atlow macromolecule concentrations, the probability of find-
_ n ns, the probabiity
-100 / ——oap=s ing amacromolecule at positisrand orientatio§2 will be given
T op=2 R by a Boltzmann distribution function. Thus
——- a/p=133 $=4.19%
—— a/B =1 (sphere) o =100 nm —E(x,0)
-125 : . . . . P(x,0) ~ exp[—’], [27]
50 100 150 200 kT
Separation Distance, nm
whereP(x, 0) is the probabilityx is the particle—macromolecule
T T T . - . .
o LR Spheroids cent.er to-center dlsyance, aBdqx, 0) is th(=T interaction energy.
— In Fig. 7b, the function expf E(x, 8)/kT] is plotted agains®
= for the system described above (Fig. 7a). As seen, the probabil
p P ~ increases rapidly with increasing valueddi is fixed at 5.12¢m
- here). It is essentially zero ne@ir= 0 and approaches a maxi-
// e mum ataround = /4 inthe case of thin prolate spheroids. For
2 0 / thicker macromolecules (lower aspectratios), this probability in
& 7 creases slower with increasiagi.e., for a sphere the probability
;g’ / would be independent 6). Whenevek < 5.1 um, the spheroid
§ -15 /
! / 4k J
a / TABLE 1
20 7 Summary of the Results of Figs. 5 and 6 for Uncharged Systems
—_ a/B = 10 _6 1 L L ! i L
—— op=5 100 200 /B pb (No./m) ¢ (% vol) Eden(0) (KT)
255 - qp=2 .
—— /B=133 0=4.19% Prolate 10 Ix 1019 0.042 -1.07
/B =1 (sphere) .= 100 nm spheroids 5 S 1019 0.17 -1.13
30 . , . , , 2 1x 18119 1.05 -1.57
- 1.33 1x1 2.36 —2.22
0 >0 . 100. 150 200 10 1x 107 4.19 —106.76
Separation Distance, nm 5 250 x 1070 4.19 _28.96
9 —
FIG.6. The effect of macromolecule shape on the depletion interaction be- 2 400x 1019 4.19 6.28
: . T . 1.33 178 x 10 4.19 -3.95
tween two 5um-radius spherical particles in a solution of prolate (a) and oblate
(b) spheroids. The macromolecules and particles are treated as hard sphefofigte 10 1x 101 0.42 -2.11
(100-nm semimajor axis length) and hard spheres, respectively. The macro- Spheroids 5 & 101 0.84 —2.14
molecule volume fractiong( = 4.19%) remains fixed and the number density 2 1x 10'° 2.10 —2.36
is allowed to vary with varying aspect ratie/S. In both cases, the results for 1.33 1x 101 3.14 —2.68
spherical macromolecules (8 = 1) are presented for comparison. The inserts 10 100 x 10%° 4.19 —21.04
in (@) and (b) show an expanded view for low aspect ratio spheroids. 5 5.00 x 101 4.19 —10.68
2 200 x 10'° 4.19 —4.71
1.33 133 x 1019 4.19 -3.58
. . . . . 9
illustrates this interaction for prolate spheroids of varying asPheres 1 k 10" 4.19 —3.14

PIECH AND WALZ

p?Ct rau_o. The particle he_re is reated as a hard_’ charged Sphel(%te.Shown at each value af/g is the macromolecule number density,
with rad'USR.: 5 um, while the macrom()'e_CUle IS modelgd a%y,; the corresponding volume fractiog; and the depletion energy at contact
a nonadsorbing, hard, charged spheroid with the semimajor axis- 0).
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10? | above in the rang@ouch < 0 < /2. Finally, for a fixed value of
e e a 0, the electrostatic energy decreases with increasiagd con-
—— \ \\\\\\\\\\\\\\\\ - sequently the probability of finding a macromolecule is greate
T~ _ )
ol \\\ - - ] at larger separations.
[“::»5 | Prolate Spheroids \"\_\ -~ e | Depletion Interactions in Charged Spheroid Systems
E 3 Z-l“fgnm; AN The effect of macromolecule shape on the depletion inte
g 10°r v, = -50 mV \-. N 7 action between two negatively chargedy.Bradius particles
I b - w10 N\ AN immersed in a solution of charged, spheroidal macromolecul
f‘; ——ap=s \ AN ﬂ (2100 nm semimajor axis length) is presented in Fig. 8. The pa
2 10tk Cees af=2 \ \\\_ ticles are treated as hard, charged spheres, while the mac
% ——- a/f=1.33 - molecules are modeled as nonadsorbing, hard, charged prol
3 - \., - spheroids. All surfaces are assumed to have constant surface
m \ tentials of—50 mV and the solution Debye length is 10 nm. The
10° 1 AN . depletion force is computed using the modified force balanc
"\ model (Eq. [5]) with the expressions for particle—macromolecul
i ] interactions determined from Egs. [8]-[13]. In the case of
10 . constant macromolecule number density (Fig. 8agreasing
0 /4 =2 the spheroid aspect ratio enhances the depletion attraction.
Spheroid Orientation Angle, 8 constant volume fraction (Fig. 8b), on the other handreas-
ing the spheroid aspect ratio significantly enhances the intere
b T tion. Table 2 summarizes the data presented in Figs. 8a and
—- a/p=10 Although the same trends are observed in the uncharged syst
1ofF —— wB=5 o e — the depletion effect is considerably larger and longer ranged
o ngf% s the charged system.
o ../ / . Due to limitations of the model describing an electrostati
08 brolate Spheroids 7/ R potential distribution around a spheroid (Egs. [11]-[12]), th
o [ @=100am ./' / ) depletion interactions in charged systems were determined |
5 0.6 |- SI; '_053'1‘;\, /] E . prolate macromolecules only. This subject is discussed furth
E? L rosi2um ,/. / below.
g ooar / // - .
I /‘ y DISCUSSION
0.2 - /oy s i Interactions in Noncharged Systems
P /// . Scaling relationships. In attempting to understand the ma-
L jor trends in Figs. 3-6, it will be helpful to develop some
1
0 n/4 /2 TABLE 2
Spheroid Orientation Angle, & Summary of the Results of Fig. 8 for Charged Systems
FIG.7. (a) The effect of orientation on the electrostatic interaction between a/B ob (No./nP) ¢ (% vol) Egep(0) (KT)
a 5.um-radius spherical particle and a prolate spheroid. This energy profileis
computed at a fixed center—center separatiea 5.12 um for the range of Prolate 10 Ix 1010 0.042 —2.58
spheroid orientations & 6 < 7 /2. Both surfaces are assumed to ha®® mV spheroids 5 i 1010 0.17 -3.27
surface potentials and the solution Debye length is 10 nm. The length of the 2 1x 10%° 1.05 —-5.37
semimajor axisg, is 100 nm in all cases. (b) The function exg(x, 6)/KT], 1.33 1x 1019 2.36 -7.18
which is proportional to the probability of finding a macromoleculexah 10 100 x 10?1 4.19 —258.40
orientationd. 5 250 x 10%° 4.19 —81.80
2 4.00 x 10" 4.19 —21.49
1.33 178 x 10 4.19 —12.77
Spheres 1 k& 10%° 4.19 —8.96

touches or penetrates the particle in the range @< Oioych,
whereb,ch is @ function of the spheroid aspect ratio and

Note. Shown at each value ef/8 is the macromolecule number density,

In this case, the shape of the electrostatic energy profile and théne corresponding volume fractiog; and the depletion energy at contact
corresponding probability distribution resemble those present@d- 0).
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a T T T T T T S|mpI|fy to
O -
Eppproladh = 0) 1 In(A+ VA —1) [28a]
P SKTor AVAZ -1
2 Eppobiatd(h = 0)
5 L PpSKTa
B
5 L 1 A 1 b4
HE _ 1y —[tan1<—> - —} [28b]
5 | A JAZ -1 A2 -1 2
Z& s and reduce further in the case of spherical macromoleculs
// — - a/B=10 Prolate Spheroids (A - 1) to
—— a/B=5 ;_‘)b=1><10w/m3
-8 cr =2 a =100 nm . Eprspherdh = 0) - [29]
——- a/f=133 k' =10 nm ooSkTa =-2,
r — a/P =1 (sphere) Yo = =50 mV
B+ J TS N T Y S N S wherea here denotes the macromolecule radius. Thus the rat
0 50 100 10 200 250 300 350 of the contact energy due to spheroidal macromolecules to th
Separation Distance, nm caused by spherical macromolecules will be given by
Eppproadn =0) 1 In(A+4 v AZ—1)
0 =-+————~ constanipy
EPP,Sphert{h =0 2 2AVAZ -1
30a
.50 [304]
Eppoblatdh = 0)
B EPP,Spher&h = 0)
=~ _100
5 1 A tan? = 1 constanp
5] e — - ) — —
5 2A  2JA2-1 JA-1) 2 °
-150
3 [30b]
& ’ .
a / 20 b1 : _ _
200 / 0 150 300 in the case of prolate and oblate macromolecules, respectivel
” C “;B: ;0 Prolate Spheroids Similarly for the geometry of two large spherical particles, the
ST z,Bz 5 9=4.19% interaction energy at contact can be obtained from Egs. [21a] a
250 | B o =100 nm
—— /B=133 «' =10 nm [21b] as
— o/B =1 (sphere) Yo = =50 mV
. . ‘ . . . . E h=0 2 4
e e =02 )
KT 3 3
Separation Distance, nm
(A2
FIG.8. The effect of macromolecule shape on the depletion interaction be- = —¢Ra <7 + 1) for R> «
tween two 5um-radius spherical particles. All surfaces are assumed to have
—50-mV surface potentials with solution Debye length equal to 10 nm. The [31a]

macromolecules are modeled as prolate spheroids (semimajor axis length, E {h = 0) 4 2
equal to 100 nm) with varying aspect raiig,8. (a) The effect when the macro- =Ssoblael’’ = V) —ppTT Ra? <_ + = AZ)

molecule number density,, remains fixed at & 10'° macromolecules/fh KT 3 3

(b) The effect for a constant volume fractiog, equal to 4.19%. In both

cases, the results for spherical macromolecule® (= 1) are presented for =—¢ Ra_l<A+ }A—1> for R> «
comparison. The insert in (b) shows an expanded view for low aspect ratio

spheroids.

[31b]

simple scaling relationships describing the dependence of foeprolate and oblate macromolecules, respectively. These eqt
interaction energy at contach & 0), on the macromolecule tions can be used to understand the dependence of the energ
shape, size, and concentration (the attraction is maximumtla size and shape of the spheroidal macromolecules. Spec
contact.) For the parallel plate geometry, Eqgs. [20a] and [20hlly, for a given« value, the magnitude of the depletion
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interaction decreases with increasing aspect ratio for consttiah caused by spheres at equal macromolecule humber der
pp and increases with increasing aspect ratio for congtant  ties. However, at equal macromolecule volume fractions, the o
The magnitude of these interactions relative to the case pdsite will be true (i.e., the depletion attraction due to spheroic
spherical macromolecules can be determined by letting the a8l be larger than that produced by spheres). This latter trer
pect ratio go to 1.0, was reported previously for the case of rod-like macromolecule
(34, 45, 52).
These trends can be understood physically by recognizil
that the attraction arises because the macromolecules are
for R>a, [32] cluded from the gap region at sufficiently small gaps. As the a
pect ratio increases, meaning that the macromolecules beco
wherea denotes the macromolecule radius. The ratio of the comore needle-like or disk-like, the number of allowable orienta
tact energy due to spheroidal macromolecules to that causediBys in the gap increases. Thus for a fixed number density
Spherica| macromolecules for the conditions of equa| macrﬁ\.ﬂCfOfﬂOleculeS, the interaction decreases because the thir
molecule number densities and equal macromolecule volugiheroids can more easily access the gap region. When the \

ESSSphere(h =0) _ _ 3 —1
T = 2,0b7TRa.2 = E(]ﬁRa

fractions are given by the following relationships: ume fractionis held constant, however, the dominant effectis

higher number density of spheroids needed to maintain a givi

Essproadh =0) 1 2 volume fraction at increasing aspect ratios. Thus the interacti
m - §( ﬁ) actually increases.

It is also instructive to comparEpep(h = 0) for prolate and
oblate spheroids having the same aspectratio. Dividing Eq. [33
by [33c] and Eq. [33b] by [33d] yields the following expres-

for R > « and constanp, [33a]
Essproladh =0) 1

Essspherdh = 0) 5(2 +A) sions:
for R > o and constanp  [33b] Essproadh = 0) 2.4 A2

Essoblate(h = 0) _ }(2 i) Essobladh =0) 1+ 2A2

Essspherdh =0) 3 A for R > o and constanp, [35a]
for R > « and constanp, [33c] Essproldn = 0)  2A+ A3

Essoblah = 0) _ }<2A+ 1) Essobladh =0) 1+ 2A2

Essspherdn =0) 3 A for R > « and constanp. [35b]

for R > o and constanp. [33d]
Again, sinceA > 1, the energy produced by oblate spheroid

In the A — oo limit, these equations simplify to will always be larger than the energy produced by prolat
spheroids at equal aspect ratios and number densities. Ci

Essneeadh =0) 1 versely, at equap, the energy due to oblates will be smaller
Essspherdh =0) 3 than the energy due to prolates. Along with the analysis carrie

out earlier (Egs. [33a]-[33d]), these results indicate that whe
the length of the spheroid semimajor axis is equal to the sphe
Essneeadh = 0) _ A? radius, the force and energy produced by oblate spheroids w
Essspherdn =0) 3 be significantly closer to those for spherical macromolecule
for R > « and constanp  [34b] f[han the force a_nd energy pr_oduced by prqlate sphermds. T
is because for given semimajor and semiminor axis lengths, t
Esspisk(n =0) _ 2 volume of an oblate spheroid is larger than the volume of a pr
Esssphedh =0) 3 late spheroidVproiate= 37 f% andVopiae = 37?p), meaning
for R > « and constanp, [34c] that the_oblate spheroid has _fewer allowable orientations in ti
gap region between two particles.
ESSLM = 2—A Validity of Derjaguin approximation. Because the Derjaguin
Essspher{t =0) 3 approximation was used to derive the analytical expressio
for R > « and constanp [34d] describing the depletion interactions in noncharged syster
(Egs. [21]-[24]), it is useful to consider its limitations. Basec
for needle-like and disk-like macromolecules, respectivelgn the assumption that the particle radius is much larger thi
Equations [33a]-[33d] can be used to further understand ttie range of the interaction, this approximation is expecte
results summarized in Table 1. Becadse 1, the depletion at- to become less accurate for smaller valueRRgt. (the ratio
traction due to spheroids will always be smaller than the attraaf-the particle radius to the largest macromolecule dimensio

for R > « and constanp, [34a]
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represented bl ). In addition, the magnitude of the percentageiently large. For example, the model would not apply to thir
error, defined as prolate shapes or spheres with radius comparabte toFrom

the datain Tables 1 and 2 of the Hsu and Liu paper (55), it can'l
deduced that the average error in the perturbation treatment 1
the case of a prolate spheroid having8 = 1.67 andca = 10

is on the order of 6%. Furthermore, this deviationis largestin th
regions of highest curvature (i.e., spheroid poles in the case
is expected to increase with gap width, since the Derjaguin gftolate macromolecules), approaching 10%in these regions, a
proximation also assumes that< R (i.e., curvature effects are |owest where the curvature is minimum (approximately 2%). A
insignificant). For simplicity, only the error at contatt£ 0) seen in Fig. 7b, the probability of the spheroid having an orier
will be considered. tation angle ofr/2 (semimajor axis parallel to sphere tangent

In the case of spherical macromolecules, Eqgs. [24] and [28]much greater than the probability of a= 0 orientation (pole

give appropriate expressions fBerjaguin@nd Erigorous Fe€SPEC-  of spheroid toward sphere). This suggests that the 2% error 1
tively. The Derjaguin approximation is found to underestimaigorted by Hsu and Liu may be a better characterization of tr

the depletion interaction (i.€Eperjaguin < Erigoroud With @an er-  error in the spherical particle/spheroidal macromolecule inte
ror at contact less than 1% whenewfa > 70 (a here refers action energy for these particular valuesxadnd 8.

to the radius of the Spherica| macr0m0|ecu|e). This deViationThe results presented here for the dep|eti0n interaction |

increases steadily with decreasiRga ratio, becoming 15% at charged systems are thus believed to be within a few percent
R/a = 4, for example. This error arises from the fact that as thge true value when the spheroid aspect ratio is less than tw
ratio R/a decreases, the region of the spherical particles sttjs error increases with increasing aspect ratio, and the err
face comprising the exclusion zone increases, and the parabp{igystems whera/B is greater than 10 is difficult to quantify.
function used to describe the spherical surface in the Derjagiig shown in Fig. 7b, however, as the aspect ratio increases, t
approximation becomes a poorer representation of the interggabability of the spheroid having an orientation parallel to th
tion region. sphere’s tangent, where the perturbation model is most acc
A similar analysis can be performed for spheroidal macreate, also increases. Thus the model may be reasonably accu
molecules by comparing the predictions of Eqs. [21a] and [218}en at these large aspect ratios. Testing this accuracy would

(approximate expressions describing the depletion attractionjfiire more rigorous models describing the electrostatic potenti
the Derjaguin limit) to the rigorous results computed with thground the spheroids.

force balance model (Egs. [5]-[7]). It is found that the ap-
proximate model underestimates the depletion interaction

oblate macromolecules, but overestimates the interaction raed svstems follows the same trends with macromolect
prolate macromolecules. This latter result was reported earlidP'9 y

by Yamaret al.(53) for the case of thin rod-like macromolecule Ize and shape as seen in the unchanged sy§tems. In p"?‘”'CL
(L/D > 1, whereD represents the rod diameter). For exampl or a constant macromolecule number density, decreasing t
in the casé of prolate macromolecules wRfx = 4 and aspect Spheroid aspect ratio enhances the depletion attraction, while
ratio equal to 5, the error is approximately 25% at contact, an(ﬁ%nStant volume fraction, the opposite is true.

only slightly larger (approximately 32% error) at infinite aspect The eﬁect of charge o“n the Qe;?,letlon attraction can be unde
ratio. stood by introducing an “effective” macromolecule size, reflect

ing both the size of the hard core of the macromolecule and tf
) . thickness of the surrounding ion cloud, which will be on the or
Interactions in Charged Systems der of the solution Debye length. Although the effect of charg:
Validity of the electrostatic model.The validity of the linear €an be significantly more complex, this approach nonethele
superposition approximation has already been discussed inBRRvides a tool for understanding the qualitative trends in th
Theory section. The potential distributions around the spheri¢gpults.
macromolecules and particles were calculated using Eq. [10])fthe extrasize produced by the ion cloud is denotef] #een
which requiresc R > 10 and surface potentiais200 mV. Each the attractive energy at contact for two large spherical particle
of these requirements was satisfied in the calculations preserifegolution with prolate and oblate macromolecules becomes
here for both the particles and macromolecules. The only re-
maining issue is then the validity of the perturbation solution for EssProlatechargeh = 0)

%error= |ERigorous_ EDerjaguin| % 100, [36]

ERigorous

Magnitude of the effect of charge on the depletion interaction:
e magnitude of the depletion interaction in charged and no!

describing the electric potential around the spheroidal macro- RKT
molecules. 5 4 .,
As mentioned earlier, the perturbation method is most accu- =—por (o + ) [5 + §(A) }
rate for double layers that are much smaller than the macro-
molecule size. It can be also applied to moderate or even thick = —¢ (@ 4 8)? Az[} + (A’)‘z] for R>a [374]
double layers as long as the spheroid aspect ratio stays suffi- as 2
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Essoblatechargedn = 0) Interactions between Macromolecules
RKT

In using the Boltzmann equation to calculate the densit
— ppr(a + 82 4 n E(A’)‘z distribution of macromolecules around the spherical particle
Pb 3 3 (Eq. [2]), interactions between the macromolecules themselv
were ignored. Such interactions have been shown to produ

2
=—¢ G +38) A[l + }(A')ﬂ for R> «, [37b] structuring of the macromolecules and oscillations in the resul
o 2 ing depletion force profile between two macroscopic surface
(32, 36, 39-43, 45). The accuracy of the results presented abc
where depends upon the validity of this assumption of ideal behavio
o (@ +8) Inuncharged systems of hard spherical macromolecules, W:
A=-— and A = [37c] and Sharma showed that higher order concentration effects w

p (B +9) be negligible for volume concentrations up to about 1% (42). A

seen in Tables 1 and 2, however, the first-order model (Egs. |

and [25]) was used to predict depletion interactions in solt

tions of spherical macromolecules at volume fractions as lar

, as4.19%. Although this results in some error, the magnitude

Essspherecharged = 0) _ —2pp(a+8)? = _§¢M structural repulsion predicted with the second-order force be

RKT A ance model of Walz and Sharma (42) at this volume fractio

for R> a, [38] did notexceed 1 kT, while the depletion attraction was not sic

nificantly affected. For example, in the hard sphere system

wherea denotes the macromolecule radius. It should be notgéd= 4.19%, the energy at contact calculated with the first-orde

that the effect of the ion cloud on the effective radius of thieatment differed by less than 1% from the second-order moc

particle is being ignored, which is strictly correct only wheipredictions. In addition, the barrier height computed with th
KkR> 1. second-order model was only 0.12 KT.

As the thickness of the double layer increases (i.e., increasingVliao et al. showed that for thin noncharged rod-like macro-
8), A decreases, approaching a lower limit of 1.08as oco. molecules and reduced number densities of order unity=(
Thus according to Eq. [37], adding charge increases the magmiDL? ~ 1, wherec, denotes the reduced density, while
tude of the depletion attraction for both the consjaydind con- andL are the rod diameter and length, respectively), the rept
stantg cases for all macromolecule shapes. The effect is musive barrier is typically much smaller than the thermal energ
more pronounced when the characteristic size of the mackd- (40). The authors attributed this lower-than-expected ba
molecules is smaller than the Debye length. In addition, for thier to offsetting second- and third-order effects. As illustrate:
case where the Debye length is much greater than either thé&ig. 4a, the potential profile for prolate spheroids with aspe
semimajor or semiminor axedy &~ 1 and the interactions for ratios greater than 10 is very similar to that of rods. For the cas
both the prolate and oblate shapes become equal to that of eqa@nsidered here in which the aspect ratio was 10, the reduc

Inthe case of spherical macromolecul@s£ 1) these equations
simplify to

alently sized spheres. density €, = pb(28)(2)?) never exceeded 0.8, suggesting tha
For example, for a system containing.®a-radius particles the finding of Macet al. would apply here.
and prolate macromolecules with= 100 nm andA =5 at In summary, based on the results of Walz and Sharma f

constant macromolecule number density, addif®-mV po- spherical macromolecules (low aspect ratio) and &al. for
tentials to the particles and macromolecules in a solution wheagls (high aspect ratio), we conclude that higher order effec
«~* = 10 nm increases the magnitude of the interaction at conould not significantly alter the results presented here, esp
tact by a factor of 2.9 relative to the case of uncharged particleglly in noncharged systems. In the charged systems high
and macromolecules. (The interaction for the charged systender effects will clearly be more important, as the effective
was calculated using the rigorous force-balance model.) Matsiolume fraction of the macromolecules will be greater. The e»
ing this increase using the simplified approach of Eq. [37] reeption would be cases in which the characteristic size of tt
quires an effective double-layer thicknesspf approximately spheroids is much larger than the Debye length, which is tr
5 Debye lengths. for the systems studied here with< 2.

Note that the approach described here for approximating the
effect of chargfa in sphermdal macromolecule sygtem; assurE%%C,[S of Depletion Interaction on the Total
that the effective thickness of the double-layer is uniform on Interparticle Potential Energy
all parts of the spheroid surface. In a recent paper, Piech and
Walz (60) showed that using two different effective thicknessesFinally, itis interesting to compare the magnitude of the deple
(i.e., one for the semimajor axis and one for the semiminor axig)n interaction with the other interactions that can exist betwee
does not lead to a significant improvement in the accuracy of tharticles in solution, specifically the van der Waals and electre
approximation. static interactions. The stability of a dispersion of particles wil
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only be altered if the depletion interaction is significant relativehereB is a function of the surface potentials (assuméd mv
to these other interactions. here) and sizes of the two spheres. For these calculatofts,
The system studied is two relatively large particles interactidgpth polystyrene spheres was assumed tojo@and the Debye

across a separation distance near the location of the secondamgth was 10 nm«(R = 500).

potential energy well. Specifically, the gap width,is much The results are shown in Fig. 9. The solid line represents tt
larger than the Debye lengtk; %, yet much smaller than the interaction with no added macromolecules (i.e., sum of Egs. [3'
particle radiusR. These conditions are chosen as they allow used [40]). For the dashed line, the depletion interaction produce
of the linear superposition approximation to estimate the electhy the addition of 100 nm radius spheres, also wi§0 mV sur-
potential in the gap along with the Derjaguin approximation t@ce potentials, at a bulk volume fraction of 4.19% is includec

account for the particle curvature. Now, a secondary well of approximately 4 kT is produced. Fo
Under these conditions, the van der Waals interaction enetiy¢ other two curves in the graph, the 100-nm-radius spher
can be calculated using the Derjaguin approach, as are replaced by prolate spheroids with a major axis length «
100 nm and an aspect ratio of 5. For the broken line, the volurr

E () — _E * Ah) dh’ 39 fraction is 4.19%, while for the dotted line the number densit)

vaw(h) = 12), h?2 ’ [39] is the same as for the spherical macromolecule case (the v

ume fraction is now 0.17%). At the same volume fraction, the
where A(l) is the effective Hamaker constant calculated bglepth of the secondary well is increased to over 30 KT, whic
tween two infinite half-spaces separated by gap widtiFor is easily sufficient to cause secondary flocculation. On the oth
these calculationgi(h’) was calculated using the Lifshitz equahand, ata constant number density, moving from the spherical
tions (61). Likewise, the electrostatic interaction can be es@ipheroidal shape reduces the well depth from 4 to 1.3 kT, whic

mated as (62) would not have a significant effect on the stability of a dispersiol
of such particles. In the Derjaguin limit, the magnitude of thes
Eeec () = Bexp(«h), [40] energy wells scales with the particle radius.
40 T . T CONCLUSIONS
30 b 4 The general force-balance model developed by Walz ar
L No depletion interaction Sharma (42) was modified to calculate the interaction force ar
20 1 —— a/B=1(spheres), §=4.19% | energy between two spherical particles in solution with nonac
o — = a/B=5 (prolates), ¢ =4.19% sorbing spheroidal macromolecules of arbitrary size and aspe
T "o /B =35 (prolates), ¢ =0.17% ratio. Both purely hard wall interactions and longer-range elec
golor 7 trostatic interactions between the particles and macromolecul
UE r were considered. Furthermore, it was assumed that the den:s
% or i\ e —— of macromolecules was low enough that higher order effec
g L \ N ;/ arising from interactions between macromolecules were neg
2 0k ; ya i gible. Analytical expressions describing the depletion interac
£ | \ /-' tion between hard, uncharged plates and hard, uncharged spt
= \ ical particles in theR/L « 1 limit (L represents the largest
20 f / ] macromolecule dimension aiitis the particle radius) were also
L \ :
S presented.
-30 - N~ 7 It was found that the macromolecule shape significantly af
- fects the depletion interaction. Specifically, when the numbe
-40 e density of macromolecules is held constant, the depletion &
0 50 100 150 200 250 300 traction is found to decrease with increasing aspect ratio of tf
Separation Distance, nm spheroidal macromolecules. Conversely, under the condition

o . _constant volume fraction, the attraction increases with increa
FIG. 9. The effect of the depletion interaction on the total energy profile

between two 5¢m polystyrene spheres in an agueous solutiort (= 10nm)of "9 aspect ratio. In this latter case (con_stqa)]tthe interaction

charged macromolecules. All surfaces are chargedmV surface potentials. Produced by prolate macromolecules is greater than that pr
The solid line consists of the electrostatic and van der Waals interactions olyced by oblate macromolecules of equal axes lengths. The
while the other lines include the depletion energy produced by spherical assults arise because (1) rod-like or disk-like macromolecule
spheroidal macromolecules. For the dashed and brokenIines,thevolumefraﬁ more easily access the gap region between two particl

is fixed at 4.19%, while for the dotted line the number density is the same as for herical | | d (2) at | | {
the spherical macromolecule case (i.e., the volume fraction is now 0.17%). n spherical macromolecules, and (2) at equal axes leng

radius of the spherical macromolecules and the semimajor axis of the proii& VOll_Jme_Of an oblate spheroid is larger than that ofa pmla_—1
spheroidal macromolecules (8 = 5) are equal to 100 nm. spheroid. Finally, prolate and oblate spheroids with aspect rati
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greater than 10 were found to behave like infinitely thin needles of Phase Transitionsin Complex Fluids” (M. Baus, L. F. Rull, and J. P
and disks, respectively. Ryckaert, Eds.), pp. 3—44. Kluwer Academic, Dordrecht, 1995.

The depletion interaction in charged systems follows the sarfie (Fig‘;'s')’;' P., Frances, N., and Mondain-Monval, Rhys. Rev. E59, 4384
general trends Wlt.h macromolecule shape as those four_1d iNUN- A dams, M., and Fraden, Biophys. 174,669 (1998).
charged .SySt.emsa however, b.O.th the range and magthd?ﬁeAdams, M., Dogic, Z., Keller, S. L., and Fraden, Sature 393, 349
substantially increased. In addition, when the double-layer thick- (1998).
ness is much greater than the lengths of the semimajor & Koenderink, G. H., Viiegenthart, G. A., Kluijtmans, S. G. J. M., van
semiminor axes of the spheroid (either prolate or oblate shapes),Blaaderen, A, Philipse, A. P., and Lekkerkerker, H. N. Wangmuir15,
the depletion interaction becomes equal to that produced 4693 (1999).

. p ' _q p - ?/y Russel, W. B., Saville, D. A., and Schowalter, W. R., “Colloidal Disper-

equalent spheres (i.e., sphere radius equal to the semimajorsjons cambridge Univ. Press, Cambridge, England, 1989.
axis length). 28. Chu, X. L., Nikolov, A., and Wasan, D. T.angmuir10,4403 (1994).

Finally, it is found that the depletion attraction produced b9 Penders, M. H., and Vrij, ARrog. Colloid Polym. Sci89,1 (1992).
charged prolate spheroids at concentrations of order 1% v Zaer;"r‘l'S*;ﬂdgg%M" Pincus, P., Jeppesen, C., and Marques, Rhydica
ume would b_e suff|C|_ent to mduce_ﬂoccu'atlon of a dISpeI.’S_IOé'L Yaman, K., Pincus, P., and Marques, C.Rhys. Rev. Let?.8,4514 (1997).
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cally presented here, this same behavior would also be valid #3r Asakura, S., and Oosawa, F.Chem. Phy22, 1255 (1954).
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