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Depletion Interactions Produced by Nonadsorbing Charged
and Uncharged Spheroids
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The effect of macromolecule shape on the depletion attraction be-
tween two hard spherical particles in a solution with nonadsorbing
hard spheroidal macromolecules of arbitrary size and aspect ratio
was investigated using a modified form of the force-balance model
of J. Y. Walz and A. Sharma (1994, J. Colloid Interface Sci. 168, 495).
The macromolecules were represented as general spheroids, which
could be either charged or uncharged. For the uncharged case, a set
of analytical expressions describing the depletion attraction, valid
for particles much larger than the characteristic macromolecule
size, was developed. Comparisons with the case of spherical macro-
molecules were made under the condition of either constant macro-
molecule number density, ρb, or constant volume fraction, φ. It was
found that increasing the spheroidal macromolecule aspect ratio
(major axis length/minor axis length) decreases the depletion at-
traction at constant ρb, but increases the interaction at constant
φ. In the latter case, the interaction produced by prolate macro-
molecules is greater than that produced by oblate macromolecules
of equal axis lengths, while the opposite is true at constant ρb. A sim-
ple scaling analysis is used to explain these trends. Surface charge
is found to increase both the range and the magnitude of the deple-
tion attraction; however, the general trends are the same as those
found in the uncharged systems. Finally, the effect of the depletion
attraction produced by spherical and spheroidal macromolecules
on the stability of a dispersion of charged particles was examined.
It was found that charged spheroids at concentrations of order 1%
volume can produce secondary energy wells of sufficient magnitude
to induce flocculation in a dispersion of charged spherical particles.
C© 2000 Academic Press

Key Words: colloidal forces; depletion forces; depletion interac-
tion; depletion attraction; nonspherical particles.
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INTRODUCTION

The depletion interaction, which arises between colloidal p
ticles in the presence of a nonadsorbing material (depletant)
been the subject of much research over the past 50 years. A
mary reason for this research is the widespread importance o
interaction in various colloidal processes. For example, de
tion forces have been found to alter the stability of colloidal s
pensions (1–21), to control phase transitions in colloid–polym
1 To whom correspondence should be addressed.
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and colloid–colloid mixtures (22–29), and to modify the ben
ing modulus of membranes and bilayers (30–32).

The depletion interaction was first satisfactorily explained
Asakura and Oosawa in the mid-1950s (33, 34). These aut
showed that a volume exclusion mechanism could lead to a
attraction between two hard, parallel plates in solution with ri
macromolecules. More recent work has shown that the deple
attraction is actually the short-range component of a more g
eral structural interaction (35–40). In one sense, the deple
effect can thus be viewed as a first-order approximation to
structural interaction. When higher order effects are conside
(i.e., interactions between the nonadsorbing material), lo
range repulsions and even oscillations have been both pred
and observed (32, 36, 39–43, 45). This repulsion is thought t
the primary cause of the so-called depletion stabilization ef
observed at higher depletant concentrations (3–5, 16–20).

Although Asakura and Oosawa later extended their orig
work to the cases of charged and nonspherical depletants
spheroidal, rod-like, and flexible chain macromolecules w
considered), the majority of modeling work completed to-d
has focused on systems of hard, uncharged spherical m
molecules. Only very recently have rod-like macromolecu
been considered in the context of depletion interactions, e
though such macromolecules are present in a large varie
natural and synthetic systems (22, 46–48). For example,
et al.investigated the depletion interaction between large sph
(radiusR) caused by mutually avoiding thin hard rods of leng
L, diameterD, and bulk number densityρb (45). The osmotic
pressure exerted on a hard wall by a solution of these rods
calculated from the density of rod ends in contact with the w
(the analog of Henderson’s formula for the case of hard sph
(49)). The force between two spherical particles was then fo
by applying the Derjaguin approximation (50, 51). The mag
tude of the attraction at contact between the particles wa
the order ofρbkTRL2, which is the same scaling as the d
pletion energy produced by small spheres with diameter e
to the rod length. Furthermore, because the number densi
rods can greatly exceed the number density of spheres fo
same volume fraction, much larger attractions are possible
rods than with spheres (34, 45, 52). This was confirmed ex
imentally by Koenderinket al. (26), who found evidence for a
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DEPLETION IN

depletion-induced fluid–solid transition in a mixture of silic
spheres and silica-coated boehmite rods in dimethylformam
solutions at rod concentrations well below the isotropic–nem
transition (volume fractions from 0.33 to 0.50%).

In a later publication, Maoet al.(40) solved a self-consisten
integral equation describing the density profile of rods betwe
two parallel plates. Again, the Derjaguin approximation w
used to extend this result to the interaction of two spheri
particles. Their calculations, correct to the third order in r
concentration, indicate that typical colloidal sphere/rod mixtu
will exhibit a smaller repulsive barrier than the thermal ener
kT, throughout the semidilute concentration range of the ro
It should be noted, however, that these calculations apply o
in the L/D À 1 limit and are subject to corrections of orde
D/L. Furthermore, use of the Derjaguin approximation restri
applicability of this method to particles that are large compa
to the rod length.

Yamanet al.(30, 53) developed a model for depletion intera
tions between spherical particles immersed in a dilute solutio
rigid rods without this limitation in rod dimensions (i.e.,L ≈ R
was permitted). The authors found the Derjaguin approxima
to be quite accurate as long asL/R¿ 1 (i.e., forL/R<∼ 0.05),
but large and systematic deviations appear with increasingL/R
ratios. For example, forL/Rvalues of 0.2 and 1.0, the deviatio
was 10 and 50%, respectively.

The model of Yamanet al. was based on the calculation o
the excess surface energy for two surfaces in contact with a
solution. The depletion force was calculated from the deri
tive of the free energy with respect to the separation dista
between these two interacting surfaces. Because rod–rod i
actions were ignored, this model is correct only to first ord
in rod concentration and predicts no long-range repulsion.
excess surface energy can also be calculated with the mod
Groh et al. (32), correct to second order in rod concentratio
Because steric interactions between rods are taken into acc
the results from the Grohet al. model are applicable to more
concentrated solutions (i.e., the semidilute regime below
isotropicnematic transition). It should be noted that althou
the models mentioned above apply to infinitely thin rods, th
may nonetheless be fairly accurate even for aspect ratios (L/D)
as small as 10 (54).

In this paper, we modify the force balance model of Walz a
Sharma (42) to calculate depletion interactions between sph
cal particles in a solution with spheroidal macromolecules c
rect to first order in macromolecule concentration. One major
vantage of using the general spheroidal shape is that a wide r
of macromolecule shapes can be accommodated (i.e., nee
thin disks, spheres, and prolate or oblate spheroids of arbit
aspect ratio). This facilitates modeling of many real system
such as polymers in low-salt solutions (rod-like shapes), na
ral and synthetic clay suspensions (disk-like shapes), and
ious biological systems (e.g., viruses with different spheroi

shapes). Moreover, because the Derjaguin approximation is
employed, the method is applicable to particles and mac
TERACTIONS 87
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molecules of any size. The primary assumption is that the ma
molecule concentration is low enough that second-order c
centration effects arising from interactions between the mac
molecules themselves can be ignored. In the case of hard,
charged systems, we compare our numerical results to analy
expressions for the depletion interaction between two large p
ticles in a solution of spheroidal macromolecules for the limitin
case whenα (the largest dimension of the macromolecules)
much less thanR (the particle radius).

We have also extended this model to the case where both
particles and the spheroidal macromolecules possess a ne
face charge. Electrostatic interactions between the particle
macromolecule are calculated using the perturbation expan
method of Hsu and Liu (55, 56) for the case of constant poten
surfaces. Comparisons between the charged and the uncha
systems containing spheroidal macromolecules are present

THEORY

Force Balance on a Colloidal Particle

The force balance model used here follows the same appro
presented by Walz and Sharma (42). The schematic of the sys
is depicted in Fig. 1, where two spherical particles of radiusR,
separated by gap widthh, are immersed in an isotropic solutio
of nonadsorbing spheroidal macromolecules of semimajor
semiminor axis lengthsα andβ, respectively, and bulk numbe
density (number/volume),ρb. For the similar system ofspherical
macromolecules, the total force exerted on particle 1 can
calculated as (42)

F1(h) =
∫
x

ρ(x)∇1E1(x) dx, [1]

FIG. 1. Schematic defining the variables used in the depletion force eq
tions. Two spherical particles of radiusR are interacting across gap widthh in a
solution of spheroidal macromolecules at bulk concentrationρb. The bulk solu-
tion is isotropic, consisting of uniform macromolecules in random orientatio
Ω. The vectorx defines the position of a macromolecule relative to the cen

not
ro-
of particle 1, while parametersα andβ represent the macromolecule semimajor
and semiminor axes, respectively.
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whereρ(x) is the number density of macromolecules at positi
x and∇1E1(x) is the gradient of the interaction energy wit
respect to the surface of particle 1. This equation is the resu
a simple force balance over all macromolecules present in
solution. In the limit of low macromolecule concentrations, t
macromolecule distribution around the two particles will follo
a Boltzmann distribution of the form

ρ(x) = ρb exp

[−E(x)

kT

]
[2]

whereρb is the macromolecule concentration in the bulk, kT
the thermal energy, andE(x) is the potential energy of a macro
molecule at positionx. When two such particles, 1 and 2, ar
present (see Fig. 1), the resulting energy can be approxim
as the sum of the two individual energies:

E(x) = E1(x)+ E2(x). [3]

Substituting Eqs. [2] and [3] into [1] yields

F1(h) =
∫
x

ρb exp

{
− [E1(x)+ E2(x)]

kT

}
∇1E1(x) dx. [4]

This result can be extended to systems containing sphero
macromolecules in a straightforward manner. Again, if it is a
sumed that interactions between macromolecules are not sig
cant (valid for low volume fractions,φ), then the depletion forces
produced by macromolecules having different orientations
be added. Now, the integration must be performed over all p
sible macromolecule positions and orientations. Thus,

F1(h) =
∫
Ω

∫
x

ρb exp

{
− [E1(x,Ω)+ E2(x,Ω)]

kT

}
×∇1E1(x,Ω) dx dΩ, [5]

where the macromolecule orientation is defined by vectorΩ,
while E1(x,Ω) andE2(x,Ω) denote the orientation-depende
interaction energies between macromolecules in a given or
tation with particles 1 and 2, respectively.

Once the depletion force is known, the interaction energy c
be calculated using

EDep(h) = −
∫ h

∞
F1,C-C(h′) dh′, [6]

whereF1,C-C is the component of the forceF1 acting along the
line of centers between the two particles. Note that the fo
balance model was modified in a similar manner by Walz (5

and Piech and Walz (58) to calculate the effect of polydispers
on the depletion interaction in purely spherical systems.
D WALZ
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Forms of the Particle/Macromolecule Interaction

Before the equations presented above can be evaluated fo
depletion force, expressions for the interaction energies betw
a macromolecule and the two particles,E1(x,Ω) andE2(x,Ω),
need to be defined. For the case of simple hard spheres in solu
with hard spheroids, these can be written as

Ek(x,Ω) = Ek,HS(x,Ω)

=
{+∞ for particle–macromolecule overlap

0 otherwise,
[7]

wherek is equal to either 1 or 2. Although these expressions
mathematically simple, they can be a poor representation of
interactions in variety of real systems. In aqueous solutions,
example, many surfaces acquire a net electric charge, resu
in long-range electrostatic forces. The expressions forEk(x,Ω)
can then be written as

Ek(x,Ω) = Ek,HS(x,Ω)+ Ek,Elec.(x,Ω), [8]

whereEk,Elec.(x,Ω) is the electrostatic potential energy of th
spheroidal macromolecule and thekth spherical particle at po-
sitionx and in orientationΩ.

Electrostatic Interactions

An approximate method for predicting the electrostatic fr
energy of interaction between two charged colloidal particles
the linear superposition approximation (LSA), where it is a
sumed that two particles are sufficiently spaced such that
total electric potential at any point between them can be appr
imated as the sum of the potentials produced from each part
Thus,

ψElec.(r ,Ω) = ψSphere(r )+ ψSpheroid(r ,Ω), [9]

whereψSphere(r ) andψSpheroid(r ,Ω) represent the electrostatic
potentials at a pointr arising from a spherical particle and
spheroidal macromolecule in orientationΩ, respectively. The
LSA approach has been found to yield accurate results of
interaction energy between two particles for gap widths larg
than approximately one Debye length (59). However, since
integration in Eq. [5] is performed over the entire solution vo
ume (therefore all separation distances), using Eq. [9] will res
in some error. As discussed in an earlier paper though, this e
will tend to be minimal provided that the particles and macr
molecules carry a like surface charge and are thus repulsive (
In this case,E(x) in Eq. [2] or E1(x,Ω) andE2(x,Ω) in Eq. [5]
will have large positive values at small gap widths (the region
which LSA slightly overestimates the interaction energy) and t
corresponding exponentials in these equations will tend to ze
In other words, the concentration of macromolecules within

ityfew Debye lengths of the particle surface will be small and thus
contribute negligibly to the total depletion force.
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The expression of Bellet al.was used to calculate the electro
static potential distribution around a spherical particle of rad
R and surface potentialψ0,Sphere in a solution having Debye
length equal toκ−1 (59),

ySphere(r ) = ySphere(r )

= 4 tanh

(
zeψ0,Sphere

kT

)
R

r
exp[−κ(r − R)], [10]

whereySphere(r ) = ( zeψSphere

kT ) is the dimensionless potential at
radial distancer from the center of the particle,e is the pro-
ton charge, andz is the valency of the symmetric electrolyte. A
stated by Bellet al., this equation is believed to be the correct lim
iting form of the potential forκR≥ 10 andψ0,Sphere≤ 200 mV
(59). If smaller particles are used such thatκR< 10, alternative
expressions forySphere(r ) are provided in the Bellet al.paper.

The electrical potential distribution around a spheroid
macromolecule can be approximated with the expression
Hsu and Liu (55, 56), which were derived using a perturbat
method to solve the nonlinear Poisson–Boltzmann equation
this approach, the dimensionless potential at any position
symmetric electrolyte solution can be written as

ySpheroid(r ,Ω) = ySpheroid(ζ ) =
∞∑

n=0

λnYn, [11]

whereζ is a function of two spheroidal coordinate variables a
represents a dimensionless distance from the spheroid sur
Yn denotes thenth-order perturbation term, andλ is the pertur-
bation parameter, defined as the ratio of the Debye length to
length of the spheroid semimajor axis (λ = κ−1/α). Hsu and
Liu (55, 56) derived the following analytical expressions for t
first two terms in this series

Y0 = 2 ln

[
1+ η exp(−ζ )

1− η exp(−ζ )

]
[12a]

and

Y1 = f1

[
−csch

(
Y0

2

)
+ 3 lnη

2
sinh

(
Y0

2

)
ln

(
tanh

(
Y0

4

))
− ln η

2
coth

(
Y0

2

)
− sinh

(
Y0

2

)
ln2

(
tanh

(
Y0

4

))]
− 2 f2 csch

(
Y0

2

)
+ g1

2

[
coth

(
Y0

2

)
+ sinh

(
Y0

2

)
× ln

(
tanh

(
Y0

4

))]
+ g2 sinh

(
Y0

2

)
, [12b]

whereη = tanh(y0,Spheroid/4), andy0,Spheroid= zeψ0,Spheroid

kT is the
dimensionless surface potential. Explanations of the other te

in the equations above can be found in (56). Higher-order p
turbation terms appearing in Eq. [11] can be obtained by n
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merically solving a set of linear second-order nonhomogen
partial differential equations (56). For the present study, only
first and second terms in the expansion were used.

It should be pointed out thatY0 represents the electrical poten
tial distribution next to a flat plate; thusY1 can be considered a
the first-order correction for curvature effects. This perturbat
method is thus most accurate for thin double layers (compa
to the macromolecule size) and can be applied to modera
thick double layers as long as the spheroid aspect ratio (len
of semimajor axis/length of semiminor axis) stays sufficien
large. Applicability of this model to the current problem is di
cussed further under Discussion.

Once the potential distributions around the particle and mac
molecule are known, the interaction force between them ca
calculated by integrating the total stress tensor over a midp
plane, perpendicular to a line segment connecting the point
closest approach between the sphere and spheroid. Thus

F = ε

2

(
kT

ze

)2 ∫
4

{
2κ2[coshy− 1]+

(
∂y

∂Y

)2

+
(
∂y

∂Z

)2

−
(
∂y

∂X

)2}
d4, [13a]

where

y = ySphere(r )+ ySpheroid(r ,Ω). [13b]

Here4 denotes the midpoint plane,ε is the dielectric permittiv-
ity of the solution, andy is the sum of the sphere and sphero
potentials at a point on the4 plane. In theX,Y, Z, coordi-
nate system referred to here, theX axis lies along the segmen
connecting the points of closest approach and4 is the Y–Z
plane.

The energy of interaction between the particle and mac
molecule for a given macromolecule orientation was fou
by integrating Eq. [13] from infinite separation to any desir
position.

Analytical Method for Uncharged Systems

In this section, analytical expressions for the depletion ene
between two hard, uncharged spheres in solution with hard,
charged, spheroidal macromolecules are presented. This is
by first calculating the change in the surface free energy o
hard flat plate in a solution of hard, nonadsorbing sphero
This expression is then extended to the case of two para
plates, separated by gap widthh. The depletion force betwee
the plates is given by the derivative of this free energy with
spect toh. Finally, the interaction between two large spheres
found through application of the Derjaguin approximation.

Yamanet al. (30) showed that the change in surface free e

er-
u-
ergy (per unit area),1γ , for any general shape produced by a
macromolecule interacting with the surface can be calculated
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using

1γ

ρbkT
=
∫
x

S−1
∫
Ω

(
1− exp[−Uext(x,Ω)]

4π

)
dΩ dx, [14]

where the volume integral runs over the space available to
solution,S is the surface area, andUext(x,Ω) is the interaction
energy between the surface and a macromolecule at pos
x in orientationΩ. In the case of spheroidal macromolecul
between two parallel plates separated by gaph and interacting
by hard collisions only, this expression reduces to

1γPP(h)

ρbkT

=


h for h < 2β

2
∫ h/2

0

[
1− 1

2

∫
θ

sinθ dθ
]

dz for 2β ≤ h < 2α

2
∫ α

0

[
1− 1

2

∫
θ

sinθ dθ
]

dz for h ≥ 2α,

[15]

whereα andβ are the spheroid semimajor and semiminor ax
respectively,z is the distance of the macromolecule center fro
one plate, andh is the gap width. (Because of symmetry, it
necessary to integrate over only half of the gap region.) T
inner integration is performed over all allowable configuratio
characterized by a range ofθ values (see Fig. 2). For prolat
spheroids, the integration limits areθt and (π − θt), where

θt = sec−1

√α2− β2

z2− β2

. [16a]

FIG. 2. Schematic illustrating the allowable configurations for a sphero
between two hard parallel plates at gap widthh. (a) Prolate spheroids can acces
configurations characterized by all angles betweenθt and (π − θt). (b) Orienta-
tions accessible to oblate spheroids lie betweenθ ′t and−θ ′t . Notice the different

definitions of anglesθt andθ ′t in the two cases. In each drawing, the dark lin
through the spheroid center denotes its axis of revolution.
D WALZ
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For oblate spheroids, the integration is carried out from 0 toθ ′t
and from 0 to−θ ′t , where

θ ′t =
π

2
− sec−1

√α2− β2

z2− β2

. [16b]

Carrying out the integrations in Eq. [15] yields the followin
expressions for the surface free energy for the cases of pro
and oblate spheroids

1γPP,Prolate(x)

ρbkTα

=



x for x < 2A−1

x + 1
A
√

A2− 1

(
ln
[

Ax+
√

(Ax)2− 4
2

]
− Ax
√

(Ax)2− 4
4

)
for 2A−1 ≤ x < 2

1+ ln[ A+√A2− 1]
A
√

A2− 1
for x ≥ 2

[17a]

1γPP,Oblate(x)

ρbkTα

=



x for x < 2A−1

A√
A2− 1

(
x
√

4− x2

4 − tan−1
[

1√
A2− 1

]
+ tan−1

[
x√

4− x2

])
+ A−1 for 2A−1≤ x< 2

A√
A2− 1

(
π
2 − tan−1

[
1√

A2− 1

])
+ A−1 for x ≥ 2,

[17b]

wherex = h
α

is the dimensionless gap width andA = α
β

is the
spheroid aspect ratio.

The depletion force between the plates can be found usin

FPP(x)

S
= − 1

α

∂(1γ )

∂x
, [18]

whereS is the plate surface area. Substituting Eqs. [17a] a
[17b] into [18] yields the following expressions for the depletio
force:

FPP,Prolate(x)

ρbSkT
=


−1 for x < 2A−1

−1+ 1
2

√
(Ax)2− 4

A2− 1 for 2A−1 ≤ x < 2

0 for x ≥ 2

[19a]

FPP,Oblate(x)

ρbSkT
=


−1 for x < 2A−1

− A
2

√
4− x2

A2− 1 for 2A−1 ≤ x < 2

0 for x ≥ 2.

e

[19b]



e

1

h

s

ths
o-
a-
t

ified
o-

se
DEPLETION IN

Substituting these expressions into Eq. [6] and integrating yi
the following equations for the depletion energy:

EPP,Prolate(x)

ρbSkTα

=



x − 1− ln(A+√A2− 1)
A
√

A2− 1
for x < 2A−1

x−1+ 1
A
√

A2− 1

[
ln
(

Ax+
√

(Ax)2− 4

2(A+√A2− 1)

)
− Ax
√

(Ax)2− 4
4

]
for 2A−1≤ x<2

0 for x ≥ 2

[20a]

EPP,Oblate(x)

ρbSkTα

=



x − A√
A2− 1

×
[
π
2 − tan−1

(
1√

A2− 1

)]
− A−1 for x < 2A−1

A√
A2− 1

[
x
√

4− x2

4

+ tan−1
(

x√
4− x2

)
− π

2

]
for 2A−1 ≤ x < 2

0 for x ≥ 2.

[20b]

Note that Eq. [20] is essentially the same as Eq. [17], with
only difference being the energy reference state. In Eq. [
the excess surface free energy is zero at contact betwee
plates (x = 0) and finite positive at infinite separation. On t
other hand, the depletion energy given by Eq. [20] is set to z
at infinte gap width and has a negative value at contact.
functional dependence on gap width, however, is exactly
same in both equations.

Finally, applying the Derjaguin approximation (50, 51)
Eq. [20] yields the depletion energy between two sphere
the limit RÀ α:

ESS,Prolate(x)

ρbπRkTα2

=



x − x2

2 − 2
3 − 4

3 A−2

+ x
A
√

A2− 1
ln(A+√A2− 1) for x < 2A−1

x − x2

2 − 2
3 − 4

3 A−2

+ [( Ax)2+ 8]
√

(Ax)2− 4

12A2
√

A2− 1

+ x
A
√

A2− 1
ln
(
2 A+√A2− 1

Ax+
√

(Ax)2− 4

)
for 2A−1 ≤ x < 2

0 for x ≥ 2
[21a]
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ESS,Oblate(x)

ρbπRkTα2

=



− 4
3 − x2

2 + x A−1− 2
3 A−2

+ Ax√
A2− 1

(
π
2 − tan−1

[
1√

A2− 1

])
for x < 2A−1

Ax√
A2− 1

(
π
2 − tan−1

[
x√

4− x2

]
− (x2+ 8)

√
4− x2

12x

)
for 2A−1≤ x< 2

0 for x ≥ 2.

[21b]

It should be pointed out that expressions for small gap wid
(x < 2A−1) were published previously by Asakura and O
sawa in a slightly different form (34). However, the equ
tions in the region 2A−1 ≤ x < 2 are reported here for the firs
time.

The expressions presented above can be greatly simpl
for the limiting cases of rod-like, disk-like, and spherical macr
molecules. In the first two cases,β = 0 and Eqs. [21a] and [21b]
reduce to

ESS,Needle(h)

ρbπRkTL2

=


1
6

(
h
L − 1

)3
for h < L

0 for h ≥ L
andRÀ L [22]

and

ESS,Disk(h)

ρbπRkTD2

=


h

2D

(
π
2 − sin−1 h

D

)
− 1

6

(
2+ h2

D2

)√
1− h2

D2 for h < D

0 for h ≥ D
andRÀ D

[23]

for infinitely thin rods (needles) and disks, respectively. In the
equations,L is the rod length andD is the disk diameter. Finally,
for spherical macromolecules of radiusa, A = 1 and Eqs. [21a]
and [21b] simplify to

ESS,Sphere(h)

ρbπRkTa2{
2− 2h + h2

2 for h < 2a
=− a 2a

0 for h ≥ 2a
andRÀ a, [24]
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which is an approximation to the more general expression

ESS,Sphere(h)

ρbπRkTa2
= −


2− 2h

a + h2

2a2 + 4a
3R

− h
R + h3

12a2R for h < 2a

0 for h ≥ 2a,

[25]

derived by Asakura and Oosawa (33) for systems contain
spherical particles and spherical macromolecules of arbit
size (i.e., for alla/R values).

RESULTS

Depletion Interactions in Hard Systems—Analytical Model

The dimensionless depletion force between parallel pla
predicted by Eqs. [19a] and [19b] is shown in Fig. 3 for v
ious prolate and oblate spheroidal macromolecules. The ma
molecules are modeled as nonadsorbing, hard, and uncha
spheroids that interact with the plates only. With the dim
sionless separation distance between the plates defined ash/α,
the depletion attraction vanishes forh/α > 2, i.e., when the gap
width is larger than twice the length of the macromolecule se
major axis. Furthermore, when the spheroid aspect ratio exc
10, the results approach those for needles and thin disks c
lated with Eqs. [19a] and [19b] in the limit ofβ = 0. Figure 4
depicts the dimensionless depletion energy between the p
for prolate and oblate macromolecules (Eqs. [20a] and [20
As can be seen, the force and energy produced by ob
spheroids are significantly closer to those for spherical ma
molecules than the force and energy produced by pro
spheroids, which is addressed further under Discussion.
spherical macromolecule results shown in the Figs. 3 and 4
computed from Eqs. [19] and [20] by settingA = 1.

The depletion interactions between two 5-µm-radius spher-
ical particles in solution with various prolate and obla
spheroidal macromolecules are illustrated in Figs. 5 and 6.
this and all subsequent graphs, the depletion energy is sc
by the thermal energy, kT. The particles are treated as h
uncharged spheres, while the macromolecules are modele
nonadsorbing, hard, and uncharged spheroids with the sem
jor axis length equal to 100 nm. For these cases, we will pre
the effect of spheroid size at two different conditions. In Fig
for example, the macromolecule number density is held c
stant as the macromolecule shape (i.e., the spheroid aspect
changes. In this case, the macromolecule volume fraction i
lowed to vary anddecreasingthe spheroid aspect ratio enhanc
the depletion attraction. The volume fraction,φ, occupied by the
spheroids is related to the bulk number density,ρb, as

φProlate= 4

3
παβ2ρb [26a]
φOblate= 4

3
πα2βρb. [26b]
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FIG. 3. The effect of macromolecule shape on the depletion force
tween two parallel plates in an uncharged, hard system of prolate (a) and o
(b) spheroids. Here, the dimensionless depletion force is plotted as a funct
the dimensionless gap width. The different curves shown correspond to va
aspect ratios,α/β, of the spheroids. The results for spherical (α/β = 1), needle-
like, and disk-like (α/β →∞) macromolecules are presented for comparis

By comparison, in Fig. 6 the macromolecule volume fract
stays fixed with varying aspect ratio. Now the number den
changes andincreasingthe spheroid aspect ratio significantly e
hances the depletion effect. Similar to the case of the spher

macromolecules between two plates, the force and energy pro-
duced by oblate spheroids (Figs. 5b and 6b) are significantly



i
r

arge,
con-

be-
late
eroids
ro-
DEPLETION IN

FIG. 4. The effect of macromolecule shape on the depletion energy
tween two parallel plates in an uncharged, hard system of prolate (a) and o
(b) spheroids. Here, the dimensionless depletion energy is plotted as a funct
the dimensionless gap width. The different curves shown correspond to va
aspect ratios,α/β, of the spheroids. The results for spherical (α/β = 1), needle-
like, and disk-like (α/β →∞) macromolecules are presented for compariso

closer to those for spherical macromolecules than the force
energy produced by prolate spheroids (Figs. 5a and 6a).
spherical macromolecule results shown in Figs. 5 and 6 w

computed using Eq. [25]. A summary of the data presented
Figs. 5 and 6 is given in Table 1.
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Particle–Macromolecule Interactions in Charged Systems

When the particles and macromolecules possess a net ch
the particle–macromolecule interaction energy becomes a
tinuous function of the relative orientation angle,θ . Figure 7a

FIG. 5. The effect of macromolecule shape on the depletion interaction
tween two 5-µm-radius spherical particles in a solution of prolate (a) and ob
(b) spheroids. The macromolecules and particles are treated as hard sph
(100 nm semimajor axis length,α) and hard spheres, respectively. The mac
molecule number density (ρb = 1.0× 1019 macromolecules/m3) remains fixed
and the volume fraction is allowed to vary with varying aspect ratio,α/β. In

inboth cases, the results for spherical macromolecules (α/β = 1) are presented

for comparison.
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FIG. 6. The effect of macromolecule shape on the depletion interaction
tween two 5-µm-radius spherical particles in a solution of prolate (a) and ob
(b) spheroids. The macromolecules and particles are treated as hard sph
(100-nm semimajor axis length,α) and hard spheres, respectively. The mac
molecule volume fraction (φ = 4.19%) remains fixed and the number dens
is allowed to vary with varying aspect ratio,α/β. In both cases, the results fo
spherical macromolecules (α/β = 1) are presented for comparison. The inse
in (a) and (b) show an expanded view for low aspect ratio spheroids.

illustrates this interaction for prolate spheroids of varying
pect ratio. The particle here is treated as a hard, charged sp

with radiusR= 5µm, while the macromolecule is modeled a
a nonadsorbing, hard, charged spheroid with the semimajor
D WALZ
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length equal to 100 nm. Both surfaces are assumed to have
stant surface potentials of−50 mV, while the solution Debye
length,κ−1, is kept at 10 nm (approximately equal to 1 mM o
monovalent electrolyte). Equations [8]–[13] were used to cal
late the interaction energy as a function of the spheroid ori
tation angleθ at a fixed particle–macromolecule center–cen
distance of 5.12µm. Because of the symmetry of the spher
spheroid system, the orientation can be described with only
angle and only the results forθ between 0 andπ/2 need to be
computed. At a given particle–macromolecule separation,
interaction energy reaches a maximum forθ = 0 and decreases
very rapidly with increasingθ . Moreover, the energy is highe
and decreases less rapidly for lower aspect ratio spheroids.

At low macromolecule concentrations, the probability of fin
ing a macromolecule at positionx and orientationΩwill be given
by a Boltzmann distribution function. Thus

P(x, θ ) ∼ exp

[−E(x, θ )

kT

]
, [27]

whereP(x, θ ) is the probability,x is the particle–macromolecule
center-to-center distance, andE(x, θ ) is the interaction energy.
In Fig. 7b, the function exp[−E(x, θ )/kT] is plotted againstθ
for the system described above (Fig. 7a). As seen, the probab
increases rapidly with increasing value ofθ (x is fixed at 5.12µm
here). It is essentially zero nearθ = 0 and approaches a max
mum at aroundθ = π/4 in the case of thin prolate spheroids. F
thicker macromolecules (lower aspect ratios), this probability
creases slower with increasingθ (i.e., for a sphere the probability
would be independent ofθ ). Wheneverx < 5.1µm, the spheroid

TABLE 1
Summary of the Results of Figs. 5 and 6 for Uncharged Systems

α/β ρb (No./m3) φ (% vol) Edep(0) (kT)

Prolate 10 1× 1019 0.042 −1.07
spheroids 5 1× 1019 0.17 −1.13

2 1× 1019 1.05 −1.57
1.33 1× 1019 2.36 −2.22

10 1× 1021 4.19 −106.76
5 2.50× 1020 4.19 −28.26
2 4.00× 1019 4.19 −6.28
1.33 1.78× 1019 4.19 −3.95

Oblate 10 1× 1019 0.42 −2.11
spheroids 5 1× 1019 0.84 −2.14

2 1× 1019 2.10 −2.36
1.33 1× 1019 3.14 −2.68

10 1.00× 1020 4.19 −21.04
5 5.00× 1019 4.19 −10.68
2 2.00× 1019 4.19 −4.71
1.33 1.33× 1019 4.19 −3.58

Spheres 1 1× 1019 4.19 −3.14

Note.Shown at each value ofα/β is the macromolecule number density

s

axis
ρb; the corresponding volume fraction,φ; and the depletion energy at contact
(h = 0).
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FIG. 7. (a) The effect of orientation on the electrostatic interaction betw
a 5-µm-radius spherical particle and a prolate spheroid. This energy profi
computed at a fixed center–center separationx = 5.12 µm for the range of
spheroid orientations 0< θ < π/2. Both surfaces are assumed to have−50 mV
surface potentials and the solution Debye length is 10 nm. The length o
semimajor axis,α, is 100 nm in all cases. (b) The function exp[−E(x, θ )/kT],
which is proportional to the probability of finding a macromolecule atx in
orientationθ .

touches or penetrates the particle in the range 0< θ < θtouch,
whereθtouch is a function of the spheroid aspect ratio andx.

In this case, the shape of the electrostatic energy profile and
corresponding probability distribution resemble those presen
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above in the rangeθtouch< θ < π/2. Finally, for a fixed value of
θ , the electrostatic energy decreases with increasingx and con-
sequently the probability of finding a macromolecule is grea
at larger separations.

Depletion Interactions in Charged Spheroid Systems

The effect of macromolecule shape on the depletion int
action between two negatively charged, 5-µm-radius particles
immersed in a solution of charged, spheroidal macromolecu
(100 nm semimajor axis length) is presented in Fig. 8. The p
ticles are treated as hard, charged spheres, while the ma
molecules are modeled as nonadsorbing, hard, charged pr
spheroids. All surfaces are assumed to have constant surfac
tentials of−50 mV and the solution Debye length is 10 nm. Th
depletion force is computed using the modified force balan
model (Eq. [5]) with the expressions for particle–macromolec
interactions determined from Eqs. [8]–[13]. In the case o
constant macromolecule number density (Fig. 8a),decreasing
the spheroid aspect ratio enhances the depletion attraction
constant volume fraction (Fig. 8b), on the other hand,increas-
ing the spheroid aspect ratio significantly enhances the inte
tion. Table 2 summarizes the data presented in Figs. 8a and
Although the same trends are observed in the uncharged sys
the depletion effect is considerably larger and longer range
the charged system.

Due to limitations of the model describing an electrosta
potential distribution around a spheroid (Eqs. [11]–[12]), t
depletion interactions in charged systems were determined
prolate macromolecules only. This subject is discussed furt
below.

DISCUSSION

Interactions in Noncharged Systems

Scaling relationships. In attempting to understand the ma
jor trends in Figs. 3–6, it will be helpful to develop som

TABLE 2
Summary of the Results of Fig. 8 for Charged Systems

α/β ρb (No./m3) φ (% vol) Edep(0) (kT)

Prolate 10 1× 1019 0.042 −2.58
spheroids 5 1× 1019 0.17 −3.27

2 1× 1019 1.05 −5.37
1.33 1× 1019 2.36 −7.18

10 1.00× 1021 4.19 −258.40
5 2.50× 1020 4.19 −81.80
2 4.00× 1019 4.19 −21.49
1.33 1.78× 1019 4.19 −12.77

Spheres 1 1× 1019 4.19 −8.96

Note.Shown at each value ofα/β is the macromolecule number density

the
ted
ρb; the corresponding volume fraction,φ; and the depletion energy at contact
(h = 0).
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FIG. 8. The effect of macromolecule shape on the depletion interaction
tween two 5-µm-radius spherical particles. All surfaces are assumed to
−50-mV surface potentials with solution Debye length equal to 10 nm.
macromolecules are modeled as prolate spheroids (semimajor axis lengα,
equal to 100 nm) with varying aspect ratio,α/β. (a) The effect when the macro
molecule number density,ρb, remains fixed at 1× 1019 macromolecules/m3.
(b) The effect for a constant volume fraction,φ, equal to 4.19%. In both
cases, the results for spherical macromolecules (α/β = 1) are presented fo
comparison. The insert in (b) shows an expanded view for low aspect
spheroids.

simple scaling relationships describing the dependence o
interaction energy at contact (h = 0), on the macromolecul

shape, size, and concentration (the attraction is maximum
contact.) For the parallel plate geometry, Eqs. [20a] and [2
D WALZ

be-
ave
he

th,
-

ratio

the

simplify to

EPP,Prolate(h = 0)

ρbSkTα
= −1− ln(A+√A2− 1)

A
√

A2− 1
[28a]

EPP,Oblate(h = 0)

ρbSkTα

=− 1

A
+ A√

A2− 1

[
tan−1

(
1√

A2− 1

)
− π

2

]
[28b]

and reduce further in the case of spherical macromolec
(A = 1) to

EPP,Sphere(h = 0)

ρbSkTa
= −2, [29]

wherea here denotes the macromolecule radius. Thus the r
of the contact energy due to spheroidal macromolecules to
caused by spherical macromolecules will be given by

EPP,Prolate(h = 0)

EPP,Sphere(h = 0)
= 1

2
+ ln(A+√A2− 1)

2A
√

A2− 1
constantρb

[30a]

EPP,Oblate(h = 0)

EPP,Sphere(h = 0)

= 1

2A
− A

2
√

A2− 1

[
tan−1

(
1√

A2− 1

)
− π

2

]
constantρb

[30b]

in the case of prolate and oblate macromolecules, respectiv
Similarly for the geometry of two large spherical particles, t

interaction energy at contact can be obtained from Eqs. [21a]
[21b] as

ESS,Prolate(h = 0)

kT
= −ρbπRα2

(
2

3
+ 4

3
A−2

)
= −φRα−1

(
A2

2
+ 1

)
for RÀ α

[31a]

ESS,Oblate(h = 0)

kT
= −ρbπRα2

(
4

3
+ 2

3
A−2

)
= −φRα−1

(
A+ 1

2
A−1

)
for RÀ α

[31b]

for prolate and oblate macromolecules, respectively. These e
tions can be used to understand the dependence of the ener

at

0b]
the size and shape of the spheroidal macromolecules. Specif-
ically, for a givenα value, the magnitude of the depletion
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interaction decreases with increasing aspect ratio for cons
ρb and increases with increasing aspect ratio for constantφ.

The magnitude of these interactions relative to the cas
spherical macromolecules can be determined by letting the
pect ratio go to 1.0,

ESS,Sphere(h = 0)

kT
= −2ρbπRa2 = −3

2
φRa−1

for RÀ a, [32]

wherea denotes the macromolecule radius. The ratio of the c
tact energy due to spheroidal macromolecules to that cause
spherical macromolecules for the conditions of equal mac
molecule number densities and equal macromolecule vol
fractions are given by the following relationships:

ESS,Prolate(h = 0)

ESS,Sphere(h = 0)
= 1

3

(
1+ 2

A2

)
for RÀ α and constantρb [33a]

ESS,Prolate(h = 0)

ESS,Sphere(h = 0)
= 1

3
(2+ A2)

for RÀ α and constantφ [33b]

ESS,Oblate(h = 0)

ESS,Sphere(h = 0)
= 1

3

(
2+ 1

A2

)
for RÀ α and constantρb [33c]

ESS,Oblate(h = 0)

ESS,Sphere(h = 0)
= 1

3

(
2A+ 1

A

)
for RÀ α and constantφ. [33d]

In the A→∞ limit, these equations simplify to

ESS,Needle(h = 0)

ESS,Sphere(h = 0)
= 1

3

for RÀ α and constantρb [34a]

ESS,Needle(h = 0)

ESS,Sphere(h = 0)
= A2

3

for RÀ α and constantφ [34b]

ESS,Disk(h = 0)

ESS,Sphere(h = 0)
= 2

3

for RÀ α and constantρb [34c]

ESS,Disk(h = 0)

ESS,Sphere(h = 0)
= 2A

3

for RÀ α and constantφ [34d]

for needle-like and disk-like macromolecules, respective
Equations [33a]–[33d] can be used to further understand

results summarized in Table 1. BecauseA ≥ 1, the depletion at-
traction due to spheroids will always be smaller than the attr
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tion caused by spheres at equal macromolecule number d
ties. However, at equal macromolecule volume fractions, the
posite will be true (i.e., the depletion attraction due to sphero
will be larger than that produced by spheres). This latter tre
was reported previously for the case of rod-like macromolecu
(34, 45, 52).

These trends can be understood physically by recogniz
that the attraction arises because the macromolecules ar
cluded from the gap region at sufficiently small gaps. As the
pect ratio increases, meaning that the macromolecules bec
more needle-like or disk-like, the number of allowable orien
tions in the gap increases. Thus for a fixed number densit
macromolecules, the interaction decreases because the th
spheroids can more easily access the gap region. When the
ume fraction is held constant, however, the dominant effect is
higher number density of spheroids needed to maintain a g
volume fraction at increasing aspect ratios. Thus the interac
actually increases.

It is also instructive to compareEDep(h = 0) for prolate and
oblate spheroids having the same aspect ratio. Dividing Eq. [3
by [33c] and Eq. [33b] by [33d] yields the following expres
sions:

ESS,Prolate(h = 0)

ESS,Oblate(h = 0)
= 2+ A2

1+ 2A2

for RÀ α and constantρb [35a]

ESS,Prolate(h = 0)

ESS,Oblate(h = 0)
= 2A+ A3

1+ 2A2

for RÀ α and constantφ. [35b]

Again, sinceA ≥ 1, the energy produced by oblate sphero
will always be larger than the energy produced by prol
spheroids at equal aspect ratios and number densities.
versely, at equalφ, the energy due to oblates will be small
than the energy due to prolates. Along with the analysis car
out earlier (Eqs. [33a]–[33d]), these results indicate that wh
the length of the spheroid semimajor axis is equal to the sph
radius, the force and energy produced by oblate spheroids
be significantly closer to those for spherical macromolecu
than the force and energy produced by prolate spheroids.
is because for given semimajor and semiminor axis lengths
volume of an oblate spheroid is larger than the volume of a p
late spheroid (VProlate= 4

3παβ
2 andVOblate= 4

3πα
2β), meaning

that the oblate spheroid has fewer allowable orientations in
gap region between two particles.

Validity of Derjaguin approximation. Because the Derjaguin
approximation was used to derive the analytical expressi
describing the depletion interactions in noncharged syste
(Eqs. [21]–[24]), it is useful to consider its limitations. Base
on the assumption that the particle radius is much larger t
the range of the interaction, this approximation is expec
ac-
to become less accurate for smaller values ofR/L (the ratio
of the particle radius to the largest macromolecule dimension,
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represented byL). In addition, the magnitude of the percenta
error, defined as

%error= |ERigorous− EDerjaguin|
ERigorous

× 100, [36]

is expected to increase with gap width, since the Derjaguin
proximation also assumes thath¿ R (i.e., curvature effects ar
insignificant). For simplicity, only the error at contact (h = 0)
will be considered.

In the case of spherical macromolecules, Eqs. [24] and
give appropriate expressions forEDerjaguinandERigorous, respec-
tively. The Derjaguin approximation is found to underestim
the depletion interaction (i.e.,EDerjaguin< ERigorous) with an er-
ror at contact less than 1% wheneverR/a > 70 (a here refers
to the radius of the spherical macromolecule). This devia
increases steadily with decreasingR/a ratio, becoming 15% a
R/a = 4, for example. This error arises from the fact that as
ratio R/a decreases, the region of the spherical particles
face comprising the exclusion zone increases, and the para
function used to describe the spherical surface in the Derja
approximation becomes a poorer representation of the inte
tion region.

A similar analysis can be performed for spheroidal mac
molecules by comparing the predictions of Eqs. [21a] and [2
(approximate expressions describing the depletion attractio
the Derjaguin limit) to the rigorous results computed with
force balance model (Eqs. [5]–[7]). It is found that the a
proximate model underestimates the depletion interaction
oblate macromolecules, but overestimates the interaction
prolate macromolecules. This latter result was reported ea
by Yamanet al.(53) for the case of thin rod-like macromolecul
(L/D À 1, whereD represents the rod diameter). For examp
in the case of prolate macromolecules withR/α = 4 and aspec
ratio equal to 5, the error is approximately 25% at contact, an
only slightly larger (approximately 32% error) at infinite asp
ratio.

Interactions in Charged Systems

Validity of the electrostatic model.The validity of the linear
superposition approximation has already been discussed i
Theory section. The potential distributions around the sphe
macromolecules and particles were calculated using Eq.
which requiresκR≥ 10 and surface potentials≤200 mV. Each
of these requirements was satisfied in the calculations prese
here for both the particles and macromolecules. The only
maining issue is then the validity of the perturbation solution
describing the electric potential around the spheroidal ma
molecules.

As mentioned earlier, the perturbation method is most a
rate for double layers that are much smaller than the ma

molecule size. It can be also applied to moderate or even t
double layers as long as the spheroid aspect ratio stays s
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ciently large. For example, the model would not apply to th
prolate shapes or spheres with radius comparable toκ−1. From
the data in Tables 1 and 2 of the Hsu and Liu paper (55), it ca
deduced that the average error in the perturbation treatmen
the case of a prolate spheroid havingα/β = 1.67 andκα = 10
is on the order of 6%. Furthermore, this deviation is largest in
regions of highest curvature (i.e., spheroid poles in the cas
prolate macromolecules), approaching 10% in these regions
lowest where the curvature is minimum (approximately 2%).
seen in Fig. 7b, the probability of the spheroid having an ori
tation angle ofπ/2 (semimajor axis parallel to sphere tange
is much greater than the probability of aθ = 0 orientation (pole
of spheroid toward sphere). This suggests that the 2% erro
ported by Hsu and Liu may be a better characterization of
error in the spherical particle/spheroidal macromolecule in
action energy for these particular values ofα andβ.

The results presented here for the depletion interactio
charged systems are thus believed to be within a few perce
the true value when the spheroid aspect ratio is less than
This error increases with increasing aspect ratio, and the e
in systems whereα/β is greater than 10 is difficult to quantify
As shown in Fig. 7b, however, as the aspect ratio increases
probability of the spheroid having an orientation parallel to
sphere’s tangent, where the perturbation model is most a
rate, also increases. Thus the model may be reasonably acc
even at these large aspect ratios. Testing this accuracy wou
quire more rigorous models describing the electrostatic pote
around the spheroids.

Magnitude of the effect of charge on the depletion interactio
The magnitude of the depletion interaction in charged and n
charged systems follows the same trends with macromole
size and shape as seen in the unchanged systems. In part
for a constant macromolecule number density, decreasing
spheroid aspect ratio enhances the depletion attraction, wh
constant volume fraction, the opposite is true.

The effect of charge on the depletion attraction can be un
stood by introducing an “effective” macromolecule size, refle
ing both the size of the hard core of the macromolecule and
thickness of the surrounding ion cloud, which will be on the
der of the solution Debye length. Although the effect of cha
can be significantly more complex, this approach nonethe
provides a tool for understanding the qualitative trends in
results.

If the extra size produced by the ion cloud is denoted asδ, then
the attractive energy at contact for two large spherical parti
in solution with prolate and oblate macromolecules become

ESS,Prolate,Charged(h = 0)

RkT

=−ρbπ (α + δ)2

[
2

3
+ 4

3
(A′)−2

]
2 [ ]
hick
uffi-

= −φ (α + δ)
α3

A2 1

2
+ (A′)−2 for RÀ α [37a]
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ESS,Oblate,Charged(h = 0)

RkT

=−ρbπ (α + δ)2

[
4

3
+ 2

3
(A′)−2

]
= −φ (α + δ)2

α3
A

[
1+ 1

2
(A′)−2

]
for RÀ α, [37b]

where

A = α

β
and A′ = (α + δ)

(β + δ) . [37c]

In the case of spherical macromolecules (A = 1) these equations
simplify to

ESS,Sphere,Charged(h = 0)

RkT
= −2ρbπ (a+ δ)2 = −3

2
φ

(a+ δ)2

a3

for RÀ a, [38]

wherea denotes the macromolecule radius. It should be no
that the effect of the ion cloud on the effective radius of t
particle is being ignored, which is strictly correct only whe
κRÀ 1.

As the thickness of the double layer increases (i.e., increa
δ), A′ decreases, approaching a lower limit of 1.0 asδ→∞.
Thus according to Eq. [37], adding charge increases the ma
tude of the depletion attraction for both the constantρb and con-
stantφ cases for all macromolecule shapes. The effect is m
more pronounced when the characteristic size of the ma
molecules is smaller than the Debye length. In addition, for
case where the Debye length is much greater than eithe
semimajor or semiminor axes,A′ ≈ 1 and the interactions fo
both the prolate and oblate shapes become equal to that of e
alently sized spheres.

For example, for a system containing 5-µm-radius particles
and prolate macromolecules withα = 100 nm andA = 5 at
constant macromolecule number density, adding−50-mV po-
tentials to the particles and macromolecules in a solution wh
κ−1 = 10 nm increases the magnitude of the interaction at c
tact by a factor of 2.9 relative to the case of uncharged parti
and macromolecules. (The interaction for the charged sys
was calculated using the rigorous force-balance model.) Ma
ing this increase using the simplified approach of Eq. [37]
quires an effective double-layer thickness,δ, of approximately
5 Debye lengths.

Note that the approach described here for approximating
effect of charge in spheroidal macromolecule systems assu
that the effective thickness of the double-layer is uniform
all parts of the spheroid surface. In a recent paper, Piech
Walz (60) showed that using two different effective thicknes
(i.e., one for the semimajor axis and one for the semiminor a

does not lead to a significant improvement in the accuracy of
approximation.
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Interactions between Macromolecules

In using the Boltzmann equation to calculate the dens
distribution of macromolecules around the spherical partic
(Eq. [2]), interactions between the macromolecules themse
were ignored. Such interactions have been shown to prod
structuring of the macromolecules and oscillations in the res
ing depletion force profile between two macroscopic surfa
(32, 36, 39–43, 45). The accuracy of the results presented a
depends upon the validity of this assumption of ideal behav

In uncharged systems of hard spherical macromolecules, W
and Sharma showed that higher order concentration effects
be negligible for volume concentrations up to about 1% (42).
seen in Tables 1 and 2, however, the first-order model (Eqs
and [25]) was used to predict depletion interactions in so
tions of spherical macromolecules at volume fractions as la
as 4.19%. Although this results in some error, the magnitud
structural repulsion predicted with the second-order force b
ance model of Walz and Sharma (42) at this volume fract
did not exceed 1 kT, while the depletion attraction was not s
nificantly affected. For example, in the hard sphere system
φ = 4.19%, the energy at contact calculated with the first-or
treatment differed by less than 1% from the second-order mo
predictions. In addition, the barrier height computed with t
second-order model was only 0.12 kT.

Mao et al. showed that for thin noncharged rod-like macr
molecules and reduced number densities of order unity (cb ≡
ρbDL2 ∼ 1, wherecb denotes the reduced density, whileD
andL are the rod diameter and length, respectively), the rep
sive barrier is typically much smaller than the thermal ene
kT (40). The authors attributed this lower-than-expected b
rier to offsetting second- and third-order effects. As illustrat
in Fig. 4a, the potential profile for prolate spheroids with asp
ratios greater than 10 is very similar to that of rods. For the ca
considered here in which the aspect ratio was 10, the redu
density (cb ≡ ρb(2β)(2α)2) never exceeded 0.8, suggesting th
the finding of Maoet al.would apply here.

In summary, based on the results of Walz and Sharma
spherical macromolecules (low aspect ratio) and Maoet al. for
rods (high aspect ratio), we conclude that higher order effe
would not significantly alter the results presented here, es
cially in noncharged systems. In the charged systems hig
order effects will clearly be more important, as the effecti
volume fraction of the macromolecules will be greater. The
ception would be cases in which the characteristic size of
spheroids is much larger than the Debye length, which is t
for the systems studied here withA ≤ 2.

Effects of Depletion Interaction on the Total
Interparticle Potential Energy

Finally, it is interesting to compare the magnitude of the dep
tion interaction with the other interactions that can exist betwe

theparticles in solution, specifically the van der Waals and electro-
static interactions. The stability of a dispersion of particles will
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only be altered if the depletion interaction is significant relat
to these other interactions.

The system studied is two relatively large particles interact
across a separation distance near the location of the secon
potential energy well. Specifically, the gap width,h, is much
larger than the Debye length,κ−1, yet much smaller than th
particle radius,R. These conditions are chosen as they allow
of the linear superposition approximation to estimate the elec
potential in the gap along with the Derjaguin approximation
account for the particle curvature.

Under these conditions, the van der Waals interaction en
can be calculated using the Derjaguin approach, as

Evdw(h) = − R

12

∫ ∞
h

A(h′)
h′2

dh′, [39]

where A(h′) is the effective Hamaker constant calculated b
tween two infinite half-spaces separated by gap widthh′. For
these calculations,A(h′) was calculated using the Lifshitz equ
tions (61). Likewise, the electrostatic interaction can be e
mated as (62)

EElec.(h) = B exp(−κh), [40]

FIG. 9. The effect of the depletion interaction on the total energy pro
between two 5-µm polystyrene spheres in an aqueous solution (κ−1 = 10 nm) of
charged macromolecules. All surfaces are charged to−50 mV surface potentials
The solid line consists of the electrostatic and van der Waals interactions
while the other lines include the depletion energy produced by spherical
spheroidal macromolecules. For the dashed and broken lines, the volume fra
is fixed at 4.19%, while for the dotted line the number density is the same a
the spherical macromolecule case (i.e., the volume fraction is now 0.17%)

radius of the spherical macromolecules and the semimajor axis of the pro
spheroidal macromolecules (α/β = 5) are equal to 100 nm.
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whereB is a function of the surface potentials (assumed−50 mV
here) and sizes of the two spheres. For these calculations,R for
both polystyrene spheres was assumed to be 5µm and the Debye
length was 10 nm (κR= 500).

The results are shown in Fig. 9. The solid line represents
interaction with no added macromolecules (i.e., sum of Eqs. [
and [40]). For the dashed line, the depletion interaction produ
by the addition of 100 nm radius spheres, also with−50 mV sur-
face potentials, at a bulk volume fraction of 4.19% is include
Now, a secondary well of approximately 4 kT is produced. F
the other two curves in the graph, the 100-nm-radius sph
are replaced by prolate spheroids with a major axis length
100 nm and an aspect ratio of 5. For the broken line, the volu
fraction is 4.19%, while for the dotted line the number dens
is the same as for the spherical macromolecule case (the
ume fraction is now 0.17%). At the same volume fraction, t
depth of the secondary well is increased to over 30 kT, wh
is easily sufficient to cause secondary flocculation. On the o
hand, at a constant number density, moving from the spheric
spheroidal shape reduces the well depth from 4 to 1.3 kT, wh
would not have a significant effect on the stability of a dispers
of such particles. In the Derjaguin limit, the magnitude of the
energy wells scales with the particle radius.

CONCLUSIONS

The general force-balance model developed by Walz
Sharma (42) was modified to calculate the interaction force
energy between two spherical particles in solution with non
sorbing spheroidal macromolecules of arbitrary size and as
ratio. Both purely hard wall interactions and longer-range el
trostatic interactions between the particles and macromolec
were considered. Furthermore, it was assumed that the de
of macromolecules was low enough that higher order effe
arising from interactions between macromolecules were ne
gible. Analytical expressions describing the depletion inter
tion between hard, uncharged plates and hard, uncharged s
ical particles in theR/L ¿ 1 limit (L represents the larges
macromolecule dimension andR is the particle radius) were als
presented.

It was found that the macromolecule shape significantly
fects the depletion interaction. Specifically, when the num
density of macromolecules is held constant, the depletion
traction is found to decrease with increasing aspect ratio of
spheroidal macromolecules. Conversely, under the conditio
constant volume fraction, the attraction increases with incre
ing aspect ratio. In this latter case (constantφ), the interaction
produced by prolate macromolecules is greater than that
duced by oblate macromolecules of equal axes lengths. T
results arise because (1) rod-like or disk-like macromolecu
can more easily access the gap region between two part
than spherical macromolecules, and (2) at equal axes len
latethe volume of an oblate spheroid is larger than that of a prolate
spheroid. Finally, prolate and oblate spheroids with aspect ratios
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greater than 10 were found to behave like infinitely thin need
and disks, respectively.

The depletion interaction in charged systems follows the sa
general trends with macromolecule shape as those found in
charged systems; however, both the range and magnitud
substantially increased. In addition, when the double-layer th
ness is much greater than the lengths of the semimajor
semiminor axes of the spheroid (either prolate or oblate shap
the depletion interaction becomes equal to that produced
equivalent spheres (i.e., sphere radius equal to the semim
axis length).

Finally, it is found that the depletion attraction produced
charged prolate spheroids at concentrations of order 1%
ume would be sufficient to induce flocculation of a dispers
of large colloidal particles (5µm radius). Although not specifi
cally presented here, this same behavior would also be valid
oblate spheroids, as the depletion interaction produced by o
spheroids is larger than that produced by prolate spheroid
equal axis lengths and number densities.
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