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� Absence of CAPZ leads to increased cell contractility and

tissue stiffness.

� Loss of CAPZ leads to liver overgrowth, hepatocyte repro-
gramming and metabolic defects.

� These phenotypes are due to YAP hyperactivation, and occur
in parallel to LATS1/2.

� ROCK inhibition rescues the effects of CAPZ inactivation.

� Loss of CAPZ unveils the relevance of mechanical signals for
tissue homeostasis.
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Lay summary
The mechanical properties of cells and
tissues (i.e. whether they are soft or stiff)
are thought to be important regulators of
cell behavior. Herein, we found that inac-
tivation of the protein CAPZ alters the
mechanical properties of cells and liver
tissues, leading to YAP hyperactivation. In
turn, this profoundly alters liver physiol-
ogy, causing organ overgrowth, defects in
liver cell differentiation and metabolism.
These results reveal a previously unchar-
acterized role for mechanical signals in
the maintenance of adult liver homeosta-
sis.
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Background & Aims: In vitro, cell function can be potently reg-

ulated by the mechanical properties of cells and of their

microenvironment. Cells measure these features by developing
forces via their actomyosin cytoskeleton, and respond accord-
ingly by regulating intracellular pathways, including the tran-
scriptional coactivators YAP/TAZ. Whether mechanical cues
are relevant for in vivo regulation of adult organ homeostasis,
and whether this occurs through YAP/TAZ, remains largely
unaddressed.
Methods:We developed Capzb conditional knockout mice and
obtained primary fibroblasts to characterize the role of CAPZ
in vitro. In vivo functional analyses were carried out by inducing
Capzb inactivation in adult hepatocytes, manipulating YAP/
Hippo activity by hydrodynamic tail vein injections, and treat-
ing mice with the ROCK inhibitor, fasudil.
Results:We found that the F-actin capping protein CAPZ
restrains actomyosin contractility: Capzb inactivation alters
stress fiber and focal adhesion dynamics leading to enhanced
myosin activity, increased traction forces, and increased liver
stiffness. In vitro, this rescues YAP from inhibition by a small cel-
lular geometry; in vivo, it induces YAP activation in parallel to
the Hippo pathway, causing extensive hepatocyte proliferation
and leading to striking organ overgrowth. Moreover, Capzb is
required for the maintenance of the differentiated hepatocyte
state, for metabolic zonation, and for gluconeogenesis. In
keeping with changes in tissue mechanics, inhibition of the con-
tractility regulator ROCK, or deletion of the Yap1 mechanotrans-
ducer, reverse the phenotypes emerging in Capzb-null livers.
Conclusions: These results indicate a previously unsuspected
role for CAPZ in tuning the mechanical properties of cells and
tissues, which is required in hepatocytes for the maintenance
of the differentiated state and to regulate organ size. More
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generally, it indicates for the first time that mechanotransduc-
tion has a physiological role in maintaining liver homeostasis
in mammals.
Lay summary: The mechanical properties of cells and tissues
(i.e. whether they are soft or stiff) are thought to be important
regulators of cell behavior. Herein, we found that inactivation
of the protein CAPZ alters the mechanical properties of cells
and liver tissues, leading to YAP hyperactivation. In turn, this
profoundly alters liver physiology, causing organ overgrowth,
defects in liver cell differentiation and metabolism. These
results reveal a previously uncharacterized role for mechanical
signals in the maintenance of adult liver homeostasis.
� 2019 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.

Introduction
Cell behavior is powerfully regulated by the mechanical proper-
ties of the microenvironment. For example, seminal studies
indicated that extracellular matrix (ECM) stiffness and the
resulting cell geometry can drive the choice between prolifera-
tion, cell death or differentiation, often dominating soluble cues
and oncogenes.1–7 The current model explaining these observa-
tions is that cells probe the physical properties of the microen-
vironment by exerting contractile forces on adhesion complexes
generated by their actomyosin cytoskeleton.8–12 In turn, acto-
myosin contractility regulates intracellular signaling pathways
to regulate cell behavior.

Several biochemical pathways respond to mechanical cues.
Among them, Yes-associated protein 1 (YAP) and transcriptional
coactivator with PDZ-binding motif (TAZ or WWTR1) are
required mediators of multiple biological responses dictated
in vitro by mechanical cues and actomyosin contractility.13–15

YAP/TAZ function as transcriptional coactivators together with
the TEAD family of transcription factors, and their activity is
regulated by upstream inputs including the Hippo cascade, cen-
tered on the LATS1/2 kinases.16,17 In vivo, the function of YAP
and of YAP-regulatory inputs has been studied with great detail
in the liver tissue, where YAP activation leads to hallmark
phenotypes.18–29
019 vol. 71 j 130–142
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Despite the increasing array of techniques to measure the
mechanical properties of cells and tissues,30 a question that
remains largely unanswered is whether mechanotransduction
and the control of F-actin dynamics is really at work in control-
ling adult tissue and organ homeostasis, and whether it does so
through YAP or other pathways. Available functional data sug-
gest a role for CAPZ as a negative regulator of YAP activity,
and as one factor capable of regulating the response of mam-
mary epithelial cells to ECM stiffness in vitro.32,41,42 Yet, how
regulation of actin assembly dynamics at the filament barbed
end by CAPZ31 is sufficient to trigger those phenotypes remains
unknown. By genetic inactivation in mice, we identified an
unexpected role for CAPZ in regulating cell contractility and tis-
sue stiffness. This is relevant in adult hepatocytes to restrain
YAP activity, such that CAPZ inactivation in the liver leads to
organ overgrowth, hepatocyte dedifferentiation and alteration
of physiological liver metabolic functions. These phenotypes
can be rescued by inhibition of cell contractility and by inactiva-
tion of YAP, thus unveiling a role for mechanotransduction in
regulating organ size and tissue homeostasis.

Materials and methods
Mice and treatments
Capzbtm1a(EUCOMM)Wtsi EM:04820 (EUCOMM/EMMA repository)
mice were maintained in the C57BL/6 N strain. Yap1fl/fl and
ROSA26-LSL-LacZ mice were kindly provided by Dr. Pan. Mice
were kept in standard cages with a limit of 5 mice per cage, with
ad libitum feeding at an average temperature of 19–24 �C. Gen-
der was random. Animal experiments were performed accord-
ing to our institutional guidelines as approved by the
University Animal Welfare Commission (OPBA) and authorized
by the Ministry of Health (945/2015-PR and 54/2015-PR).
Reporting was according to the ARRIVE guidelines.

The neo and lacZ cassettes in the targeted allele (Fig. S1A)
were removed by crossing with the CMV-FLP deleter line, gener-
ating Capzbfl/fl mice. Subsequent crossings were performed to
obtain Albumin-CRE-ERT2; Capzbfl/fl; ROSA26-LSL-lacZ mice
(hereafter Capz LKO). Mice received 5 consecutive daily i.p.
injections of tamoxifen starting at 4–6 weeks of age and were
analyzed after 1 month. Control mice were mice of the same
genotype but injected with corn oil only, or age-matched litter-
mates without the CRE transgene and induced with tamoxifen.
Crossing with the CAGG-CRE deleter was used to obtain Capzb+/-

mice, which were born at the expected mendelian ratio. Cross-
ing of Capzb+/- mice did not produce any viable Capzb-/- offspring
(not shown, but significant by chi-square test). Mice with liver
specific knockout (LKO) of Yap1 were Albumin-CRE-ERT2;
Yap1fl/fl; Wwtr1fl/fl; ROSA26-LSL-lacZ (hereafter Yap1 LKO).

For genotyping, mice were anesthetized using isoflurane to
surgically remove the tail tip. Genomic DNA was extracted with
NaOH at 95 �C for 30 min, followed by Tris-base pH = 8 neutral-
ization. DNA was diluted in water and used for PCR with the fol-
lowing pairs of oligos: Capzb-floxed: CAP 71+84; Capzb-null: CAP
71+48; Yap1-floxed: P1+P2; Yap1-null: P1+P3. Primer sequences
are provided in the CTAT table.

Mice were injected intraperitoneally with 350 mg/kg aceta-
minophen (APAP, #A7085 Sigma-Aldrich) in sterile 1�PBS.
Serum was collected 8 h after APAP injection and livers after
24 h. Fasudil (LC-laboratories F-4660) was provided in drinking
water at an estimated dose of 250 mg/kg for 2 weeks, starting at
the same time as the first tamoxifen injection.
Journal of Hepatology 2
Hydrodynamic tail vein DNA injection
A total of 50 lg of PiggyBac (PB)-transposon plasmid DNA
together with 10 lg of PB transposase were diluted in sterile
Ringer’s solution in a volume corresponding to 10% of
body weight, before being injected into 4/6-week-old mice
(18–22 g) via the tail vein over a maximum period of 8–10 s.
PB-CAS9 and the single guide RNA PB-RFP-LATS1/2 were
introduced as in Ref.32

Liver sampling
Trans-cardiac perfusion (29-gauge needle) with cold 1�PBS
(10–20 ml) was performed on euthanized mice to reduce blood
contaminants. The liver was placed in 1xPBS on ice, dissected
and snap-frozen in liquid nitrogen to extract mRNA/proteins,
or embedded in optimal cutting temperature compound (OCT)
and stored at �80�.

Serum measurements
Alanine aminotransferase (ALT) activity was measured in serum
using ALT Activity Assay (MAK052 Sigma). Mice were
anesthetized with tribromoethyl alcohol (T48402 Sigma) and
2-methyl-2-butanol (240486 Sigma), and blood was collected
from the retro-orbital sinus. Blood was clotted at room temper-
ature (RT) for 1 h and centrifuged for 10 min. The serum was
stored at �80� for later analysis. Blood glucose levels were mea-
sured with CountourXT glucometer (Bayer). Intraperitoneal glu-
cose tolerance test assays were carried out by intraperitoneal
injection of 2 mg/g glucose after overnight starvation.

Antibodies, western blotting and staining
Antibodies are provided in the CTAT table for immunofluores-
cence on liver sections, OCT-embedded tissue was cut into 5–
8 lm thick sections with a Leica CM1950 cryostat. Sections
were dried at RT for 30 min on a glass coverslip (VWR), and
either stored dried at �80 �C or directly processed by rehydra-
tion in 1�PBS followed by fixation in 4% PFA for 15 min. Perme-
abilization was performed in 1xPBS-Triton 1% for 20 min.
Blocking was done with 10% goat serum in 1xPBS-Triton 0.5%
for 1 h at RT. Cytokeratin 19 (CK19 or KRT19)-positive area
was quantified by measuring the proportion of CK19-positive
pixels over the total number of pixels, by using binary thresh-
olded pictures (ImageJ). For phalloidin staining, Alexa Fluor-
conjugated phalloidin (Thermofisher) was incubated with sec-
ondary antibody in blocking buffer. For histological analysis,
paraffin-embedded liver tissue was cut into 5 lm sections and
stained with hematoxylin-eosin for histologic examination or
with Picrosirius Red to visualize fibrosis (commercial kits and
protocols). For EdU labelling, mice were injected with
12.5 mg/kg of EdU in sterile 1xPBS (A10044 Molecular Probes)
15 h before tissue sampling. Cells were incubated for 1 h with
EdU prior to fixation. Liver slice or cells were fixed in PFA 4%
and blocked/permeabilized for 30 min in 1�PBS 3% BSA + 0.2%
Triton (1% Triton for liver slices). EdU reaction mix (100 mM Tris
pH 8.5, 4 mM CuSO4, 625 nM Alexa Azide, 100 mM Ascorbic
acid) was incubated for 30 min, and staining with other anti-
bodies or DAPI was then performed as described above. Termi-
nal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining was performed according to the DeadEndTM

Fluorometric TUNEL System (Promega). Images were acquired
with a Leica SP5 or with a ZEISS LSM700 confocal microscope
equipped with charge coupled device (CCD) camera, using Leica
LAS AF or ZEN 2 software, or with a standard Leica DM5000B
019 vol. 71 j 130–142 131
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microscope. Immunofluorescence on cells and western blotting
was as in.33

RNA extraction and gene expression studies
Total liver RNA extractions were performed using Trizol
(Thermo) extraction, starting from 5–10 mg of liver tissue. Con-
taminant DNA was removed by RNase free-DNase (Thermo). For
cells, total RNA extraction was performed using RNeasy kit (Qia-
gen) and contaminant DNA was removed by RNase-Free DNase
Set (Qiagen). RNA sequencing was carried out at the CRIBI facil-

ity of the University of Padova. Library preparation was per-
formed using TruSeq Stranded mRNA Library Prep Kit
(Illumina) according to the manufacturer’s protocol, and
sequenced with an Illumina NextSeq 500 platform (75 bp, SE,
≥15 � 106 reads/sample). Raw reads were aligned using STAR
(version 2.5.3a)34 to build version mm10 of the mouse genome.
Counts for UCSC annotated genes were calculated from the
aligned reads using featureCounts function of the Rsubread R
package35 in R-3.3.1. Normalization and differential analysis
were carried out using edgeR R package.36 Raw counts were
normalized to obtain count per million mapped reads (CPM)
and reads per kilobase per million mapped reads (RPKM). Only
genes with a CPM greater than 1 in at least 4 samples were
retained for differential analysis.

Retro-transcription was carried out with dT-primed M-MLV
reverse transcriptase (Thermo). qPCR analyses were carried
out with triplicates of each sample cDNA on QuantStudio 6 Flex
Real-Time PCR System (Thermo) with a FastStart SYBR Green
Master Mix (Roche). Expression levels were calculated relative
to GAPDH based on the efficiency�DCt method. qPCR primer
sequences are provided in the CTAT table.

Cell lines
Primary mouse adult fibroblasts (MAFs) were obtained by stan-
dard procedures after enzymatic digestion of the tail tip and
plated in DMEM + 20% FBS, 1% Gln, Pen/Strep. MAFs were kept
in a low-oxygen (5%) incubator to prevent stress-induced senes-
cence. Subsequent manipulations and experiments were per-
formed in a standard incubator. Cells were routinely tested for
mycoplasma contamination (ATCC Kit). Plasmid DNA (GFP-
actin, mCherry-vinculin) was electroporated according to the
manufacturer’s instructions. Viral infections (Adeno-empty
UIowa-272 and Adeno-CRE UIowa-5) were carried out following
standard procedures and protocols.

Microfabrications
Substrates were made of polyacrylamide (PAA), polymerized on
standard 25 mm glass coverslips. (3-Aminopropyl)
trimethoxysilane was applied to the glass surface for 3 min, fol-
lowed by washes with ddH2O, and treatment with 0.5% glu-
taraldehyde for 30 min. A pre-mixed solution was made of
500 ll 40% acrylamide, 65 ll 100% hydroxy-acrylamide and
250 ll 2% bis-acrylamide (Bis-AA, Fisher scientific), and diluted
in PBS to obtain the desired stiffness. After 15 min de-gassing,
tetramethylethylenediamine and ammonium persulfate were
added to initiate the cross-linking, and 50 ll of the solution
was immediately pipetted onto the coverslips. A plasma-
cleaned coverslip made hydrophobic with RainX (Kraco Car Care
International Ltd.) was lowered onto the drop to ensure even
thickness; this was later covered with PBS and removed. The
gels were washed in PBS and sterilized under UV light. Gels
were treated with 100 lg/ml poly-D-lysine overnight, and then
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with fibronectin for 1 h to promote cell adhesion. All chemicals
were from Sigma-Aldrich, unless otherwise stated. Micropat-
terned glass slides13 were from Cytoo SA (PADO-1 custom mask,
available to all users upon request). For each slide, 80,000 cells
were plated in a 6-well plate dish containing a single slide, and
non-adherent cells were washed with medium after 2 h.

Fluorescence recovery after photobleaching
MAFs were re-seeded on glass-bottom dishes (Matek, Sigma-
Aldrich) coated with 10 lg/ml of fibronectin 24 h after transfec-

tion (mCherry-vinculin or GFP-actin), and imaged in Ringer’s
phenol-red free medium upon complete spreading with a Con-
focal Spinning Disk microscope (Olympus) equipped with a
100�/1.35Sil silicone oil immersion objective, a iXon897 Ultra
camera (ANDOR) and a fluorescence recovery after photo-
bleaching (FRAP) module equipped with a 405 nm laser. Envi-
ronmental control was maintained with an OKOlab incubator.
Circular regions of interest (ROI) of 2 lm diameter were
photo-bleached at 50% intensity for actin and 100% intensity
for vinculin, and post-bleaching images were followed with 15
to 20% laser intensity for 100 frames (1 frame every second
for actin, 1 frame every 0.5 seconds for vinculin). FRAP data
were analyzed as reported37 and curves fitted to a monoexpo-
nential recovery equation by the Graphpad Prism software:
I = I0 + Imax * [1 � e�(k)*(t)]. Where I is the relative intensity
compared to the pre-bleaching value, k represents the associa-
tion rate constant, and t is expressed in seconds.

Total internal reflection fluorescence microscopy
Total internal reflection fluorescence (TIRF) microscopy of MAFs
was performed using a DMI6000B equipped with AM TIRF mod-
ule (Leica). Images were acquired using either a PlanApoN
60x1.45-NA or UApoN 100x1.49-NA TIRF oil-immersion objec-
tive, captured using an Ixon+ electron multiplying CCD (EMCCD)
camera (Andor). All images were acquired with the same cam-
era settings and laser intensity for consistent image analysis.
A custom macro, available upon request, was designed to quan-
tify the number and size of focal adhesions per cell. Images con-
taining a single cell were background-subtracted and a binary
mask was created by applying non-linear filters. The mask
was then applied on raw images to obtain particle sizes and
area. Only particle sizes >200 nm2 were considered in the anal-
ysis, as this avoided analysis of background particles. All images
were acquired with the same settings and consistently analyzed
by concatenating all images, while saturated images were
discarded.

Traction force microscopy
Preparation of PAA substrates. PAA gels were prepared on imag-
ing dishes (l-Dish, Ibidi, Germany) as previously described.38

Fluorescent nanoparticles (FluoSpheres carboxylate, 0.2 lm,
crimson, Life Technologies, UK) were added to the PAA pre-
mixes, which were then placed in an ultrasonic bath for 30 s
to separate the beads. After starting polymerization, the imag-
ing dish was inverted to ensure that beads settled close to the
gel surface.

Time lapse imaging for traction force microscopy (TFM). MAFs
were seeded onto PAA gels with shear storage moduli G0 of
1 kPa (‘soft’) and 10 kPa (‘stiff’). After 24 h, cells where imaged
using an inverted microscope (Leica DMi8) at 37 �C and 5%
CO2, equipped with a digital sCMOS camera (ORCA-Flash4.0,
Hamamatsu Photonics), an EL6000 illuminator (Leica,

019 vol. 71 j 130–142



Atomic force microscopy
All atomic force microscopy (AFM) experiments were
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Germany), and a 63� oil objective (NA1.4, Leica, Germany).
Images were acquired using Leica LAS X software. Fluorescence
images of beads, and widefield images of cells were taken every
2 min. After image acquisition, culture media were exchanged
with Trypsin-EDTA (Gibco) to detach cells from the gel. Refer-
ence images of fluorescent beads were taken 15 min after
trypsinization. Three independent traction force experiments
were performed for each condition.

Data analysis for TFM. Traction stress maps were calculated
for each frame using a TFM Software Package in ImageJ.39 To
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minimize noise, regularization parameters of 0.01 and 0.00001
were chosen for cells on 1 kPa and 10 kPa PAA gels, respectively.
Traction stresses were averaged over time for each cell. Post-
processing of the data and statistical analyses were done with
a custom Python script. The distributions of the average stresses
were compared using Mann-Whitney U tests.
performed in accordance with the UK Animals (Scientific
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Procedures) Act 1986. Mice were sacrificed via an approved
schedule 1 method. Livers were immediately dissected and
embedded in low melting point agarose (4% in PBS; Sigma-
Aldrich). A small block of agarose containing the sample was
submerged in chilled PBS and cut into 500 lm thick sections
using a vibratome (Leica). Sections were slowly heated to
37 �C in PBS for 30 min prior to AFM measurements. AFM mea-
surements were carried out similarly to the method previously
described.40 Monodisperse polystyrene beads (radius
r = 18.64 lm ± 0.17 lm, microParticles GmbH, Berlin, Germany)
were glued to tipless silicon cantilevers (spring constants
between 0.01 and 0.03 N/m; Arrow-TL1, NanoWorld, Neuchatel,

Switzerland). The AFM was mounted on an x/y motorized stage
of an inverted microscope (AxioObserver A1, Zeiss, Cambridge,
UK). Cantilever position relative to the liver sections was mon-
itored via a CCD camera (The Imaging Source, Bremen, Ger-
many) placed on top of the AFM setup. Force-distance curves
were taken with a set force of 10 nN with an approach speed
of 10 lm/s. Apparent elastic moduli K were calculated using
the Hertz model: F = 4/3 K r1/2 d3/2 for an indentation depth
d = 2 lm, using a custom written automated algorithm based
in Matlab (MathWorks, Natick, USA). Stiffness was measured
in maps over defined sample areas, over which multiple force-
distance curves were taken at 20 lm steps (each map contain-
ing 40–200 measurements, 2–3 maps per liver). The median
measurement stiffness for each map was calculated, and statis-
tical significance between maps was determined using a 2-
tailed Student’s t test.

Statistical analysis
Data analyses were performed using GraphPad Prism software.
Graphs indicate mean values and single values of all biological
replicates (or mice), unless otherwise indicated. Data for each
mouse are derived from analysis of multiple (n ≥6) tissue sec-
tions. To facilitate gene expression data visualization, the mean
expression levels in WT mice were set equal to 1, and all other
data (single values, means and errors) are relative to this. Signif-
icance was calculated by applying unpaired Mann-Whitney U
tests (n = 3 samples) or Student’s t tests (n ≥4 samples); for
RNA sequencing, we considered as significant only genes with
p <0.05.

Fig. 1. The F-actin capping protein Capzb regulates cellular forces in vitro. (A
microprinted fibronectin-coated islands of the indicated adhesive area and stai
the right. n = 2 (>100 cells per condition in total). Scale bar = 10 lm. (B) Quantifi
n = 2 (>100 cells per condition in total). (C) Representative high-magnification im
WT and Capzb-null MAFs. n = 3 with consistent results. Scale bar = 3 lm. (D) an
MAFs transfected with GFP-actin (D) or mCherry-vinculin (E), indicated as me
fitting the data to a monoexponential function. See Fig. S1E-F for representative
total). Scale bar = 1.5 lm. (F) and (G) Quantification of the number (F) and siz
mCherry-vinculin. See Fig. S1G for representative images. n = 2 (16 cells per c
stainings in WT and Capzb-null MAFs plated on cross-bow fibronectin-coat
micropatterns were stacked (n = 25 per condition); the resulting image shows
Traction force analysis of WT and Capzb-null MAFs plated on stiff (G0 = 10 kPa) fi
representative force maps with cell and nucleus contour overlaid. Local force is
extremes). n = 3 (50 cells per condition). (J) Representative immunofluorescent s
plated on soft (G0 = 1 kPa) hydrogels. On the right: quantification of cells display
force analysis of WT and Capzb-null fibroblasts plated on soft (G0 = 1 kPa) hydro
Unless otherwise indicated, graphs are average and single points with unpair
experiments, and a representative result is shown. FAs, focal adhesions; GFP, g
adult fibroblasts; pMLCs, phosphorylated myosin light chain; WT, wild-type.
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Data availability
Data that support the findings are available within the manu-
script or upon reasonable request to the corresponding author.
RNA seq data have been deposited in GEO database
(GSE116993).

For further details regarding the materials used, please refer
to the CTAT table and supplementary information.

Results
Derivation and validation of a Capzb-floxed allele
To functionally dissect the role of mechanotransduction and

F-actin dynamics in vivo, we chose to inactivate the F-actin cap-
ping protein CAPZ. CAPZ is a dimer whose alpha subunit is
encoded by 2 loci in mammals (Capza1 and Capza2), while the
beta subunit is encoded by only 1 gene (Capzb – Gene ID:
12345), facilitating genetic analysis. We thus recombined the
Capzbtm1a(EUCOMM)Wtsi allele to obtain Capzbfl/fl mice (see Meth-
ods and Fig. S1A-B); the same allele was recently used in
Ref.41 We validated this allele by monitoring efficient depletion
of the endogenous CAPZB protein in primary adult Capzbfl/fl

fibroblasts recombined by adenoviral-CRE infection (Fig. S1C).
Moreover, adenoviral-CRE recombination of primary newborn
Capzbfl/fl cardiomyocytes led to a rapid disassembly of contrac-
tile actomyosin structures (Fig. S1D), in line with the role of
CAPZ in muscle sarcomeres.31 We speculate this defect might
underlie the lethality of Capzb�/� embryos (see methods).

We also aimed at specifically validating the role of CAPZ in
the context of mechanotransduction. For this we compared
the biological response of WT (Capzbfl/fl + adeno-control) and
Capz KO (Capzbfl/fl + adeno-Cre) primary adult fibroblasts
(MAFs) to mechanical cues: WT MAFs respond to a small cell
geometry, which is associated with decreased actomyosin con-
tractility,42 by inactivating YAP/TAZ and by decreasing prolifer-
ation (Fig. 1A and B), in line with Ref.;13,14 in contrast, Capz KO
MAFs retained nuclear YAP and kept proliferating, at least to a
certain extent (Fig. 1A and B). As a control, Capz KO MAFs
completely detached from the substratum that maintains
YAP nuclear exclusion (not shown). Thus, Capzb is required in
MAFs for the inhibition of YAP in conditions of decreased
contractility.

) Representative pictures of control (WT) and Capz KO MAFs plated for 24 h on
ned for YAP/TAZ and EdU incorporation. Quantification of nuclear YAP/TAZ on
cation of proliferation in MAFs plated as in A, as assayed by EdU incorporation.
munofluorescent staining for F-actin bundles (phalloidin) in the cytoplasm of

d (E) fluorescence recovery after photobleaching analysis of WT and Capzb-null
an and SEM Inset: half-time (t1/2) and 95% CI of actin recovery calculated by
images. n = 2 (D: >25 cells per condition in total; E: >40 cells per condition in

e (G) of FAs by total internal reflection fluorescence of MAFs transfected with
ondition). (H) Average F-actin (phalloidin) and vinculin immunofluorescence
ed micropatterns. Immunofluorescence of multiple individual cells on ECM
the average pixel intensity as a multicolor look-up table. Scale bar = 5 lm. (I)
bronectin-coated polyacrylamide hydrogels. n = 2 (50 cells per condition). Left:
indicated by a multicolor look-up table. Right: box plot (median, quartiles and
tainings for pMLC and F-actin bundles (phalloidin) in WT and Capzb-null MAFs
ing pMLC staining. n = 3 (80 cells per condition). Scale bar = 3 lm. (K) Traction
gels. Box plot (median, quartiles and extremes). n = 3 (50 cells per condition).
ed 2-tailed Student’s t test. Immunostainings were repeated in independent
reen fluorescence protein; KO, knockout; LKO, liver specific KO; MAFs, mouse
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Capzb limits actomyosin contractility in response to ECM
mechanical cues
We then sought to understand at what level CAPZ acts to regu-
late mechanotransduction. We analyzed F-actin and focal adhe-
sions (FAs) in WT and Capz KO MAFs, as these are critically
involved in cell mechanics. Phalloidin staining on fixed cells
indicated thinner and denser bundles in Capz KO MAFs
(Fig. 1C). FRAP analysis of actin dynamics in stress fibers indi-
cated a faster recovery in Capz KO cells (Fig. 1D and Fig. S1E),
and thus a faster actin turnover previously associated with
higher levels of Myosin-II activity.43,44 Analysis of vinculin
dynamics in FAs indicated a slower recovery in Capz KO cells
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(Fig. 1E and Fig. S1F), and thus more stable vinculin, a typical
feature observed upon increased pulling forces or upon stiffen-
ing of the ECM.45–48 This was associated with a higher number
of vinculin-positive FAs, but of smaller size (Fig. 1F-G and
Fig. S1G). During these analyses we noted a redistribution of
FAs from a predominantly peripheral to a more central position,
perhaps reminiscent of the recently described perinuclear FAs
which were specifically associated with increased tension and
YAP activity;49 to quantify this phenotype we plated MAFs on
cross-bow shaped fibronectin micropatterns and averaged the
intensity of the staining over several stacked cells,50,51 confirm-
ing our observation (Fig. 1H). Furthermore, Capz KO MAFs dis-
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play increased levels of active S19-phosphorylated myosin light
chain (pMLC – Fig. S1H) and increased cellular forces on stiff
hydrogels (G0 = 10 kPa), as measured by traction force micro-
scopy (Fig. 1I). Finally, we extended these findings in the con-
text of a soft ECM microenvironment, where CAPZ inactivation
is relevant to regulate YAP/TAZ:52 pMLC staining was almost
undetectable in MAFs on soft hydrogels (G0 = 1 kPa), but clearly
visible in Capz KO MAFs (Fig. 1J). Moreover, Capz KO MAFs
exerted significantly higher forces on their substratum in this
condition compared to control cells (Fig. 1K). Collectively, these
data indicate that deletion of Capzb enables the development of
higher cellular forces even in conditions of decreased extracellu-
lar resistance, unveiling a previously unsuspected role for CAPZ.
Moreover, this validates Capzb inactivation as a meaningful tool
to modulate F-actin dynamics and cell mechanics in vivo.
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Conditional inactivation of Capzb in hepatocytes activates
the YAP mechanotransducer
To probe the role of Capzb as a regulator of tissue physiology we
focused on the liver, because hepatocytes are inherently
mechanosensitive1,53 and because it is a model system for
Hippo/YAP.54–56 We thus obtained Capz LKO, wherein Capzb
was deleted in adult hepatocytes in a time-controlled manner,
enabling the lineage tracing of recombined cells by b-
galactosidase expression (Fig. 2A, Fig. S2A and B).

We initially sought to find evidence for activation of the YAP
mechanotransducer in Capz LKOs. We monitored a series of
established YAP target genes in the liver tissue,18,26 and found
them upregulated in Capzb-null livers (Fig. 2B). Similarly, we
performed a more global analysis of gene expression and found
that genes activated in Capz LKOs are remarkably overlapping
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panied by increased expression of cholangiocyte/progenitor
20,61

JOURNAL 
OF HEPATOLOGY
with those activated in Hippo-mutants26,28,57 and Yap1-
transgenics18,20,58 (Fig. 2C). Prompted by these results, we
directly monitored endogenous YAP localization by immunoflu-
orescence, and found increased nuclear localization in Capzb-
null hepatocytes (Fig. 2D and Fig. S2H). Of note, mutant liver tis-
sues also display an overall increase in YAP staining intensity
(Fig. 2E).

Control of liver organ size by inactivation of Capzb
Phenotypically, inactivation of Capzb caused an evident hep-
atomegaly reaching on average 200% of the normal liver/body
weight ratio (Fig. 2F). Hepatocytes appeared enlarged, similarly
observations in Lats1/2 knockouts26 (see Fig. S2A), and exhibited
a stark increase in proliferation as measured by EdU incorpora-
tion (i.e. S-phase) and phospho-Histone3 (i.e. mitosis) staining
(Fig. 2G and H and Fig. S2C). This was accompanied by overex-
pression of several proliferation markers (Fig. 2I), including
known direct YAP targets,58,59 and of antiapoptotic genes
(Fig. S2D). As a control, we excluded major alterations of cell-
cell junctions (Fig. S2E), previously observed by Capz inactiva-
tion in flies,60 fibrosis (see Fig. S2A) and inflammation
(Fig. S2F and G). This indicated that CAPZ is required in adult

hepatocytes to keep control over a key mechanotransduction
pathway, and that it potently restrains hepatocyte proliferation.

Capzb controls liver cell fate
Activation of YAP in hepatocytes leads to expansion of atypical
ductal cells (ADCs)/oval cells/biliary epithelial cells that display
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bipotent progenitor identity.20,23 Analysis of Capz LKO livers indi-
cated a massive expansion of A6- and CK19-positive ADCs form-
ing disorganized strands in the liver parenchyma, mainly
distributed around the portal area (Fig. 3A), and this was accom-
markers in Capz LKO livers (Fig. 3B). Appearance of ADCs
upon YAP activation has been attributed to dedifferentiation of
hepatocytes, with appearance of cells double-positive for CK19
and HNF4a (markers for the cholangiocyte and hepatocyte lin-
eages, respectively),20 which we also found in Capz LKO livers
(Fig. 3C). Moreover, in keeping with a role for Notch in regulating
hepatocyte dedifferentiation,20,62 we found the Notch pathway
activated in Capz LKO livers (Fig. 3D and E). To unequivocally
trace ADCs to hepatocytes bearing Capzb deletion, we performed
a double staining for b-galactosidase (which labels recombined
hepatocytes) and CK19, and found co-localization (Fig. 3F). Of
note, this indicated dedifferentiation of hepatocytes also at a dis-
tance from the portal area. As an alternative approach, we
expressed a Cre transgene in hepatocytes of Capzbfl/fl mice by
hydrodynamic tail vein transposon DNA injection,63 which
caused appearance of cells doubly positive for CK19 and b-
galactosidase (Fig. 3G). This indicates a cell-autonomous function

of Capzb. More generally, these data indicate that Capzb inactiva-
tion is sufficient to reprogram adult hepatocyte fate.

Capzb controls hepatocyte zonation and liver metabolism
Metabolism in the liver parenchyma is zonated, with hepato-
cytes expressing different metabolic genes along the periportal
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to pericentral axis of the hepatic lobules in response to several
signaling cues.64–66 Recent evidence indicates that YAP activity
contributes to zonation by inhibiting pericentral gene expres-
sion.28 We thus checked for expression of established pericen-
tral markers in Capz LKO livers and found them strikingly
reduced both at the mRNA level (Fig. 4A) and by immunostain-
ing (Fig. 4B and C). Pericentral zonation is particularly evident if
looking at the expression of cytochromes involved in xenobiotic
metabolism.66,67 Among these we focused our attention on
Cyp1A2 and Cyp2E1, the main genetic determinants of APAP tox-
icity in the mouse,68 which we found strongly inhibited (see

Fig. 4A). Reflecting decreased expression, we then found that
Capz LKO were extremely resistant to APAP intoxication: at
sub-lethal doses (350 mg/kg) sufficient to cause extensive cell
death (as measured by TUNEL assay) and extensive hepatic
damage (as measured by serum ALT) in WT mice, Capz LKO mice
remained insensitive (Fig. 4D-F).

Another recently reported function of YAP in the liver is the
regulation of gluconeogenesis and blood glucose homeostasis.29

Accordingly, we found decreased expression of key gluco-
neogenic genes in Capz LKO mice (Fig. 4G), and this was func-
tionally linked to decreased steady-state blood glucose levels

0

2

4

6

8

E
dU

 p
os

iti
ve

 c
el

ls
 (%

)

p = 0.022

p = 0.005

Capz
+Yap
LKO

Yap
LKO

0

5,000

10,000

15,000

Capz
LKO

Capz
+Yap
LKO

G
lu

co
se

 A
U

C

WT

p = 0.047

p = 0.028

A B

E F

0

3

6

9

12

15

18

Capz
LKO

Capz
+Yap
LKO

Yap
LKO

p <0.0001

p = 0.0003

Li
ve

r/b
od

y 
w

ei
gh

t r
at

io
  (

%
)

0

3

6

9

12

15

18

E
dU

 p
os

iti
ve

 c
e l

ls
 (%

)

Capz CRE
Lats1/2 Cas9

+-
- -

Capz
LKO

Fig. 5. Capzb regulates liver homeostasis through YAP1 and in parallel to Hipp
for each genotype) and Yap1 LKO mice (n = 3). (B) EdU incorporation in
immunofluorescence for the atypical ductal cell marker CK19 (C) and for the pe
were consistent for each staining. Scale bar = 100 lm (C), 80 lm (D). (E) Glucose
mice of the indicated genotypes. WT are control mice. (F) Quantification of EdU
GFP transposon), in livers with single-cell inactivation of Capzb (Capz CRE: Cap
inactivation of Lats1/2 (Lats1/2 CAS9: Capzbfl/fl; ROSA26-LSL-lacZ mice injected wit
Hepatocytes were transduced by hydrodynamic tail vein injection. n = 3 for each
incorporation in control and Capz LKO livers injected with GFP or with TAZ-4SA tr
n = 2 for each genotype. See Fig. S3F for representative stainings. Graphs are a
Welch’s correction. Immunostainings were repeated in independent sections of
area under the curve; GFP, green fluorescence protein; GS, glutamine synthase; s

138 Journal of Hepatology 2
and improved glucose tolerance (Fig. 4H). Overall, these data
indicate that Capzb is relevant to maintain the physiological pat-
terning of hepatocyte differentiation and of key metabolic traits
in the liver.

Capzb regulates liver homeostasis through YAP
To obtain formal evidence that phenotypes observed upon
Capzb inactivation are due to YAP activation, and not to other
mechanoresponsive pathways, we deleted Yap122 in Capz LKOs
(Albumin-CreERT2; Capzbfl/fl; Yap1fl/fl; ROSA26-LSL-lacZ mice,

Capz+Yap1 LKO). As shown in Fig. 5A-E and Fig. S3A, Yap1 inac-
tivation partially rescued hepatomegaly and proliferation, while
it almost completely rescued atypical ductal cell expansion,
pericentral expression, and glucose tolerance. We speculate
the partial rescue might depend on TAZ, which is functional in
hepatocytes69 and sufficient to induce hepatocyte proliferation
(see Fig. 5G). This would also imply that the phenotypes
described above require different thresholds of YAP/TAZ activ-
ity. Thus, the control of F-actin assembly dynamics is a
physiologically-relevant input to keep control over YAP/TAZ
activity in the liver.
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genes.26,32,71,72,83 We then found that the combination of Capzb
and Lats1/2 inactivation induced a higher number of proliferat-
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Capzb regulates YAP/TAZ in parallel to Hippo
Some data suggest that mechanical regulation of YAP/TAZ
involve YAP phosphorylation by LATS kinases; functional data
however indicate that mechanical regulation of YAP/TAZ can
occur in the absence of LATS1/2.15 The effectiveness of Capzb
inactivation in regulating YAP/TAZ in hepatocytes offered us
the opportunity to test the genetic interaction with Lats1/2
in vivo. We thus expressed in the liver, by hydrodynamic tail
vein transposon injection, the CAS9 enzyme and guide-RNAs
targeting Lats1 and Lats2,32 to inactivate Lats1/2 without induc-
ing liver failure caused by whole-organ knockout.26,70 CRISPR
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inactivation of Lats1/2 induced multiple Yap1-dependent pheno-
types (Fig. S3B-D), indicating efficient recombination of both
ing cells compared to Lats1/2 inactivation alone (Fig. 5F and
Fig. S3E), ruling out the possibility that CAPZ works only
through LATS1/2 to regulate YAP. We also injected a transposon
plasmid encoding TAZ-4SA (a TAZ isoform that cannot be phos-
phorylated and inhibited by LATS kinases) and obtained a com-
parable cooperation with Capzb deletion (Fig. 5G and Fig. S3F).
Overall this indicates that regulation of YAP/TAZ by actin
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assembly dynamics regulates YAP in parallel to the Hippo cas-
cade in liver tissue.13,52,73,74

Capzb regulates liver homeostasis by controlling tissue
mechanics
Data gathered so far indicate that Capzb regulates cellular forces
in vitro, and the activity of a key mechanotransduction pathway
in vivo. We then sought to test the idea that CAPZ also regulates
tissue mechanical properties in vivo. For this we monitored F-
actin and MLC phosphorylation75 and found them increased in
Capz LKO liver tissue compared to the controls (Fig. 6A). Impor-
tantly, this was associated with increased tissue stiffness, which
can be an indirect readout of actomyosin contractility in cells,76

as measured by AFM (Fig. 6B). Moreover, target genes that are
inhibited in hepatocytes subjected to high stiffness1,53 are
downregulated in Capz LKO livers (Fig. 6C), further supporting
the view that CAPZ regulates the cell’s mechanical properties.
To functionally validate these findings, we inhibited ROCK activ-
ity in Capz LKO mice, which efficiently reduced MLC phosphory-
lation (Fig. 6D), and scored YAP-dependent phenotypes. As
shown in Fig. 6E-G, hallmark phenotypes induced by Capzb
deletion, including expression of direct YAP target genes, were
inhibited by fasudil treatment. Altogether, these data indicate
a function of Capzb in restraining tissue tension, and a physio-
logical role for tissue tension in regulating hepatocyte
homeostasis.

Discussion
Here we found that inactivation of the capping protein Capzb
induced increased cell tension and tissue stiffness, and enabled
pMLC activity in soft environments which would normally sup-
press it, including the liver.53 Capzb inactivation induced liver
overgrowth, hepatocyte dedifferentiation and repatterning of
liver metabolism, which all depend on the YAP mechanotrans-
duction pathway. These phenotypes were similar in strength,
and overlapping by gene expression analyses, with published
liver mutants of the Hippo pathway, and can be readily seen
by inactivating Capzb in adult hepatocytes. We also found that
Capzb and Hippo inactivation cooperate to drive hepatocyte pro-
liferation, genetically supporting the view that mechanical sig-
nals regulate YAP/TAZ through both LATS-dependent77 and
LATS-independent mechanisms.78,79 This makes CAPZ the only
genetically-validated YAP/TAZ regulator from flies80,81 to mam-
mals besides the Hippo pathway. We did not find evidence for a
mechanical activation of b-catenin though,82 because zonation
defects are compatible, if anything, with inhibited b-catenin.64

Our results suggest that capping of the F-actin barbed end is
crucial to regulate cell mechanics in vitro and in vivo, and a
required determinant of adult liver homeostasis. The pheno-
types observed in Capzb-null livers were stable up to 30 weeks
(not shown), suggesting that the novel function that we
describe here for CAPZ cannot be easily compensated, and that
CAPZ plays a prominent role in regulating cell and tissue
mechanotransduction. These results highlight the interesting
possibility that CAPZ levels and activity are regulated in tissues,
eventually contributing to pattern cell mechanics, YAP/TAZ and
perhaps other mechanotransduction pathways. The existence of
a whole family of CAPZ-regulatory proteins and the known, but
so far poorly addressed, role of phosphoinositides as regulators
of CAPZ31 represent a possible basis to better understand how
CAPZ activity, and by association F-actin assembly dynamics,
140 Journal of Hepatology 2
are involved in the signaling mechanisms that maintain tissue
homeostasis.
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