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Highlights
� Reactive oxygen species levels are increased in advanced

NASH-related fibrosis.
� CYGB directly scavenges �OH and attenuates 8-OHdG gen-

eration in human HSCs.
� CYGB downregulation by TGF-b1 leads to oxidative DNA

damage in human HSCs.
� TGF-b1 suppresses CYGB expression in human HSCs via the

pSMAD2/SP3-M1 pathway.
� CYGB expression is absent in pSMAD2+8-OHdG+ HSCs in

NASH-related fibrosis.
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Lay summary
Cytoglobin (CYGB) is a respiratory protein
that acts as a scavenger of reactive oxygen
species and protects cells from oxidative
DNA damage. Herein, we show that the
cytokine TGF-b1 downregulates human
CYGB expression. This leads to oxidative
DNA damage in activated hepatic stellate
cells. Our findings provide new insights
into the relationship between CYGB
expression and the pathophysiology of
fibrosis in patients with non-alcoholic
steatohepatitis.

Research Article
Experimental and Translational Hepatology

https://doi.org/10.1016/j.jhep.2020.03.051 e61
© 2020 European Association for the Study of the Liver. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). J. Hepatol. 2020, 73, 882–895

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhep.2020.03.051&domain=pdf


Research Article
Experimental and Translational Hepatology
Key
Hep
Rec
202

* C
Med
+81
E-m

‡

http
TGF-b1-driven reduction of cytoglobin leads to oxidative DNA
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Background & Aims: Cytoglobin (CYGB) is a respiratory protein positive hepatic stellate cells from patients with NASH and

that acts as a scavenger of reactive oxygen species. The molecular
role of CYGB in human hepatic stellate cell (HSC) activation and
human liver disease remains uncharacterised. The aim of this
study was to reveal the mechanism by which the TGF-b1/SMAD2
pathway regulates the human CYGB promoter and the patho-
physiological function of CYGB in human non-alcoholic steato-
hepatitis (NASH).
Methods: Immunohistochemical staining was performed using
human NASH biopsy specimens. Molecular and biochemical
analyses were performed by western blotting, quantitative PCR,
and luciferase and immunoprecipitation assays. Hydroxyl radi-
cals (�OH) and oxidative DNA damage were measured using an
�OH-detectable probe and 8-hydroxy-20-deoxyguanosine (8-
OHdG) ELISA.
Results: In culture, TGF-b1-pretreated human HSCs exhibited
lower CYGB levels – together with increased NADPH oxidase 4
(NOX4) expression – and were primed for H2O2-triggered �OH
production and 8-OHdG generation; overexpression of human
CYGB in human HSCs reversed these effects. Electron spin reso-
nance demonstrated the direct �OH scavenging activity of re-
combinant human CYGB. Mechanistically, pSMAD2 reduced
CYGB transcription by recruiting the M1 repressor isoform of SP3
to the human CYGB promoter at nucleotide positions +2–+13 from
the transcription start site. The same repression did not occur on
the mouse Cygb promoter. TGF-b1/SMAD3 mediated aSMA and
collagen expression. Consistent with observations in cultured
human HSCs, CYGB expression was negligible, but 8-OHdG was
abundant, in activated aSMA+pSMAD2+- and aSMA+NOX4+-
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advanced fibrosis.
Conclusions: Downregulation of CYGB by the TGF-b1/pSMAD2/
SP3-M1 pathway brings about �OH-dependent oxidative DNA
damage in activated hepatic stellate cells from patients with
NASH.
Lay summary: Cytoglobin (CYGB) is a respiratory protein that
acts as a scavenger of reactive oxygen species and protects cells
from oxidative DNA damage. Herein, we show that the cytokine
TGF-b1 downregulates human CYGB expression. This leads to
oxidative DNA damage in activated hepatic stellate cells. Our
findings provide new insights into the relationship between
CYGB expression and the pathophysiology of fibrosis in patients
with non-alcoholic steatohepatitis.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Hepatic fibrosis is a common feature of many chronic liver dis-
eases. Hepatic fibrosis ultimately progresses to cirrhosis and in-
creases the risk of hepatocellular carcinoma (HCC).1 Severe
hepatic fibrosis and HCC are estimated to cause 3.5% of all deaths
worldwide,2 indicating a need for new anti-fibrotic therapies
based on a detailed mechanistic understanding of liver disease.3

The activation of hepatic stellate cells (HSCs) into contractile and
matrix-producing myofibroblasts (MFBs) is a central event in
liver fibrosis. HSC activation is triggered by multiple mediators
secreted by damaged hepatocytes, activated macrophages, and
aggregated platelets. Among the HSC-activating factors, trans-
forming growth factor b1 (TGF-b1) is a key molecule that regu-
lates MFB function.4 In chronic liver disease, MFBs persist,
become highly proliferative and migratory, and continuously
deposit extracellular matrix (ECM) to replace hepatic
parenchyma.

Cytoglobin (CYGB) is a mammalian globin expressed in HSCs
that binds oxygen, carbon monoxide, and nitric oxide5,6 and
protects organs and cells against oxidative stress.7,8 Recombinant
rat Cygb was reported to increase the expression of antioxidant
020 vol. 73 j 882–895
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Table 1. Clinical and biochemical characteristics of the patients with biopsy-proven NAFLD/NASH.

Characteristics

All
No advanced

fibrosis (stage 0–2)
Advanced

fibrosis (stage 3–4)

p value(n = 13) (n = 8) (n = 5)

Demographics
Age (years) 55.9 ± 15.1 51.1 ± 17.7 63.6 ± 3.7 0.377
Gender

Female 8 (61.5) 3 (37.5) 5 (100.0) 0.075
Male 5 (38.5) 5 (62.5) 0 (0.0)

BMI (kg/m2) 26.3 ± 3.3 26.5 ± 3.5 26.1 ± 3.4 0.770
Biological data
AST (U/L) 50.2 ± 29.9 47.5 ± 33.8 54.6 ± 25.2 0.341
ALT (U/L) 63.8 ± 52.4 70.5 ± 61.5 53.2 ± 37.3 0.942
GGT (U/L) 75.1 ± 42.8 84.4 ± 49.6 60.2 ± 27.0 0.341
Total bilirubin (mg/dl) 0.86 ± 0.24 0.80 ± 0.26 0.96 ± 0.19 0.262
Direct bilirubin (mg/dl) 0.29 ± 0.08 0.29 ± 0.08 0.3 ± 0.07 0.753
Albumin (g/dl) 4.1 ± 0.38 4.3 ± 0.27 3.8 ± 0.34 0.022
Triglycerides (mg/dl) 99.2 ± 35.3 104.6 ± 37.6 90.4 ± 33.2 0.770
Total cholesterol (mg/dl) 187.6 ± 40.9 184.8 ± 36.0 192.2 ± 51.9 0.999
Platelet count (109/L) 207.8 ± 68.9 239.4 ± 49.7 157.2 ± 68.7 0.040
Glucose (mg/dl) 120.8 ± 34.9 131.9 ± 40.0 103.0 ± 14.1 0.164

Clincal prediction rules
NAFLD fibrosis score 0.09 ± 0.93 0.07 ± 0.62 0.11 ± 1.38 0.884
FIB-4 index 2.15 ± 1.42 1.34 ± 0.89 3.43 ± 1.14 0.008

Histology
NAS, n (%)
Steatosis

0 1 ( 7.7) 1 (12.5) 0 (0.0)
1 6 (46.2) 3 (37.5) 3 (60.0)
2 3 (23.1) 1 (12.5) 2 (40.0)
3 3 (23.1) 3 (37.5) 0 (0.0)

Ballooning
0 6 (46.2) 6 (75.0) 0 (0.0)
1 2 (15.4) 0 (0.0) 2 (40.0)
2 5 (38.5) 2 (25.0) 3 (60.0)

Inflammation
0 3 (23.1) 3 (37.5) 0 (0.0)
1 5 (38.5) 4 (50.0) 1 (20.0)
2 3 (23.1) 0 (0.0) 3 (60.0)
3 2 (15.4) 1 (12.5) 1 (20.0)

Fibrosis, n (%)
0 2 (15.4) 2 (25.0) 0 (0.0)
1 4 (30.8) 4 (50.0) 0 (0.0)
2 2 (15.4) 2 (25.0) 0 (0.0)
3 3 (23.1) 0 (0.0) 3 (60.0)
4 2 (15.4) 0 (0.0) 2 (40.0)

P values were obtained using t test for continuous variables.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; FIB-4, fibrosis-4; GGT, gamma-glutamyltransferase; NAFLD, non-alcoholic fatty liver
disease; NAS, NAFLD Activity Score; NASH, non-alcoholic steatohepatitis.
enzymes and to inhibit collagen (COL) III and IV expression in
CCl4-induced liver fibrosis.9 We previously demonstrated that
Cygb−/− mice are susceptible to diethylnitrosamine-induced
development of liver cancer10 and exhibit augmented hepatic
inflammation, fibrosis, and tumour occurrence when fed a high-
fat diet or subjected to bile-duct ligation.11,12 Conversely,
thioacetamide-induced liver fibrosis was attenuated in HSC-
specific Cygb transgenic mice.13

The regulation of CYGB transcription and the role of CYGB in
human fibrotic liver disease remain largely uncharacterised.
Cygb expression was upregulated in mice exposed to hypoxia,
whereas Cygb induction was lost in hypoxia-inducible factor 1a-
knockout mice.14 Furthermore, hypoxia response elements were
identified in the Cygb promoter region.15 Those results suggest
that the regulation of Cygb expression is oxygen dependent. By
contrast, we recently reported that fibroblast growth factor 2
Journal of Hepatology 2
(FGF2) induces CYGB via c-JUN N-terminal kinase (JNK)-c-JUN
signals in human HSCs.16

Herein, we show that TGF-b1 supresses human CYGB
expression through phosphorylated SMAD2 (pSMAD2) and the
M1 repressor isoform of SP3. The TGF-b1-induced suppression of
CYGB causes a loss of cellular tolerance to exogenous oxidative
stress and oxidative DNA damage in human HSCs. Our results
provide a new insight into the pathophysiology of NASH-related
fibrosis.

Materials and methods
Human tissue specimens
Patients with biopsy-proven non-alcoholic fatty liver disease
(NAFLD)/non-alcoholic steatohepatitis (NASH) were recruited at
Osaka City University Hospital (Osaka, Japan; Table 1). Thirteen
liver biopsy specimens were obtained using a 16-gauge
020 vol. 73 j 882–895 883
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MAX-Core needle (Bard Biopsy Systems, AZ, USA). The samples
were fixed in 10% formalin and stained with H&E. Each specimen
was evaluated by experienced pathologists that were blinded to
the clinical findings.

ELISA for 8-OHdG
DNA was purified using a DNA Extract WB kit (Wako Pure
Chemical Industries Ltd.) and subjected to ELISA for 8-OHdG
according to the manufacturer's protocol. Intracellular 8-OHdG
concentrations were measured by absorbance at 450 nm. The
8-OHdG standards used for the assay ranged between 0 ng/ml
and 10 ng/ml.

Immunoprecipitation analysis
Cells were harvested with ice-cold PBS and lysed in TNE Buffer
(50 mM Tris-HCl [pH 7.4], 0.1% NP-40, 100 mM NaCl, and 1 mM
EDTA) containing protease inhibitors (Roche Diagnostics, Man-
nheim, Germany) and phosphatase inhibitors (Thermo Fisher
Scientific, Waltham, MA, USA). The cell extracts (2 mg/450 ll)
were pre-cleaned with protein G magnetic beads (20 ll of a 50%
bead slurry, Thermo Fisher Scientific) at 4�C for 60 min. The
samples were then incubated with anti-SMAD2 antibody or
normal rabbit IgG at 4�C overnight and subjected to SDS-PAGE by
western blot analysis.

Statistics and reproducibility
All experiments were replicated at least 3 times. Differences
among experimental groups were analysed using unpaired t test,
Mann-Whitney U test, or one-way or two-way ANOVA per-
formed using the GraphPad Prism 6 software (La Jolla, CA, USA).
P values less than 0.05 were considered statistically significant.
The data are displayed as the mean ± SD. Significant differences
among groups are indicated as *p <0.05, **p <0.01, and ***p
<0.001.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
Involvement of CYGB in reactive oxygen species (ROS)
production and HSC activation in human liver fibrosis
Oxidative stress has been implicated in the pathogenesis of
NAFLD/NASH with lobular inflammation and fibrosis.17 We
measured the expression of 4-hydroxy-20-nonenal (4-HNE), an
end product of lipid peroxidation, and 8-hydroxy-20-deoxy-
guanosine (8-OHdG), a marker of oxidative DNA damage, in liver
tissues from patients with biopsy-proven NAFLD/NASH with
stage F0–F4 fibrosis (Table 1). As previously described,18 4-HNE-
positive staining was limited in patients with stage F0 fibrosis
but was more pronounced in patients with more advanced
fibrosis, especially those with stage F4 fibrosis (p <0.05; Fig. 1A).
A previous study reported that 4-HNE accumulated in destroyed
hepatocytes and was discharged from those cells into the space
of Disse,19 representing a source of oxidative stress in hepatic
sinusoids. We did not observe any 8-OHdG-positive signal in
cells from patients with stage F0 fibrosis, but 8-OHdG-staining
was dominant in hepatocytes from patients with stage F1 fibrosis
and abundant in both hepatocytes and stromal cells from pa-
tients with stage F4 fibrosis (Fig. 1B and Fig. S1A). Double-
immunohistochemical (IHC) staining revealed co-localisation of
8-OHdG and a-smooth muscle actin (aSMA) in the stroma of
patients with stage F4 disease (Fig. 1C).
884 Journal of Hepatology 2
Based on our observations of human NAFLD/NASH biopsy
specimens, we hypothesised that activated HSCs become sus-
ceptible to oxidative stress. To confirm our hypothesis, we
investigated the production of 20,70-dichlorofluorescin diacetate
(DCFDA)-detectable ROS in cultured human HSCs (HHSteCs;
ScienCell Research laboratories, San Diego, USA) and LX-2 (ATCC,
Manassas, USA), which were pretreated with recombinant hu-
man (rh)TGF-b1 and then stimulated with hydrogen peroxide
(H2O2). Treatment with 2 ng/ml rhTGF-b1 for 48 h resulted in
slight increases in DCFDA-detectable ROS in the HHSteCs (p
<0.05). The combination of rhTGF-b1 pre-treatment and subse-
quent H2O2 (0–640 lM) treatment augmented the ROS produc-
tion in a dose-dependent manner (Fig. 1D). Similar results were
obtained in HHSteCs challenged with H2O2 in the presence of
rhTGF-b1, while LX-2, which lack CYGB expression, remained
unresponsive to rhTGF-b1 in H2O2-dependent ROS production
(Fig. S2A and B). In addition, ROS production by these HSCs was
reconfirmed by dihydroethidium (DHE) assay except for DCFDA
assay (Fig. S2C). To elucidate the reason why TGF-b1 treatment
enhanced ROS production in the HHSteCs, we analysed the
expression of several genes associated with antioxidative cellular
defence: CYGB, SOD1, GSR, CAT, GPX1, GSS, PRDX1 and 2, TXN and
TXNRD1 in human HSCs. Of those genes, CYGB was the most
strongly and dose-dependently downregulated by pre-treatment
with rhTGF-b1 in HHSteCs (p <0.00001; Fig. 1E and Fig. S3A).
Likewise, these antioxidant genes were regulated by TGF-b1 in
LX-2, in which CYGB expression was lacking (Fig. S3B). Further-
more, the overexpression of CYGB in HHSteCs and LX-2 trans-
fected with pCMV6 vector containing human CYGB reduced the
enhancement of DCFDA-detectable ROS production in response
to 2 ng/ml rhTGF-b1 followed by 320 lMH2O2, returning the ROS
levels to those observed after treatment with 320 lM H2O2 alone
(Fig. 1F and Fig. S3C–D). Western blots of lysates of cells that
were subjected to the same experimental conditions revealed
that aSMA and COL1A were induced after the treatment with
rhTGF-b1 and/or H2O2, and that CYGB overexpression markedly
reversed the induction at both protein and mRNA levels (Fig. 1G
and Fig. S4A). We also confirmed that TGF-b1 significantly
increased NADPH oxidase 4 (NOX4) and its expression was
strongly reduced by the overexpression of CYGB (Fig. S4A). These
results indicated that CYGB is involved in the attenuation of HSC
activation as well as the suppression of ROS production in human
HSCs.

CYGB scavenges hydroxyl radical (�OH) and protects
TGF-b1-activated HSCs from DNA damage
Because we observed accumulation of 8-OHdG in aSMA-positive
stromal cells from patients with NASH and advanced fibrosis, we
hypothesised that the suppression of CYGB expression by rhTGF-
b1 would result in the accumulation of oxidative DNA damage in
HSCs due to �OH, which is the causative agent of 8-OHdG for-
mation.20 To test that, we monitored mitochondrial ROS pro-
duction using the mitochondria-specific probe MitoTracker® Red
CM-H2XRos. After pre-treatment for 48 h with 2 ng/ml rhTGF-b1,
HHSteCs were treated with 1 mM H2O2 for 1 h or with 100 lM
antimycin A or 100 lM pyocyanin for 24 h to chemically induce
�OH production. All 3 treatments induced MitoTracker® Red CM-
H2XRos-positive staining in HHSteCs pretreated with rhTGF-b1
(Fig. 2A and Fig. S5A).

Next, we focused on mitochondrial �OH production using
in vivo imaging analysis with OxiORANGETM, a positively charged
020 vol. 73 j 882–895
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orange fluorescent probe that detects �OH. We confirmed that
pre-treatment with rhTGF-b1 augmented cellular �OH accumu-
lation in response to H2O2, antimycin A, or pyocyanin treatment
886 Journal of Hepatology 2
(Fig. 2B and Fig. S5B). Conversely, overexpression of CYGB
markedly suppressed the rhTGF-b1/H2O2-induced accumulation
of �OH in HHSteCs (Fig. 2C). To evaluate the �OH scavenging
020 vol. 73 j 882–895



properties of CYGB, we performed electron spin resonance (ESR)
spectroscopy using the CYPMPO spin trap. We observed dose-
dependent decreases in the amplitude of the ESR signal with
the addition of rhCYGB (0.025–0.2 mg/ml) (Fig. 2D). We con-
verted the �OH scavenging activity of 1 nmol rhCYGB to a 4.05
lmol glutathione equivalent (Fig. 2E). The results revealed that
mitochondrial �OH levels were synergistically elevated by co-
treatment with rhTGF-b1 and H2O2 and that �OH was scav-
enged by CYGB in HHSteCs (Fig. 2F).

Next, we used 8-OHdG ELISA to measure cellular oxidative
DNA damage in HHSteCs after pre-treatment with 2 ng/ml
rhTGF-b1 for 48 h and subsequent exposure to 320 lM H2O2 for
1 h. Treatment with rhTGF-b1 alone did not affect 8-OHdG
generation (0.56 ± 0.06 ng per 1 mg DNA). Treatment with
H2O2 alone induced a comparatively small increase in 8-OHdG
(1.04 ± 0.06 ng per 1 mg DNA). However, rhTGF-b1 pre-
treatment followed by H2O2 treatment induced cellular DNA
damage at levels that were 3.6 times higher than those in un-
treated controls (1.77 ng ± 0.03 per 1 mg DNA; Fig. 2G). The
overexpression of CYGB reduced the DNA damage levels, even
after the combined treatment with rhTGF-b1 and H2O2 (Fig. 2H).
Thus, TGF-b1 treatment followed by H2O2 treatment, but not
H2O2 treatment alone, triggered a reduction in CYGB, resulting in
impaired scavenging defences against �OH and increased
oxidative DNA damage in HHSteCs.

TGF-b1 attenuates CYGB expression via SMAD2 and stimulates
aSMA and type I collagen expression via SMAD3
Next, we investigated the molecular regulatory mechanism of
the TGF-b1-induced downregulation of CYGB in HHSteCs. We
used FGF2 as a CYGB inducer.16 Treatment with 4 ng/ml FGF2 for
72 h increased CYGB expression and decreased aSMA expression
at the protein and mRNA levels. By contrast, treatment with 2 ng/
ml rhTGF-b1 for 72 h downregulated CYGB expression and
upregulated aSMA expression compared with that in untreated
controls (Fig. 3A and Fig. S6A). Other fibrosis-related growth
factors (rhCTGF, PDGF-BB, and HGF) had negligible effects on
CYGB protein expression (Fig. S6B). Treatment with rhTGF-b1
reduced CYGB and increased aSMA at both the protein level and
the mRNA level in a dose-dependent (0–10 ng/ml) and time-
dependent (0–48 h) manner (Fig. S6C and D).

In HHSteCs, rhTGF-b1 (2 ng/ml) phosphorylated canonical
SMAD2 and SMAD3, starting at 15 min and reaching a peak at
1 h. In addition, ERK was present at 1 h and 4 h, but it failed to
activate the AKT and JNK pathways (Fig. 3B and Fig. S6E–F). The
TGF-b1-dependent phosphorylation of SMAD2 and SMAD3 was
completely blocked by 1 lM SB431542 (Fig. S7A). SB431542 also
blocked the repression of CYGB expression as well as the in-
duction of TGF-b1-target genes such as aSMA, TGF-b1, and
COL1A1 in untreated and rhTGF-b1-treated HHSteCs (Fig. 3C and
D). To determine the specific SMAD involved in the TGF-b1-
induced repression of CYGB, we used short hairpin (sh)RNAs to
stably inactivate SMAD2 or SMAD3 in HHSteCs. The shRNA se-
quences targeted to SMAD2 (shRNA Smad2) and SMAD3 (shRNA
Smad3) resulted in 95.6% and 94.2% decreases in SMAD2 and
SMAD3 protein levels, respectively (Fig. S7B and C). ShRNA
Smad2, but not shRNA GFP or shRNA Smad3, negated the TGF-
b1-induced downregulation of CYGB expression. Conversely, only
shRNA Smad3 reduced the TGF-b1-dependent induction of
aSMA, COL1A1, and COL1A2 (Fig. 3E and F). Interestingly,
depleting SMAD2 partially attenuated aSMA expression. Next,
Journal of Hepatology 2
we confirmed treatment of 3 lM SIS3 completely blocked the
TGF-b1-dependent phosphorylation of SMAD3, but not SMAD2
(Fig. S7D). Furthermore, the treatment with SIS3 had no effect on
the rhTGF-b1-induced CYGB expression, but it suppressed the
induction of aSMA, COL1A1, and COL1A2 mRNAs (Fig. S7E). To
clarify whether SMAD4 is also part of the complex associated
with the reduction of CYGB expression, we used an siRNA
strategy to knockdown SMAD4 in HHSteCs. SiSmad4 treatment
inhibited the TGF-b1-dependent induction of aSMA, COL1A1 and
SERPINE1 and the reduction of CYGB (Fig. S7F–H). Those results
demonstrate that the TGF-b1-SMAD2/SMAD4 pathway is
involved in the reduction of CYGB expression, and the TGF-b1-
SMAD3/SMAD4 pathway is involved in the induction of aSMA,
COL1A1, and COL1A2 in HHSteCs.21

TGF-b1 mediates the transcriptional repression of CYGB via an
SP1/3 binding motif in the CYGB gene promoter in human
HSCs, but not in mouse HSCs
TGF-b1 reduced CYGB and increased aSMA and COL1A at the
protein and mRNA levels in primary human HSCs (University
College London, UK) isolated from the liver tissues of 3 patients
(Fig. 4A and B). We also found that 0.4–10 ng/ml rhTGF-b1 failed
to repress Cygb expression but upregulated aSma and Col1a1
expression in primary cultured mouse HSCs (Fig. 4C and D). To
determine the difference in CYGB gene regulation by rhTGF-b1
between human and mouse HSCs, we investigated the tran-
scriptional regulatory region of human CYGB and mouse Cygb
and found that an SP1/3 DNA-binding motif was present at the
transcription start site (TSS) in human CYGB but not in mouse
Cygb (Fig. 4E and Fig. S8A). SMAD2 has no DNA-binding ability
and therefore requires the recruitment of transcriptional co-
factors to transmit its regulatory signals.22 To determine if the
TGF-b1/SMAD2-dependent suppression of CYGB expression is
mediated by SP1/SP3, we used mithramycin A (MTM) to inter-
rupt SP1/SP3 binding to the promoter region. Treatment of
HHSteCs with 100 nM MTM completely blocked the TGF-b1-
dependent reduction in CYGB expression and the upregulation
of aSMA, COL1A1, and COL1A2, which is reportedly mediated by
the binding of SP1/SP3 protein in fibroblasts23,24 (Fig. 4F and G).
Taken together, the results suggested that SP1 and/or SP3 is
involved in the TGF-b1-mediated downregulation of CYGB
expression in HHSteCs.

The TGF-b1/SMAD2 pathway specifically recruits the M1
repressor isoform of SP3 to the TSS and represses human
CYGB promoter activity
To test our hypothesis that TGF-b1/SMAD2 targets CYGB in hu-
man HSCs by recruiting SP1 and/or SP3 to the transcriptional
regulatory region, we transfected HHSteCs with a human CYGB
promoter construct containing the −2133 to +73 nucleotide
sequence, which includes the SP1/SP3 binding motif proximal to
the TSS in exon 1 of CYGB. Treatment of the transfected cells with
2 ng/ml rhTGF-b1 for 48 h resulted in a reduction of human CYGB
promoter activity, but the reduction was completely abolished by
treatment with 100 nM MTM (Fig. 5A). By contrast, rhTGF-b1 did
not reduce the promoter activity in HHSteCs transfected with a
construct containing the −1726 to +114 nucleotide sequence of
the mouse Cygb promoter (Fig. 5B). We also transfected primary
mouse HSCs with the human CYGB or mouse Cygb promoter and
measured the promoter activity to eliminate potential host ef-
fects. Our results indicated that rhTGF-b1 reduced the activity of
020 vol. 73 j 882–895 887
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the human CYGB promoter but not that of the mouse Cygb pro-
moter (Fig. 5C).

Next, to examine the binding of SP1 and/or SP3 to the human
CYGB promoter, we constructed 2 mutated promoters (Mut-1
and Mut-2) with alterations at the SP1/3 DNA-binding motif (50-
GTGGGCGGGCG-30; labelled No. 4: +2–+13 nt in Fig. 4E). The
inhibitory effect of rhTGF-b1 on the CYGB promoter activity was
abrogated in both mutants (Fig. 5D). Finally, to determine if SP1
or SP3 was involved in the repression of CYGB expression by
rhTGF-b1, we used SP1-specific and SP3-specific antibodies to
conduct a chromatin immunoprecipitation (ChIP) assay of the
888 Journal of Hepatology 2
CYGB promoter region containing the SP1/3 binding motif in
HHSteCs (Fig. 5E, left panel). Treatment with 2 ng/ml rhTGF-b1
for 6 h amplified the CYGB promoter region that was pulled
down by SP3-specific antibody, but not the region pulled down
by SP1-specific antibody (Fig. 5E, right panel). The specificity of
SP1-specific antibody was confirmed by amplifying the COL1A2
promoter with the same ChIPped DNA (Fig. S9A). Additionally,
we confirmed the TGF-b1-induced recruitment of SMAD2 to the
same regulatory region of the CYGB promoter for SP3 binding
(Fig. 5F). To evaluate the direct interaction between SMAD2 and
SP3 in response to rhTGF-b1, we conducted immunoprecipitation
020 vol. 73 j 882–895
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with a SMAD2-specific antibody in HHSteCs overexpressing
SMAD2. On the basis of previous reports,25 we deduced that the
protein band at 115 kDa corresponded to an activator (full) form
of SP3 and that the lower bands were the M1 (70 kDa) and M2
(68 kDa) repressor forms of SP3 in whole-cell protein extracts
(Input) (Fig. 5G, left panel). Our results demonstrated that, in
parallel to the phosphorylation of SMAD2, which reached the
highest level at 1 h after rhTGF-b1 treatment (Fig. S10A), the
association of SMAD2 with SP3 isoform M1, but not that with full
SP3 or isoform M2, was dramatically increased at 1 h and
reduced at 4 h after rhTGF-b1 treatment (Fig. 5G, right panel).
Moreover, we confirmed a direct interaction between endoge-
nous SMAD2 and SP3 isoform M1 in TGF-b1-treated HHSteCs
(Fig. 5H). To evaluate whether the inhibitory complex between
pSMAD2 and SP3 was induced transiently, the nuclear and
cytoplasmic proteins isolated from HHSteCs were applied for
immunoblot analysis, which confirmed the persistence of
SMAD2 phosphorylation and its nuclear localisation up to 24 h
after rhTGF-b1 treatment (Fig. S10B and C). Collectively, our
Journal of Hepatology 2
results indicate that SMAD2 recruits the M1 repressor isoform of
SP3 and suppresses CYGB promoter activity following rhTGF-b1
treatment in HHSteCs.

CYGB expression in activated HSCs is negatively correlated
with TGF-b1/pSMAD2 signalling in human NASH-related
fibrosis
Following our observations in cultured human HSCs, we tested
the relationship between CYGB expression and the activation of
TGF-b1/SMAD2 signalling in human NAFLD/NASH (Table 1). The
different stages of fibrosis (F0, F1, and F4) of human NAFLD/NASH
were demonstrated by H&E, Sirius Red, and IHC staining of CYGB,
pSMAD2 and aSMA (Fig. 6A and Table 1). CYGB-positive HSCs
were abundant in stages F0–2 but scarce in stages F3–4 (p =
0.011; Fig. 6B). Increased Sirius Red staining and IHC staining
against pSMAD2 and aSMA was correlated with fibrosis pro-
gression (p = 0.0016; Fig. 6A and 6C and Fig. S11A). These results
indicate that CYGB expression in human NASH is negatively
correlated with fibrosis progression.
020 vol. 73 j 882–895 889



-2133 +73Human CYGB
pGL4.10 LUC

A

− − − −
0

1

2

3

4

5

n.s.

*** n.s.

n.s.

+
Promoter

− +

TGF-β1

MTM

+ + +
CYGBEVCYGBEV

HHSteCs
R

LU
 (r

at
io

)

pGL4.10 LUC
+114-1726 Mouse Cygb

B

0.0

0.5

1.0

1.5

n.s.

***

TGF-β1
EV CygbPromoter

+−+−

HHSteCs

R
LU

 (r
at

io
)

C

0

5

10

15

20

25

n.s.

***
n.s.

+−
Promoter

TGF-β1
CYGBEV Cygb

mHSCs

+−+−

R
LU

 (r
at

io
)

0 2 4 6

n.s.

***

n.s.

n.s.

RLU (ratio)

pGL4.10

GTTTACGGGCG

GTGGGAATGCG

-2133 +73

LUC

+2 +13

GTGGGCGGGCG

Mut-1 LUC

Mut-2 LUC

WT

LUCEV TGF-β1 (+)
TGF-β1 (-)

D

TGF-β1
0

2

4

6

8

n.s.

***

−
Antibody

Fo
ld

 e
nr

ic
hm

en
t

C
hI

P/
in

pu
t

SP1 IgG IgGSP3
+ − + − + − +

Exon 1

CGGGTGGGCGGGCGGC
+2 +13

TSS

Rv
primer

Fw
primer

Human CYGB
promoter

E

F

0

2

4

6

8

10 ***

TGF-β1 +−
Antibody SMAD2

Fo
ld

 e
nr

ic
hm

en
t

(C
hI

P/
in

pu
t)

TGF-β1
- 1 h 2 h 4 h

M1
M2

Full

SP3

SMAD2

Input IP: anti-SMAD2
TGF-β1

- 1 h 2 h 4 h

G H
TGF-β1
- 2 h

M1
M2

Full

SP3

SMAD2

Input IP: anti-SMAD2
TGF-β1
- 2 h

pSMAD2

SMAD4

GAPDH

Fig. 5. Regulation of CYGB expression by the M1 repressor isoform of SP3 in TGF-b1-treated HHSteCs. (A) CYGB promoter activity in (CYGB)-transfected
HHSteCs. (B) Cygb promoter activity in (Cygb)-transfected HHSteCs. (C) CYGB promoter activity in mouse HSCs. (D) Luciferase reporter fused to wild-type and
mutated human CYGB promoters (underlined). The pGL4.10-EV vector was used as a control. (E) ChIP using antibodies against SP1 and SP3 and primers targeting
the SP1/3-binding motif (grey bar with oblique line). Results analysed by semi-quantitative PCR and presented as fold enrichment relative to total input DNA. IgG
was used as a control. (F) ChIP assay of SMAD2 at human CYGB promoter was analysed by qRT-PCR. ***p <0.001 by unpaired t test compared with untreated
control. (G) IP for the SMAD2-binding protein with TGF-b1 treatment at indicated time points. (H) IP for endogenous SMAD2-binding protein. Data expressed as
means ± SD, n = 3. n.s.: not significant; ***p <0.001 by ANOVA (A–D) or two-tailed unpaired t test (E). ChIP, chromatin immunoprecipitation; EV, empty vector;
HHSteCs, human hepatic stellate cells; HSCs, hepatic stellate cells; IP, immunoprecipitation; qRT-PCR, quantitative reverse transcription PCR; RLU, relative light
unit.

Research Article Experimental and Translational Hepatology
Absence of CYGB and pSMAD2 co-expression in activated HSCs
along the septum of collagen fibres
In accordance with a previous report on hepatitis C virus-
induced liver fibrosis,26 aSMA and pSMAD2 were co-localised
in stromal cells, and the number of double-positive cells was
greater in stage F3–4 fibrosis than in stage F0–2 fibrosis (Fig. 7A).
IHC staining using NOX4 antibody showed the positivity of NOX4
in both hepatocytes and stromal cells, similar to pSMAD2 IHC
staining. Furthermore, aSMA and NOX4 were also co-localised in
stromal cells (Fig. S12A and B). Furthermore, we observed CYGB-
positive cells that were negative for pSMAD2 in liver stroma
from patients with F1 fibrosis, whereas we detected no CYGB-
positive cells proximal to pSMAD2-positive stromal cells in
stroma from patients with F4 fibrosis (Fig. 7B). Finally, we
890 Journal of Hepatology 2
observed the co-localisation of 8-OHdG and pSMAD2 in stroma
from patients with stage F4 fibrosis (Fig. 7C). Taken together, the
results indicate that TGF-b1 signalling is strongly associated with
the loss of CYGB and oxidative DNA damage in stromal cells from
patients with NASH-related advanced fibrosis.

Discussion
Our results revealed that the TGF-b1/SMAD2/SP3-M1 signalling
is a key pathway in the downregulation of human CYGB, which
brings about the accumulation of intracellular �OH and oxidative
DNA damage in HSCs from patients with NASH-related advanced
fibrosis (Fig. 7D). Hepatic fibrosis can be defined as the persistent
production and deposition of ECM by activated HSCs that are
stimulated by gaseous, lipid, or peptide mediators secreted by
020 vol. 73 j 882–895
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damaged hepatocytes, mesenchymal cells, and inflammatory
cells as a result of cell–cell interactions at the perivascular
space.27 Our results extend the understanding of the mode of
TGF-b1 action to encompass the downregulation of CYGB, which
results in the exacerbation of oxidative DNA damage in human
HSCs.

CYGB is highly conserved across species, with 84% and 99%
homology between the human and mouse mRNA sequences and
protein sequences, respectively (NCBI Blast, https://blast.ncbi.
nlm.nih.gov/Blast.cgi). However, contrary to that in human
livers with NASH (Fig. 6A and B), hepatic Cygb expression
markedly increased in mice fed a high-fat diet (Fig. S13A). The
difference in CYGB regulation between human and mouse livers
Journal of Hepatology 2
meant that we could not use in vivo mouse models of NASH to
investigate the possible link between Cygb downregulation by
TGF-b1 and the accumulation of �OH in HSCs. Instead, we
investigated the mechanistic basis for the difference in tran-
scriptional regulation of CYGB in response to TGF-b1 between
humans and mice. We identified an SP1/3 binding motif in the
TSS of the human CYGB promoter that was absent in the mouse
Cygb promoter. Previous reports showed that SP1/3 indepen-
dently or cooperatively associates with SMAD2 or SMAD3 to
induce COL1A1 and COL1A2 transcription and is also required for
aSMA promoter activation in TGF-b1-induced MFB differentia-
tion.23,24 Furthermore, TGF-b induces the phosphorylation and
nuclear translocation of SMAD2 and SMAD3 primarily in
020 vol. 73 j 882–895 891
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quiescent and activated HSCs, respectively, and these 2 SMADs
have distinct roles in HSC activation.28 In this study, we found
that the TGF-b1-mediated phosphorylation of SMAD2 in human
HSCs triggered the recruitment of the M1 repressor isoform of
SP3, but not that of other SP3 isoforms. A previous site-directed
mutagenesis study revealed that SP1 binding to motifs at
nucleotide positions −400, −230, and −210 of human CYGB
resulted in the upregulation of CYGB expression; however, the
SP1/3 binding motif at the TSS of interest was not examined in
that study.15 Therefore, the position of the SP3 binding domain
(+2) in the promoter region appears to be critical for CYGB
downregulation. Although the involvement of other transcrip-
tional cofactors in the downregulation of CYGB by TGF-b1 should
be investigated, our results explain the discrepancy in CYGB gene
expression between humans and mice.

In accordance with a previous report,29 we observed the
accumulation of 4-HNE in hepatocytes of patients with NASH
and advanced fibrosis. HSC activation in the injured liver is pri-
marily initiated by ROS, products of lipid peroxidation, and TGF-
b1 released from destroyed/damaged hepatocytes, activated
Kupffer cells, and infiltrating inflammatory cells.30,31 ROS and
TGF-b1 are also produced by HSCs in an autocrine manner in
response to exogenous ROS and TGF-b1.32 ROS convert latent
TGF-b1 to the active form,33 and activated TGF-b1 promotes ROS
formation by inducing NOX4, thereby creating a vicious cycle.34

In this study, TGF-b1-induced upregulation of NOX4 mRNA was
suppressed by CYGB overexpression, suggesting that CYGB may
directly regulate NOX4 expression. Furthermore, Fan et al. have
recently reported that TGF-b1 is secreted as a latent complex and
deposited in the ECM of the healthy liver at a high concentration.
They found that downregulation of ECM protein 1 in hepatocytes
following liver injury strongly increased TGF-b signalling (by
spontaneously activating its ECM-deposited latent form) and
consequently promoted HSC activation and fibrogenesis.35

We investigated the expression levels of CYGB, GSR, PRDX2
and TXNRD1 in response to TGF-b1 treatment and found that
CYGB was the most significantly downregulated by TGF-b1. In
many cell types, the transcriptional response to oxidative stress
is mediated by a cis-acting element termed the antioxidant
response element (ARE); the nuclear factor E2-related factor 2
(Nrf2) has been identified as the most important transcription
factor acting on the ARE for many antioxidant genes.36 Our
previous report showed increased Nrf2 expression and reduced
TGF-b signalling in transgenic CYGB-overexpressing mouse
HSCs.13 These results suggest the possible coregulation of CYGB
and other antioxidant genes by their upstream signalling.

The product of DNA oxidation, 8-OHdG, plays a significant
role in mutagenesis because of its ability to pair with adenine
and cytosine, causing genetic instability.37 We observed
increased 8-OHdG levels not only in hepatocytes29 but also in
MFBs in biopsy specimens from patients with NASH-related
advanced fibrosis. TGF-b enhanced the H2O2-induced accumu-
lation of �OH in HSCs following the downregulation of CYGB
expression (Fig. 2B). Furthermore, CYGB overexpression abro-
gated the excessive �OH generation in activated HSCs (Fig. 2C).
Interestingly, our observation is supported by a recent study that
has demonstrated the accumulation of somatic mutations in the
cirrhotic liver, independent of carcinogenesis.38 The TGF-b1/
SMAD2-induced DNA damage in HSCs demonstrated in this
study may be associated with early cancer development.
Although further investigations of the relationship between
Journal of Hepatology 2
oxidative DNA damage and HSC activation during fibrosis
development are required, our data indicate that the impairment
of antioxidative defence against aberrant �OH accumulation in
HSCs is partly due to the downregulation of CYGB by TGF-b1.

TGF-b1/SMAD signalling has been shown to be central in the
pathogenesis of liver fibrosis; therefore, targeting the TGF-b1/
SMAD pathway might be a useful therapeutic strategy for
treating liver diseases.39 At present, there are many strategies to
block TGF-b1 signalling. Treatment with neutralising TGF-b1
antibodies or soluble human TGF-b receptor types I and II
attenuated liver fibrosis in preclinical models.39,40 However,
therapies targeting the TGF-b1 pathway might also cause
adverse outcomes due to pleiotropic effects. We previously re-
ported that FGF2 acts as a CYGB inducer in HSCs and promotes
the downregulation of aSMA, COL1A1, COL1A2, and TGF-b1. In
addition, in vivo application of FGF2 attenuated the progression
of liver fibrosis in a mouse model of bile-duct ligation.16

Furthermore, it was reported that overexpression of Cygb
decreased urinary 8-OHdG excretion and ameliorated kidney
fibrosis by suppressing oxidative damage in rats.41 Thus, accu-
mulating evidence suggests that CYGB plays both an antifibrotic
and a cytoprotective role, primarily through its antioxidative
properties,10,42 making it a candidate therapeutic molecule for
liver disease.

In conclusion, human CYGB expression is downregulated by
TGF-b1 via a mechanism involving SMAD2 phosphorylation and
the M1 repressor isoform of SP3. The downregulation of CYGB
gives rise to �OH-induced 8-OHdG production in activated hu-
man HSCs. Our findings provide new insights into the relation-
ship between CYGB expression and the pathophysiology of
NASH-related fibrosis in the human liver.
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