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Genome-wide association study of interferon-related cytopenia
in chronic hepatitis C patients
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Background & Aims: Interferon-alfa (IFN)-related cytopenias are entirely explained the genome-wide significant associations.

common and may be dose-limiting. We performed a genome
wide association study on a well-characterized genotype 1 HCV
cohort to identify genetic determinants of peginterferon-a (peg-
IFN)-related thrombocytopenia, neutropenia, and leukopenia.
Methods: 1604/3070 patients in the IDEAL study consented to
genetic testing. Trial inclusion criteria included a platelet (Pl)
count P80 � 109/L and an absolute neutrophil count (ANC)
P1500/mm3. Samples were genotyped using the Illumina
Human610-quad BeadChip. The primary analyses focused on
the genetic determinants of quantitative change in cell counts
(Pl, ANC, lymphocytes, monocytes, eosinophils, and basophils)
at week 4 in patients >80% adherent to therapy (n = 1294).
Results: 6 SNPs on chromosome 20 were positively associated
with Pl reduction (top SNP rs965469, p = 10�10). These tag SNPs
are in high linkage disequilibrium with 2 functional variants in
the ITPA gene, rs1127354 and rs7270101, that cause ITPase defi-
ciency and protect against ribavirin (RBV)-induced hemolytic
anemia (HA). rs1127354 and rs7270101 showed strong indepen-
dent associations with Pl reduction (p = 10�12, p = 10�7) and
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We believe this is an example of an indirect genetic association
due to a reactive thrombocytosis to RBV-induced anemia: Hb
decline was inversely correlated with Pl reduction (r = �0.28,
p = 10�17) and Hb change largely attenuated the association
between the ITPA variants and Pl reduction in regression models.
No common genetic variants were associated with pegIFN-
induced neutropenia or leucopenia.
Conclusions: Two ITPA variants were associated with thrombo-
cytopenia; this was largely explained by a thrombocytotic
response to RBV-induced HA attenuating IFN-related thrombocy-
topenia. No genetic determinants of pegIFN-induced neutropenia
were identified.
� 2011 Published by Elsevier B.V. on behalf of the European
Association for the Study of the Liver.
Introduction

Chronic infection with hepatitis C virus (HCV) affects up to 170
million individuals worldwide [1] and may lead to progressive
hepatic fibrosis and cirrhosis with risk of liver failure and hepato-
cellular carcinoma. HCV-related liver disease is currently the
most common indication for liver transplantation in North Amer-
ica. Antiviral therapy with pegylated-interferon-alfa (pegIFN)
plus ribavirin (RBV) may be curative, but is poorly tolerated by
many patients.

Bone marrow suppression is an important adverse effect of
pegIFN therapy, leading to neutropenia and thrombocytopenia,
with risk of secondary sepsis and bleeding, respectively [2,3].
Dose reduction may be required potentially compromising treat-
ment outcome, as rates of viral clearance are significantly
reduced in patients who cannot be maintained on at least 80%
12 vol. 56 j 313–319
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of their pegIFN and ribavirin dosage for the duration of treatment
[4]. Identifying patients at greatest risk for such complications
would be clinically useful for selecting patients for therapy, as
well as planning the frequency of monitoring and likely need
for growth factor support on treatment. Patients with advanced
hepatic fibrosis are at highest risk [5], but bone marrow suppres-
sion remains prevalent in patients with early stage fibrosis and
there is a need for more accurate biomarkers. A genetic bio-
marker for predicting risk of IFN-related bone marrow suppres-
sion would be particularly useful as a pre-treatment test.

A number of lines of evidence suggest that genetic variants
may be associated with IFN-induced cytopenia. Firstly, persis-
tently low neutrophil counts are more commonly observed in per-
sons of African American ancestry compared to Caucasians
(‘benign ethnic neutropenia’) [6], and this has recently been
linked to a regulatory variant in the Duffy Antigen Receptor for
Chemokines gene (DARC) [7]. The relevance of this variant to
drug-induced neutropenia is not known. Secondly, polymorphism
in the region of the interleukin 28B gene (IL28B), coding for IFN-
lambda(k)-3, has recently been identified to be strongly associ-
ated with viral clearance following pegIFN plus RBV therapy [8–
11]. Although the mechanism remains unclear, the polymorphism
is believed to regulate sensitivity to the antiviral effects of IFN.
Whether IL28B polymorphism is relevant to other IFN-mediated
effects has not been evaluated. Finally, functional variants in the
inosine triphosphatase gene (ITPA) causing inosine triphosphatase
(ITPase) deficiency, previously recognized as a benign red cell
enzymopathy, have recently been identified to protect against
RBV-induced hemolytic anemia [12,13]. RBV depletes red cell
GTP levels, leading in turn to ATP depletion, oxidative stress,
and hemolysis. The protective ITPA variants are associated with
red cell inosine triphosphate (ITP) accumulation, and it has been
shown that ITP is able to substitute for GTP in the biosynthesis
of ATP, thereby protecting against RBV-hemolysis [14].

In this study we have performed genome-wide analyses for
determinants of treatment-related bone marrow suppression in
a large, well characterized cohort of genotype 1 HCV patients
treated with pegIFN plus RBV in the IDEAL study. We have
focused primarily on treatment-induced neutropenia and
thrombocytopenia.
Materials and methods

Patient and control population

1604/3070 patients in the IDEAL study [15] consented to collection of DNA sam-
ples for genetic testing (ClinicalTrials.gov number, NCT00081770). Clinical and
laboratory data were collected as described previously [15,16]. All patients
included in this study were treatment-naïve and infected with genotype 1 HCV
[15]. Patients were treated with either pegIFN-alfa-2b (1.0 or 1.5 lg/kg/week)
or pegIFN-alfa-2a (180 lg/week) plus weight-based RBV (800–1400 mg for peg-
IFN-alfa-2b, and 1000–1200 mg for pegIFN-alfa-2a) [15]. For all patients, the pro-
tocol-specified treatment duration was 48 weeks, with an additional 24 weeks
follow-up. All patients had a full blood count performed at baseline, weeks 2, 4,
8, 12, 18, 24, 30, 36, 42, and 48 of therapy and at weeks 4, 12, and 24 post-treat-
ment. Inclusion criteria for the parent study required an absolute neutrophil
count (ANC) P1500/mm3 and platelet count (Pl) P80 � 109/L. All patients had
compensated liver disease. Protocol specified dose reduction of pegIFN was indi-
cated for ANC <750/mm3 or Pl <50 � 109/L, and discontinuation of both pegIFN
and RBV was required for ANC <500/mm3 or Pl <25 � 109/L. The use of growth
factor support for neutropenia or thrombocytopenia was not permitted. Detailed
records of drug compliance were kept for all patients on-treatment. Only patients
who were more than 80% adherent to pegIFN to week 4 of treatment were
included in the primary analyses (26 patients were excluded from analysis).
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Genotyping

A total of 1604 DNA samples were genotyped in the context of a previously
reported study of anti-HCV treatment response, using the Illumina Human610-
quad BeadChip (Illumina, San Diego, CA, USA) as previously described [8]. Quality
control steps are described in Supplementary Material I. Genotyping of the two
ITPA variants, rs1127354 and rs7270101, was performed using the ABI TaqMan
allelic discrimination kit (Applied Biosystems, Carlsbad, CA, USA) in a previous
study of RBV-induced hemolytic anemia [12,17].

Definition of clinical endpoints

The primary analyses focused on the genetic determinants of quantitative change
in (i) platelet, and (ii) leukocyte counts, at week 4 of treatment in adherent
patients. The following leukocyte sub-populations were separately analyzed:
absolute neutrophil count (ANC), lymphocytes, monocytes, basophils, and eosin-
ophils. Week 4 was chosen as a time point to minimize confounding by dose
modification of pegIFN and RBV, or confounding by the use of erythropoietin
supplementation.

Statistical analysis

The primary association tests involved single-marker genotype trend tests per-
formed in three independent groups (European-Americans, African-Americans,
Hispanics), using a linear regression model. Association tests were implemented
in the PLINK software [18], correcting for the relevant clinical covariates baseline
cell count (Pl, leukocyte cell lines), age, gender, body mass index, liver fibrosis
stage (METAVIR F0–2 vs. F3–4), pegIFN dose (binary variable: pegIFN-a2b
1.0 lg/kg/week vs. pegIFN-a2b 1.5 lg/kg/week and RBV dose (mg/kg). The asso-
ciation signals (p values) were then combined using Stouffer’s weighted Z-
method [19], adjusting for sample sizes, effect sizes and effect directions in each
population. This combined p value was then reported as the main result, along
with the p values in each ethnic group. A series of quality control steps resulted
in 565,759 polymorphisms being included in the association tests. Methods to
assess copy number variants were applied and the relation between copy number
variants and reduction of Pl/leukocyte cell lines was tested. To control for the pos-
sibility of spurious associations resulting from population stratification, we used a
modified EIGENSTRAT method [20] and corrected for population ancestry within
each group. We assessed significance with a Bonferroni correction
(Pcutoff = 4.4 � 10�8).
Results

Interferon-alfa-mediated thrombocytopenia

We performed a genome-wide association study (GWAS) of
genetic determinants of IFN-related thrombocytopenia at week
4 in compliant genotype 1 HCV patients from the IDEAL study.
Following quality control steps, 1284 individuals (984 Euro-
pean-Americans, 201 African-Americans, 99 Hispanics) were
included in the analysis (patient characteristics are summarized
in Table 1). Baseline Pl counts were not significantly different
between the 3 populations (p = 0.8977, Table 1). We tested each
of 565,759 single nucleotide polymorphisms (SNPs) passing qual-
ity control measures in a linear regression model incorporating
the relevant clinical covariates: age, gender, body mass index
(BMI), hepatic fibrosis stage, pegIFN dose (binary: pegIFN-alfa-
2b 1.0 lg/kg/week vs. pegIFN-alfa-2b 1.5 lg/kg/week or pegIFN-
alfa-2a 180 lg/week), RBV dose (mg/kg) and baseline Pl count.

6 SNPs on chromosome 20 were significantly associated with
Pl reduction at week 4 (top SNP rs965469, p = 9.02 � 10�10 in
European Americans, Fig. 1 and Table 2). These SNPs have previ-
ously been shown to co-segregate with 2 functional variants in
the ITPA gene on chromosome 20, rs1127354 and rs7270101
(Supplementary Material III), that are each independently
associated with reduced ITPase activity and protect against
2 vol. 56 j 313–319



Table 1. Patient characteristics.

European Americans African Americans Hispanics p value

No (platelet analysis) 984 201 99
Gender (n, %) 608 (62%) 121 (60%) 63 (64%) 0.8387
Age, yrs* 48 (44-52) 50 (47-54) 46 (39-51) <0.0001
BMI, kg/m2 27.4 (24.8-30.4) 29.3 (26.6-32.6) 28.6 (25.1-32.8) <0.0001

Minimal (F0-2)
Advanced (F3-4)

873 (89%)
111 (11%)

183 (91%)
18 (9%)

85 (86%)
14 (14%)

0.3886

RBV starting dose, mg/kg 13.2 (12.4-14.1) 12.8 (12.1-13.7) 13.6 (12.5-14.7) 0.0004
RBV starting dose (n, %) 

800 mg
1000 mg
1200 mg
1400 mg

86 (9%)
373 (38%)
463 (47%)
62 (6%)

4 (2%)
65 (32%)
118 (59%)
14 (7%)

6 (6%)
41 (41%)
44 (44%)
8 (8%)

0.0065

PegIFN starting dose (n, %)
PegIFN-α-2b 1.0
PegIFN-α-2b 1.5
PegIFN-α-2a

332 (34%)
321 (33%)
331 (34%)

71 (35%)
62 (31%)
68 (34%)

31 (31%)
37 (37%)
31 (31%)

0.8532

Baseline Pl count (x109/L) 225 (184-269) 228 (184-273) 230 (186-275) 0.8977
Baseline Pl count <100x109/L 17 (1.7%) 2 (1%) 1 (1%) 0.6724
Wk 4 Pl reduction (x109/L) 37 (11-72) 28 (0-61) 26 (2-65) 0.0052
Wk 4 Pl count (n, %)

<75x109/L 24 (2%) 4 (2%) 0 (0%) 0.2796
<50x109/L 2 (<1%) 0 (0%) 0 (0%) 0.7369
<25x109/L 0 (0%) 0 (0%) 0 (0%) 1.0000

No (ANC analysis) 991 203 98
Baseline ANC count (/mm3) 3.65 (2.96-4.68) 3.04 (2.14-4.04) 3.36 (2.77-4.24) <0.0001
Week 4 ANC reduction (/mm3) 2.0 (1.34-2.68) 1.22 (0.61-1.97) 1.72 (1.0-2.38) <0.0001

<1.0/mm3 (n, %) 124 (13%) 26 (13%) 12 (12%) 0.9892
<0.75/mm3 (n, %) 30 (3%) 8 (4%) 1 (1%) 0.3816
<0.5/mm3 (n, %) 2 (<1%) 2 (1%) 0 (0%) 0.1588

METAVIR fibrosis stage (n, %)

⁄ Continuous data are presented as median (25th – 75th centile).
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RBV-induced hemolytic anemia (HA) [12]. rs1127354 is a mis-
sense variant in exon 2 of the ITPA gene (P32T), and rs7270101
is splicing-altering variant located in the second intron (IVS2).
Neither variant was included on the genome-wide array but they
had been genotyped in the context of a previous GWAS [12].
These 2 functional variants showed strong independent associa-
tions with week 4 Pl reduction (rs1127354, overall p = 10�12

and rs7270101 p = 10�7, respectively, Table 2). The level of ITPase
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Fig. 1. The Manhattan plot shows a genome-wide view of the p values
[2log10(P)] for association between SNPs tested and week 4 platelet reduction
in patients of European American ancestry. The SNPs that show genome-wide
significant association with quantitative reduction in Pl levels are marked in red.
[This figure appears in color on the web.]
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activity may be predicted according to an individual’s ITPA
genotype, based on previous functional studies (Supplementary
Material III), and a combined low activity allele made up of either
functional variant may be used to define an ITPase deficiency var-
iable [21–25]. This ITPase deficiency variable was more strongly
associated with Pl reduction (p = 10�20). Furthermore, when the
two functional ITPA variants were incorporated into a regression
model, they were found to entirely explain the genome-wide sig-
nificant association between rs965469 and Pl reduction (Euro-
pean American patients: p value fell from p = 10�10 to
p = 0.9204 after adjustment for the 2 functional variants, Table 2).
The functional ITPA variants remained strongly associated with Pl
reduction in this model.

Whereas the ITPA variants associated with ITPase deficiency
have previously been shown to protect against RBV-induced
hemolytic anemia [12], in this study they were associated with
more pronounced reduction of Pl counts. The decline in platelet
counts that occurs during antiviral therapy is known to be less
pronounced when IFN is combined with RBV than in the setting
of IFN monotherapy [26,27]. This has been attributed to a relative
thrombocytosis occurring in response to RBV-induced hemolysis.
In the current cohort, a negative correlation was noted between
2 vol. 56 j 313–319 315
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Fig. 3. Median platelet count over time (� 109/L) according to predicted
ITPase deficiency in the overall population. All patients included in the analysis
were >80% adherent to week 4 (n = 1284); for time points beyond week 4,
patients were included if they remained on treatment, and a platelet count
was available. WT = wildtype (normal ITPase activity); + = mild ITPase deficiency;
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Table 2. (A) Six variants in the 20p13 were associated with Pl reduction at the genome-wide significant level. These tag SNPs have previously been shown to be in
linkage disequilibrium with 2 functional variants in the ITPA gene, which cause ITPase deficiency. (B) The two functional ITPA variants rs1127354 and rs7270101
entirely explained the GWAS association signals detected in the region. The adjusted p value (�) was obtained for each SNP in a linear regression model in which the
two ITPA functional variants are incorporated.

Wk 4 Pl reduction European Americans African Americans Hispanics Combined p value

Top discovery SNPs (Illumina 610 chip)
rs965469 9.02x10-10 0.1818 0.0792 1.29x10-9

rs3310 1.30x10-9 0.4035 0.0816 3.91x10-9

rs6051702 1.30x10-9 0.4621 0.0812 4.41x10-9

rs6051762 2.76x10-9 0.5050 0.1118 1.28x10-8

rs6051841 2.16x10-8 0.0858 0.1424 2.09x10-8

rs6051693 2.21x10-8 0.3207 0.0953 4.96x10-8

ITPA variants
rs1127354 (P32T) 1.70x10-10 0.0005 0.0600 1.38x10-12

rs7270101 (IVS2) 9.95x10-6 0.0038 0.0231 3.39x10-7

2.05x10-16 0.00002 0.0021 8.42x10-20

A

B
  GWAS hit Population GWAS p value Adjusted p value*
  rs965469 European Americans 9.02x10-10 0.9204
  rs3310 European Americans 1.30x10-9 0.7914
  rs6051702 European Americans 1.30x10-9 0.7914
  rs6051762 European Americans 2.76x10-9 0.8065
  rs6051841 European Americans 2.16x10-8 0.9204
  rs6051693 European Americans 2.21x10-8 0.8876

ITPase deficiency variable

Research Article
week 4 hemoglobin (Hb) reduction and Pl reduction (European
Americans, r = �0.28, p value = 10�17, Fig. 2). Inclusion of week
4 Hb reduction in the same model with the ITPase deficiency var-
iable largely attenuated the strength of the association with Pl
reduction (European Americans, from p = 10�16 to p = 10�6,
Supplementary Table 5).

In order to evaluate the clinical relevance of this observation
we considered the relationship between the ITPase deficiency
variable and reductions of Pl count over the course of therapy.
The ITPase deficiency variable was significantly associated with
more profound reductions in Pl count at week 4, 12, and 24
316 Journal of Hepatology 201
(Fig. 3). Beyond week 24, there were non-significant trends in
the same direction. Despite this, the number of patients in whom
Pl levels fell to below 50 � 109/L, the level at which dose reduc-
tion is indicated, was low (<1.5% at any time point) and there
were no significant differences in the frequency of Pl <50 � 109/
L according to predicted ITPase deficiency (data not shown). This
was true both for the overall cohort, as well as an analysis limited
just to those patients treated with pegIFN-alfa-2a 180 lg/week or
pegIFN-alfa-2b 1.5 lg/kg/week.
2 vol. 56 j 313–319
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Finally, genetic variation in the region of the IL28B gene on

chromosome 19 is strongly associated with the pegIFN and RBV
response rate [8,10,11,28]. No relationship between IL28B geno-
type and week 4 thrombocytopenia was noted in the 3 ethnic
populations.

Interferon-alfa-mediated neutropenia

We performed a second genome-wide analysis focused on the
genetic determinants of week 4 reductions in ANC as a continu-
ous variable. The final analysis included 1292 patients (European
Americans = 991, African Americans = 203, Hispanics = 98). At
baseline, median ANC were lower in the African American popu-
lation (European Americans = 3.65 (2.96–4.68), African Ameri-
cans = 3.04 (2.14–4.04), Hispanics = 3.36 (2.77–4.24), p = 10�12).
Median ANC reduction at week 4 was then less prominent in
the AA population (European Americans = 2.0 (1.34–2.68), Afri-
can Americans = 1.22 (0.61–1.97), Hispanics = 1.72 (1.0–2.38),
p = 10�18). We tested for genetic determinants of week 4 ANC
reduction using linear regression models including the covariates
age, gender, BMI, hepatic fibrosis stage (F0–2 vs. F3–4), pegIFN
dose (binary: alfa-2b 1.0 lg/kg/week vs. 1.5 lg/kg/week or alfa-
2a 180 lg/week) and baseline neutrophil level. No common
genetic variants were associated with treatment-related reduc-
tion in ANC at week 4 at the level of genome-wide significance.
In particular, IL28B polymorphism was not associated with IFN-
related neutropenia.

A genome-wide analysis of baseline ANC was also negative. In
the AA population, we noted associations between baseline ANC
and DARC gene polymorphism but these did not meet genome-
wide significance criteria (top SNp rs3027041, p = 10�6, Supple-
mentary Material VI).

Genome-wide analysis for variants associated with other leucopenia

We were also interested in identifying common genetic variants
associated with baseline and pegIFN-related week 4 reductions in
other white cell counts. Lymphocyte, monocyte, basophil, and
eosinophil count were all considered separately. No significant
associations were observed in any of these analyses (data not
shown).
Discussion

To our knowledge this is the first study to consider genetic deter-
minants of treatment-related cytopenia using a genome-wide
approach in chronic hepatitis C patients. We have identified an
association between ITPA variants causing ITPase deficiency and
treatment related thrombocytopenia. We did not detect any com-
mon genetic variants that influenced IFN-related neutropenia or
leukopenia, an important negative finding. Of note, IL28B poly-
morphisms, recently identified to be strongly associated with
pegIFN plus RBV treatment outcome, were not associated with
IFN-related cytopenia.

Two functional variants in the ITPA gene that cause ITPase
deficiency, red cell ITp accumulation and protection against
RBV-induced HA [12,14] were associated with more profound
pegIFN-induced thrombocytopenia. This association was largely
explained by a relative, reactive thrombocytosis in response to
RBV-induced HA in those patients with wildtype ITPase activity.
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Thus the RBV-induced anemia attenuated the pegIFN effect to
reduce Pl counts. Thrombocytosis is well-described as a conse-
quence of hemolytic anemia [29], which is in keeping with
the original observation in the late 1990s that on-treatment
reductions of Pl counts were less marked following the addition
of RBV to standard-of-care HCV therapy [26,27]. This therefore
represents an indirect genetic association, where wildtype
ITPase activity is associated with more profound RBV-related
anemia, which in turn stimulates Pl production, manifesting as
less pronounced pegIFN-induced thrombocytopenia. The ITPA
variants, which protect against RBV-hemolysis, are therefore
associated with greater IFN-induced thrombocytopenia. The bio-
logical mechanism underlying this relationship between Hb lev-
els and Pl counts is not clearly understood, but may involve
stimulation of the bipotent erythroid/megakaryocyte progenitor
cell by erythropoietin [30,31]. Although adjustment for Hb
reduction in the linear regression model largely attenuated the
association between the ITPA variants and Pl counts, a residual
association with the combined ‘low activity’ allele persisted
(European Americans, p = 10�16 reduced to p = 10�6). Although
this association was not genome-wide significant, we cannot
exclude the possibility of two separate phenomena, with a
weaker secondary effect due to a biological relationship
between ITPA variants, exogenous IFN and Pl levels. This will
require further mechanistic studies.

Despite the strong statistical association between ITPA vari-
ants, Hb reduction and Pl counts, the clinical relevance of this
finding remains uncertain. Relatively few patients decreased
their Pl counts to levels requiring dose reduction. It is likely that
ITPA genotyping may find a role in predicting RBV-induced ane-
mia in high risk individuals [12,13], but on the basis of the cur-
rent data, there does not appear to be great clinical utility for
predicting severe thrombocytopenia. We note that the current
dataset did not include significant numbers of patients with
advanced stage fibrosis, and it will be important to assess
whether ITPA variants may predict treatment-limiting Pl reduc-
tions in this population.

No common genetic variants were associated with pegIFN-
induced neutropenia or leucopenia. It was interesting that the
hematological complications of IFN therapy were not associated
with IL28B variants. Although a negative result, this has impor-
tant implications for our understanding of the biology of the
IL28B–pegIFN interaction. The data suggest that the biology of
the IL28B–pegIFN treatment response association in HCV is not
directly relevant to pegIFN-induced bone marrow suppression.
IL28B polymorphism is strongly associated with on-treatment
viral kinetics and pegIFN plus RBV treatment outcome [9].
Although the mechanism by which IL28B variation effects pegIFN
sensitivity remains unclear, there is evidence that levels of intra-
hepatic ISG expression are important [32,33] and the effect is
believed to primarily reflect sensitivity to exogenous IFN. The
current data suggest that this is a liver-specific phenomenon.
IFN-k is induced by similar stimuli to type 1 IFN, and shares a
common downstream signaling pathway, however the expres-
sion of the IFN-k-receptor (IFNLR) is more restricted than that
of the ubiquitous IFN-a-receptor (IFNABR). Although the IFNLR
has been shown to be expressed by hepatocytes, IFNLR gene
expression is not expressed in hematopoietic cells, with the
exception of B lymphocytes [34,35]. Consistent with this, mini-
mal bone marrow suppression was observed in a recent early
phase clinical trial using IFN-k-1 for the treatment of HCV,
2 vol. 56 j 313–319 317
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despite good antiviral potency [36]. The IL28B polymorphism
may therefore act to regulate IFN-a signaling, which is dependent
on co-expression of the IFNLR and the IFNABR within the same
tissue.

In conclusion, two functional variants in the ITPA gene that are
strongly associated with protection from RBV-induced HA are
also associated with greater thrombocytopenia in chronic hepati-
tis C patients. This association is largely explained by a relative
reactive thrombocytosis in response to RBV-induced HA, which
attenuates IFN-related thrombocytopenia.
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