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Sphingosine kinase-2 inhibition improves mitochondrial
function and survival after hepatic ischemia–reperfusion
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Background & Aims: The mitochondrial permeability transition Introduction

(MPT) and inflammation play important roles in liver injury
caused by ischemia–reperfusion (IR). This study investigated
the roles of sphingosine kinase-2 (SK2) in mitochondrial dysfunc-
tion and inflammation after hepatic IR.
Methods: Mice were gavaged with vehicle or ABC294640 (50 mg/
kg), a selective inhibitor of SK2, 1 h before surgery and subjected
to 1 h-warm ischemia to �70% of the liver followed by
reperfusion.
Results: Following IR, hepatic SK2 mRNA and sphingosine-1-
phosphate (S1P) levels increased �25- and 3-fold, respectively.
SK2 inhibition blunted S1P production and liver injury by 54–
91%, and increased mouse survival from 28% to 100%. At 2 h after
reperfusion, mitochondrial depolarization was observed in 74% of
viable hepatocytes, and mitochondrial voids excluding calcein
disappeared, indicating MPT onset in vivo. SK2 inhibition
decreased mitochondrial depolarization and prevented MPT
onset. Inducible nitric oxide synthase, phosphorylated NFjB-
p65, TNFa mRNA, and neutrophil infiltration, all increased mark-
edly after hepatic IR, and these increases were blunted by SK2
inhibition. In cultured hepatocytes, anoxia/re-oxygenation
resulted in increases of SK2 mRNA, S1P levels, and cell death.
SK2 siRNA and ABC294640 each substantially decreased S1P pro-
duction and cell death in cultured hepatocytes.
Conclusions: SK2 plays an important role in mitochondrial dys-
function, inflammation responses, hepatocyte death, and survival
after hepatic IR and represents a new target for the treatment of
IR injury.
� 2011 European Association for the Study of the Liver. Published
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A variety of proliferative factors and cytokines rapidly increase the
activity of sphingosine kinases (SK1 and SK2) that phosphorylate
sphingosine [1–4]. Spingosine-1-phosphate (S1P), the product of
this reaction, regulates several cell processes including cell prolif-
eration and death [1–4]. Additionally, activation of SK results in
pro-inflammatory processes, including activation of inflammatory
cells and increases of nuclear factor-kappa B (NF-jB), toxic cyto-
kines, cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS),
adhesion molecules, and reactive oxygen species [3,5–8].

Altered sphingolipid metabolism occurs in hypoxic and ische-
mic injury. For example, plasma S1P levels increase during myo-
cardial infarction [9]. Renal and pulmonary injuries are lower in
S1P3�/�mice compared to wild-type following ischemia–reperfu-
sion (IR), suggesting that S1P increases IR injury by binding to
S1P3 receptors [10,11]. Conversely, adenoviral gene transfer of
SK1 and treatment with S1P have been reported to protect the
heart against IR injury [12,13]. Therefore, the roles of SKs in IR
injury may be organ specific, perhaps relating to the subtypes
of S1P receptors. The role of SK2 activation in hepatic IR injury
has not been previously studied.

A variety of pathophysiological processes, such as free radical
and toxic cytokine formation, onset of the mitochondrial perme-
ability transition (MPT), and inflammation contribute to IR injury
to the liver [14–17]. Because S1P formation plays an important
role in toxic cytokine production and inflammation, we tested
the effects of a specific SK2 inhibitor, ABC294640, on mitochon-
drial function and inflammatory processes after liver IR in vivo.
Materials and methods

Animals

Male C57BL/6 (8–9 weeks) mice were gavaged with 50 mg/kg of 3-(4-chloro-
phenyl)adamantine-1-carboxylic acid (pyridine-4-ylmethyl)amide (ABC294640,
Apogee Biotechnology Corporation, Hummelstown, PA; see structure in
Supplementary data), a specific SK2 inhibitor [18], or an equivalent volume of
vehicle (0.375% Tween 80 in phosphate buffered saline, pH 7.1) 1 h before
surgery. Under ether anesthesia, ischemia to 70% of the total liver was induced
for 1 h as previously described [19]. After opening the vascular clamp, the
non-ischemic liver lobes were removed, and mice were observed 7 days for
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Fig. 1. ABC294640 and SK2 siRNA prevent anoxia/reoxygenation-induced cell
death of cultured hepatocytes. (A) Cultured hepatocytes were treated with
ABC294640 and SK2 siRNA as indicated in ‘‘Materials and methods.’’ At 120 min
after reoxygenation, S1P in hepatocytes was quantified by ELISA. (B) SK2 mRNA
was measured by real-time PCR. (C) Cell death was detected by propidium iodide
fluorescence at the indicated times. A.U., arbitrary unit; scRNA, scrambled RNA;
siRNA, small interfering RNA. a, p <0.05 vs. normoxia; b, p <0.05 vs. anoxia/
reoxygenation (n = 4 per group).
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survival. Sham operation included equivalent anesthesia and laparotomy without
ischemia. All animals were given humane care using protocols approved by the
Institutional Animal Care and Use Committee of the Medical University of South
Carolina.

Serum transaminase, bilirubin, and histology

Liver and blood samples were collected at 2 and 6 h after surgery. Serum alanine
aminotransferase (ALT) and bilirubin were determined using analytical kits from
Pointe Scientific (Lincoln Park, MI). Necrotic areas were quantified by image anal-
ysis of 10 randomly selected fields per liver in slides stained with hematoxylin-
eosin in a blinded manner using IPlab 3.7v software (BD Biosciences, Rockville,
MD) [19]. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP
nick-end labeling (TUNEL) [20]. TUNEL-positive and negative cells were counted
in a blinded manner in 10 randomly selected fields using a 40� objective.

Detection of MPT onset in isolated mitochondria

Mitochondria were isolated from the liver of male Sprague Dawley rats
(225–250 g) in 250 mM sucrose, 2 mM K+-HEPES buffer, pH 7.4, as previously
described [21]. Mitochondrial swelling was assessed from the decrease of absor-
bance at 540 nm using a NovoStar plate reader (BMG Labtech GmbH, Offenburg,
Germany) [22]. Mitochondrial suspensions were treated with 0–500 lM sphingo-
sine-1-phosphate, 0–100 lM sphingosine in the presence or absence of 2 lM CsA.
In some experiments, after mitochondrial suspensions were treated with various
compounds, aliquots of 50 lM CaCl2 were added every 5 min to induce the MPT.

Hepatocyte culture, anoxia/reoxygenation, and siRNA treatment

Hepatocytes were isolated from male C57BL/6 mice by collagenase digestion and
purified as described [23]. Viability was >90% as indicated by trypan blue exclu-
sion. Hepatocytes were cultured in Waymouth’s MB-752/1 medium containing
27 mM NaHCO3, 2 mM L-glutathione, 10% fetal calf serum, 100 nM insulin, and
100 nM dexamethasone for 4 h at 37 �C under normoxic conditions (5% CO2). To
knockdown SK2, hepatocytes were transfected with specific SK2 siRNA (10 nM)
or control, nonsilencing RNA (Applied Biosystems Inc., Foster City, CA) in the pres-
ence of Lipofectamine 2000 transfection reagent (6 ll/ml; Invitrogen Life Technol-
ogies, San Diego, CA). SK2 siRNA duplex targeted nucleotides 208–227 of the SK2
mRNA sequence (NM 203280) composed of sense, 50-AAGACUGGGUGACAAUAG
ATT-30 and antisense, 50-UCUAUUGUCACCCAGUCUUGG-30 . The cells were incu-
bated with oligonucleotide duplexes in serum free Waymouth’s MB-752/1 med-
ium for 18 h at 37 �C. Some cells without siRNA transfection were treated with
ABC294640 (30 lM) just before incubation in KRH buffer at pH 6.2 in an anaerobic
chamber (Coy Laboratory Products, Ann Arbor, MI) for 4 h followed by re-oxygen-
ation in normoxic KRH buffer at pH 7.4 for 2 h to simulate IR [23]. Cell viability was
assessed by propidium iodide (PI) fluorescence [23]. Some hepatocytes were
harvested after simulated IR to quantify S1P and SK2 mRNA levels.

Intravital multiphoton microscopy

At 2 h after IR or sham operation, hepatic mitochondrial polarization and cell
death were monitored by intravital multiphoton microscopy using Rh123 (Sigma,
St. Louis, MO) and PI, respectively [19]. MPT onset was assessed by visualization
of calcein entry into mitochondria by intravital multiphoton microscopy [19].

Assay of sphingosine-1-phosphate

Liver tissue was homogenized or hepatocytes were sonicated in ice-cold 50 mM
Tris buffer (pH 7.4) containing 0.25 M sucrose, 25 mM KCl, 0.5 mM EDTA, and
1% phosphatase inhibitor cocktail (Sigma–Aldrich, St. Louis, MO). Homogenates/
lysates were centrifuged at 2500g for 10 min, and S1P in supernatants was deter-
mined using an enzyme-linked immunosorbent assay kit (Echelon Inc., Salt Lake
City, UT). Protein was quantified using a Protein Assay Kit from Bio-Rad Labora-
tory (Hercules, CA).

Western blotting

Livers were harvested at 2 or 6 h after IR or sham operation, and Western blotting
was performed [19] using specific antibodies against cleaved caspase-3 (Cell Sig-
naling Technology, Danvers, MA, 1:1000), NF-jB p65, phosphorylated NF-jB p65
(Ser 536) (Santa Cruz Biotechnology, Santa Cruz, CA;1:500) or actin (Cell Signaling
Technology; 1:3000), as described [19].
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Assay of TNFa and SK2 mRNA by quantitative Real-Time PCR

Livers were harvested at 2 h and 6 h after IR. TNFa mRNA was detected by
quantitative real-time PCR, as described [20]. SK2 mRNA in the liver and hepato-
cytes exposed to IR was determined using a forward primer of 50-TTCCACCCGA
CATCCCTTTCAGTT-30 and a reverse primer of 50-ACAAAGCAGCTACTGGCTCT
GACT-30 . The abundance of mRNAs was normalized against hypoxanthine
phospho-ribosyl-transferase (HPRT) using the DDCt method.

Statistical analysis

Groups were compared using ANOVA plus Student–Newman–Keul’s post hoc test
or Kaplan–Meier test using p <0.05 as the criterion of significance. Values are
mean ± SEM. Group numbers are given in the figure legends.
Results

ABC294640 and SK2 knockdown prevent anoxia/reoxygenation-
induced death of cultured hepatocytes

To investigate if SK2 is involved in IR injury, we assessed the
effects of ABC294640, a specific SK2 inhibitor that does not affect
SK1 and other kinases [18], on S1P production and cell death in
cultured hepatocytes. After anoxia/reoxygenation, S1P levels
increased substantially and cell death increased from the basal
level of �10–73% at 120 min (Fig. 1A and C). ABC294640 mark-
edly decreased S1P formation and cell death (Fig. 1A and C). Heat
treatment of cultured hepatocytes at 100 �C for 10 min did not
2 vol. 56 j 137–145
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increase S1P, indicating that this increase in S1P was not merely a
result of cell death.

At 120 min after anoxia/reoxygenation, levels of SK2 mRNA
were increased approximately 5-fold in hepatocytes (Fig. 1B).
The increases in SK2 mRNA and S1P formation were not affected
by treatment of the hepatocytes with scrambled RNA, but both
responses were suppressed by SK2 siRNA (Fig. 1B). SK2 siRNA
decreased cell death to 30% (Fig. 1C). Together, the pharmacologic
and genetic data support the hypothesis that excessive SK2 and
the S1P it produces play an important role in promoting hepato-
cyte death following anoxia/reoxygenation.

Warm IR increases S1P production in the liver

Because IR increased SK2 expression in cultured cells, we investi-
gated the effects of ABC 294640 on the production of S1P after
hepatic IR in mice. As indicated in Fig. 2A, S1P increased from
�40 pmol/mg protein before IR to 118 and 124 pmol/mg protein
at 2 h and 6 h after reperfusion, respectively. ABC294640 treat-
ment largely prevented the increase of S1P after IR in vivo. We also
investigated if IR affects hepatic SK2 mRNA expression in vivo. At 2
and 6 h after hepatic IR, SK2 mRNA levels were increased 20 to 25-
fold (Fig. 2B), suggesting increased SK2 expression, consistent
with the above results with isolated hepatocytes and reports by
others showing that SK expression is induced in hypoxic cells in
culture [24]. Although an enzyme inhibitor does not necessarily
inhibit the expression of its target, ABC294640 partially blunted
the upregulation of SK2 mRNA after hepatic warm IR (Fig. 2B).
Thus, IR also activates SK2 in vivo leading to increased S1P produc-
tion that can be blocked by ABC294640.
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Fig. 2. ABC294640 prevents upregulation of SK2 and S1P production after
hepatic IR. Livers were harvested at 2 and 6 h after reperfusion. (A) Sphingosine-
1-phosphate (S1P) in liver tissues was quantified by ELISA. (B) SK2 mRNA was
measured by real time-PCR. IR, ischemia/reperfusion; ABC, ABC294640; A.U.,
arbitrary units. ⁄⁄p <0.01 vs. the ABC-treated group at the corresponding time
point (n = 4 per group).
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ABC294640 prevents hepatic warm IR-induced cell death

Because SK2 and S1P increased after hepatic IR, we assessed the
effects of ABC294640 on several indicators of liver IR injury. After
sham operation, no hepatic histopathological changes were
observed (Fig. 3A). At 2 h after IR, necrosis was barely observable
(Fig. 3D), but at 6 h after IR, extensive panlobular necrosis (68% of
the liver tissue) was present (Fig. 3B and D). Pre-treatment of
mice with ABC294640 attenuated IR-induced liver necrosis to
only �7% (Fig. 3C and D).

As another marker of liver injury, apoptosis was evaluated by
TUNEL (Fig. 4A). TUNEL-positive hepatocytes increased from a
basal level of 0.13% to 0.6% and 2% at 2 and 6 h after IR, respec-
tively (Fig. 4A), and this increase in apoptosis was attenuated
by ABC294640 (Fig. 4A). Cleaved caspase-3 was barely detectable
after sham-operation but increased �38-fold at 6 h after reperfu-
sion, confirming the occurrence of apoptosis (Fig. 4B and C).
ABC294640-treatment blunted the activation of caspase-3 by
�60% (Fig. 4B and C). Together, these data demonstrate that
warm IR causes massive cell death in the liver, with necrosis
being the predominant form of cell death over apoptosis. Pre-
treatment with ABC294640 effectively prevented hepatic cell
death, suggesting that SK2 and S1P play important roles in IR-
induced liver injury.

ABC294640 improves liver function and survival after hepatic warm
IR

Prior to ischemia, serum ALT levels were 22 U/L, and increased to
�3200 U/L at 2 h and �19,000 U/L at 6 h after reperfusion, indi-
cating severe liver injury (Fig. 5A). Treatment of mice with
ABC294640 suppressed the peak ALT levels to �1600 U/L
(Fig. 5A).

Serum bilirubin was not significantly altered at 2 h after
reperfusion, but increased 3-fold at 6 h after reperfusion, con-
firming poor liver function (Fig. 5B). Consistent with the ALT data,
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Fig. 3. ABC294640 attenuates necrosis after hepatic IR. Livers were harvested
at 2 and 6 h after reperfusion (IR), and liver slices were stained with H&E. (A–C)
Representative images at 6 h are shown. The bar is 100 lm. (D) Necrotic areas
were quantified by image analysis of 10 randomly selected fields. ⁄⁄p <0.01 vs.
the ABC-treated group at the corresponding time point (n = 4 per group).
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ABC294640 treatment almost completely prevented hyperbiliru-
binemia after IR (Fig. 5B).

Most importantly, the protection of liver function by
ABC294640 treatment resulted in complete protection against
death from IR injury. Specifically, all mice survived after sham
operation (data not shown); however, only 28% of the vehicle-
treated mice survived after IR, with death occurring mainly in
the first 36 h (Fig. 5C). In marked contrast, the survival of
ABC294640 pretreated mice was 100% after IR (Fig. 5C),
indicating that ABC294640 prevented IR-induced acute liver
failure.

ABC294640 prevents mitochondrial depolarization after hepatic IR
in vivo

The MPT plays an important role in hepatic IR injury [19]. To deter-
mine if ABC294640 treatment prevents loss of mitochondrial func-
tion after IR, we used intravital multiphoton microscopy to
visualize polarized hepatic mitochondria in living mice. In sham-
operated mice, green Rh123 fluorescence was punctate in virtually
all hepatocytes, indicating proper mitochondrial polarization
(Fig. 6A). Red PI staining in nuclei, indicative of cell death, was
negligible. In contrast, at 2 h after IR, mitochondria in many
hepatocytes (74%) did not take up Rh123, indicating the occur-
rence of mitochondrial depolarization (Fig. 6B and G). Despite
the absence of mitochondrial polarization, the majority of hepato-
cytes maintained plasma membrane integrity at 2 h after IR, as
140 Journal of Hepatology 201
shown by low (only �1% of cells) nuclear PI staining, indicating
that mitochondrial depolarization had occurred in most hepato-
cytes, which preceded cell death. Importantly, mitochondrial
depolarization occurred in only 17% of hepatocytes in
ABC294640-treated mice following IR (Fig. 6C and G). This is likely
to be the basis for the protection of hepatic function by ABC294640.

To investigate if mitochondrial depolarization is caused by
MPT onset, intravital multiphoton imaging of calcein was per-
formed in livers following IR. Calcein, a fluorophore that loads
into the cytosol, gains entrance to the mitochondrial matrix space
only when PT pores open. Calcein outlined mitochondria as dark
voids in hepatocytes of livers of sham-operated mice (Fig. 6D),
and these dark voids disappeared after 2 h of reperfusion
(Fig. 6E). Therefore, disappearance of these voids directly showed
that MPT onset had occurred in vivo. Treatment of mice with
ABC294640 prevented the disappearance of these voids
(Fig. 6F), indicating protection against the MPT.

Effects of sphingosine-1-phosphate and sphingosine on the
mitochondrial permeability transition in isolated liver mitochondria

The potential for S1P and sphingosine to directly induce the MPT
was investigated in isolated rat liver mitochondria. Addition of
1–100 lM S1P (Fig. 7A) or sphingosine (data not shown) to mito-
2 vol. 56 j 137–145
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chondria did not induce MPT-dependent swelling. High concentra-
tion of S1P (500 lM) caused mitochondrial swelling as shown by a
large decrease in absorbance at 540 nm (Fig. 7A) that was blocked
by CsA, an MPT inhibitor (Fig. 7C). Sphingosine exceeding 100 lM
was not soluble in the reaction buffer. S1P and sphingosine had no
effect on calcium-induced mitochondrial swelling (Fig. 7B).

ABC294640 prevents hepatic IR-induced upregulation of iNOS

Since S1P causes swelling of isolated mitochondrial only at
high, unphysiological concentrations, we investigated whether
inhibition of SK2 blocked the MPT in vivo by indirect effects.
Because IR upregulates iNOS and reactive nitrogen species pro-
mote the onset of the MPT, we assessed the effects of
ABC294640 on iNOS expression following IR. As indicated in
Fig. 8, iNOS was barely detectable before IR, but increased
markedly at 2 h and 6 h after reperfusion. Treatment of mice
Journal of Hepatology 201
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with ABC294640 blunted this elevation of iNOS expression by
�50% to 60%.

ABC294640 prevents hepatic warm IR-induced inflammatory
processes

Because inflammation plays important roles in IR injury [8], we
examined the effects of ABC294640 on inflammatory processes
after hepatic IR. NF-jB activation prevents or promotes cell death
in various settings [25], and is involved in inflammatory cytokine
2 vol. 56 j 137–145 141
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formation and the upregulation of intracellular adhesion mole-
cules [25]. At 2 h after IR, the phosphorylated p65 subunit of
NF-jB increased �40-fold, whereas total p65 subunit remained
unchanged, indicating NF-jB activation (Fig. 9A and B).
ABC294640 treatment blunted this response by half.

Toxic cytokine, e.g. TNFa, formation stimulates inflammatory
processes and promotes cell death. TNFa mRNA increased �10-
fold at 2 h after reperfusion and remained elevated at 6 h
(Fig. 9C). ABC294640-treatment inhibited this increase of TNFa
mRNA by �50% to 60%.

At 6 h after IR, MPO-positive cells in the liver increased by 9-
fold, indicating infiltration of polymorphonuclear neutrophils
(PMNs) (Fig. 9D). Infiltration of PMNs was not apparent after
2 h. ABC294640 blunted PMN infiltration after 6 h by �70%
(Fig. 9D). Thus, inhibition of SK2 reduced a number of hepatic
inflammatory processes caused by IR.
Discussion

SK2 plays an important role in hepatic IR injury

Products of sphingolipid metabolism are important second mes-
sengers that regulate a variety of cell processes including cell
death, proliferation, motility, differentiation, oncogenesis, and
inflammation [3,4,26]. S1P is produced by two mammalian sub-
types of SK (SK1 and SK2) in vivo. A variety of proliferative factors
and cytokines rapidly elevate cellular SK activity [2–4], and the
resulting S1P acts as a second messenger [3,4,26]. Extracellular
S1P causes diverse biological and pathophysiological effects by
acting largely through the five members of the S1P receptor
family (S1P1–5) which are coupled to distinct G-protein-mediated
signaling pathways in different tissues [26,27]. The actions of
extracellular S1P likely depend upon the receptor subtype-spe-
cific repertoire of G protein coupling, as well as the tissue- and
cell type-specific expression patterns of the S1P receptors them-
selves [26,27].

The role of SKs in IR injury is controversial. SK expression has
been shown to increase in cultured cells exposed to hypoxia
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[24,28,29]. Conflictingly, plasma S1P levels increase during myo-
cardial infarction [9] and N,N,N-trimethylsphingosine, a SK inhib-
itor, protects against myocardial IR injury [30], while S1P and
adenoviral gene transfer of SK1 protect myocardium against IR
injury [12,13]. S1P3 deficiency attenuates renal and pulmonary
IR injury [10,11], and FTY720, which rapidly internalizes S1P
receptors thereby attenuating S1P signaling, decreases liver
injury after liver transplantation [31]. Therefore, the roles of
SKs may be organ specific, perhaps relating to different subtypes
of SKs or S1P receptors; however, the preponderance of the data
suggests that reduction of S1P production and/or signaling is pro-
tective against IR injury.

In this study, we investigated the roles of SK2 in hepatic IR
injury using a novel, highly specific SK2 inhibitor, ABC294640
[18]. In spite of the high interest in sphingolipid-related signal-
ing, few inhibitors of SK have emerged. Dimethylsphingosine,
D,L-threo-dihydrosphingosine and N,N,N-trimethylsphingosine
are often used to inhibit SK in cultured cells; however, they also
affect a variety of other enzymes [32,33]. The selectivity of sev-
eral natural inhibitors of SK that have been isolated remains
unknown [34]. In recent years, a series of structurally novel
inhibitors of SK have been identified [35,36]. These inhibitors
are selective for SK and do not interfere with the ATP binding site
on the enzyme. Consequently, their biological effects are proba-
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bly not mediated by off-target inhibition of other lipid and pro-
tein kinases [35,36]. These novel SK inhibitors have activity in
cells and inhibit ulcerative colitis, arthritis, and tumor growth
in animal models in the absence of systemic toxicity [5,8,36].

In this study, we tested the affects of ABC294640 on hepatic
warm IR injury. Our studies showed that SK2 is up-regulated
and the production of S1P is increased markedly after IR.
ABC294640 inhibited this overproduction of S1P in hepatocytes
in culture and the liver in vivo (Figs. 1 and 2). Interestingly,
ABC294640 also partially suppressed the up-regulation of SK2
mRNA following IR (Figs. 1 and 2). Elevation of SK2 mRNA in
hepatic tissue was suppressed by ABC294640 within 2 h of reper-
fusion, which was before onset of either necrotic or apoptotic cell
death. SK2 mRNA and S1P levels did not increase more after 6 h in
either the presence or absence of ABC294640, when both apopto-
tic and necrotic cell death became strongly evident. These results
suggest that the changes in SK2 mRNA were unlikely secondary to
cell death/injury. Indeed, it would be paradoxical for SK2 mRNA
to actually increase as cells died, since cell death would inhibit
mRNA synthesis and activate RNases both in vivo and in vitro.
Inhibition of SK2 in vivo and in cultured hepatocytes substantially
attenuated IR injury as indicated by decreased cell death (Figs. 1,
3 and 4), improved liver function (Fig. 5A and B) and prevention
of acute liver failure after hepatic warm IR (Fig. 5C). Knockdown
of SK2 by siRNA also effectively prevented hepatocyte death
(Fig. 1). These results support the hypothesis that activation
and up-regulation of SK2 play important roles in hepatic IR
pathology. It remains unclear whether intracellular or extracellu-
lar S1P is more important in injury. Moreover, inhibition of SK2
likely alters other sphingolipids, such as ceramide, sphingosine,
ceramide-1-phosphate in addition to S1P, and many of these mol-
ecules have physiological/pathological activities. Ceramide,
which increases after SK inhibition, is reported to increase apop-
totic tumor cell death, but we observed instead a decrease of
hepatocyte death both in vitro and in vivo by ABC294640 treat-
ment. Thus, it seems unlikely that ceramide directly induces
the killing of normal hepatocytes. An examination of each of
the several SK-linked sphingolipid metabolites during IR-induced
cell death is beyond the scope of the present study and will be the
subject of future experiments.

In apparent contrast to the present findings, a recent study
shows that repeated injection of S1P decreases hepatic and renal
injury after hepatic IR, possibly through activation of S1P1 recep-
tors [37]. Theoretically, supplementation with S1P should have
the opposite effect of SK inhibition. However, after injection of
S1P or dihydro-S1P (i.e. sphinganine 1-phosphate), serum phos-
phatases will degrade the lipid to sphingosine and dihydrosp-
hingosine, which is a known SK inhibitor [38]. Additionally,
FTY720, an S1P receptor superagonist that internalizes and
down-regulates S1P receptors, protects the liver from IR injury
[31]. Therefore, injection of S1P after IR could alter the expression
and intracellular localization of S1P receptors. Furthermore, SK
inhibition in addition to decreasing S1P may alter other bioactive
sphingolipid species that modulate cytotoxicity. Future studies
will be needed to investigate these possibilities.

Inhibition of SK2 prevents MPT onset after IR in vivo

Our studies demonstrating a role in regulating the MPT shed con-
siderable light on the mechanism by which SK2 activation leads
to IR injury. The MPT leads to the collapse of the mitochondrial
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membrane potential, failure of oxidative phosphorylation, and
onset of necrotic cell death [39]. In addition, the MPT causes
release of cytochrome c from mitochondria, triggering apoptosis
[40,41]. ROS and RNS formation, calcium mobilization, TNF for-
mation, Bax translocation, and JNK activation also promote MPT
onset [40,42–45]. S1P causes mitochondrial swelling directly only
at very high concentrations which unlikely occur in vivo (Fig. 7).
Therefore, activation of SK most likely leads to the MPT by indi-
rect mechanisms. For example, S1P causes up-regulation of TNF
formation, Ca2+ influx into cells and stimulates JNK activation
in cultured cells [7,46,47], and these S1P-dependent changes
are capable of inducing MPT onset. Using intravital multiphoton
microscopy, we observed that mitochondrial depolarization
occurred in many viable hepatocytes after IR in vivo (Fig. 6).
The onset of MPT in response to IR was blocked by ABC294640,
in association with suppression of the increased TNF synthesis
and upregulation of iNOS that follow this insult (Figs. 8 and 9).
Therefore, ABC294640 may be inhibiting the MPT by preventing
increases in TNF and iNOS expression and/or action. Importantly,
prevention of the MPT onset decreased cell death and prevented
acute liver failure in mice following IR (Figs. 3–5), consistent with
cytoprotection by specific MPT inhibitors against storage/reper-
fusion injury reported previously [22]. Therefore, inhibition of
the SK2 signaling cascade minimizes hepatic IR injury, at least
in part, by preventing mitochondrial dysfunction.

Inhibition of SK2 prevents inflammation after IR in vivo

Activation of SK results in pro-inflammatory responses [3,5–
8,48]. For example, S1P induces NF-jB, which in turn increases
toxic cytokines, proinflammatory enzymes such as cyclooxygen-
ase-2 (COX-2), and adhesion molecules [3,6,48]. S1P causes gran-
ulocyte activation and decreases their apoptosis, thus enhancing
chronic inflammation [7]. The non-specific SK inhibitor dimeth-
ylsphingosine blocks inflammatory cytokine-induced adhesion
molecule expression in vitro [3]. Inhibition of SK attenuates ulcer-
ative colitis and arthritis, diseases with a large inflammatory
component [5,8].

In vivo, inflammatory responses due to the initial IR insult act
to extend and magnify the extent of IR injury. Formation of pro-
inflammatory cytokines is a crucial step in inflammatory
responses, which stimulates subsequent expression of adhesion
molecules and infiltration and activation of white blood cells. In
this study, activation of NF-jB and production of TNFa increased
dramatically after hepatic IR well before onset of overt necrotic
cell death (Fig. 9). Infiltration of PMNs into the liver followed
the increase of TNFa, and treatment with ABC294640 blunted
these inflammatory reactions. Therefore, inhibition of inflamma-
tion by ABC294640 is unlikely due to an antinecrotic effect, but
more likely due to suppression of proinflammatory cytokine
formation. Moreover, previous studies show that SK is activated
in inflammatory cells such as monocytes and RAW macrophages
[49,50]. It is also well established that Kupffer cells (hepatic
macrophages) become activated very soon after IR to produce
toxic cytokines and promote inflammation [51]. Therefore, inhi-
bition of inflammatory cells may also help to protect against IR
injury. In vivo, multiple mechanisms/pathways often act in paral-
lel or in sequence.

In conclusion, inhibition of SK2 by ABC294640 protected
against IR-induced MPT onset and inflammation, major events
precipitating and extending hepatic cell death after IR. Thus, it
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is likely that SK2 positively modulates MPT onset and inflamma-
tion to promote hepatic IR injury, which selective SK2 inhibition
prevents. Accordingly, selective SK2 inhibition by ABC294640
represents a promising new strategy to attenuate hepatic IR
injury in clinical settings.
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