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Bile formation at the canalicular membrane is a delicate
process. This is illustrated by inherited liver diseases due to
mutations in ATP8B1, ABCB11, ABCB4, ABCC2 and ABCG5/8, all
encoding hepatocanalicular transporters. Effective treatment of
these canalicular transport defects is a clinical and scientific chal-
lenge that is still ongoing. Current evidence indicates that ursode-
oxycholic acid (UDCA) can be effective in selected patients with
PFIC3 (ABCB4 deficiency), while rifampicin reduces pruritus in
patients with PFIC1 (ATP8B1 deficiency) and PFIC2 (ABCB11 defi-
ciency), and might abort cholestatic episodes in BRIC (mild
ATP8B1 or ABCB11 deficiency). Cholestyramine is essential in
the treatment of sitosterolemia (ABCG5/8 deficiency). Most
patients with PFIC1 and PFIC2 will benefit from partial biliary
drainage. Nevertheless liver transplantation is needed in a sub-
stantial proportion of these patients, as it is in PFIC3 patients.
New developments in the treatment of canalicular transport
defects by using nuclear receptors as a target, enhancing the
expression of the mutated transporter protein by employing
chaperones, or by mutation specific therapy show substantial
promise. This review will focus on the therapy that is currently
available as well as on those developments that are likely to
influence clinical practice in the near future.
© 2009 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
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Introduction

The process of primary bile formation occurs at the canalicular
membrane predominantly through the action of transporters
belonging to the adenosine triphosphate-binding-cassette (ABC)
family [1,2] (Fig. 1A). Secretion of bile salts, phosphatidylcholine
(PC) and cholesterol is mediated by ABCB11 (BSEP), ABCB4
(MDR3) and ABCG5/8, respectively. Excretion of organic anions
is mediated by other members of the ABC-family such as ABCC2
(MRP2). In addition, ATP8B1 (FIC1), a P4 P-type ATPase, is essen-
tial for a proper composition of the canalicular membrane, and
thus for normal bile flow [3].

Bile formation at the canalicular membrane is a delicate pro-
cess and any inaccuracy may have devastating consequences.
This is illustrated by inherited liver diseases caused by mutations
in any of the hepatocanalicular transporters described above. In
this review, we give recommendations for the treatment of can-
alicular transport defects based on current evidence. In addition,
this review focuses on the developments that are likely to influ-
ence clinical practice in the near future.

Canalicular transport defects in liver disease
Phospholipid-flippases ATP8B1 (FIC1)

ATP8B1 is thought to specifically translocate phosphatidylserine
(PS) from the outer to the inner leaflet of plasma membranes,
causing the outer leaflet to be enriched in PC, sphingomyelin
and cholesterol [4-7]. Cholesterol has a high affinity for sphingo-
myelin, and both are thought to be preferentially located in later-
ally separated microdomains (previously called lipid rafts). These
microdomains offer protection against the detergent action of
bile salts in the canalicular lumen and are essential for normal
function of transmembrane transporters [8-10]. Recent evidence
indicates that canalicular ABC-transporters are indeed localized
within these microdomains [11]; therefore, disruption of lipid
asymmetry and reduction of cholesterol content in the apical
membrane decreases the function of resident proteins such as
the bile salt export pump ABCB11, resulting in cholestasis
[9,10]. In addition, the canalicular membrane in both humans
and mice with ATP8B1/Atp8b1 deficiency develops a decreased
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Fig. 1. Medical treatment of canalicular transport defects. (A) Schematic representation of bile formation at the canalicular membrane. ATP8B1 (FIC1) is essential for
normal bile flow, probably through maintaining an asymmetric distribution of phospholipids between the inner and outer leaflet of the canalicular membrane. Secretion of
bile salts into the canaliculus by the bile salt export pump ABCB11 (BSEP) is the main driving force for bile flow, with water following through osmotic forces. ABCB4
(MDR3) and ABCG5/8 induce secretion of phosphatidylcholine and cholesterol, respectively. These lipids form mixed micelles with the bile salts and protect membranes
lining the biliary tract against detergent bile salts. ABCC2 (MRP2) mediates efflux of a broad range of organic anions. As indicated most ABC transporters are probably
organized in microdomains enriched in sphingomyelin and cholesterol. (B) Left panel: the effect of UDCA in the hepatocyte. The hydrophilic ursodeoxycholic acid (UDCA)
partly replaces the endogenous cytotoxic hydrophobic bile salts. In addition, by inducing expression of ABCB11, and ABCB4, UDCA stimulates hepatobiliary secretion of bile
salts and protective phospholipids. The up-regulation of ABCC4 (MRP4) induces the efflux of conjugated bile acids across the basolateral membrane. Right panel: rifampicin
(RIF) activates PXR regulated transcription of CYP3A4. This stimulates 6o-hydroxylation of bile salts, which can be excreted at the basolateral membrane via ABCC4 (MRP4),
with subsequent excretion in the urine. In addition, the conjugation and excretion of bilirubin is enhanced through induction of UGT1A1 and ABCC2 (MRP2). (C)
Cholestyramine binds bile salts in the intestinal lumen and interrupts the enterohepatic circulation of bile salts by reducing re-absorption and stimulating faecal excretion.

N, nucleus; T]J, tight junction.

resistance to hydrophobic bile salts, evidenced by an enhanced
biliary recovery of phospholipids, cholesterol and canalicular
ectoenzymes in bile [9,12,13]. It is likely that this damage to
the canalicular membrane adds to the cholestasis.

ATP8B1 deficiency (formerly FIC1 disease) is an autosomal
recessive condition characterized by mutations in the ATP8B1
gene [3,14,15]. Patients with ATP8B1 deficiency may present in
infancy or early childhood with progressive familial intrahepatic
cholestasis type 1 (PFIC1) [15-18] or later in life with episodes of
cholestasis and intractable pruritus: benign recurrent intrahe-
patic cholestasis type 1 (BRIC1) [19-22]. PFIC1 and BRIC1 are in
fact two ends of a clinical spectrum, as is illustrated by patients
who initially present with episodic cholestasis but progress to
permanent cholestasis in time [14,23,24]. During a cholestatic
episode, all patients have low serum concentrations of gamma-
glutamyl transpeptidase (GGT) in combination with high serum
bile salt levels. Liver biopsies of PFIC1 patients show bland chole-
stasis with characteristic coarse and granular bile on the ultra-
structural level [12,25]. ATP8B1 is localized on the canalicular
membrane of the hepatocyte [6,26,27], but its expression is even
more abundant in other tissues [3,28], where it can also be found
at the apical membranes of polarized cells [26,27,29]. This is con-
sistent with a proposed general cellular function of ATP8B1 and
with extrahepatic features such as persistent short stature [16],
diarrhoea [16,30,31], pancreatitis [22,32], sensorineural hearing
loss [29,33] and an abnormal sweat composition [16,32], which
are frequently present in patients with ATP8B1 deficiency. Het-

erozygous mutations in ATP8B1 can be found in patients with
intrahepatic cholestasis of pregnancy (ICP), a liver disorder that
is characterized by pruritus and raised serum bile salt levels dur-
ing pregnancy or use of oral contraceptives [34,35] (Table 1).

Bile salt transporter ABCB11 (BSEP)

Since bile flow is largely dependent on bile salt excretion, it is not
surprising that a deficiency of ABCB11, the main bile salt trans-
porter, can cause a severe autosomal recessive cholestatic syn-
drome that is hard to distinguish from ATP8B1 deficiency.
Patients may present with progressive intrahepatic cholestasis
in the first decade of life that rapidly leads to liver failure (PFIC2)
[36,37]. However, ABCB11 deficiency also represents a pheno-
typic spectrum, with episodic cholestasis (BRIC2) as the mild
manifestation [38-41]. Biochemically, serum concentrations of
bile salts are markedly elevated, but GGT concentrations remain
low [25,42]. Histological characteristics of the liver, with portal-
tract fibrosis, bile duct proliferation and amorphous canalicular
bile may distinguish ABCB11 from ATP8B deficiency [25]. In addi-
tion, ABCB11/Abcb11 localization is restricted to the canalicular
membrane of hepatocytes [36,43,44] and no extrahepatic symp-
toms are described. In contrast, cholelithiasis is often observed,
probably due to biliary bile salt concentrations that are too low
to solubilise all biliary cholesterol [38,41]. Also, hepatocellular
carcinoma or cholangiocarcinoma may be a complication of
ABCB11 deficiency [45,46]. Heterozygous mutations in ABCB11
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Table 1. Canalicular transporters and canalicular transport defects.

Canalicular  Canalicular transport Disease characteristics
transporter  defect

(synonym) (synonym)

Biochemical and histological
characteristics

Disease associated with
heterozygous canalicular
transport defect

ATP8B1 ATP8B1 deficiency (FIC1
(FIC1) disease, PFIC1, Byler comprising PFIC1 and BRIC1
disease and Greenland PFIC1: progressive intrahepatic
familial cholestasis, BRIC1, cholestasis, pruritus and in some
Tygstrup-Summerskill patients extrahepatic symptoms
and Walshe cholestasis) BRIC1: episodic cholestasis, pruritus
and in some patients extrahepatic
symptoms. In between episodes no

Spectrum of intrahepatic cholestasis

symptoms
ABCB11 ABCB11 deficiency (PFIC2, Spectrum of intrahepatic cholestasis
(BSEP) BRIC2) comprising PFIC2 and BRIC2
PFIC2: progressive intrahepatic
cholestasis, pruritus and in some
patients cholelithiasis
BRIC2: episodic cholestasis, pruritus
and in some patients cholelithiasis.
In between episodes no symptoms
ABCB4 ABCB4 deficiency (PFIC3)  Progressive intrahepatic cholestasis,
(MDR3) high serum GGT concentrations.
Pruritus less prominent
ABCC2 Dubin Johnson syndrome Asymptomatic but in some patients
(MRP2) gastrointestinal symptoms
ABCG5/8 Sitosterolemia Xanthomas, arthralgias and

premature
coronary artery disease

High serum bile salts but low GGT
concentrations. Liver biopsy: bland
cholestasis with coarse and granular bile

High serum bile salts but low GGT
concentrations. Liver biopsy: portal-tract
fibrosis, bile duct proliferation and
amorphous canalicular bile

High serum bile salts and high GGT
concentrations. Liver biopsy: fibrosis and
marked bile duct proliferation

High serum conjugated bilirubin
concentrations. Liver biopsy: dark blue

or black due to pigmentation

High serum sitosterols with relatively low
cholesterol concentration. Liver biopsy:
unknown

ICP

ICP, drug induced cholestasis,
transient neonatal cholestasis

ICP, drug induced cholestasis,
transient neonatal cholestasis
LPAC

PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intrahepatic cholestasis; GGT, gamma-glutamyl! transpeptidase; ICP, intrahepatic cholestasis of

pregnancy; LPAC, low-phospholipid associated cholelithiasis syndrome.

are described in drug induced cholestasis [47], ICP [48-50] and
transient neonatal cholestasis [51] (Table 1).

Phosphatidylcholine transporter ABCB4 (MDR3)

ABCB4 is expressed at the apical membrane of the hepatocyte
[44,52] and is essential for PC secretion into the bile [53,54]. A
defective ABCB4 protein causes an imbalance in the composition
of primary bile, with lack of PC and a surplus of bile salts, the lat-
ter damaging the canaliculus and small bile ducts, causing
chronic and progressive liver disease [55]. Mutations in ABCB4
are associated with progressive familial intrahepatic cholestasis
type 3 (PFIC3) which, like the other PFIC types, inherits in an
autosomal recessive pattern [55,56]. In contrast to patients with
PFIC1 and PFIC2, serum GGT levels are elevated. Liver histology
reveals fibrosis (progressing to cirrhosis) and marked bile duct
proliferation [55]. There are no extrahepatic symptoms but het-
erozygous mutations can be encountered in unexplained chole-
stasis [57,58] and many milder cholestatic conditions, such as
ICP [59,50,60-66], drug induced cholestasis [47], transient neo-
natal cholestasis [67], and isolated and recurrent intrahepatic
cholesterol gallstones, designated as LPAC (low-phospholipid
associated cholelithiasis syndrome) [68-71] (Table 1). The latter
is characterized by gallstone disease at relatively young age
(<40 yrs) persistent after cholecystectomy. The underlying mech-
anism is an insufficient concentration of PC in bile to form mixed
micelles with cholesterol, resulting in cholesterol supersaturation
and crystal formation. The wide clinical spectrum of ABCB4 defi-
ciency is illustrated by a patient with a heterozygous mutation in
ABCB4 described by Lucena et al. This patient presented with
juvenile cholelithiasis, recurrently manifested ICP and finally
developed biliary cirrhosis [72].

Organic anion transporter ABCC2 (MRP2)

ABCC2 expression is found in the liver but also at the apical mem-
branes of other polarized cells [44,73,74]. Its substrate specificity
is broad and comprises organic anions, mainly conjugated com-
pounds. ABCC2 has an important role in the excretion of bilirubin
into bile and in the excretion of bile salts after their sulfation or
glucuronidation [75,76]. Nevertheless, the mild hepatic pheno-
type and lack of extrahepatic symptoms in ABCC2 deficiency sug-
gests that other transporters can complement its function. ABCC2
deficiency causes Dubin Johnson syndrome (D]S). This syndrome
is an autosomal, recessively inherited disorder characterized by
chronic or intermittent conjugated hyperbilirubinemia. Although
some patients complain about gastrointestinal symptoms and
drug metabolism might be different, there are no further symp-
toms. Plasma concentrations of liver enzymes are usually within
the normal range, and there is no permanent liver damage. How-
ever, on macroscopic examination the liver itself appears dark
blue or black due to pigmentation [77-79] (Table 1). So far, no
associations between the heterozygous state and liver or other
disease has been found [80].

Cholesterol transporter ABCG5/8

ABCG5/8 is expressed at the apical membrane of liver and intes-
tine [81]. The protein-complex consists of two half transporters,
ABCG5 and ABCGS, that heterodimerise in the endoplasmic retic-
ulum to become functionally active [82,83]. The ABCG5/8 trans-
porter has a major role in the biliary and intestinal excretion of
cholesterol and plant sterols (mainly sitosterols) [84,85]. Muta-
tions in either ABCG5 or ABCGS8 cause a rare autosomal recessive
disease, sitosterolaemia. This disease is characterized by an
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increased retention of sitosterols by the intestine and a failure to
secrete sterols into bile, resulting in high plasma sitosterol levels
and accumulation of sterols in peripheral tissues and blood [84-
87]. Patients consequently present with tendon xanthomas, arth-
ralgias and premature coronary artery disease, despite relatively
low plasma levels of cholesterol [88-90] (Table 1). Sporadically,
haemolytic abnormalities are mentioned [91]. Except for one
patient with chronic active hepatitis and signs of cirrhosis, noth-
ing is known about liver histology [92]. The effect of being a het-
erozygous carrier for these mutations is not clear yet [93].

Treatment of canalicular transport defects

All liver diseases described above are due to mutations in genes
encoding hepatocanalicular transporters. For most of these dis-
eases the response to current medical therapy is either non-exis-
tent or of limited duration. Some agents have proven to be
effective in specific situations, mainly by providing symptomatic
relief.

Nevertheless, most patients with progressive cholestasis eventu-
ally need surgical intervention. Even patients with the relative
“benign” phenotypes of intrahepatic cholestasis (BRIC) may undergo
invasive therapy, purely to improve quality of life [16,22,24].

Current medical treatment

The therapeutic strategies for cholestasis due to canalicular trans-
port defects may target bile composition, bile salt toxicity and the
secretion of bile salts. The ideal therapy should have anti-chole-
static, anti-fibrotic and anti-neoplastic properties. Ursodeoxychol-
ic acid (UDCA), rifampicin and cholestyramine are amongst the
most commonly used. Sometimes combination therapy is
employed, but there is no evidence for any synergistic effect.

UDCA

The main therapeutic target of UDCA is the protection of hepato-
cytes and cholangiocytes by replacing endogenous, cytotoxic bile
salts [94,95]. In addition, UDCA induces expression of functional
transporters at transcriptional and post-transcriptional level and
enhances bile flow, possibly through cholehepatic shunting
[96-101]. A simplified illustration of the effect of UDCA in the
hepatocyte can be found in Fig. 1B.

More than half of the patients with high GGT-PFIC or proven
PFIC3 responded to UDCA treatment [102-104] (Table 2A).
Although in most reports this response was not further clarified
we presume that it was characterized by at least partial improve-
ment in serum transaminase levels and pruritus. Interestingly,
those with missense mutations generally had a good response
to UDCA therapy, while those with a premature stop codon
showed no response [103]. Therefore in patients with PFIC3 and
a presumed residual function of the ABCB4 protein based on
mutational analysis, UDCA is the therapy of choice.

In patients with low GGT-PFIC or an undefined subtype of
PFIC, the response to UDCA therapy was much less promising.
Although in some reports serum transaminase levels and pruritus
improved in about half of the patients upon UDCA [102,104,105],
in most studies UDCA was not effective [106-113]. Even in
patients with a mild phenotype (BRIC1, BRIC2), UDCA did not pre-
vent or abort a cholestatic attack [19,24,31,39,40,114-116] (Table
2A). Currently it is not possible to predict who would benefit
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Table 2A. UDCA treatment in hepatocanalicular transport defects.

Hepatocanalicular ~ Number  Outcome Reference

defect patients  (number patients)

PFIC undefined 58 Improvement (2) [107,111]

subtypes Partial improvement (0)

No improvement (56)

Low GGT-PFIC 98 Improvement (22) [102,104-106,
Partial improvement (12)  108-110,112,113]
No improvement (64)

High GGT-PFIC 46 Improvement (20) [102-104]
Partial improvement (14)
No improvement (12)

BRIC 12 Improvement (0) [19,24,31,39,
Partial improvement (2) 40,114-116]
No improvement (10)

DJS 2 Improvement (1) [77,117]

Partial improvement (0)
No improvement (1)

“Improvement”, indicates (almost complete) normalization of serum transami-
nases and/or bilirubin concentration and total relief of pruritus.

“Partial improvement”, indicates no complete normalization of serum transami-
nases and/or bilirubin concentration with or without persistent pruritus.

“No improvement”, indicates no response or deterioration of the symptoms.
PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intra-
hepatic cholestasis; DJS, Dubin Johnson syndrome; GGT, gamma-glutamyl
transpeptidase. In the high GGT-PFIC subtype, 11 patient are reported twice
[102,103].

from UDCA in low GGT cholestasis and it is doubtful whether
UDCA has a place in the treatment of ATP8B1 or ABCB11 defi-
ciency. Especially for patients with progression to severe liver
disease, surgical management is needed as soon as possible.

For DJS, two case-reports have been published with opposite
effect. In one patient, serum bilirubin declined upon UDCA treat-
ment, while in the other patient a combination of rifampicin with
UDCA led to a dramatic rise in serum bilirubin and bile salt con-
centrations, which normalized once again after these medications
were discontinued [77,117] (Table 2A). For sitosterolaemia no
clinical trials or case-reports have been published.

UDCA treatment is safe, and except for the reversible effect in
the DJS patient no serious side-effects have been described.

Recently it was found that shortening of the side chains
increases the therapeutic efficacy of UDCA [100]. This modified,
so called norUDCA has already been proven to be more effective
than the parent compound in a murine model of primary scleros-
ing cholangitis [118].

Rifampicin

The primary effect of rifampicin is inducing CYP3A4 expression
through activation of the xenosensor pregnane X receptor
(PXR). This increases 6o-hydroxylation of bile salts, compounds
which can subsequently be glucuronidated and excreted in the
urine [99,119]. In addition, conjugation and excretion of bilirubin
is enhanced through induction of UGT1A1 and ABCC2 [99].
Enhanced expression of the latter might also be important for
excretion of other, still unidentified pruritogenic compounds
(Fig. 1B).

In patients with low GGT-PFIC, rifampicin did not have any long
lasting effect on serum concentration of bilirubin and transami-
nases, but reduced the pruritus in some patients [108,109,
112,113]. This marginal effect contrasts with the results obtained
in patients with BRIC. After starting rifampicin treatment in seven
patients, eighteen out of twenty-two episodes were completely
aborted within several weeks [24,115,116,120] (Table 2B). Thus

Journal of Hepatology 2010 vol. 52 | 258-271 261

Review



Review

Review

it seems that rifampicin can reduce pruritus in some patients with
low GGT-PFIC, but might even induce remission in patients with
BRIC. Nevertheless, rifampicin treatment should be used with cau-
tion because of its potential hepatotoxic effect.

The use of rifampicin in DJS has been described in one patient,
but instead of reducing serum bilirubin concentrations, the con-
jugated bilirubinemia increased during treatment [77] (Table
2B). It is not known whether rifampicin affects cholesterol
homeostasis as well, but so far no experience with sitosterola-
emia has been published.

Cholestyramine

Cholestyramine is a negative ion exchange resin that binds bile
salts in the intestinal lumen, reduces re-absorption and stimu-
lates faecal excretion of bile salts (Fig. 1C) [121].

Cholestyramine does not seem to be effective in patients with low
GGT-PFIC or undefined subtypes of PFIC [107,108,112,122,123]. For
patients with BRIC the results are variable, varying from shortening
of the cholestatic episodes [24,124,125] to no effect at all
[19,24,115,116,126](Table 2C). Consequently cholestyramine seems
to have no place in the treatment of PFIC, but it may be beneficial in
patients with BRIC. Given the potentially better tolerability and
higher efficacy of the new bile salt resin binders with other polymer
structures, such as colesevalam [127], these drugs should be the topic
of further investigations.

There is no published evidence for cholestyramine treatment
in high GGT cholestasis or DJS. However, extensive experiments
are available for sitosterolaemia in which cholestyramine in com-
bination with a diet low in cholesterol reduced the serum levels
of plant sterols with improvement of clinical symptoms, such as
reduction of xanthomas [88,93,128-132] (Table 2C). Chronic cho-
lestyramine treatment may cause constipation, but no other seri-
ous complications have been found.

Invasive treatment
A few BRIC patients have been treated successfully with extracor-
poral albumin dialysis (MARS) [133,134]. However biliary diver-

sion and liver transplantation are the most commonly used
invasive treatments.

Table 2B. Rifampicin treatment in hepatocanalicular transport defects.

Hepatocanalicular Number  Outcome Reference
defect patients  (number patients)
Low GGT-PFIC 17 Improvement (0) [108,109,112,113]

Partial improvement (3)
No improvement (14)

BRIC 7 Improvement (5) [24,115,116,120]
Partial improvement (0)
No improvement (2)

DJS 1 Improvement (0) [77]

Partial improvement (0)
No improvement (1)

“Improvement”, indicates the almost complete normalization of serum trans-
aminases and/or bilirubin concentration and total relief of pruritus. For patients
with BRIC “improvement” indicates the abortion of a cholestatic attack. “Partial
improvement” indicates lack of complete normalization of serum transaminase
concentration but improvement of pruritus. “No improvement” indicates lack of
response or deterioration of the symptoms.

PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intra-
hepatic cholestasis; DJS, Dubin Johnson syndrome; GGT, gamma-glutamyl
transpeptidase.

Table 2C. Cholestyramine treatment in hepatocanalicular transport defects.

Hepatocanalicular Number Outcome Reference
defect patients (number patients)
PFIC undefined 23 Improvement (0) [107,122,123]
subtypes Partial improvement (1)
No improvement (22)
Low GGT-PFIC 34 Improvement (0) [108,112]

Partial improvement (0)
No improvement (34)
Improvement (2)
Partial improvement (2)
No improvement (16)
Improvement (12)
Partial improvement (1)
No improvement (0)

BRIC 20 [19,24,115,116,124-126]

Sitosterolaemia 13 [88,93,128-132,210]

“Improvement” indicates an almost complete normalization of serum transami-
nases, bilirubin and/or sterol concentration and total relief of pruritus. In BRIC
“improvement” indicates the abortion of a cholestatic attack. “Partial improve-
ment” indicates a lack of complete normalization of serum transaminases, bili-
rubin and/or sterol concentration with or without persistent pruritus. In patients
with BRIC, “partial improvement” means reduction of pruritus. “No improve-
ment” indicates a lack of response or deterioration of the symptoms.

PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intra-
hepatic cholestasis; GGT, gamma-glutamyl transpeptidase.

Biliary diversion

Non-transplant surgical intervention can be effective in patients
with intrahepatic cholestasis. Partial biliary diversion (PBD) or ileal
bypass (IB) are two of these surgical interventions, in which PBD
may be achieved by either a jejunal conduit from gallbladder to
the abdominal wall (partial external biliary diversion; PEBD)
[123], or one that connects the gallbladder to the colon (partial inter-
nal biliary diversion; PIBD) [109]. Leaving the common bile duct
intact, PBD establish only a partial diversion of bile (about 80%)
while the remainder enters the duodenum. In IB, bile salt re-absorp-
tion is diminished by bypassing the small intestine at the terminal
ileum through an ileocolonic anastomosis (Fig. 2) [135]. Although
to a much stronger extent, the working mechanism of PBD is similar
to cholestyramine - it reduces the accumulation of toxic bile salts by
a reduction of the enterohepatic circulation.

PEBD was initially described by Withington and Withington in
1988 [123]. This innovative technique was quickly adopted by
other centres worldwide and so far sixteen additional case-
reports/series addressing the effect and technique of PEBD in
the treatment of PFIC have been published (Table 3). Except for
one small series of five patients in which PEBD did not have
any effect [104], all others report normalization or improvement
of liver function in 75-100% of the patients with low GGT-PFIC,
indicated by at least improved liver tests and reduced pruritus
[106,108,110,112,136-143]. The response in patients with an
undefined subtype of PFIC seems to be less [111,144]. Liver biop-
sies post PEBD were performed in some patients and did not
show further progression or even a resolution of hepatic morpho-
logic abnormalities in all these patients [112,123,137,141].
Advanced disease and liver cirrhosis were proposed as the main
causes of therapeutic failures, indicating that early surgical inter-
vention in PFIC patients is essential. Three BRIC1 patients were
treated with PEBD to improve quality of life rather than to pre-
vent disease progression. In these patients PEBD aborted the
cholestatic attack immediately but did not always prevent subse-
quent minor cholestatic episodes [24,116].

Another surgical technique for biliary drainage is IB, first
described by Whitington et al. [108] in patients who were not
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Fig. 2. Biliary drainage. Partial biliary diversion (PBD), or ileal bypass (IB), are
two of non-transplant surgical interventions that interrupt the enterohepatic
circulation of bile salts and can be effective in the treatment of canalicular
transport defects. PBD may be achieved by either a jejunal conduit from
gallbladder to the abdominal wall: partial external biliary diversion; PEBD, or one
that connects the gallbladder to the colon: partial internal biliary diversion; PIBD.
In IB, bile salt re-absorption is diminished by bypassing the terminal ileum
through an ileocolonic anastomosis. A cholestatic attack in patients with BRIC
may be aborted by endoscopically introducing a nasobiliary drain during a
cholestatic episode (NBD).

amenable for PEBD because of a previous cholecystectomy. An
additional advantage of this procedure is the lack of an external
fistula. However, after a short initial response, clinical symptoms
recurred in half of the treated patients with low GGT- or an unde-
fined subtype of PFIC within a year [135,144] (Table 3). This is
probably due to secondary adaptation of the ileum to the resec-
tion and it was therefore concluded that IB is inferior to PEBD
in patients with low GGT cholestasis.

Recently, PIBD has been described in two teenage patients
with PFIC and low GGT cholestasis. This technique combines
the advantages of external drainage and ileal bypassing by par-
tially interrupting enterohepatic circulation without an external
biliary fistula. The initial clinical and laboratory results were very
promising, but long-term follow-up is necessary to evaluate late
results and complications [109] (Table 3).

In the few BRIC patients treated with PEBD, drainage immedi-
ately reduced pruritus and relieved cholestasis. Moreover, in the
follow-up period just a few very short additional episodes were
noticed [24,116] (Table 3). However the permanent character of
PEBD makes it less appropriate to be used in a disorder that is
only episodic. Based on these results we developed a temporary
intervention: nasobiliary drainage (NBD) for which the first
results were published in 2006 [145]. Until now, in our centre a
total of twelve cholestatic attacks in five BRIC1 patients were
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Table 3. Partial biliary drainage in hepatocanalicular transport defects.

Hepatocanalicular ~ Number Outcome Reference
defect treated (number patients)

PFIC undefined 42 Improvement (24) [111,123,144]
subtypes Partial improvement (5)

Treatment by PEBD No improvement (13)

Low GGT-PFIC 94 Improvement (66) [104,106,108,

Partial improvement (11)  110,112,136-143]
No improvement (17)

Treatment by PEBD

High GGT-PFIC 1
Treatment by PEBD

Improvement (0) [104]
Partial improvement (0)
No improvement (1)

BRIC 3
Treatment by PEBD

Improvement (1) [24,116]
Partial improvement (2)
No improvement (0)

PFIC undefined 5 Improvement (1) [144]
subtypes Partial improvement (0)

Treatment by IB No improvement (4)

Low GGT-PFIC 7 Improvement (6) [108,135]

Treatment by IB Partial improvement (0)

No improvement (1)

Low GGT-PFIC 2
Treatment by PIBD

Improvement (2) [109]
Partial improvement (0)
No improvement (0)

BRIC 1
Treatment by PIBD

Improvement (1) [109]
Partial improvement (0)
No improvement (0)

“Improvement” indicates an almost complete normalization of serum transami-
nases and/or bilirubin concentration and total relief of pruritus. “Partial
improvement” indicates a lack of complete normalization of serum transaminases
and/or bilirubin concentration and/or persistent pruritus. “No improvement”
indicates a lack of response or deterioration of the symptoms.

PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intra-
hepatic cholestasis; GGT, gamma-glutamyl transpeptidase; PEBD, partial external
biliary diversion; PIBD, partial internal biliary diversion; IB, ileal bypass.

In the low GGT-PFIC subtype, four patient are reported double [108,123].

treated by NBD. This was established by endoscopically introduc-
ing a nasobiliary drain during a cholestatic episode (Fig. 2). In
eight out of twelve treatments, pruritus totally resolved within
48 h and serum bile salt levels returned to normal or near normal
levels. Failure of NBD was either due to practical difficulties when
introducing the drain (one treatment) or progression of liver dis-
ease (three treatments in two patients who are now doing well
after PEBD). Thus, for most cholestatic episodes in BRIC1, NBD
is an effective therapy. Because in some patients there is a tran-
sition from episodic to progressive cholestasis, PEBD should be
considered when NBD fails to resolve a cholestatic episode.

Given the current evidence, PBD is the therapy of choice in
patients with low GGT-PFIC, and should be performed as soon as
possible after diagnosis to prevent liver damage. At present, large
multicenter studies are in progress that investigate PBD results
stratified for patients with ATP8B1 vs ABCB11 deficiency and in
subpopulations with different mutations. It is to be expected that
the current recommendations can be refined upon publication of
these results. It is also important to realize that PBD induces the
loss of considerable amounts of fluids and electrolytes, and
patients might become dehydrated. Adequate and individualized
electrolyte supplementations and fluid is mandatory in all patients
with PBD. Finally complications from intestinal surgery as stoma
prolaps and intestinal obstruction have been described.

There is no evidence of the effect of non-transplant surgery in
patients with other canalicular transport defects, except for one
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patient with ABCB4 deficiency who was unsuccessfully treated
with PEBD [104].

Liver transplantation

Because of the high risk of complications and the life-long need
for immune-suppressive therapy, liver transplantation should
be reserved for patients who have established liver cirrhosis at
the time of presentation or who have progressive liver disease
despite treatment. Unfortunately, for many patients with the
severe form of ATP8B1, ABCB11 and ABCB4 deficiency, liver
transplantation is still the only option.

Independent of the subtype of PFIC, the survival rate after trans-
plantation ranges from 61-92% in the 80ths and early 90ths
[108,137,146] to 75-100% more recently [31,104,106,111,147-
154]. However, most follow-up periods do not yet exceed 3 years.
Transplantation improved cholestasis-related symptoms like itch-
ing, malnutrition and liver function in almost all surviving patients.
Due to the lack of cadaver donors, living-related liver transplanta-
tion is often used in patients with PFIC. Although it was feared that
the heterozygous status of the parent donor would affect the
results unfavourably, complications and survival rates of these
types of transplantation in PFIC patients are similar to living-
related transplantations for non-genetic liver diseases such as bil-
iary atresia [149,151]. However, in some PFIC patients, symptoms
of cholestasis may recur after several years. Apart from the usual
long-term complications after liver transplantation, such as
chronic rejection and conduit stricture, in PFIC this may also be
due to allo-immunization of the recipient against the ATP8B1,
ABCB11 or ABCB4 protein located in the (heterozygous) donor liver
[155].

The ATP8B1 protein is abundantly expressed outside the liver,
e.g. in the intestine [3,27] and correction of the liver defect by
transplantation will not cure the extrahepatic symptoms, such as
diarrhoea. Indeed, in a substantial proportion of PFIC1 patients,
diarrhoea exacerbates when biliary bile salt secretion is restored
after liver transplantation. In these patients, liver biopsies revealed
severe steatosis [31,147,148,150,154]. In one case, by constructing
a total biliary diversion after transplantation, all bile salts were
diverted from the intestine and diarrhoea resolved [153].

The ABCG5/8 half transporters are also expressed in both
intestine and liver but, in contrast to ATP8B1 deficiency, liver
transplantation was completely effective in normalization of ste-
rol plasma concentration in a patient with sitosterolaemia, sug-
gesting that adequate excretion of sterols by the liver is
sufficient for keeping levels of xenosterols low, even when
absorption in the intestine remains increased [92].

Recently, transplantation of human hepatocytes has been
used for treatment of liver-based metabolic conditions. The
injected hepatocytes would in theory have a selective growth
advantage over the patient’s own defective hepatocytes and
should (partly) repopulate the native liver, as has already been
shown in a mouse model for PFIC [156]. Unfortunately, for the
two PFIC2 patients treated so far there was no clear benefit, prob-
ably due to pre-existing fibrosis that precluded proper engraft-
ment of hepatocytes into the liver [157,158].

Future treatment options

As previously described, mutations in the canalicular transport-
ers cause defective bile formation and retention of substances
which are normally secreted into the bile. This may be due to a

decreased transporter expression at the plasma membrane, due
to a functional defect of the protein itself or a combination of
both possibilities. It follows that ameliorating the expression of
functional protein at the canalicular membrane could theoreti-
cally restore bile flow and improve liver disease in some patients.

Nuclear receptors as therapeutic target

Bile formation is highly regulated by nuclear receptors such as the
bile salt sensor farnesoid X receptor (FXR). FXR is activated by nat-
urally occurring (chenodeoxycholic acid) or synthetic (GW4064
and 6-ethyl chenodeoxycholic acid (6-ECDCA)) ligands. Upon acti-
vation it transactivates a number of genes that co-ordinately
reduce hepatic bile salt uptake and neosynthesis and stimulate bile
salt detoxification and secretion of both bile salts and the protec-
tive phospholipids [159-162] (Fig. 3). Synthetic ligands for FXR
and other nuclear receptors are increasingly recognized as possible
therapeutic options in cholestatic syndromes [163]. The use of FXR
as atarget for drug-therapy has already been studied in some detail
in several rat models for cholestasis. For example, treatment with
potent synthetic FXR ligands protected rats against oestrogen-
induced cholestasis [164]. The latter condition has been linked to
reduced activity and/or diminished expression of several trans-
porters at the canalicular membrane, including Abcb11 and Abcc2
[165,166]. This new class of drugs is currently investigated in
patients with primary biliary cirrhosis [163]. We propose that this
treatment would also positively affect the cholestasis associated
with the canalicular transport defects reviewed in this article.

ATP8B1 is not a known target gene for any of the nuclear recep-
tors but its activity was described to influence FXR function.
Although controversial [7,167,168], ATP8B1 deficiency might
directly or indirectly reduce FXR expression and activity in liver
and intestine [169-173]. The resulting down-regulation of ABCB11
would be an explanation for the cholestatic phenotype in ATP8B1
deficient patients. Hence, if synthetic FXR ligands could counteract
the FXR down-regulation this would induce BSEP expression and
improve canalicular transport of bile salts. However, until now this
concept has only been tested in cell culture [173].

In addition to FXR ligands, ligands of other nuclear receptors
have been proven to affect the expression of canalicular trans-
porters as well. As the classic ligands for peroxisome proliferator
activator receptor alpha (PPARa), fibrates directly increase the
expression of Abcb4/ABCB4 at the canalicular membrane and
induce PC secretion [174,175]. For fibrates, clinical trials in chole-
static diseases such as primary sclerosing cholangitis, primary
biliary cirrhosis and chronic hepatitis C have been started, and
initial results are promising [176-179]. The nuclear constitutive
androstane receptor (Car) and Pxr share the same response ele-
ment in the rat Abcc2 promotor with Fxr. Ligands for Car and
PXR, such as phenobarbital and rifampicin, induce Abcc2/ABCC2
expression [99,161]. These nuclear receptor ligands are already
used to treat liver disease due to canalicular transport defects
with variable results as discussed above for rifampicin.

Mutation specific therapy

Inserting a non-mutated gene or correcting a mutation at the
DNA level was long considered to be the Holy Grail in the treat-
ment of genetic diseases. Unfortunately, safe and effective gene
therapy turned out to be much harder to accomplish than
expected. Some of the early trials in humans resulted in mortality
and enthusiasm for this approach decreased [180]. However,
recent advances in our understanding of transcription, transla-
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Fig. 3. Future treatment of canalicular transport defects. Left panel: many missense mutations influence protein processing, causing the abnormal but potentially
functional protein to be misfolded, trapped in the ER and subsequently degraded. Pharmacological chaperones (such as 4-phenylbutyrate acid (4-PBA)) are small molecular
weight compounds that help stabilize these abnormal proteins and enhance the expression of transporters at the canalicular membrane. Right panel: artificial ligands (such
as GW4064) activate FXR. FXR transactivates a number of genes that together coordinate bile salt homeostasis. Reduced transcription of the sodium/bile acid co-transporter
SLC10A1 (NTCP) decreases the bile salt uptake at the basolateral membrane. Neosynthesis of bile salts is reduced by inhibition of the transcription of the rate limiting
enzymes (for example CYP7A1) in the conversion of cholesterol to bile salts. CYP3A4 is induced, enhancing 6o-hydroxylation of bile salts and subsequent excretion through
ABCC4. Finally, FXR activation causes increased secretion of bile salts (through induced ABCB11 (BSEP) expression), phospholipids (through induced ABCB4 (MDR3)
expression) and bilirubin (through induced ABCC2 (MRP2) expression). N, nucleus; ER, endoplasmic reticulum; TJ, tight junction.

tion and the subsequent processing of proteins have opened the
possibility to obtain functional protein at the right place, even
when mutations are still present in the DNA. This exciting new
development has recently moved from bench to bedside in some
early phase I and II trials, mainly in cystic fibrosis (CF). This
approach should be applicable to other genetic diseases, includ-
ing canalicular transport defects.

It has been known for many years that aminoglycosides, in
addition to their antimicrobial activity, can suppress premature
termination codons. [181,182]. Results from clinical trials with
gentamicin in CF patients with premature stop codons due to non-
sense mutations were promising [183,184]. However, the potential
toxicities and its insufficient oral absorption precluded wide
spread use of this antibiotic. As it was already clear that premature
stop codons could be suppressed, a large number of compounds
were screened to find such a drug. The first of this new group of
drugs to become available was PTC124 [185]. After supportive
results in a phase-I study in healthy volunteers [186], a phase-II
study was recently started in CF patients, which shows normaliza-
tion of chloride transport in about half of all patients [187].
We expect that PTC124 can also ameliorate the phenotype in
patients with hepatocanalicular transport defects. This treatment

would however be restricted to a subpopulation of patients in
whom the disease is caused by specific premature stopcodons
(e.g. UGA).

When missense mutations are present at an ATP binding site, or
in a functional domain, the resulting protein is generally dysfunc-
tional. However, many missense mutations influence protein pro-
cessing, causing the abnormal but potentially functional protein
to be misfolded, trapped in the endoplasmic reticulum and subse-
quently degraded. Pharmacological chaperones are small molecular
weight compounds that help stabilize these abnormal proteins
(Fig.3)[188]. 4-Phenylbutyrate acid (4-PBA) is such a pharmacolog-
ical chaperone which is already approved by the US Food and Drug
Administration for use in urea-cycle disorders, where it acts as an
ammonia scavenger [189,190]. The working mechanism probably
involves interfering of 4-PBA with degradation and maturation of
the mutated proteins, by modulation of the heat shock protein
expression [191-193] (Fig. 3). The application of 4-PBA to protein-
misfolding diseases was first studied for the deltaF508 mutation
in the cystic fibrosis transmembrane conductance regulator (CFTR)
gene. In vitro treatment of nasal- and bronchial epithelial cell lines
resulted in an increased expression of mature CFTR at the plasma
membrane and restoration of chloride secretion [194]. Clinical trials
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Table 4. Recommendations for treatment of hepatocanalicular transport defects.

Hepatocanalicular Recommendation for treatment

defect

PFIC1-2 PEBD should be performed directly after diagnosis. Consider liver transplantation when this treatment fails

(low GGT-cholestasis)

PFIC3 Start UDCA treatment as soon as possible. Consider liver transplantation when this treatment fails

(high GGT-cholestasis)

BRIC 1-2 Start with rifampicin early at the beginning of an episode (cave hepatotoxicity). For some patients the addition of cholestyramine may be
favourable. When no improvement in serum bile salts levels and pruritus is seen within 4-8 weeks perform NBD. If both medical therapy and

NBD are not effective, consider PEBD

DJS No specific therapy. Drug metabolism might be different in DJS

Sitosterolemia Low-sterol-diet in combination with cholestyramine

PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intrahepatic cholestasis; DJS, Dubin Johnson syndrome; GGT, gamma-glutamyl transpeptidase;

PEBD, partial biliary drainage; UDCA, ursodeoxycholic acid; NBD, nasobiliary drainage.

with 4-PBA (Buphenyl) in patients with a homozygous deltaF508
mutation in the CFTR gene show improvement of chloride transport
in the nasal epithelia [195,196]. Several mutations in ATP8B1 [197],
ABCB11[198] and ABCB4[199] have been shown to influence proper
protein folding in vitro. These findings indicate that strategies to sta-
bilize the mutant protein at the canalicular membrane by 4-PBA or
other pharmacological chaperones may be therapeutic in patients
with hepatocanalicular transport defects as well. 4-PBA has been
tested in vitro for the E297G and D482G mutations frequently found
inABCB11 deficiency. Treatment reduced the protein ubiquitination
and increased the cell surface expression of mature ABCB11 [200-
202]. Plasma membrane expression of mutated ATP8B1 could also
be induced by 4-PBA [197].

Mutation specific therapy of splice-site mutations can be
divided into two groups. Some splice-site mutations generate
both aberrantly and correctly spliced transcripts; if the latter
are present the resulting disease is generally not severe
[203,204]. The variability of splicing patterns is regulated
through the interaction of a complex repertoire of splicing factors
[205] which implies molecular targets for mutation specific ther-
apy. Indeed, compounds like sodium butyrate can enhance the
expression of the full-length transcripts in the presence of
splice-site mutations [206]. Next, in vivo studies should confirm
the benefit of splicing factor inducers in monogenetic diseases.
The other group of splicing mutations completely abolish exon
recognition. Although some early in vitro work shows that this
category of mutations might also be amenable to mutation spe-
cific treatment, many issues have still to be solved [207-209].

Conclusion

The hepatocanalicular transport defects underscore the essential
role of these transporters in bile formation. At present, surgery
(PBD or liver transplantation) is the only effective therapy in
most patients. Although medical treatment seems to be effective
in some patients this is not true for others. Based on current evi-
dence [211] and our own experience we propose different treat-
ment options for the specific canalicular transport defects as
depicted in Table 4. It should be clear that a universally effective
and non-invasive treatment for patients afflicted by canalicular
transport defects still has to be developed. However, with the sci-
entific progress in the field of nuclear receptor ligands and muta-
tion specific therapy, this might be accomplished within the next
decade.
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