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Hepatitis C virus infection: A “liaison a trois” amongst the virus,
the host, and chronic low-level inflammation for human survival
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This review covers the various aspects of the immune system
that allows the relationship between the hepatitis-C virus, the
host and chronic low-level inflammation, to be highly flexible
and able to defend the host from persistent infections. This ambi-
guity mainly stems from the property of the immune system that
can be both protective and harmful. Immunity cannot be fully
protective without producing a certain degree of damage (acute
hepatitis resulting in resolving HCV infection). In addition, the
balance between protection and tissue damage is critical for the
development of chronic HCV infection. The establishment of a
state of chronic low-level inflammation is instrumental to limit
liver immunopathology, to limit viral spread, and ultimately to
ensure a long-lasting survival of the host. It is dictated by a fine
equilibrium maintained by multiple immunologic mechanisms,
including: sensory perception of innate immunity, virus-specific
T and B cell functions, control of immune responses, and finally
the balance between immunity and immunopathology that has
principally evolved to favor the survival of the species.
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Introduction

Hepatitis C virus (HCV) is a positive-stranded RNA virus belong-
ing to the Flaviviridae family (reviewed in [1]). HCV eludes host
defenses in a considerable portion of infected individuals, devel-
oping a status of viral persistence, and thus representing the
major cause of chronic hepatitis, cirrhosis, and hepatocellular
carcinoma (reviewed in [1-3]). This review considers the various
mechanisms of HCV persistence, and mainly concentrates on
those for which T cell responses have evolved to favor long-term
host survival, in spite of chronic HCV-dependent liver disease.

Innate immunity and HCV infection

The resolution of acute infections is dependent on a complex
interplay between innate and adaptive immunity. Innate immune
cells and molecules play a central role in promptly controlling
infections in the early phases and providing the environment
required for priming efficient adaptive immune responses. Innate
immune cells (mainly monocytes, neutrophiles, dendritic cells
[DCs]) are promptly activated upon the recognition of infecting
agents by a wide array of pattern-recognition receptors (PRRSs),
such as the toll-like receptors (TLRs), or the intracellular nuclear
oligomerisation domain (NOD)-like receptors [4-8]. TLRs identify
infectious signals derived by molecular patterns common to dif-
ferent pathogens (pathogen-associated molecular patterns
[PAMPs], such as lipopolysaccharide [LPS], bacterial DNA, or viral
RNA). Via their adaptor molecules (i.e., MyD88 for TLR2, 3, 4, 5, 7,
8, 9, 11, and toll-interleukin [IL]-1 receptor domain-containing
adaptor inducing interferon [IFN]-B [TRIF] for TLR3 and 4), TLRs
then trigger a cascade of down-stream molecules leading to NF-
kB and AP-1 activation that ultimately induces the transcription
of genes promoting the activities of innate immune cells (cyto-
kine production, maturation, differentiation, migration, etc.).
The intracellular NOD-like PRRs recognize dangerous compounds
(damage-associated molecular patterns [DAMPs]), such as exoge-
nous crystals (e.g., asbestos causing mesothelioma or asbestosis,
silica dust causing silicosis, etc.), or endogenous DAMPs including
proteins associated with stressed or dying cells (e.g., uric acid,
nucleic acids and their degradation products, such as high-mobil-
ity group box 1 protein, oligonucleotides and nucloesides) [7,9].
Hence, it is reasonable to postulate that DAMPs derived from
hepatocyte necrosis may play a pivotal role in HCV-dependent
liver inflammation.
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Importantly, these ancestral signals are also involved in
alarming all non-lymphoid nucleated cells (including hepato-
cytes) that express a more limited repertoire of PRRs than
immune cells. Indeed, they quickly respond to infections via the
IFN-B production that provides both an antiviral effect to the
infected cells themselves and limits the infection of neighboring
non-infected cells.

Interferences of HCV with endogenous type I IFN by infected cells

HCV is a single-stranded (ss)RNA virus and, therefore induces
type I IFN production in infected cells (i.e., hepatocytes) either
upon contact with TLR3 in the endosomal compartments, or upon
recognition of the polyuridine motif of the HCV 3’ untranslated
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region (UTR) by the retinoid acid-inducible gene I (RIG-I) in the
cytoplasm (reviewed in [1]). These processes may be affected
by HCV. In vitro studies demonstrated that endogenous HCV-
NS3/4A protein cleaves both TRIF and IFN-B promoter stimulator
protein 1 (IPS-1) (adaptor molecules of TLR3 and RIG-I, respec-
tively), thus blocking the down-stream pathway leading to IFN-
B production in transfected hepatocyte cultures (reviewed in
[1]). HCV-core protein directly inhibits the down-stream IFN reg-
ulatory factor 3 molecule, which in concert with NF-«xB, activates
IFN-B gene transcription (reviewed in [1]). This data has been
emphasized by observations in vivo revealing that liver biopsies
from HCV patients express an inactive form of IPS-1, consistent
with it being cleaved [10]. However, patients with acute or
chronic HCV infection show normal levels of circulating IFN-o/
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Fig. 1. Immune activities in resolving HCV infection. Innate immunity can be principally affected by HCV at the level of both type I IFN production by infected
hepatocytes and the signals provided by the relative receptors (IFNAR-1/2) once they are engaged by soluble type I IFNs (mainly produced by pDCs). If these defects are
combined with low viral load or infection by HCV strains that are highly susceptible to antiviral IFN effects, HCV viral spread would be contained, and the functions of DCs,
NK, B, and T cells should not be heavily affected. This possibility might account for the evidence that the HCV-specific CD4 T cells efficiently differentiate into protective Tgy
(with Th1 phenotype) and Tcy cells, despite the fact that HCV-specific CD8 Tgy cells that result are dysfunctional. Since DCs are not susceptible to HCV infection, they could
activate CD8 T cells through the phenomenon of cross-presentation of apoptotic hepatocyte bodies containing HCV products. This phenomenon might not be enough to
induce efficient primary or secondary CD8 T cell responses, in the absence of direct HCV presentation by infected DCs. In addition, HCV-specific PD-1" CD8 T cells
(simultaneously recognizing MHC class I/viral epitope complexes and PD-L1 on infected hepatocytes) should acquire an exhausted/dysfunctional phenotype at the site of
infection, more than PD-1* CD4 cells. CD4 T cells might guarantee resolution, by producing protective cytokines, helping antigen-specific B cells, and finally sparing some
virus-specific CD8 cells from becoming dysfunctional. Under these conditions, the negative loop leading to T cell exhaustion, by the interaction between PD-1 expressed on
activated T cells and PD-L1 expressed on all lymphoid and non-lymphoid cells, would have the ability to switch off unwanted responses, once the virus has been cleared.
The two red slashes going through the arrows indicate that there is an obstructed pathway.
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B, leading to the hypothesis that the latter is not produced by
HCV-infected hepatocytes, but by non-infected (likely plasmocy-
toid [p]DCs) cells. Several HCV proteins interfere with the antivi-
ral signals provided by the cell-surface type I IFN receptors upon
engagement by circulating IFNs. The overexpression of HCV-core
protein in cell culture interferes with Janus kinases (JAK)/Signal
Transducers and Activators of Transcription (STAT) pathway,
HCV-envelope (E)2 or non-structural (NS)5A with the function
of protein kinase R. HCV-NS5A inhibits 2'-5’ oligoadenylate syn-
thetase and induces IL-8 which inhibits induction of the IFN-
stimulated genes (reviewed in [1]). In summary, HCV seems both
to affect the capacity to produce type I IFNs by infected cells and
to make the latter less sensitive to the antiviral effect of the same
cytokines via disturbing the signals provided by type I IFN recep-
tors (Fig. 1). In vivo models of HCV infection are required to ascer-
tain the importance of these selective defects in providing

\

Key points 1

e cDCs prime T cell responses, upon the processing and presentation of
exogenous antigens, which are preferentially presented on major
histocompatibility complex (MHC) class Il molecules, or endogenous antigens,
which vice-versa are preferentially presented on MHC class | molecules.
However, the capacity of cDCs to present exogenous antigens

derived from other cells (usually necrotic or apoptotic cells) or soluble antigens

on class | molecules is defined as cross-presentation [50-53].

« The main model of cross-presentation suggests that it requires cytosolic

proteasomes,the transporter associated with antigen processing (TAP)

the loading of the resulting peptides of the class | molecules in either the

endoplasmic reticulum (ER) or directly in the phagosomes upon reimport by

phagosomal TAP, but the precise mechanisms involved, still remains
controversial.

All tissues are “patrolled” by cDCs that, like bifacial Janus, can perform

opposing (tolerogenic or stimulatory) functions, according to the context in

which they work [17,18].

In an inflammatory context (mainly induced by infectious agents), cDCs are

activated (for instance, through PRRs engagement by PAMPs or DAMPs),

efficiently internalize antigens [86], produce various inflammatory cytokines,
and increase the expression of stimulatory (signal 1) and costimulatory

(signal 2) molecules [17, 18].

In addition, they upregulate the lymph node-specific chemokine receptors

(Cys-Cys chemokine receptor 7 [CCR7]), and thus, acquire a strong capacity

to migrate into the lymph nodes, where they can prime naive (CCR7-CD26L")

CD4 or CD8 T lymphocytes specific to the antigens that have been internalized

in the inflamed tissue, and promote their differentiation into two distinct

subpopulations, the effector memory(CCR7-CD26L") T(T,,) and the central

memory (CCR7*CD26L") T (T,,) lymphocytes [87].

T, cells migrate to the inflamed tissues because of the newly acquired

expression of tissue-specific chemokine receptors [88].

According to the microenvironmental context, lymphocytes are polarised

towards different types of effector capacities that can provide opposing

protective and harmful effects (Fig.2).

In the case of intracellular pathogen infections (e.g. viral infections), cDCs

produce IL-12, and in the presence of IFN-y, CD4 or CD8 T cell priming is

skewed towards the polarization of either proinflammatory T helper (Th)1 cells
or CD8+ T cells with high cytototoxic potential, respectively: these cells will
simultaneously provide protective responses against intracellular pathogens

and harmful responses via their immunopathological activities [89].

Under conditions (bacterial, fungal, or viral infections) in which cDCs are

stimulated to produce IL-23 (another member of the IL-12 family), and in the

presence of IL-6, transforming growth factor (TGF)-8 and IL-1, T cells differen-
tiate towards Th17 cells (producing IL-17), described to provide protection
against some extra- or intracellular pathogens, but to be also responsible for

causing severe autoimmune disorders [90-92].

* In the presence of IL-4, naiveT cells preferentially differentiated into Th2
(producing IL-4, IL-5, IL-13...) with protective responses against extracelllular
pathogens or harmful responses in the case of allergic reactions [93].

e Sustained stimulation by DCs is also critical for priming T, cells that are
trapped in the lymphoid tissues, where they remain numerically constant,
because of the expression of receptors specific for the homeostatic (IL-7 and

IL-15) cytokines [27,28]. /

.

profound impairment of innate responses in infected cells and
ultimately in restraining the priming of adequate adaptive
immune responses. Should these mechanisms be demonstrated
in vivo, they may take part in the establishment of viral persis-
tence. They may also be amplified by the absence of the genetic
polymorphism near the IL28B gene encoding IFN-lambda-3,
recently related to both the successful treatment of genotype 1
HCV with IFN-o [11], and the spontaneous resolution in the nat-
ural course of HCV infection [12].

HCV interference in the functions of innate immune cells

Plasmocytoid and conventional dendritic cells

pDCs deriving from the lymphoid lineage represent the most
important source of type I IFNs (reviewed in [3]). They produce
IFN-a/B upon engagement of TLR7 and -9 by ssRNA and dsRNA,
respectively, making them critical players in fighting viruses, par-
ticularly in the early phases of infection. However, how HCV can
induce IFN-o//B production by pDCs is unclear [3]. Indeed, TLR7
and -9 harbor the endosomal compartments and pDCs (as well
as conventional [c]DCs) do not seem permissive to HCV infection,
likely because they express CD81 but not claudin-1 that are
simultaneously required to allow HCV entry into hepatocytes
[13,14]. Moreover, DC infection by HCV has not been shown by
using highly sensitive infection systems, such as recombinant
engineer reporter HCV [3]. Another debated question is whether
pDCs are functionally competent in HCV infection. Despite the
contrasting evidence that has been reported on this topic
(reviewed in [3]), recent studies that measured functions per
pDC basis and not within total PBMCs, revealed no defect in
response to TLR stimulation by circulating pDCs of chronically-
infected individuals [15,16]. The functional defects of circulating
pDCs, which have been observed upon contact with different
non-infecting HCV products in vitro (reviewed in [3]), are difficult
to reconcile with the fact that chronically-infected individuals do
not display a generalized immuno-dysfunction (they normally
respond to other viruses or recall antigens!) and have high levels
of endogenous type I IFNs (reviewed in [3]). Therefore, we favor
the hypothesis that HCV does not interfere with the pDC func-
tions, but it makes infected hepatocytes non-susceptible to the
high levels of circulating pDC-derived type I IFNs, because of its
capacity to affect the signals triggered by their own specific type
[ IFN receptors (Fig. 1).

The second fundamental DC population in humans consists
cDCs deriving from the myeloid lineage [17,18]. Given the
critical role of cDCs in priming T cell responses (see Box 1), they
have been extensively studied in HCV infection, with the idea
that HCV-mediated inhibition of cDC functions could result in
inefficient antiviral T cell responses. Contrasting evidence
resulted from these analyses. ¢cDCs from chronically-infected
individuals have not been found to be numerically decreased in
the peripheral blood or even dysfunctional in vitro in terms of
pro-inflammatory or antigen-presentation capacities, in all stud-
ies or patients [19,20]. Similarly to pDC studies, the relevance of
both the analysis on circulating cDCs from patients, and those
showing the capability of some recombinant HCV proteins to
affect the functions of normal cDCs in vitro [21,22], is strongly
restrained by the evidence that chronically-infected individuals
are not globally immuno-compromised. In vivo models of
HCV infection are required to determine the possibility of a
selective impairment of DCs or HCV-specific T cells infiltrating
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HCV-infected livers due to the high concentrations of viral pro-
teins produced in the site of infection. The selective dysfunction
of liver-infiltrating DCs or T cells might be relevant by profoundly

affecting the adaptive immune responses against HCV at the level
of the infection site (Fig. 2).

Natural killer (NK) cells

Genetic studies demonstrated the association of some HLA and
NK cell inhibitory receptor (KIR) genes with resolution of HCV
infection [23]. Functional and molecular studies on HLA-KIR
interactions are required to determine if these genetic associa-
tions result in blocking particular KIRs expressed by NK cells
and hence in NK cell-mediated protection in animal models of
HCV infection. New studies have also shown an increased propor-
tion of NK cells expressing activating receptors, enhanced cyto-
toxic function, and defective cytokine production in chronic
HCV infection [24]. Additional investigations should be brought
forth to verify if they participate in the establishment of chronic
inflammation, on the one hand, and viral persistence, on the

-
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other hand [24]. In regards to the reports showing induction of
NK cell defects upon exposure to some HCV proteins in vitro
[25,26], in vivo models are needed to ascertain if they effectively
play a major role in chronic HCV disease development.

Adaptive immunity and HCV infection

As described above, prompt and efficient innate immune
responses are mandatory to prime naive T or B lymphocytes that
will then fight, eliminate, and permanently remember the patho-
gens encountered, via the specific recognition of microbial epi-
topes. Successful effector responses and memory establishment
by CD4 Th cells are dependent on the presence during priming of
a wide array of stimulatory signals: those provided by professional
APCs (e.g., DCs) in primis, duration of antigenic stimulus, the cyto-
kine milieu, etc. Priming of protective (cytotoxic) CD8 T cell
responses requires the same conditions, but the long-lasting CD8
T cell memory seems to be conditioned by the constant presence
of memory CD4 T cells [27]. These mechanisms guarantee the
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Fig. 2. Immune dysfunctions related to chronic HCV infection. High viral load and/or infection by HCV strains that are not susceptible to antiviral effects of endogenous

type I IFNs, facilitating HCV viral spread, might strongly affect the function of DCs, NK, B, and T cells. The misfunction of CD4 and CD8 T cells will result in inefficient effector
and memory responses and will result in the development of a state of viral persistence. This would also be conditioned by the emergence of several, non-mutually

exclusive factors, such as viral epitope escape, viral subversion, the host immunological mechanisms (PD-1, Treg cells, etc.) addressed to control immunopathology, at the
cost of the acquiring side-effects that limit protection. Under these conditions, a state of chronic low-level inflammation will take place and will be instrumental in limiting
obstructed pathway.

liver immunopathology, viral spread, and finally to ensure long-lasting survival of the host. The two red slashes going through the arrows indicate that there is an
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prompt emergence of high frequencies of competent effector T
cells that are essential for recovery. Upon the resolution of infec-
tion, effector cells disappear, whereas memory cells remain
numerically constant because of the expression of receptors spe-
cific for the homeostatic (IL-7 and IL-15) cytokines [28]. The
homeostatic proliferation of memory cells in the absence of anti-
gen, is thus critical for the prompt differentiation into effector cells,
should they re-encounter the original infecting pathogen.

The immunologic scenario promoting infection resolution is
only partially respected in acute HCV infection. However, the com-
mon conviction that HCV induces chronic infection in the majority
of infected individuals has been challenged by the observation
that T cells against multiple HCV epitopes persist in a considerable
proportion of healthy (non-infected) individuals accidentally
exposed to HCV [29,30]. This data strongly suggests that the recov-
ery from an asymptomatic form of HCV infection, as well as the
generation of efficient virus-specific T cell responses clearing
HCV are therefore far more frequent than commonly believed [31].

HCV-specific B and T cell responses

The finding that agammaglobulinemic patients can resolve acute
HCV infection upon IFN-o treatment, leads to the hypothesis that
HCV-specific T cells may compensate for the lack of neutralizing
antibodies to obtain HCV clearance [32]. However, recent data sug-
gested that the prompt emergence of neutralizing antibodies in the
early phases of infection could play a major role in clearing HCV in
immunocompetent patients [33]. Indeed, they have been detected
at high levels both during the early phase of infection in association
with the spontaneous resolution of HCV [32,33], and once chronic
HCV infection is established (reviewed in [1]). Therefore, the avail-
ability of neutralizing antibodies or of appropriate vaccines elicit-
ing them may have a central role in the prophylaxis of HCV
infection. It is possible that the role of antibodies may have been
underestimated in the past due to methodical difficulties in neu-
tralization assays before the HCVpp system was developed.

The emergence of HCV-specific T cells can be detectable in the
peripheral blood or in the liver compartment several weeks after
infection in humans or experimental chimpanzee models
(reviewed in [1,3]), corresponding with the initial peak of trans-
aminases and irrespective of clinical outcome (resolution vs.
chronicity). Despite the delayed appearance of antigen-specific
responses, the latter are essential for the HCV control (reviewed
in [1]). The majority of studies have been addressed to analyze
CD8 T cells in HCV infection, because of their pivotal role in clear-
ing intracellular pathogens. These studies revealed that the mag-
nitude of CD8 T cell responses does not correlate with the clinical
or viral outcome in acute HCV infection [34-36] (Figs. 1 and 2).
HCV-specific CD8 T cells are at a relatively high frequency, but
express a dysfunctional phenotype (weak proliferation, IFN-y
production, and cytotoxicity) and increased levels of pro-
grammed death-1 receptor (PD-1), known to be associated with
the exhausted phenotype, irrespective of infection progression
[37-42]. In contrast to HCV-specific CD8, vigorous responses of
HCV-specific CD4 T cells producing IFN-y and IL-2 (Th1 cell pro-
file) are detectable in the peripheral blood at the time of peak of
ALT levels, in patients with acute HCV infection undergoing res-
olution [35,36,43,44] (Fig. 1). The protective effects of CD4 T cells
seem to be due, not only to the antiviral cytokines produced, but
also to their capacity to help antiviral B cells and to maintain CD8
T cell memory. Indeed, work in experimental animal models sup-

port the idea that the CD4-dependent memory HCV-specific CD8
T cells are indispensable both for HCV control and for providing
long-term protection [45,46]. On the contrary, weak, absent, or
transient CD4 responses are correlated with chronic infection
progression [35,36,43,44] (Fig. 2), suggesting hence that the
simultaneous dysfunctions of both CD8 and CD4 cells are associ-
ated with disease progression in the majority of infected individ-
uals. Thus, the combination of functional HCV-specific CD4 and
CD8 T cells obviously should be the right recipe for recovery, as
it is in resolving flu, CMV, or EBV infections. This scenario may
contribute to HCV clearance in a considerable proportion of
asymptomatic infected individuals, which have been exposed to
a different source of HCV infection [29-31]. Another aspect to
consider is the possibility that other T cell subsets or functions
may intervene in dictating the fate of HCV infection. In this con-
text, the role of HCV-specific T (CD4 and/or CD8) cells with a
Th17 profile in HCV protection, chronic evolution, or pathogene-
sis is an important topic requiring more in-depth investigations
[47]. Indeed, it has been recently reported that Th17 cells play
a key role in establishing chronic viral infections [48,49]. In the
following section, the possible mechanisms that may affect the
HCV-specific adaptive immune response will be analyzed.

Mechanisms affecting adaptive immune cells in acute HCV infection

The mechanism of cross-presentation

It would be relevant to determine if the selective impairment of
HCV-specific CD8 T cell responses may be related to the observa-
tion that DCs are not susceptible to HCV infection, and thus in
principle, they cannot process endogenous HCV antigens and
directly present the resulting epitopes on class I molecules
[3,13,14]. As a result, HCV-specific CD8 T cells might be primed
only via the mechanism of cross-presentation (see Box 1). In
cross-presentation, non-infected DCs capture exogenous HCV
antigens or apoptotic liver cells carrying HCV, and then cross-
present the related HCV epitopes on class I molecules [50-53]
(Fig. 1). This mechanism might not be enough to prime efficient
CD8 T cell responses.

Key points 2

¢ The immune system has evolved to simultaneously perform different
strategies that appear opposite but eventually result in an evolutionary
advantage.

¢ On the one hand, the immune responses contribute to the species
survival, on the other hand it can lead to the sacrifice of single individuals.

« During the evolutionary process, the selective pressure led to the
generation of multiple ambiguous mechanisms to better counteract the
aggression of infectious agents.

* This is the case of the immune system strategies addressed to contain
the aggression of HCV and to limit the related liver damages.

« Following the establishment of the HCV persistence, the long-term host
survival can be obtained only through the capacity of the immune system
to establish a good relationship with the virus.

« This take place via a complex series of homeostatic mechanisms that
condition the establishment of chronic low-level immune responses,
resulting in the control of the viral spread and to limit excessive liver
damage.

« Although this is obtained at the cost of severe side effects (tumors,
autoimmune diseases...) in some individuals, these side effects are
considered irrelevant in terms of the survival of the species.
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PD-1/PD-L1 interaction

A special emphasis has been recently placed on PD-1, a death
receptor expressed by T or B cells in the late phases of activation
[37,38]. PD-1 induces peripheral T or B cell tolerance or turns off
unwanted immune responses, upon the simultaneous interaction
of the T cell receptor (TCR) or BCR with antigens and of PD-1 with
its own ligands (L): PD-L1, which is virtually expressed on all
somatic cells (particularly from inflamed tissues) and PD-L2,
and is mainly expressed by DCs [37,54]. Inflamed/infected hepa-
tocytes up-regulate expression of both PD-L1 [55] and class I
molecules bearing viral epitopes (whereas the class Il are unde-
tectable or only barely expressed) [56]. Consequently, HCV-spe-
cific effector PD-1" CD8 (recognizing class I/epitope complexes
on infected hepatocytes) more than PD-1" CD4 cells should
acquire an exhausted/dysfunctional phenotype in the site of
infection. This may account for the conserved functional capaci-
ties of HCV-specific CD4 T cells shown in patients undergoing
infection resolution, despite dysfunctional HCV-specific CD8 T
cells (Fig. 1). Otherwise, the lack of functionally competent
HCV-specific CD4, associated with exhausted CD8 T cells, would
unavoidably lead towards chronic infection in the majority of
patients (Fig. 2). The yet unresolved question is what makes the
total HCV-specific adaptive (both CD4 and CD8) T cell responses
“not-functionally-competent”. This is likely conditioned by the
emergence of several, non-mutually exclusive factors, such as
high viral load, viral epitope escape, viral subversion, and host
immunological mechanisms (PD-1, T regulatory [Treg] cells,
etc.) addressed to control immunopathology, at the cost of the
side effect of limiting protection. All these factors will induce
the generation of non-protective virus-specific CD4 and CD8 T
cells, which might even become harmful (Fig. 2).

Viral mutations

HCV’s strong capability to mutate B or T cell epitopes and possi-
bly to escape related responses at several levels (antigen process-
ing, MHC binding, TCR or BCR recognition, etc.) is due to its high
replication rate and the lack of proofreading capacity of its poly-
merase (reviewed in [1]). The evidence that about 50% of the CD8
epitopes continue to escape [57,58] leaving another 50% that do
not mutate, renders the role of mutational escape in HCV persis-
tence unclear. Despite both the huge T or B cell repertoire and the
fact that several viral epitopes do not mutate due to fitness con-
straints (reviewed in [1]), there are some CD8 escape mutations
associated with fitness costs [59-61]. These, in synergy with
additional mechanisms (high viral load, viral subversion, host
immune-suppressive mechanisms, etc.), may participate in the
establishment of viral persistence, particularly during the course
of the acute phase of infection when the highest level of selective
pressure occurs (reviewed in [1]).

Virus-induced immune-subversion

As mentioned above, the studies revealing a general subversion
of both T cell and DC functions, upon exposure to some HCV pro-
teins in vitro [21,22,62,63], are difficult to reconcile with the fact
that chronically-infected individuals are not globally immuno-
compromised. However, if in vivo models of HCV infection dem-
onstrate a selective impairment of T cells infiltrating HCV-
infected livers due to the high concentrations of viral proteins
produced at the site of infection, this may participate in establish-
ing HCV persistence by affecting the local adaptive immune
responses.
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Regulatory cytokines

A recent report demonstrated that peripheral HCV-specific CD4
and CD8 T cells producing IL-10 are detectable in the early phases
of acute HCV infection [64]. These cells seem to suppress antiviral
effector responses, promoting chronic evolution of infection,
while limiting progressive liver damage [64]. These suggestions
are reminiscent of our previous studies showing that IL-10 pro-
ducing HCV-specific CD8 T cells infiltrate the liver of chroni-
cally-infected individuals [65]. They inversely correlated with
both the frequency of HCV-specific T cells producing IFN-y and
the inflammatory staging at the level of liver biopsies, suggesting
that they modulate excessive liver immunopathology [65].
Accordingly, it has been reported that intrahepatic HCV-specific
IL-10 producing CD8 T cells prevent liver damage during chronic
infection [66]. TGF-B-producing virus-specific CD4 and CD8 T
cells have been related to antiviral immune suppression and
chronic HCV infection evolution [67]. Taken together, these data
suggest that regulatory cytokines such as IL-10 or TGF-B mini-
mize liver inflammation, at the cost of the protective immune
responses clearing the virus (Fig. 2).

CD25"Foxp3™ Treg cells

Treg cells expressing the transcription factor forkhead box P
(Foxp)3 develop either in the thymus (natural) or in the periph-
ery from conventional CD4"* T cells (induced) [68-71]. A lack of
Foxp3 expression results in the complete absence of Treg cells,
which leads to the development of severe autoimmunity, as
observed in immunodysregulation polyendocrinopathy enteropa-
thy X-linked (IPEX) syndrome [68-71]. The main physiological
functions of Treg cells are as follows: (a) to participate in the
establishment of peripheral tolerance by inhibiting autoreactive
T or B lymphocytes that escaped either thymus or bone marrow
checkpoints, respectively (central tolerance), (b) to suppress
ongoing protective immune responses once they are no longer
necessary or become harmful after the elimination of the patho-
gen and (c) to limit excessive immunopathology during chronic
inflammatory diseases. As a result of the expression of the II-2
gene-inhibitory Foxp3 transcription factor, Treg cells do not pro-
duce IL-2 and are unable to respond to antigens (anergy) [72,73].
However, Foxp3 activity maintains high levels of IL-2 receptors
(CD25™) on Treg cells, hence compensating for the incapacity of
producing IL-2. Indisputably, CD25" Treg cells promptly prolifer-
ate both in vitro and in vivo in response to relevant antigens in the
presence of paracrine IL-2, which is mainly produced by respon-
der (effector) T-lymphocytes, but it is dominantly absorbed by
Treg cells expressing higher CD25 levels than responder T cells
[74-76]. This appears to represent a key suppression mechanism,
because CD25" Treg cells steal the majority of IL-2 produced by
responder T cells that in turn will be deprived of their most
important growth factor. Furthermore, Treg cells suppress via dif-
ferent, likely non-mutually exclusive mechanisms, involving
membrane molecules (such as cytotoxic T-lymphocyte antigen-
4 or adenosine receptors) and suppressive cytokine production
(such as TGF-p or IL-10) [68-71]. Treg cells are induced and pro-
liferate in response to HCV and seem to modulate liver inflamma-
tion in the course of chronic infection [77,78]. Therefore, the
model of HCV infection supports the idea that Treg cells partici-
pate in the establishment of a fine equilibrium between immuno-
pathology and immune protection, ultimately resulting in the
long-lasting survival of the host during chronic infections
[69,70,79-83] (Fig. 2). This would be dependent on a compromise
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between a status of chronic low-level hepatic inflammation and
the generation of antiviral responses that, although unable to
clear HCV, are enough to limit excessive viral spread. It is unclear
how Treg cells control unwarranted inflammation without com-
pletely suppressing the protective immune responses. High
CD25 expression by Treg cells drives a positive feedback loop,
as the dominant IL-2 capture increases STAT-5 phosphorylation
(pSTAT-5) that in turn drives Treg cell proliferation and function.
We recently showed that PD-1 is over-expressed in Foxp3* Treg
cells and limits Treg cell proliferation and function during chronic
HCV infection. The expression of PD-1, upon contact with its own
ligands, inhibits pSTAT-5 via the activation of Src homology 2-
containing tyrosine phosphatases (SHPs) [78] (Fig. 3). As a conse-
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Fig. 3. PD-1 controls Treg cells in HCV infection. (A) Responder
(CD25'"""Foxp3~) Tgy cells proliferate in response to HCV antigens, and produce
IL-2, which through IL-2R (CD25) signaling, induces pSTAT-5. This leads to the
development of the genetic program dictating their effector phenotype. In
parallel, the same phenomena occur for the (CD25"Foxp3*) Treg cells that do not
proliferate to viral antigens alone because of the expression of the II-2 inhibitory
gene Foxp3. Their proliferation is dependent on the dominant capture of
paracrine IL-2 that is initially produced by responder T cells. CD25"Foxp3* Treg
cells can proliferate by the engagement of the Jak3/STAT-5 pathway, and
extrinsically down-regulate the Tgy cell responses. (B) In the late phases of T
cell activation, the death receptors intrinsically deliver negative signals to
activated T cells (including Fas, CTLA-4, and PD-1) in order to terminate the T cell
responses. PD-1 is up-regulated on both responder and Treg cells and upon
contact with PD-L1/2 inhibits pSTAT-5 possibly via SHP2. This mechanism results
in limiting both Tgy cell responses and excessive Treg cell function. Under
conditions resulting in HCV resolution, this loop is self-limited because of the
disappearance of the viral antigenic stimuli. During a chronic HCV infection, in
which responder T cells have been unable to clear HCV, the negative loop is
maintained by the persisting HCV antigens that chronically stimulate IL-2
producing responder T cells. Chronic PD-1 expression on both Tgy and Treg cells
modulate the potential excessive pSTAT-5-dependent cell proliferation. The
resulting contra-regulation of Treg cells will have an important role in limiting
excessive suppression of immune responses, controlling the spreading virus at
the cost of maintaining chronic low-level liver immunopathology. This mecha-
nism establishes long-lasting survival of the host.

quence, responder T cells can escape from excessive expansion of
Treg cells and render them available for responding to possible
novel waves of infection. This negative feedback loop assumes a
different significance during chronic infections, such as HCV.
The incapacity to clear HCV by the immune system (due to the
various mechanisms emphasized above) perpetuates a vicious
spiral, whereby responder T cells are chronically stimulated to
produce IL-2 that will be dominantly adsorbed by CD25" Treg
cells that in turn will continuously suppress the effector
responses. PD-1 up-regulation limits the excessive expansion of
Treg cells by controlling pSTAT-5 and fine-tunes Treg function
in order to minimize the immunopathology without completely
switching off those intended to limit excessive viral spread
(Fig. 3). This may represent a critical contra-suppression mecha-
nism that has evolved to assure that Treg cells have limited sup-
pression. Homeostatic balance participates in establishing a
status of chronic low-level liver inflammation that is in turn
instrumental to ensure long-lasting survival of the host.

Conclusions

Through the different (non-mutually exclusive) mechanisms
illustrated above, the host survives for a long time in parallel with
both the persistent HCV infection and a low-grade liver inflam-
mation that can degenerate into liver failure after several decades
(See Box 2). The ambiguous co-existence of virus and inflamma-
tion results in an advantage for the evolutionary process and
hence for survival of the human species. If immune responses
were invariantly strong and aggressive during a persistent infec-
tion such as HCV, they would be unable to eliminate that infec-
tion, because of its acquired capacity to escape or to subvert
them. In such a situation, exuberant (but non-protective)
responses would produce prompt irreversible tissue (hepatic fail-
ure) damage, leading to catastrophic epidemic infections. Consid-
ering this point of view, chronic (low-level) inflammatory
diseases seem to represent a sort of safeguard for the human sur-
vival. We can assume that chronic inflammation may be defined
as the “Yin and Yang” of the immune system. On the one hand, it
guarantees the long-term survival of human hosts despite patho-
gen persistence. On the other hand, the imbalance of the homeo-
static mechanisms maintaining chronic inflammation may
degenerate into severe “side-effects” (i.e., the development of
either autoimmune diseases or tumours) in a minority of infected
individuals. From an evolutionary point of view, the onset of
autoimmune diseases or the development of some tumours
might be the price to pay following the establishment of chronic
inflammation. Indeed, a status of pre-existing chronic inflamma-
tion can contribute to the development of cancer, by the produc-
tion of growth and angiogenic factors eventually promoting
cancer-cell survival, implantation, and growth. In addition,
chronic inflammation can affect the immune-surveillance
directly via its own intrinsic mechanisms (i.e., expansion of Treg
cells, T cell exhaustion, etc.), and indirectly by the incapacity to
limit the immunosuppressive effects of tumours. The production
of soluble factors (i.e., pro-inflammatory or cell growth cytokines)
that favor cell proliferation, generally needed for the immune
system to defend the host efficaciously, can also facilitate the
mitotic cycle of non-lymphoid cells. In the long run, this pro-
longed stimulation can induce, as in the case of liver cirrhosis
by both HBV and HCV, necrosis, cell renewal, and even neoplastic
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transformation [84]. A further example in HCV infection, is the
chronic stimulation of B lymphocytes that can induce the mono-
clonal expansion of anti-IgG antibodies, which are responsible for
the formation of cryoglobulins, autoantibodies, or even the estab-
lishment of follicular B cell lymphomas [85].

The immune system simultaneously expresses different strat-
egies that are seemingly opposite but eventually result in an evo-
lutionary advantage. On the one hand, the immune response
contributes to species survival; on the other hand it can lead to
the sacrifice of single individuals. During the evolutionary pro-
cess, selective pressure has led to the generation of multiple
ambiguous mechanisms to help counteract aggressive infectious
agents. Although this is obtained at the cost of severe side-effects
(tumour development, autoimmune diseases) in some individu-
als, these side-effects are considered irrelevant in terms of the
survival of the species.

The challenge for scientists is to eliminate the side-effects that
emerge in the chronic HCV-host relationship (i.e., cirrhosis, liver
failure, HCC, autoimmunity, etc.), possibly via ad hoc modeling
and production of new antiviral drugs, immuno-modulatory mol-
ecules, therapeutic antiviral antibodies, antiviral small interfer-
ence (si)RNAs, systems restoring T cell exhaustion (by
inhibiting PD-1, Treg cell function, IL-10, or TGF-B, etc.), and
new vaccination strategies.
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