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Background & Aims: Yearly, approximately 20 million people
become infected with the hepatitis E virus (HEV) resulting in over
3 million cases of acute hepatitis. Although HEV-mediated hep-
atitis is usually self-limiting, severe cases of fulminant hepatitis
as well as chronic infections have been reported, resulting annu-
ally in an estimated 60,000 deaths. We studied whether pluripo-
tent stem cell (PSC)-derived hepatocytes, mesodermal and/or
neuroprogenitor cells support HEV replication.
Methods: Human PSC were differentiated towards hepatocyte-
like cells, mesodermal cells and neuroprogenitors and subse-
quently infected with HEV. Infection and replication of HEV
was analyzed by qRT-PCR, RNA in situ hybridization, negative
strand RT-PCR, production of infectious virions and transfection
with a transient HEV reporter replicon.
Results: PSC-derived hepatocytes supported the complete repli-
cation cycle of HEV, as demonstrated by the intracellular pres-
ence of positive and negative strand HEV RNA and the
production of infectious virions. The replication of the virus in
these cells was inhibited by the antiviral drugs ribavirin and
interferon-a2b. In contrast to PSC-derived hepatocytes, PSC-
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derived mesodermal cells and neuroprogenitors only supported
HEV replication upon transfection with a HEV subgenomic
replicon.
Conclusion:We demonstrate that PSC can be used to study the
hepatotropism of HEV infection. The complete replication cycle
of HEV can be recapitulated in infected PSC-derived hepatocytes.
By contrast other germ layer cells support intracellular replica-
tion but are not infectable with HEV. Thus the early steps in
the viral cycle are the main determinant governing HEV tissue
tropism. PSC-hepatocytes offer a physiological relevant tool to
study the biology of HEV infection and replication and may aid
in the design of therapeutic strategies.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

In 1978, a novel non-A, non-B hepatitis virus was discovered
which was identified in 1983 as the hepatitis E virus (HEV).
HEV is an important and emerging cause of acute self-limiting
hepatitis [1,2]. However, fulminant cases of hepatitis may occur
particular in pregnant women with mortality rates up to 20–
30%. In immunocompromised solid-organ transplant recipients
and HIV-infected patients the virus may result in chronic hepati-
tis, which evolves, in some patients, rapidly to cirrhosis, graft loss
and death [3–8].

In vitro HEV culture systems have only recently been estab-
lished. Therefore relatively little information is available on the
biology of HEV infection and replication, for example the mecha-
nism by which HEV enters the host cell remains elusive. It is
believed that following entry in the cell, HEV replicates in the
cytoplasm through a negative strand RNA ((�)ssRNA) intermedi-
ate synthesized by the viral RNA-dependent RNA polymerase
(RdRp) [9]. Although HEV is a hepatotropic virus, there is evi-
dence that it may also replicate in extrahepatic sites; for instance,
HEV RNA has been detected in cerebrospinal fluid, possibly link-
ing HEV infection to neurological conditions that are occasionally
observed in patients with (chronic) HEV infections [10,11].

In recent years, HEV strains have been isolated from fecal
specimens of patients with fulminant (JE03-1760F strain) and
15 vol. xxx j xxx–xxx

: A novel model for hepatitis E virus replication. J Hepatol (2015), http://

mailto:nicky.helsen@med.kuleuven.be
http://dx.doi.org/10.1016/j.jhep.2015.11.013
http://dx.doi.org/10.1016/j.jhep.2015.11.013


Research Article

chronic hepatitis (Kernow-C1 strain) that replicated efficiently in
cell culture [12–14]. Cell lines that are used to study the molec-
ular biology of HEV are the hepatoma cell lines HuH7, HepG2/
C3A, PLC/PRF/5, HepaRG and surprisingly the lung-derived A549
adenocarcinoma cell line [12–15]. These transformed cell lines
are physiologically less relevant to study HEV replication than
primary hepatocytes, the latter are however not readily available.
In general hepatoma cell lines poorly express drug metabolizing
enzymes and might lack certain host factors that are important
to study infection with hepatotropic viruses. For instance,
hepatoma cell lines can only be infected with the hepatitis B virus
when they overexpress the sodium taurocholate co-transporting
polypeptide [16–19]. Although human primary hepatocytes
would be the best cell source to study HEV, they are short in
supply.

Human embryonic (hESC)- and induced pluripotent stem cell
(hiPSC)-derived hepatocytes are a valuable alternative to primary
hepatocytes. Compared to primary hepatocytes, hESC and hiPSC
have numerous advantages, including their capacity to self-
renew long-term without loss of differentiation potential, their
potential to differentiate to any given cell type and their ability
to generate patient-specific disease models [20–23]. Although
stem cell-derived hepatocytes mimic fetal but not adult hepato-
cytes [24], numerous studies have demonstrated the use of
differentiated hepatocytes to study drug-induced liver toxicity
[25–28]. Moreover, hiPSC-derived hepatocytes make it possible
to model liver diseases in vitro and to assess patient-specific drug
responses [29,30]. hESC- and hiPSC-derived hepatocyte-like cells
(hPSC-hepatocytes) may also be valuable cell culture models to
study the infection of hepatocytes with hepatotropic viruses
and parasites [31]. Others and we previously demonstrated that
hESC/hiPSC- hepatocytes can be infected with the hepatitis C
virus [32–34] and that such cultures offer a model to study
virus-host interactions [35]. Furthermore, PSC-hepatocytes have
been shown to be susceptible to infection with the hepatitis B
virus [36].

Here, we demonstrate that PSC-hepatocytes support the com-
plete HEV replication cycle, infection, replication and generation
of infectious virions, making this an attractive and relevant
in vitro model system (in non-cancerous hepatocytes) to study
the biology of HEV replication that and to aid in the design of
therapeutic strategies against the virus. Because PSC can not only
differentiate into hepatocytes, but also to mesodermal and neu-
roprogenitors (NPCs), this PSC-derived model also allowed to
demonstrate that non-endodermal germ-line progeny do not
allow HEV entry, even if they do support HEV replication upon
transfection with a subgenomic HEV replicon.
Materials and methods

Virus

Wild-type and 1634R infectious HEV stocks (Kernow-C1 p6, genotype 3, GenBank
accession number JQ679013) [13] were derived from plasmid DNA as described
[37–39].

Virus inoculation

Day 20 PSC-derived hepatocyte progeny was infected with 300 ll HEV stock
diluted to 3 � 107 viral RNA copies/ml per well and incubated for 24 h at 37 �C
in a 5% CO2 humidified incubator. After 24 h, the inoculum was removed and cells
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were washed 5 times with 500 ll of DMEM, before addition of 500 ll of hepato-
cyte differentiation medium. Medium was changed every other day by collecting
300 ll and replacing it with 350 ll fresh hepatocyte differentiation medium.
Infection of mesodermal and neural progenitor cell differentiations was per-
formed similarly. Infection experiments were ended 12 days post-infection.
Supernatant was collected every other day during medium changes while cells
were lysed with 350 ll RLT buffer (Qiagen, Hilden) 4, 8, 10 and 12 days post-
infection. An identical protocol was used for a clinical plasma sample from an
acutely HEV genotype 3-infected patient (a kind gift from Heiner Wedemeyer,
Hannover, Germany). The plasma sample was diluted 1:3 in hepatocyte differen-
tiation medium and subsequently used for inoculation.
Viral infection inhibition experiments

Ribavirin (ICN Pharmaceuticals, Quebec) and interferon alpha 2b (IFN; Intron-A�,
Schering-Plough, Kenilworth, NJ) were used to inhibit viral replication. Ribavirin
(100 lM) and interferon (1000 U/ml) were added to the differentiation medium
starting at the time of the inoculation until the end of the infection experiment.
Reinfection assays

HepG2/C3A cells were seeded into 6-well plates at 2 � 105 cells per well and
incubated for 24 h at 37 �C. Day 8, 10 and day 12 culture medium samples from
HEV-infected stem cell-derived hepatocytes (a fixed volume of 400 ll for each
sample) were diluted with 500 ll of DMEM supplemented with 10% FBS and inoc-
ulated on HepG2/C3A cultures. Infection was allowed to proceed for 4 h at 35 �C.
Afterwards, inoculum was removed, cell layers were washed three times with
2 ml of phosphate-buffered saline, 2.5 ml of DMEM with 10% FBS and 1% pen/
strep was added and cultures were incubated at 35 �C for 20 days with regular
changing of the medium as described [37]. After 20 days, cellular lysates were
prepared as described.

QuantiGene ViewRNA fluorescence in situ hybridization (FISH)

RNA FISH was performed using the QuantiGene ViewRNA protocol. Briefly,
infected or uninfected stem cell-derived hepatocytes or HepG2/C3A cells were
fixed with 4% formaldehyde for 30 min at room temperature. After fixation, cells
were permeabilized with detergent solution for 5 min (Affymetrix, Santa Clara,
CA) and treated with proteinase K (Affymetrix) for 10 min. Cells were hybridized
for 3 h at 40 �C with a Quantigene ViewRNA designed probe covering the region
858–1791 of ORF1 of the HEV clone Kernow-C1 p6 (Accession number
HQ389543). After hybridization the signal was amplified by sequential reaction
of the PreAmplifier and the Amplifier mix (Affymetrix) followed by conjugation
with the fluorescent dye-conjugated label probe (Affymetrix). Cells were counter-
stained with DAPI (Affymetrix). Images were taken by the AxioImagerZ.1 fluores-
cence microscope.

HEV replicon replication

Genotype 3 reporter replicon viral RNA was derived from a plasmid encoding
Kernow-C1 p6/luc, (kind gift from Suzanne U. Emerson) [13]. Viral RNA was
in vitro transcribed from MluI-linearized plasmid DNA with the RiboMAX Large
Scale RNA Production System-T7 (Promega) and capped with the ScriptCap
m7G capping system (Cellscript, Madison, WI). HuH7 cells were seeded into
24-well plates at 4 � 104 cells per well, mesoderm cells and neuroprogenitors
were seeded at a density of 2 � 105 cells per 24 well. Cells were transfected with
capped RNA transcripts (200 ng per well) 24 h later using Lipofectin (Life Tech-
nologies) according to the manufacturer’s instructions. Transfected cells were
incubated at 37 �C and 30 ll of cell culture medium was removed from each well
and stored at �80 �C every day. After 3 days, media were thawed and Gaussia
luciferase activity was measured in 20 ll culture mediumwith the Renilla lucifer-
ase assay system (Promega). For mesodermal cell differentiations, luminescence
signal was normalized for the approximate number of seeded cells where
necessary.

Statistics

Data values represent average ± standard error of the mean (SEM) and were ana-
lyzed by the two-tailed Student’s t test. p values <0.05 (⁄), p <0.01 (⁄⁄), p <0.001
(⁄⁄⁄) and p <0.0001 (⁄⁄⁄⁄) were considered statistically significant.
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Fig. 1. HEV infection of hESC- and hiPSC-derived hepatocyte cultures. (A) After
inoculation of day 20 hESC (n = 6), hiPSC (n = 3)-hepatocytes and HepG2/C3A cells
(n = 3), HEV RNA was detected in the culture supernatant on the indicated time
points and quantified by qRT-PCR. HEV RNA was quantified in intracellular
lysates 4, 8, 10 and 12 days after infection. Results were expressed as the mean of
six (hESC), three (hiPSC) and three (hepG2/C3A) independent experiments ± SEM.
(B) qRT-PCR results 10 days after infection for innate immune response genes
demonstrated higher expression of interferon response genes in hiPSC-hepato-
cytes compared to hESC-hepatocytes. Results represent the mean of three
independent experiments ± SEM relative to uninfected control cells (UIC).
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Results

Stem cell-derived hepatocyte cultures support the full HEV
replication cycle

The pluripotency of hESC (H9) and hiPSC (BJ1) lines was first con-
firmed (Supplementary Fig. 2). PSCs were differentiated towards
hepatocyte-like cells (hPSC-hepatocytes) during a 20-day differ-
entiation protocol. Immunofluorescence staining, flow cytometry
and gene expression analysis demonstrated that PSC-hepatocytes
were positive for AFP, HNF4a, AAT and albumin, and secreted
albumin and AAT (Supplementary Fig. 3).

PSC-hepatocytes were inoculated with Kernow-C1 p6 geno-
type 3 HEV that carries a G1634R mutation in the C-terminal
region of the HEV polymerase. We recently reported that this
mutation increases the replication capacity of genotype 3 HEV
in vitro [38]. HEV RNA was detected (by qRT-PCR) in the culture
medium of infected hESC-hepatocytes on day 2 after infection
and increased overtime from 1.5 ± 0.4 � 105 to 5.1 ± 1 � 105 viral
RNA copies ml�1 on day 12 after infection (Fig. 1A). It should be
noted that the copy numbers were not corrected for culture med-
ium replacement. Indeed, every other day, half of the culture
medium was replaced, which accounts for a final dilution factor
of about 40. Viral RNA was also detected on day 4, 8, 10 and 12
after infection in lysates of the infected hESC-hepatocytes and
the viral RNA copy number remained constant during this
time-span (Fig. 1A). The number of RNA copies in the supernatant
of hiPSC-hepatocytes increased from 6 ± 2 � 104 to
2.9 ± 0.5 � 105 RNA copies ml�1 between day 2 and 12 after
infection (Fig. 1A), and remained stable at the intracellular level
(Fig. 1B). Although the differentiation capacity of hESC and hiPSC
was comparable (Supplementary Fig. 3), intracellular HEV RNA
copy numbers in hiPSC-hepatocytes were significantly lower
(Fig. 1A). This might be explained by the presence of a stronger
innate immune response in hiPSC-hepatocytes. Indeed we
detected a higher level of transcripts for the IFN response genes,
EIF2AK2, MX1, ISG15 and IFNb in hiPSC-hepatocytes compared
with hESC-hepatocytes (10 days post-infection) (Fig. 1B).

As control, hPSC-hepatocytes were inoculated with a
UV-inactivated virus stock. No HEV RNA copies were detected
intracellularly or in the culture medium of the infected hPSC-
hepatocytes (data not shown). The characteristics of the infection
of hPSC-hepatocytes by HEV was directly compared with that of
the established HEV model in HepG2/C3A cells [13]. HepG2/C3A
cells were infected under the same conditions as hPSC-
hepatocytes (Fig. 1A). At the intracellular level there was only a
slight difference between the viral RNA levels detected in
infected hPSC-derived hepatocytes and the infected HepG2/C3A
cells. Between day 2 and day 6 post-infection, HEV RNA copy
numbers in supernatants of HepG2/C3A cells were comparable
with those in PSC-hepatocyte supernatants. However, the num-
ber of RNA copies continued to increase in supernatants of
infected HepG2/C3A cells whereas levels reached a plateau in
infected hPSC-hepatocytes from day 4–6 onwards. This might
be explained by the continued proliferation of HepG2/C3A cells
during the infection process whereas hPSC-hepatocytes are
mostly non-dividing. Alternatively, the fact that the Kernow-C1
p6 strain has been adapted to the specific environment of
HepG2/C3A cells through six consecutive passages might explain
this difference [13].
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Finally, we inoculated hPSC-hepatocytes with serum from an

acutely infected genotype 3 HEV patient. However, no robust
HEV replication was observed, which is not unexpected, since
in vitro culturing of clinical isolates of HEV has proven to be
extremely difficult, even in primary hepatocytes [45,46]

Both (+)ss and (�)ss HEV RNA is detected in the infected hepatic
progeny

Next RNA in situ hybridization was used to localize (+)ss viral
RNA in hPSC-hepatocytes. This technique specifically detects
the presence of HEV RNA by hybridization of an RNA probe to
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Fig. 2. Detection of both (+)ss and (�)ss HEV RNA in hepatocyte progeny. (A)
Ten days after infecting ESC-derived hepatocytes, cells were fixed and stained for
HEV RNA by in situ RNA hybridization. Mock-infected and infected cells stained
without HEV RNA probe were used as negative controls. Images are represen-
tative of three independent experiments (Scale bar = 50 lm). (B) Strand-specific
RT-PCR demonstrated that negative strand HEV RNA was detected in the
intracellular lysates of ESC- and iPSC-hepatocytes while positive-sense RNA was
detected in all inoculated cultures in both culture medium samples and lysates.
Images are representative of three independent experiments. Ex, RNA extracted
from culture medium samples; In, RNA extracted from lysates; L, 100 basepair
DNA ladder (Promega).
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the positive-sense viral RNA. Small clusters of positive cells were
detected 10 days post-infection in infected hPSC-hepatocytes and
HepG2/C3A cells, but not in mock-infected control cells or
infected cultures that had been stained without the HEV probe
(Fig. 2A; Supplementary Fig. 4).

Because HEV replicates, akin to other (+)ssRNA viruses,
through a (�)ssRNA intermediate, the presence of negative strand
RNA is the ultimate proof of active viral replication [47]. To this
end, we used a strand-specific RT-PCR protocol. No (+)ssRNA or
(�)ssRNA was detected in non-infected lysates and culture med-
ium collected from mock-infected cells (Fig. 2B). (+)ssRNA was
detected in the lysates and the supernatant of HEV-infected
hESC- and hiPSC-hepatocytes whereas (�)ssRNA was only
detected in the lysates, but not in the supernatant of infected
hESC- and hiPSC-hepatocytes. This confirms that the hPSC-
hepatocytes support HEV replication (Fig. 2B).

Inhibition of HEV replication

To further corroborate the observation that HEV replicates in
hPSC-derived hepatocyte progeny, the effect of the replication
inhibitors ribavirin (RBV) and IFN was studied [37]. Treatment
of HEV-infected hepatocyte progeny with 100 lM ribavirin or
1000 U/ml IFN markedly and significantly reduced HEV RNA
copies number both intra- and extracellularly in infected hESC-
(Fig. 3A) and hiPSC-hepatocytes (Fig. 3B). The observed lag time
in the antiviral effects of IFN and RBV in hPSC-hepatocytes at
day 4 post-infection could be due to the detection of residual
viral RNA remaining from the inoculum that has attached to
the cell, but has not been internalized. By day 8 post-infection,
these remnants are probably degraded or released, explaining
the strong antiviral effect observed at this point. Differences
between hESC- and hiPSC-hepatocytes could be due to subtle dif-
ferences in the cell membrane composition of these cells, result-
ing in differences in virus attachment.

Comparison of the replication efficiency of wild-type and 1634R
mutant HEV in hESC-derived hepatocyte progeny

We recently demonstrated that a G1634R mutation in the HEV
polymerase enhances the in vitro HEV replication in HepG2/C3A
and HuH7 cells [38]. Because of this replication advantage, initial
studies were performed with HEV genotype 3 containing the
1634R mutation. In line with these results, the HEV RNA copy
number in hPSC-hepatocytes or supernatant following infection
with wild-type HEV was consistently lower than in cultures
infected with mutant HEV, although this did not reach statistical
significance (Supplementary Fig. 5).

hESC-derived hepatocyte progeny infected with 1634R mutant HEV
produces infectious virus capable of re-infecting hepatoma cells

Detection of infectious virus in culture supernatant of infected
hPSC-hepatocytes provides evidence that these cells support
the full replication cycle of HEV. Additional confirmation was
obtained by assessing whether HEV infected PSC-hepatocyte
supernatant contained infectious virions. When day 8, 10 or 12
culture medium of wild-type HEV-infected hESC-hepatocytes
(three independent experiments) was used for reinfection of
HepG2/C3A, in only one of the 9 samples detectable levels of
intracellular HEV RNA were measured. By contrast, culture
: A novel model for hepatitis E virus replication. J Hepatol (2015), http://
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supernatant collected from medium of hESC-hepatocytes that
had been infected with mutant R1634 HEV, resulted in infection
in 4 of 9 HepG2/C3A cultures. The moderate number of successful
re-infections may be explained by the rather low viral titer in the
culture medium combined with the relatively low efficiency of
infection of HepG2/C3A cells [13,14]. Nevertheless, the infectivity
of the culture medium collected from mutant 1634R HEV-
infected hESC-hepatocytes provides further evidence that these
cells support the complete HEV replication cycle, including the
production of infectious viral particles.

hPSC-derived mesoderm and neuroprogenitor cells do not support
complete HEV replication

To assess whether HEV infection and replication occurs specifi-
cally in hPSC-derived hepatocytes and not in other cell types,
hESC-derived mesodermal cells (hESC-mesoderm) and differenti-
ating NPCs (hESC-NPCs) were generated. Flow cytometry analysis
of the hESC-mesoderm demonstrated that >95% of cells stained
positive for PDGFRb, a marker expressed by mesenchymal cells
(Supplementary Fig. 6A). qRT-PCR analysis a 10–100 fold increase
in levels of mesoderm specific transcripts (alpha smooth muscle
actin (aSMA), leech homeobox 1 (LOX1) and collagen type 1 alpha
1 (COL1A1) (Supplementary Fig. 6B)). Immunofluorescence stain-
ing confirmed the presence of aSMA while there was no detect-
able expression of AAT, HNF4a, albumin or AFP (Supplementary
Fig. 6C). qRT-PCR analysis of the hESC-NPCs demonstrated a
10–1000 fold increase in transcripts for NPC-specific transcripts
(distal-less homeobox 2 (DLX2), PAX6 (paired box 6) and brain
lipid-binding protein (BLBP)) (Supplementary Fig. 6D). In addi-
tion, hESC-NPCs stained positive for nestin and PAX6 but negative
for AAT, HNF4a, albumin or AFP (Supplementary Fig. 6E).

hESC-mesoderm and -NPCs were infected under the same
conditions that were used to infect hPSC-hepatocytes. On day 2
post-infection, viral HEV RNA was detectable in the culture
supernatant of hESC-mesoderm and -NPCs, however from day 4
onwards the number of RNA copies in both cultures decreased
significantly, which was in contrast to the situation in culture
medium of hESC-hepatocytes (Fig. 4). Similarly, HEV RNA copy
numbers in cell extracts of hESC-mesoderm and -NPCs decreased
progressively (Fig. 4). Neither RBV nor IFN had a significant effect
on the viral RNA levels, suggesting that the viral RNA detected
was not the result of HEV replication but rather a remnant of
the inoculum (Fig. 5A). Moreover, no negative strand RNA was
detected in the lysates of infected hESC-mesoderm and -NPCs,
confirming that these non-endodermal lineages do not support
replication of the HEV (Fig. 5B).

The entry of HEV is restricted to hPSC-derived hepatocytes

To examine whether the apparent failure to infect hESC-
mesoderm and -NPCs with HEV occurs at the level of RNA repli-
cation or rather at an early step of the viral life cycle, both cell
populations were transfected with the genotype 3 subgenomic
p6/luc HEV replicon to examine whether these non-endodermal
progeny cells support intracellular HEV replication. Interestingly,
we demonstrated that both hESC-mesoderm and -NPCs do sup-
port replication of the HEV replicon, which for the hESC-NPCs,
: A novel model for hepatitis E virus replication. J Hepatol (2015), http://
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approached levels that were also observed in the HuH7 hepatoma
control cell line (Fig. 6). Furthermore, HEV replicon replication
was in all three cell lines efficiently inhibited by RBV treatment.
This provides compelling evidence that the inability of HEV to
enter into hESC-mesoderm and -NPCs is the main reason why
these cells are not supporting the complete replication cycle of
the HEV.
Discussion

Hepatitis E is an emerging disease in developing and industrial-
ized countries that typically results in acute self-limiting hepati-
tis, but severe cases of both chronic and acute hepatitis have been
reported [48]. Here, we demonstrate that differentiated hepato-
cyte progeny from PSC support the complete replication of HEV
and thus forms a physiologically relevant model system to study
the biology of HEV replication and strategies to inhibit viral repli-
cation. Moreover, the pluripotent nature of these stem cells,
Please cite this article in press as: Helsen N et al. Stem cell-derived hepatocytes
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allowed us to generate mesodermal and ectodermal cell types.
We demonstrate that these cannot be infected although they sup-
port intracellular replication of the virus. This cell culture model
(s) thus provides an elegant model to study the mechanism
underlying the hepatotropism of HEV.

Interest in HEV research is growing due to the increasing
medical importance of HEV infections, yet currently available cell
culture models rely mostly on the use of hepatoma cells. These
are however transformed cell lines that may not completely reca-
pitulate the biology of HEV replication in the infected hepatocyte.
Therefore, other cell sources are being explored for their ability to
support HEV infection and replication.

In 2012, a porcine ESC line was differentiated into hepatocytes
and successfully infected with swine fecal samples containing
HEV of genotype 3 [15]. Viral HEV RNA was detected until
35 days after infection in the supernatant and started to increase
from day 8 onwards. Similarly to our findings, intracellular viral
RNA levels remained constant in the swine ESC-derived
hepatocytes, but were lower compared to what we observed in
hPSC-hepatocytes. Negative strand RNA was also detected
in porcine-derived hepatocytes, but because the low viral titer
in the culture medium, reinfection experiments failed. By
contrast, we detected in the supernatant of almost half of
infected hESC-hepatocytes infectious viral progeny capable of
re-infecting HepG2/C3A cells. Thus human PSC-hepatocytes
support the entire HEV replication cycle and thus allow the
study of the complete biology of HEV infection and replication
in a physiologically relevant context. In line with this, a recently
published paper employed hPSC-hepatocytes to study the effect
of sofosbuvir on HEV replication [49].

The number of HEV RNA copies in the culture medium was
lower in primary HEV-infected hPSC-hepatocytes compared to
HepG2/C3A cells that had been infected under the same condi-
tions. Noteworthy, intracellularly and during the initial 4–6 days
after infection RNA copy levels were comparable in both systems.
We hypothesize that the difference in viral kinetics may in part
be due to the fact that hepatoma cells continue to proliferate in
culture, whereas hPSC-hepatocytes are chiefly quiescent. An
alternative explanation might be that that the Kernow-C1 p6
strain, used in this study, was passaged six times in HepG2/C3A
cells and may thus have been adapted to the HepG2/C3A cellular
environment [13]. The advantage of using PSCs is that they can
easily be obtained from different donors whereas hepatoma cell
lines are derived from a single donor. Availability of multiple
donor hPSC-hepatocytes should allow further examination of
specific virus-host interactions. Indeed, we found that there were
differences in innate immune response following HEV infection of
two PSC-derived hepatocyte progeny. Use of additional patient-
specific iPSC lines should permit to further elaborate on this
observation to fully understand virus-host interactions. Unfortu-
nately, we were unable to cultivate HEV from a clinical plasma
sample in our system, which confirms the challenging nature of
HEV propagation in tissue culture.

In the hPSC-hepatocytes, HEV replication was efficiently
inhibited by RBV and IFN, the only drugs currently available to
treat HEV infections. Both drugs decreased (both intra- and extra-
cellular) levels of viral RNA but did not fully eliminate the virus
from the hPSC-hepatocytes. Complete eradication may require
either longer treatment, more potent drugs, or may only be pos-
sible in the context of an intact immune response in the infected
host.
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Initially, infection studies were performed with genotype 3

HEV carrying an additional G1634R mutation. Comparison of
the replication efficiency between wild-type and mutant HEV in
hESC-hepatocytes revealed the 1634R mutant might have some
replication advantage in these cells as well, although the differ-
ences were not statistically significant. However, only super-
natant collected from hESC-hepatocytes that had been infected
with the mutant HEV was able to re-infect HepG2/C3A cells,
which is consistent with the notion that 1634R mutant results
in an increased viral fitness. hESC-hepatocytes might therefore
also serve as a valuable tool to study the importance of mutations
identified in HEV-infected patients that became non-responsive
to ribavirin treatment.

In hPSC-mesoderm and NPCs, (�)ssRNA was not detectable
and levels of (+)ssRNA decreased over time, suggesting that these
cells do not support in vitro the full cycle of HEV infection and
replication, which would be consistent with the tropism seen
in vivo. However, as successful infection of a culture system
depends not only on viral replication but also on the ability of
the virus to enter the cell, i.e. infect the cell, we explored whether
hPSC-mesoderm and NPCs support HEV subgenomic replication
following transfection of the replicon in the host cells. hPSC-
mesoderm and NPCs could support intracellular HEV replication,
and therefore strongly suggest that entry is the limiting factor to
allow the complete replication cycle of the HEV and may be the
key determinant of HEV tissue tropism. Although some studies
have demonstrated that HEV infection can be associated with
neurological symptoms such as Guillain-Barré syndrome [50–
52], it is not clear whether such neurological symptoms are a
direct or indirect consequence of HEV infection. In one study,
HEV viral RNA was detected in cerebrospinal fluid of some
patients and viral sequences found in the cerebrospinal fluid
were different from those detected in serum [53]. This may sug-
gest that HEV variants with neurotropic capacity may indeed
exist. The HEV infection model in PSC (from which we can gener-
ate many different mature cell types) will allow studying cell/tis-
sue tropisms of HEV as well as the underlying mechanism.

In conclusion, PSCs have the unique capacity to differentiate
into any given cell type, which allows to study HEV infection
not only in hPSC-hepatocytes but also to discover possible extra-
hepatic sites of HEV infection and replication. We here demon-
strate that hPSC-mesoderm and NPCs support HEV replication,
but only upon transfection of viral (replicon) RNA, suggesting
that the in vivo hepatotropism seen is likely due to the inability
of HEV to enter non-hepatic cells. On the contrary, hepatocyte-
like cells generated from hPSCs are a valuable alternative for hep-
atoma cell lines and human primary hepatocytes in the study of
the viral biology of the HEV.
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