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STARD1 promotes NASH-driven HCC by sustaining the generation of
bile acids through the alternative mitochondrial pathway
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Background & Aims: Besides their physiological role in bile profile stimulated expression of genes involved in pluripotency,

formation and fat digestion, bile acids (BAs) synthesised from
cholesterol in hepatocytes act as signalling molecules that
modulate hepatocellular carcinoma (HCC). Trafficking of choles-
terol to mitochondria through steroidogenic acute regulatory
protein 1 (STARD1) is the rate-limiting step in the alternative
pathway of BA generation, the physiological relevance of which
is not well understood. Moreover, the specific contribution of the
STARD1-dependent BA synthesis pathway to HCC has not been
previously explored.
Methods: STARD1 expression was analyzed in a cohort of human
non-alcoholic steatohepatitis (NASH)-derived HCC specimens.
Experimental NASH-driven HCC models included MUP-uPA mice
fed a high-fat high-cholesterol (HFHC) diet and diethylnitros-
amine (DEN) treatment in wild-type (WT) mice fed a HFHC diet.
Molecular species of BAs and oxysterols were analyzed by mass
spectrometry. Effects of NASH-derived BA profiles were investi-
gated in tumour-initiated stem-like cells (TICs) and primary
mouse hepatocytes (PMHs).
Results: Patients with NASH-associated HCC exhibited increased
hepatic expression of STARD1 and an enhanced BA pool. Using
NASH-driven HCC models, STARD1 overexpression in WT mice
increased liver tumour multiplicity, whereas hepatocyte-specific
STARD1 deletion (Stard1DHep) in WT or MUP-uPA mice reduced
tumour burden. These findings mirrored the levels of unconju-
gated primary BAs, b-muricholic acid and cholic acid, and their
tauroconjugates in STARD1-overexpressing and Stard1DHep mice.
Incubation of TICs or PMHs with a mix of BAs mimicking this
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stemness and inflammation.
Conclusions: The study reveals a previously unrecognised role of
STARD1 in HCC pathogenesis, wherein it promotes the synthesis
of primary BAs through the mitochondrial pathway, the products
of which act in TICs to stimulate self-renewal, stemness and
inflammation.
Lay summary: Effective therapy for hepatocellular carcinoma
(HCC) is limited because of our incomplete understanding of its
pathogenesis. The contribution of the alternative pathway of bile
acid (BA) synthesis to HCC development is unknown. We un-
cover a key role for steroidogenic acute regulatory protein 1
(STARD1) in non-alcoholic steatohepatitis-driven HCC, wherein
it stimulates the generation of BAs in the mitochondrial acidic
pathway, the products of which stimulate hepatocyte pluripo-
tency and self-renewal, as well as inflammation.
© 2021 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.
Introduction
Hepatocellular carcinoma (HCC) is the most common type of liver
cancer and the end stage of chronic liver disease caused by
different aetiologies, including non-alcoholic steatohepatitis
(NASH). The incidence of NASH-drivenHCC is expected to increase
worldwide because of its association with the obesity and type 2
diabetes mellitus epidemic. Overweight (body mass index >25)
and obesity are known risk factors for cancer development,
especially HCC.1,2 HCC has a poor prognosis with frequent recur-
rence andmetastasis.2,3 Although important improvements in the
management of HCC have beenmade over the past 2 or 3 decades,
effective treatment options, such as local ablative therapies,
resection or transplantation, are mainly limited to early disease
stages.4,5 Unfortunately, the therapeutic armamentarium for HCC
is limited, ineffective and subject to secondary or acquired che-
moresistance by currently poorly understood mechanisms.6

Hence, there is an urgent need to understand HCC pathogenesis
and identify new therapeutic targets.
21 vol. 74 j 1429–1441

mailto:vicente.ribas@iibb.csic.es
mailto:cgrbam@iibb.csic.es
mailto:checa229@yahoo.com
https://doi.org/10.1016/j.jhep.2021.01.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhep.2021.01.028&domain=pdf


Research Article Experimental and Translational Hepatology
Diet-induced NASH and chronic endoplasmic reticulum (ER)
stress have been shown to lead to HCC development.7–9 Cancer
cells are under anabolic pressure for the synthesis of membrane
lipids to sustain dysregulated cell proliferation, and increased
cholesterol and fatty acid synthesis support HCC growth.10

Consistent with a key structural and functional role of choles-
terol in membrane bilayers, recent reports indicated that dietary
or de novo-synthesised cholesterol fosters HCC development, in
part, through the generation of bile acids (BAs).11–14 BAs are
synthesised in hepatocytes from cholesterol predominantly
through the classical (neutral) pathway, which is regulated by the
rate-limiting enzyme 7-a-hydroxylase (encoded by CYP7A1). In
addition, sterol 12a-hydroxylation by 12a-hydroxylase (encoded
by CYP8B1) is specifically required for cholic acid (CA) synthesis. In
addition to their key role in fat digestion and vitamin metabolism,
BAs are critical signalling molecules that regulate gene expression
by targeting nuclear (e.g. farnesoid X receptor; FXR) and mem-
brane (e.g. Takeda G-protein-coupled receptor 5; TGR5) receptors
and have been linked to NASH progression and HCC promo-
tion.14–16 Indeed, the severity of human NASH has been associated
with specific changes in plasma levels of BAs, while mouse models
(e.g. FXR-/-, BSEP-/- or MDR2-/- mice) with an increase in total
circulating BAs exhibit spontaneous formation of HCC.16–19

The mitochondrial pool of cholesterol is minor compared with
its plasma membrane content and modulates vital mitochondrial
functions, such as oxidative phosphorylation, mitochondrial
apoptosis, chemotherapy resistance or susceptibility to tumour
necrosis factor (TNF)/Fas-mediated NASH progression.20–26 The
mitochondrial cholesterol level is regulated by specific carriers,
most notably steroidogenic acute regulatory protein 1 (STARD1),
whichmediates the trafficking of cholesterol to themitochondrial
inner membrane for metabolism.27–29 In the liver, mitochondrial
cholesterol is metabolised by 27-hydroxylase (encoded by
CYP27A1) to 27-hydroxycholesterol followed by 25-
hydroxycholesterol 7-a-hydroxylase (encoded by CYP7B1),
which then feeds the alternative mitochondrial pathway of BA
synthesis, leading mainly to chenodeoxycholic acid (CDCA) gen-
eration.15,30,31 Inmouse liver, CDCA ismetabolised to a-muricholic
acid (aMCA) and its 7b-epimer b-muricholic acid (bMCA).32 The
mitochondrial acidic pathway of BA synthesis is considered to
contribute to a minor extent to the total BA pool and its physio-
logical relevance is not well understood.

Patients with NASH exhibit elevated free cholesterol33,34 and
enhanced STARD1 expression.33 Given that the contribution of
the alternative pathway of BA synthesis to HCC has not been
previously addressed, this study investigated the role of STARD1
in NASH-driven HCC. The results revealed a previously unrec-
ognised role for STARD1 in HCC by stimulating the generation of
BAs from cholesterol via the alternative pathway, the products of
which act in tumour-initiating stem-like cells (TICs) and hepa-
tocytes to stimulate expression of genes involved in pluripo-
tency, stemness and inflammation.

Materials and methods
Human NASH-derived HCC cohort
Human liver samples were obtained from donors and recipients
undergoing liver transplantation at the Liver Transplantation
Unit of the Hospital Clinic, Barcelona (Table S1). During the
donor sample procurement, an intraoperative assessment of the
liver was systematically carried out to rule out fibrosis, cirrhosis,
steatosis and other abnormalities before transplantation. A
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biopsy of the resected liver from the recipient was performed
immediately after the hepatectomy and samples were fixed in
formalin for histological evaluation or quickly snap-frozen.
Samples from controls (donors) with signs of steatosis, fibrosis
or inflammation were discarded. Recipients with NASH-derived
HCC eligible for liver transplantation were compiled based on
the Milan Criteria and were stratified by the Barcelona Clinic
Liver Cancer score (single tumour <−5 cm or 2–3 tumours <−3 cm
each).35 Samples from individuals with viral hepatitis, alcoholic
steatohepatitis or cryptogenic cirrhosis were excluded. NASH-
derived HCC samples were processed for RNA isolation, western
blotting and staining with GST-PFO and filipin. The protocol
(HCB/2012/8011) was approved by the HCB/UB Ethics Committee
of the Hospital Clinic of Barcelona, Spain.

Stard1DHep and MUP-uPA-Stard1DHep mice
Liver-specific Stard1-knockout (Stard1DHep) mice were created by
crossing Stard1f/f mice, which were generated by the Cre-lox
technology, with Alb-Cre mice, and have been recently charac-
terised elsewhere.36 Stard1DHep and Stard1f/f littermates were
used in the study. MUP-uPA transgenic mice were generated and
have been previously characterised.37 MUP-uPA transgenic ani-
mals were crossed with Stard1DHep mice and backcrossed with
Stard1f/f to select homozygous Stard1f/f–MUP-uPA tg positives
with or without Alb-Cre expression (MUP-uPA-Stard1f/f and
MUP-uPA-Stard1DHep), which were used in the study.

NASH-driven HCC development and treatment
For the induction of HCC, C57Bl/6j mice were injected i.p. with a
single dose of diethylnitrosamine (DEN; 25 mg/kg) on postnatal
day 14; 4 weeks later, the mice were introduced to different diets
(Table S2). Animals were fed either a high-fat diet (HFD, con-
taining 60% calories from fat) or a high fat-high cholesterol
(HFHC, containing 60% calories from fat and added 0.5% choles-
terol) diet for up to 32 weeks. Additionally, a regular diet with
added cholesterol was custom-made (Teklad diet 2014 with 2%
cholesterol; HC diet). In some cases, DEN-treated mice were fed a
HFHC diet with added ezetimibe (EZE) (100 mg Ezetrol/kg of
diet, equivalent to 10 mg/kg/day) and fed for 24 weeks. To
determine the effect of EZE treatment on survival, DEN-treated
mice were fed a HFHC diet for 52 weeks. At the time of sacri-
fice, animals were anaesthetised and exsanguinated; macro-
scopic tumours were counted and the liver was harvested and
processed for subsequent analysis.

For the induction of heterotopic tumours induced by TICs, 8-
week-old athymic nude immunodeficient mice (Charles River)
were subcutaneously injected with 1 × 106 TICs in 100 lL at 1:1
PBS Matrigel high concentration (Corning #354248) either stably
overexpressing Stard1 or green fluorescent protein (GFP) in the
right or left flanks, respectively; tumours were allowed to grow
for 3 weeks.

All procedures involving animals and their care were
approved by the Ethics Committee of the University of Barcelona
following national and European guidelines for the maintenance
and husbandry of research animals.

TIC isolation and treatment
TICs (CD133+/CD49f+) were isolated from murine HCC, as
described previously.38 Briefly, resected HCC tissues were
immediately dissected into small pieces and digested with
collagenase. Suspended liver cells were stained with PE-anti-
21 vol. 74 j 1429–1441



CD133, APC-anti-CD49f and FITC-anti-CD45 antibodies (BD Bio-
sciences) followed by fluorescence-activated cell sorting analysis,
as described previously.39 TICs and primary mouse hepatocytes
(PMHs) were treated with the specified concentrations of BAs:
cholic acid (CA; Sigma, C1129), bMCA (Sigma, SML2372) or
taurocholic acid (TCA; Sigma, T4009) for 24 or 48 h and analysed
for expression of pluripotency, stemness and inflammatory genes
by quantitative (q)PCR.

Quantification and statistical analysis
All data are presented as mean ± SEM. In each experiment, N
defines the sample size. The Student’s t test was used to define
differences between 2 groups. To define differences between
more than 2 groups, 1-way analysis of variance (ANOVA) was
used with a Bonferroni multiple comparison post-test, or
Kruskal–Wallis non-parametric test for data displaying a non-
Gaussian distribution. The criterion for significance was set at p
<0.05. Statistical analyses were performed using GraphPad Prism
version 5. Given the variability of the in vivo studies, 6–12 mice
were included per group to ensure statistical power.

Results
Patients with NASH-driven HCC exhibit increased expression
of STARD1 and a high BA burden
Although the basal expression of STARD1 in the liver is low,
STARD1 is upregulated in patients with NASH but not in subjects
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with steatosis alone.33 However, the role of STARD1 in NASH-
driven HCC has not been previously explored. The current
study examined the expression of STARD1 in a cohort of patients
with NASH-derived HCC (Table S1). Histology analyses revealed
alterations in the parenchymal architecture of human HCC
samples (Fig. S1A), exhibiting fat infiltration, increased liver
triglycerides (TG) and fibrosis (Fig. S1B,C), reflected by Sirius Red
staining and increased expression of fibrogenic genes ACTA2 and
COL1A1 (Fig. S1D). Liver samples from patients with NASH-
driven HCC exhibited increased levels of STAR gene transcript
and STARD1 protein, compared with samples from control sub-
jects (Fig. 1A). Moreover, liver sections from patients with HCC
displayed increased immunohistochemical STARD1 staining
(Fig. 1B). STARD1 was expressed predominantly in hepatocytes,
as indicated by the colocalisation of STARD1 with asialoglyco-
protein receptor 1 and, to a minor extent, with Kupffer cells and
hepatic stellate cells labelled with F4/80 and alpha smooth
muscle actin (a-SMA), respectively (Fig. S2). Higher hepatic free
cholesterol levels were observed by staining liver sections with
GST-perfringolysin (GST-PFO) (Fig. 1C), which detects free
cholesterol in membranes,40 as well as by filipin staining and
HPLC analysis (Fig. S1E,F). GST-PFO staining of liver sections from
patients with NASH-driven HCC colocalised with cytochrome c
immunofluorescence (Fig. 1D), indicating the presence of free
cholesterol in mitochondria in human HCC, consistent with
findings in experimental HCC.22,26 Furthermore, human HCC
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samples exhibited increased expression of HMGCS, HMGCR and
SREBP2, the master transcription factor for cholesterol homeo-
stasis (Fig. 1E). Although SREBP2 is negatively regulated by
cholesterol, the study addressed whether the activation of
SREBP2 in association with increased cholesterol was linked to a
refractory feedback loop triggered by the TNFR1-Caspase-2-S1P-
SREBP2 axis.41 Human HCC samples exhibited increased
expression of CASP-2 and MBPTS1 (S1P) compared with control
subjects (Fig. 1E). Moreover, samples from human HCC displayed
increased expression of HIF1A and target genes, such as PDK1,
SLC2A1 (Glut 1), SLC2A3 (Glut 3) and SLC25A11 (2-OGC) (Fig. 1F),
which have been shown to regulate mitochondrial GSH
homeostasis in HCC.38

The study next examined the levels of the hepatic BA pool in
patients with HCC. Compared with control subjects, human HCC
samples revealed a 2-fold increase in total hepatic BA levels
(Fig. 1G) that paralleled the increased expression of CYP7A1,
CYP8B1, CYP27A1 and CYP7B1, as well as CYP7A1 and CYP27A1
(Fig. S1G,H), suggesting the activation of the classical (neutral)
and alternative (acidic) pathways of BA synthesis.
Cholesterol promotes NASH-driven HCC and induces STARD1
expression in mice
Next, the study addressed the specific contribution of the
alternative mitochondrial pathway of BA generation to HCC.
First, the tumour promoter role of cholesterol in HCC was vali-
dated because, despite accumulating evidence linking choles-
terol with HCC development,11–13 there have been studies
showing a tumour-suppressor effect of cholesterol in HCC.42–46

Given that a HFD alone does not induce NASH and DEN plus
HFD feeding does not completely model NASH-driven HCC,9 a
dietary NASH-driven HCC approach was established by feeding
DEN-pretreated mice with a HFD diet supplemented with
cholesterol (HFHC) (Fig. 2A), because this diet has been shown to
induce NASH.47,48 Compared with mice fed DEN+HFD alone,
DEN+HFHC-fed mice exhibited higher serum alanine amino-
transferase (ALT) levels (Fig. 2B), enhanced liver cholesterol
content and decreased Hmgcr expression (Fig. 2C). Serum HDL or
LDL levels were independent on whether DEN-treated mice
were fed a HFD or HFHC diet (Fig. 2D). Moreover, the degree of
macrovesicular steatosis detected by Oil-Red staining and TG
levels was similar between DEN+HFD and DEN+HFHC-fed mice
(Fig. 2C,E), although fibrosis was more severe in DEN+HFHC-fed
mice compared with DEN+HFD-fed mice (Fig. 2E,F). In addition,
GST-PFO staining of liver sections of DEN+HFHC-fed mice
revealed increased free cholesterol levels, which colocalised
with cytochrome c (Fig. 2E). Furthermore, DEN+HFHC feeding
increased liver inflammation, revealed by the enhanced
group. (D) HDL or LDL levels in serum from DEN+HFD or DEN+HFHC mice; n = 6
(H&E), neutral lipid (Oil Red O) and collagen fibers (Sirius red) of liver sections. Im
PFO probe (red), mitochondria with anti-cytochrome c (green) and nuclei with D
(Col1a1, Acta2 and Spp1). All values were corrected by a housekeeping gene (Actb)
(G) mRNA levels of inflammation genes (Tnfa, Il1b, Il6, Ccl2 and Emr1). (H) Repr
maximal area from DEN-treated mice fed a HFHC diet for 24 weeks. RD, n = 6; H
HFHC diet for 32 weeks. HFD, n = 6; HFHC, n = 10. (J) Immunohistochemical exp
either HFD or HFHC diet for 24 weeks. (K) mRNA levels of Stard1 of whole-live
Immunohistochemistry of consecutive sections (T, tumour) stained for Afp or St
genes of whole-liver tissue from DEN-treated mice fed RD, HFD or HFHC; n = 6–
Student’s t test. ALT, aminotransferase; DEN, diethylnitrosamine; HCC, hepatocel
GST-perfringolysin; NASH, non-alcoholic steatohepatitis; RD, regular diet; Stard1
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expression of Tnfa and Ccl2 (Fig. 2G). Of significance, whereas
DEN+HFD feeding for 24 weeks had a modest impact on tumour
burden relative to DEN alone, DEN+HFHC feeding resulted in a
larger increase in tumour number and maximal area (Fig. 2H),
which increased even further after 32 weeks of HFHC feeding
(Fig. 2I). Tumour burden increased the levels of Afp in serum,
especially in the DEN+HFHC group and these tumours displayed
higher expression of Afp and Yap, 2 bona fide HCC markers
(Fig. 2J). Moreover, DEN+HFHC feeding increased liver expres-
sion of Stard1 (Fig. 2K), which was preferentially expressed in
HCC tumours (Fig. 2L). Furthermore, DEN+HFHC-fed mice
exhibited increased expression of markers involved in
tumourigenesis (Gpc3, Ly6d, and Golm1), cell adhesion and in-
teractions (Birc5, Cd44, and Lyve1) and cellular proliferation
(Mki67) with respect to DEN+HFD-fed mice (Fig. 2M).
Ezetimibe treatment attenuates DEN+HFHC-driven HCC
To further determine the role of cholesterol in NASH-driven HCC,
the effect of EZE, which prevents the intestinal absorption of
cholesterol, was tested. Although its role in human NASH is not
well established,49 its impact was examined in DEN+HFHC-
driven HCC (Fig. S3A). EZE treatment decreased hepatic choles-
terol accumulation in DEN+HFHC mice (Fig. S3B). The ability of
EZE to decrease liver cholesterol resulted from its ability to block
absorption of dietary cholesterol rather than affecting de novo
cholesterol synthesis, consistent with the decreased expression
of Hmgcr and Hmgcs1 following HFHC feeding, indicating that
dietary cholesterol exerts expected feedback inhibition on the de
novo synthesis of cholesterol (Fig. S3C). Interestingly, the pres-
ence of EZE reversed the downregulation of Hmgcr and Hmgcs1
in HFHC mice (Fig. S3C). In line with this outcome, treatment of
HFHC mice with atorvastatin resulted in a modest effect in
decreasing liver cholesterol (Fig. S4), in agreement with the
lower expression of Hmgcr by dietary cholesterol. Of note, EZE
did not change the expression of Stard1 in DEN+HFHC mice
(Fig. S3C). Moreover, EZE ameliorated liver fibrosis in DEN+HFHC
mice, as seen by Sirius Red staining and the decreased expression
of fibrosis genes (Fig. S3D,E). Consistent with findings in PtenDHep

mice fed a HFD,50 the number of tumours in DEN+HFHC mice
significantly decreased upon EZE administration (Fig. S3F), which
paralleled the attenuation of serum Afp levels (Fig. S3G), the
expression of markers of tumourigenesis, cell adhesion/migra-
tion and hepatic proliferation (Fig. S3H), and the decrease in the
levels of Gp73 and cytokeratin 19 (Fig. S3I). More importantly,
whereas the median survival of DEN+HFHC mice was 7 months,
EZE treatment significantly increased the survival rate, with 50%
of mice surviving 12 months post DEN+HFHC feeding (Fig. S3J).
per group. (E) Representative histological staining for haematoxylin and eosin
munohistofluorescence of liver sections stained for free cholesterol with GST-

API (blue). Scale bar: 100 lm. (F) mRNA levels of fibrogenesis-associated genes
and relative to values from the animals on a DEN-RD diet; n = 6–10 per group.
esentative macroscopic images and quantification of tumour multiplicity and
FD, n = 10; HFHC, n = 11. (I) As in (H) except that DEN-treated mice were fed a
ression of Afp and Yap of consecutive liver sections from DEN-treated mice fed
r tissue from DEN-treated mice fed RD or HFHC diet. n = 6–10 per group. (L)
ar. Scale bar: 500 lm. (M) mRNA levels of tumour markers and inflammatory
10 per group. All values are mean ± SEM; *p <0.05 on a 12-way ANOVA test or
lular carcinoma; HFD, high-fat diet; HFHC, high fat, high cholesterol; GST-PFO,
, steroidogenic acute regulatory protein 1.
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All values are mean ± SEM. *p <0.05 with respect to MUP-uPA-Stard1f/f or Stard1f/f mice on a Student’s t test. ER endoplasmic reticulum; HCC, hepatocellular
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Overall, these findings indicate that dietary cholesterol promotes
NASH-driven HCC development.

STARD1 deletion in hepatocytes attenuates NASH-driven HCC
To address the role of STARD1 in NASH-driven HCC, Stard1DHep

mice were generated36 and their susceptibility to NASH-driven
HCC was examined using 2 different approaches. First, STARD1
was deleted in hepatocytes in MUP-uPA mice, a model
characterised by endogenous chronic ER stress because of the
expression of urokinase plasminogen activator (uPA) and which
develop HCC via the synergism between ER stress and over-
feeding.8,9 MUP-uPA mice were crossed with Stard1DHep mice to
generate MUP-uPA-Stard1DHep mice and fed a HFHC diet
(Fig. 3A). MUP-uPA-Stard1DHep mice exhibited profound deple-
tion of Stard1 expression in liver extracts with respect to MUP-
uPA-Stard1f/f mice (Fig. 3B). Whereas feeding MUP-uPA-Stard1f/f

mice with a HFHC diet for 26 weeks led to the development of
liver tumours, the number and maximal area of these tumours in
MUP-uPA-Stard1DHep mice were markedly reduced (Fig. 3C,D).
1434 Journal of Hepatology 20
This outcome was accompanied by a decrease in serum Afp
levels (Fig. 3E) and lower expression of genes involved in fibrosis
(Col1a1 and Acta2) and inflammation (Il6 and Il1b), and an
attenuation in the levels of tumour markers (Afp, Cd44 and Ly6d)
(Fig. 3F–H). Interestingly, ablation of Stard1 did not affect the
expression of ER stress markers in MUP-uPA-Stard1DHep mice
(Fig. 3I,J), indicating that the inhibitory effect of Stard1 deletion
in this model of NASH-driven HCC was not linked to the pre-
vention of ER stress.

In addition to this spontaneous NASH-driven HCC model,
Stard1DHep mice were treated with DEN and then fed a HFHC diet
for 24 weeks. Similar to the MUP-uPA model, DEN-treated
Stard1DHep mice were relatively resistant to HFHC-mediated
HCC development, exhibiting decreased tumour multiplicity
and maximal area (Fig. 4A,B) and a decrease in the serum Afp
levels (Fig. 4C). Tumours from Stard1DHep mice exhibited
decreased Yap and Afp expression (Fig. 4D,E) and lower mRNA
levels of tumour markers without a change in inflammation-
related genes (Fig. 4F,G). This outcome was accompanied by
21 vol. 74 j 1429–1441
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Fig. 4. Stard1DHep mice are less sensitive to DEN+HFHC-induced HCC. (A,B) Macroscopic images of livers from Stard1f/f (n = 9) and Stard1DHep mice (n = 9)
treated with DEN and fed a HFHC diet for 24 weeks, with quantification of tumour multiplicity and maximal area. (C,D) Serum and mRNA expression levels of Afp
from Stard1f/f (n = 9) and Stard1DHep mice (n = 9) treated with DEN and fed a HFHC diet. (E) Immunohistochemical expression of Afp and Yap of consecutive liver
sections from Stard1f/f and Stard1DHep mice. (F,G) mRNA levels of tumour markers and inflammation genes of whole-liver tissue from Stard1f/f and Stard1DHep mice.
(H) mRNA levels of ER stress markers of whole-liver tissue from Stard1f/f (n = 6) and Stard1DHep mice (n = 6). (I) Western blot of ER stress markers as in (H). All
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unchanged expression of ER stress markers in DEN+HFHC-
treated Stard1DHep mice (Fig. 4H,I). Thus, these findings support
a crucial role of STARD1 in NASH-driven HCC independently of
ER stress.

STARD1 overexpression exacerbates DEN+HFHC diet-driven
HCC
To further investigate the contribution of STARD1 in NASH-
driven HCC, Stard1 was overexpressed in DEN+HFHC WT mice
by injection with adenovirus bearing the cDNA of Stard1 (AD-
Stard1) 5 weeks before sacrifice (Fig. 5A), which resulted in a 15-
fold increase in liver Stard1 expression (mRNA and protein
levels) compared with control mice injected with an empty
control vector (AD-control) (Fig. 5A–C). This outcome potenti-
ated DEN+HFHC-mediated liver tumour multiplicity, although
the maximal area of tumours did not significantly change
(Fig. 5D,E). The extent of expression of the HCC markers Afp and
Yap in tumours was greater in the AD-Stard1 group (Fig. 5F).
Consistent with these findings, expression of tumour markers
(Afp, Yap, Golm1 or Krt19) increased upon Stard1 overexpression
(Fig. 5G) and this outcome was accompanied by enhanced
Journal of Hepatology 20
expression of inflammatory-related and hypoxia-regulated genes
(Fig. 5H,I). In addition, liver oxidative stress, as measured by
dihydroethidium staining of liver sections from DEN+HFHC mice
overexpressing Stard1, was significantly higher than that
measured in the AD-control group (Fig. 5J). Moreover, over-
expression of Stard1 in subcutaneous tumours induced by TICs in
immunodeficient mice resulted in the induction of genes
involved in pluripotency and stemness (Fig. 5K), which paralleled
the increase in tumour growth compared with TICs expressing a
GFP control vector (Fig. 5L). The tumour-promoting effect of
STARD1 required dietary cholesterol feeding (HC) (Fig. 5M), as
indicated by the findings that Stard1 overexpression in
DEN+regular diet-fed mice or mice fed a HC diet alone for 24
weeks did not lead to HCC development (Fig. 5N,O). Overall,
these findings indicate that STARD1 and dietary cholesterol
synergise to promote HCC development.

STARD1 regulates the profile of hepatic BAs in NASH-driven
HCC
Given that BAs have been linked to NASH progression and HCC
development,14,17–19 the study next addressed whether STARD1
21 vol. 74 j 1429–1441 1435
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injection; n = 11 for AD-Ctrl and n = 7 for AD-Stard1. (F) Immunohistochemistry of consecutive sections showing the same tumour (T, delimited by a dotted line)
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diet; ROS, reactive oxygen species; Stard1, steroidogenic acute regulatory protein 1; TIC, tumour-initiating stem-like cell.

1436 Journal of Hepatology 2021 vol. 74 j 1429–1441

Research Article Experimental and Translational Hepatology



A

Unconjugated-BA

Tauroconjugated-BA

Glycoconjugated-BA

CA

CDCA

αMCA

βMCA

HyoDCA

UDCA

DCA

GCA

Tα/βMCA

TUDCA

THyoDCA

TCA

TCDCA

TDCA

TLCA

U
nc

on
ju

ga
te

d

Glyco-
Conjugated

Ta
ur

o 
- c

on
ju

ga
te

d

DecreaseIncrease

Total bile acids

02 -2

AD-C
trl

AD-S
tar

d1
Star

d1
f/f

Star
d1

ΔHep

B

C

D

TC
A

MIX

βM
CACA

Veh

0
1
2
3
4
5

m
R

N
A 

ex
pr

es
si

on
(fo

ld
 c

ha
ng

e)

*
Pou5f1

0

1

2

3

4

TC
A

MIX

βM
CACA

Veh

*
Sox2

TC
A

MIX

βM
CACA

Veh

0
1
2
3
4
5 *

Nanog

TC
A

MIX

βM
CACA

Veh

0
1
2
3
4
5 *

Cd24

TC
A

MIX

βM
CACA

Veh

0

1

2

3

4
*

Ccl2

TC
A

MIX

βM
CACA

Veh

0

1

2

3

4 *Cxcl2

E

Liver unconjugated bile acids

Liver conjugated bile acids
αMCA βMCA CA UDCA CDCA DCA HyoDCA

0

10

20

30

40

nm
ol

/g

nm
ol

/g

0.0

0.5

1.0

1.5

2.0

*

*

*

*

*

*

Tα/βMCA TCA TUDCA TCDCA TDCA TLCA GCA

*

*

*

*

*

*

0

50

100

150

200

nm
ol

/g

0

5

10

15

20

0.0

0.1

0.2

0.3

0.4

Veh
Pou

5f1 Klf4 Myc
Sox

2
Cd2

4
Nan

og
Cd4

4
Sox

9
Ccl2

Cxc
l2

0

2

4

6

m
R

N
A 

ex
pr

es
si

on
(fo

ld
 c

ha
ng

e)

8

* *

*

*
*

*

* *
* *

Vehicle
CA+βMCA+TCA (MIX)

AD-Ctrl
AD-Stard1
Stard1f/f

Stard1ΔHep
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acid.
regulates the profile of hepatic BAs in NASH-driven HCC. Mass
spectrometry analyses were performed of the hepatic molecular
species of BAs inWTmice with Stard1 overexpression (AD-Stard1)
and in Stard1DHep mice. The total BA content in liver increased in
AD-Stard1 mice with respect to AD-Ctrl mice (Fig. 6A). These
quantitative changes reflected the increase in unconjugated BAs,
such as bMCA and CA and their tauroconjugated derivatives Ta/
bMCA and TCA in AD-Stard1 mice, the levels of which were 1
order of magnitude higher than those of tauroursodeoxycholic
acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) (Fig. 6B,C).
By contrast, the total liver BA burden in Stard1DHep mice
Journal of Hepatology 20
significantly decreased compared with Stard1f/f mice, with lower
levels of TCA, bMCA and CA (Fig. 6B,C). The amount of minor
unconjugated Bas [i.e. ursodeoxycholic acid (UDCA), chenodeox-
ycholic acid (CDCA), dichloroacetic acid (DCA) and hyodeoxycholic
acid (HyoDCA)] remained unchanged regardless of the status of
Stard1 expression (Fig. 6B). A similar decrease in the levels of
bMCA, Ta/bMCs and TCA was observed in MUP-uPA-Stard1DHep

mice with respect to MUP-uPA-Stardf/f mice (Fig. S5). The levels of
the oxysterols 24S-hydroxycholesterol (24S-OH-Chol) and
27-hydroxycholesterol (27-OH-Chol), which are intermediates of
BA synthesis in the acidic pathway,30,31 did not change in
21 vol. 74 j 1429–1441 1437
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AD-Stard1 or Stard1DHep mice (Fig. S6A). Interestingly, the
expression of Cyp7a1, Cyp8b1, Cyp27a1 and Cyp7b1 as well as
Cyp27a1 and Cyp7a1 in AD-Stard1 or Stard1DHep mice remained
unaltered (Fig. S6B–E). In addition, although the expression of FXR
(Nr1h4) as well as that of Nr0b2 and Abcd11 decreased (50–60%) in
AD-Stard1 mice overexpressing Stard1, the levels of Nr1h4 and its
target genes Nr0b2, Abcb11 and Abcb4 in DEN+HFHC Stard1DHep

mice was similar to that in DEN+HFHC Stard1f/f mice (Fig. S6F),
suggesting that the regulatory role of Stard1 in BA synthesis and
HCC development is independent of FXR. These findings indicate
that a significant proportion of hepatic BAs generated during HCC
development are regulated by STARD1.

BAs induce the expression of genes involved in self-renewal,
stemness and inflammation
To establish the link between STARD1-mediated regulation of
BAs and HCC, the impact of the profile of BAs regulated by
STARD1 was examined on the expression of transcription factors
involved in self-renewal and pluripotency, which are of rele-
vance for HCC pathogenesis.39,51 TICs (CD133+/CD49f+) were
previously characterised and isolated from murine HCC models
and shown to exhibit oncogenic activity and tumour-
igenicity.39,52,53 Treatment of TICs with a combination of CA, TCA
and bMCA at a concentration mimicking the levels observed in
AD-Stard1 mice overexpressing Stard1 increased the expression
of Yamanaka transcription factors Sox2 and Pouf51 as well as the
stemness markers Nanog and Cd24 and the inflammatory che-
mokines Ccl2 and Cxcl1 (Fig. 6D). Interestingly, the level of
expression of pluripotency and early differentiation genes in
mature liver was reported to be similar to those found in fetal
liver and induced pluripotent stem cell (iPSC)-derived
hepatocyte-like cells.54 In line with previous findings,14 the in-
cubation of PMH with CA, TCA and bMCA significantly increased
the expression of Sox2, Myc, Klf4 and Pouf51, as well as the
stemness-related and cancer stem cell markers Cd24, Cd44, Sox9
and Nanog, and the inflammatory genes Ccl2 and Cxcl2 (Fig. 6E).
Although CDCA and secondary BAs, DCA and lithocholic acid
(LCA) were cytotoxic to TICs, lower concentrations (10 lM) of
these BAs induced the expression of genes involved in self-
renewal, stemness and inflammation (Fig. S6G).

Discussion
The NASH-driven HCC subset is a growing public health burden
and is expected to increase worldwide because of its association
with obesity and type 2 diabetes mellitus. Extending previous
observations on the alterations of cholesterol homeostasis in
human NASH,33,34 we showed here an upregulation in the
expression of STARD1 in patients with NASH-derived HCC.
Importantly, increasing or decreasing the expression of Stard1
in mice resulted in the stimulation or attenuation, respectively,
of liver cancer, indicating that the induction of STARD1 in pa-
tients could be a cause of NASH-driven HCC. The physiological
role of STARD1 in the liver is to provide cholesterol to the
mitochondrial inner membrane for its biotransformation into
BAs; however, the contribution of this pathway to NASH-driven
HCC had not been previously explored. Here, we provide
evidence that STARD1 expression determines the level and
composition of hepatic BAs in models of NASH-driven HCC, and
establish a link whereby STARD1 promotes HCC by stimulating
the synthesis of BAs through the mitochondrial alternative
pathway.
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The metabolism of cholesterol within mitochondria begins by
its hydroxylation at position 27 by CYP27A1, yielding 27-OH-
chol, which then feeds BA synthesis via CYP7B1 to generate
CDCA. STARD1 rather than CYP27A1 is the rate-limiting step in
the alternative pathway of BA synthesis. As shown in primary
hepatocytes or HepG2 cells, the overexpression of STARD1
resulted in a 5-fold increase in the rate of BA synthesis, whereas
transfection with CYP27A1 upregulated BA synthesis by 2-
fold.55,56 In line with this notion, the impact of modulating
STARD1 expression in NASH-driven HCC development parallels
the generation of BA species, with an increased or decreased
total BA pool in mice overexpressing Stard1 or Stard1DHep mice,
respectively, whereas the levels of oxysterols 24S-OH-chol and
27-OH-chol remained unaltered. Moreover, these effects of
STARD1 expression on BA synthesis through the alternative
pathway were not dependent on the status of Cyp27a1/Cyp7b1
expression, which remained unchanged regardless of STARD1
levels, further establishing the crucial role of STARD1 in regu-
lating cholesterol biotransformation into BAs. These findings
imply that, although the classical pathway regulated by CYP7A1
is considered the predominant route of cholesterol-mediated BA
synthesis in hepatocytes, the STARD1-dependent BA synthesis
through the alternative pathway might take over the classical
pathway in diseased states in which both cholesterol and
STARD1 are induced, such as NASH-driven HCC. In line with this
possibility, ER stress, a crucial player in NASH-HCC development,
has been identified as a new mechanism that regulates BA syn-
thesis by decreasing the expression of CYP7A1.57 CA is the pre-
dominant BA synthesised through the classical pathway
regulated by CYP7A1, which requires the action of CYP8B1 to add
the 12a-hydroxylation characteristic of CA. By contrast, the other
primary BA (i.e. CDCA) is predominantly synthesised through the
alternative pathway via CYP27A1 and CYP7B1. Whereas in
humans, CDCA is further metabolised by intestinal bacteria to
LCA, CDCA in rodents is biotransformed by hepatocytes, through
what can be considered a surrogate of the alternative pathway of
BA synthesis, into the trihydroxylated BA aMCA in positions 3a,
6b and 7a and its 7b-epimer bMCA.15,30–32 Accordingly, our data
indicate that modulation of Stard1 expression in mice by its
overexpression or deletion in hepatocytes resulted in increased
or curtailed levels of bMCA and its tauroconjugated form, TbMC,
a potent FXR antagonist that relieves the FXR-mediated down-
regulation of CYP7A1 but not of CYP27A1.58,59 The lack of change
in the expression of CYP7A1 in the NASH-driven HCC might
reflect the counterbalance between the indirect stimulating ef-
fect of TbMCA via antagonism of FXR and the suppressing action
of chronic ER stress.57 Intriguingly, we show an unanticipated
STARD1-dependent modulation of CA and its subsequent TCA
generation in NASH-driven HCC. In line with this link, it was
recently described that, in addition to the conversion of 7a-
hydroxycholest-4-en-3-one to 7a, 12a-dihydroxycholest-4-en-3-
one, CYP8B1 can also biotransform CDCA itself into CA.60

To address whether the tumour-promoter role of STARD1 in
NASH-driven HCC is linked to the regulation of the alternative
pathway of BAs synthesis, the study examined the impact of BAs
(CA, bMCA and TCA) mimicking the profile regulated by STARD1
in the expression of self-renewal and stemness genes involved in
HCC.39,51 This profile of BAs induced the expression of genes
involved in self-renewal, stemness and inflammation in TICs and
PMH. Of interest, the findings in PMH were in line with previous
reports indicating a similar level of expression of pluripotency
21 vol. 74 j 1429–1441



and early differentiation genes in mature liver versus fetal liver
or iPSC-derived hepatocyte-like cells.14,54 Moreover, the direct
link between STARD1 and BA synthesis through the alternative
pathway in HCC pathogenesis was consistent with the recog-
nised role of BAs in promoting NASH progression and HCC
development.16–19 Feeding WT mice with a CA-enriched diet
increased the hepatic BA pool and potentiated liver carcinogen-
esis.14 Furthermore, the spontaneous development of HCC in
Fxr-/- mice was shown to be reversed by decreasing BA levels by
cholestyramine,17,19 which is reminiscent of the outcome in
Stard1DHep mice.

Characterisation of the molecular BA species directly regu-
lated by STARD1 expression has been limited to mice. Whereas
in human NASH-driven HCC samples, a correlation was observed
between STARD1 expression and the increased total hepatic BA
pool, full characterisation of the individual BAs generated would
require an increased sample size to allow mass spectrometry
analysis. In this regard, we undertook an initial approach to
address the role of the secondary BAs DCA plus LCA, which, in
addition to their cytotoxic effects in TICs, induced the expression
of genes involved in self-renewal, stemness and inflammation.
Another intriguing finding that requires further research is the
role of TUDCA in STARD1-dependent HCC development.
Although exogenous administration of TUDCA has been shown
to protect against liver tumourigenesis because of its anti-ER
stress effects,7,8 the levels of TUDCA generated in AD-Stard1
mice were 1 order of magnitude lower than of tauro-
muricholic acid and TCA.
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