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ABSTRACT 

 Background & Aims: Low-grade chronic inflammation is a cardinal feature of the 

metabolic syndrome, yet its pathogenesis is not well defined. The purpose of this study was to 

examine the role of TRAIL receptor (TR) signaling in the pathogenesis of obesity-associated 

inflammation utilizing mice with the genetic deletion of TR.  Methods: TR knockout (TR
-/-

) 

mice and their littermate wild-type (WT) mice were fed a diet high in saturated fat, cholesterol 

and fructose (FFC) or chow.  Metabolic phenotyping, liver injury, and liver and adipose tissue 

inflammation were assessed.  Chemotaxis and activation of mouse bone marrow-derived 

macrophages (BMDMφ) was measured.  Results: Genetic deletion of TR completely repressed 

weight gain, adiposity and insulin resistance in FFC-fed mice.  Moreover, TR
-/-

 mice suppressed 

steatohepatitis, with essentially normal serum ALT, hepatocyte apoptosis and liver triglyceride 

accumulation.  Gene array data implicated inhibition of macrophage-associated hepatic 

inflammation in the absence of the TR.  In keeping with this, there was diminished accumulation 

and activation of inflammatory macrophages in liver and adipose tissue.  TR
-/-

 BMDMφ manifest 

reduced chemotaxis and diminished activation of nuclear factor-κ B signaling upon activation by 

palmitate and lipopolysaccharide.  Conclusions: These data advance the concept that 

macrophage-associated hepatic and adipose tissue inflammation of nutrient excess requires TR 

signaling. 

 

Keywords: nonalcoholic fatty liver disease, metainflammation, lipoapoptosis, macrophage 

activation 
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 Chronic low-grade tissue inflammation occurs in obesity-related diseases including type 

2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). Obesity-associated 

inflammation appears to be triggered by the recruitment and activation of macrophages within 

adipose and liver tissues[27]. Inflammation promotes insulin resistance by enhancing lipolysis in 

adipose tissue and liberating free fatty acids (FFAs) and other lipid mediators into the 

circulation. Many of these lipids are proinflammatory and can cause cellular demise termed 

lipotoxicity[30]. For example, elevated concentrations of saturated FFAs cause death of 

hepatocytes, pancreatic β cells, and adipocytes by apoptosis, a process termed lipoapoptosis[30]. 

Lipoapoptosis is a histologic hallmark of nonalcoholic steatohepatitis (NASH) and correlates 

with disease severity[11]. More importantly, the liver contains abundant resident macrophages, 

Kupffer cells, and their activation or an influx of recruited macrophages has been implicated in 

the progression of NASH-associated liver injury.[25]  Of note, cell death by apoptosis has 

recently been associated with release of cytokines including monocyte chemotactic protein 1 

(MCP-1) which could provide a signal for monocyte recruitment into the liver[8]. Activated 

macrophages within the tissue may in turn express death ligands such as Fas ligand (FasL), 

tumor necrosis factor alpha (TNF-α), and TNF-related apoptosis-inducing ligand (TRAIL), 

further aggravating lipoapoptosis. 

Activated macrophages induce inflammation and apoptosis of adjacent cells, in part, by 

secreting TNF superfamily ligands[32]. Of these ligands, the most potent apoptosis inducers are 

FasL, TNF-α, and TRAIL. Genetic deletion of Fas protects against adipose tissue inflammation, 

insulin resistance and hepatic steatosis in mice fed a high fat diet[37]. TNF-α has also been 

implicated in obesity-associated metabolic syndrome[28]. However, the role of TRAIL and its 

cognate death receptors in lipotoxicity has not been explored. Yet, several observations implicate 
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a critical role for TRAIL and/or its cognate receptors in lipotoxicity. TRAIL has been implicated 

in the genesis of hepatic steatosis[24], and its receptors are upregulated in human NASH 

specimens[1], dietary models of NASH[10, 14], in genetically obese ob/ob mice[18], and in 

FFA-treated hepatocytes[21]. Serum TRAIL concentrations are associated with anthropometric 

variables and serum lipids in humans[6], and subcutaneous adipose tissue expression of TRAIL 

and it’s cognate receptors are increased in human obesity[18]. Finally, the saturated FFA 

palmitate also promotes ligand-independent, TR-initiated hepatocyte cytotoxicity[4]. Thus, the 

role of TRAIL signaling in obesity-associated inflammation merits further investigation. Mice 

possess only a single ortholog of the two closely related human TRs (TNFRSF10A and 

TNFRSF10B).[12]
,
[36] Although the mouse receptor has been referred to as death receptor 5, we 

have referred to it as TR. 
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MATERIALS AND METHODS 

 Animal studies.  All animal procedures were approved by the Mayo Clinic Institutional 

Animal Care and Use Committee.  Heterozygotes in a C57BL/6J background were bred to obtain 

TR
-/-

 and wild-type littermate mice as described[12, 36].  Mice were housed 4-5/cage with a 12h 

light-dark cycle, and ad libitum access to food and water.  For the dietary studies, the animals 

were assigned to one of two groups: 1) standard chow diet (Purina LabDiet, St. Louis, MO); or 

2) a fructose-fat-cholesterol (FFC) diet (AIN-76A Western Diet 1/2, TestDiet, Richmond, IN) as 

previously described[5].  This diet provides 40% kcal from fat, 45% kcal from carbohydrate, 

15% kcal from protein and has 0.2% cholesterol.  Total body weight was measured using a 

standard balance.  Quantitative magnetic resonance was used to quantify lean and fat mass 

described previously[20].  At the completion of the study, mice were euthanized, blood, liver and 

adipose tissues were collected[14, 22].  The adipose depots were individually excised and 

weighed as previously described[29]. 

 Bone marrow derived macrophage isolation and cell migration assays.  Bone 

marrow-derived macrophages (BMDMφ) were isolated as described[22].  Cell migration assays 

were performed with BMDMφ using Corning Transwell plates with 5µm pores (Corning Inc, 

Corning, NY).  BMDMφ were serum starved for 2 hours, detached with 5 mM EDTA in PBS, 

and resuspended in RPMI-complete media (RPMI-1640 media with 10% FBS), containing 400 

µM PA[4] and/or 10 ng/ml LPS, and applied to the upper chamber.  After allowing 1 hour for 

attachment, TRAIL 100 ng/ml, or fMLP 100 nM were added to the lower chamber.  Migration 

was assessed after an additional 5.5 hours by counting DAPI stained nuclei of migrated and total 

cells. 
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Immunofluorescence of p65 NF-κB.  BMDMφ cells were treated with palmitate and/or 

LPS as above, for 1hour.  Cells were fixed with 4% paraformaldehyde, permeabilized with 0.5% 

Triton X-100 in PBS, blocked with 1% BSA in PBS, and the primary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA) was applied overnight at 4°C.  Secondary antibody used was 

Alexa fluor chicken anti-rabbit antisera (Molecular Probes, Eugene, OR) for 1 h at 37°C.  Cells 

were mounted with ProLong antifade with DAPI (Molecular Probes) and images acquired by 

confocal microscopy (Carl Zeiss, Jena, Germany) with excitation and emission wavelengths of 

488 and 507 nm, respectively. Cells with nuclear translocation of p65 NF-κB were quantified 

and expressed as a percentage of the total cell number. 

Immunoblot analysis. Total protein from liver, adipose tissue, and BMDMφs was 

isolated, resolved and detected as previously described[22].  Primary antibodies used were: 

caspase-8 (Enzo Life Sciences, Farmingdale, NY); Ser32/36 IκB-α (Cell Signaling Technology, 

Danvers, MA); C/EBP-α or C/EBP-β (Santa Cruz Biotechnology). GAPDH (Millipore, Billerica, 

MA) or β-actin (Santa Cruz Biotechnology) was used as loading control.   

ELISA for Monocyte chemotactic protein 1 (MCP-1).  MCP-1 was measured in cell 

culture supernatants of isolated primary hepatocytes with mouse CCL2/JE/MCP-1 DuoSet 

ELISA Development kit (R&D Systems, Minneapolis, MN) following the manufacturer’s 

instructions. Primary hepatocytes from WT and TR
-/-

 were treated with 400 µM PA for 8h for 

this assay.  The measured MCP-1 concentration was as expressed as pg/ml. 

Statistical analysis. Data are presented as mean±SEM except where indicated. Statistical 

significance between multiple groups was determined by two-tailed ANOVA while statistical 

difference between two groups was defined by unpaired t-test using GraphPad Prism software. 

Statistical analysis of the microarray data including gene ontology and pathway analysis 
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(MetaCore software, Thomson Reuters/Genego, St Joseph, MI and IPA software, Ingenuity 

Systems, Redwood City, CA) was performed in collaboration with the Division of Biomedical 

Statistics & Informatics, Mayo Clinic, Rochester, MN. 

Supplementary materials and methods.  Additional methods including glucose 

tolerance tests, insulin tolerance tests, indirect calorimetry, adipose tissue characterization, 

isolation of liver cell subpopulations, RNA isolation, quantitative real-time PCR (qPCR), 

histologic analyses and biochemical analyses are provided in the supplementary materials and 

methods section.  
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RESULTS  

TR
-/- 

mice are resistant to diet induced obesity.  In accordance with our prior 

observations[5], mice fed the FFC diet for 6 months weighed significantly more than mice fed 

standard chow; however, the body weight of wild-type mice was 29% greater than that of TR
-/-

 

mice (Fig. 1A).  TR
-/- 

mice had greater relative lean mass and less relative fat mass on the FFC 

diet compared to wild-type mice (Fig. 1B and C).  Chow-fed mice showed no differences 

between genotypes with regard to total body mass, lean mass or fat mass.  Given the reduced fat 

mass of FFC-fed TR
-/- 

mice, we characterized the specific adipose depots.  Compared to chow-

fed wild-type mice, FFC-fed wild-type animals had larger inguinal, subscapular, epididymal, and 

mesenteric adipose depots (Fig. 1D); these adipose depots were decreased in size in FFC-fed TR
-

/- 
mice.  Overall, significant visceral fat accumulation occurred in both wild-type and TR

-/- 
mice 

fed the FFC diet compared to respective chow-fed mice; however, this was significantly reduced 

in FFC-fed TR
-/- 

compared to FFC-fed wild-type (Fig. 1E).   

To determine whether the protective effects of TR
-/-

 on diet-induced obesity were 

associated with metabolic benefits, we examined glucose tolerance and insulin sensitivity.  The 

12 hour fasted blood glucose of chow-fed TR
-/-

 was lower than wild-type mice (Fig. 1F).  The 

FFC diet caused a significant elevation in fasting blood glucose levels in wild-type mice, but not 

in TR
-/- 

mice, 139.6±5.5 mg/dl and 89.5±7.2 mg/dl, respectively (p<0.01).  Moreover, following 

an intraperitoneal bolus of glucose, chow- and FFC-fed TR
-/- 

mice had significantly lower 

glucose concentrations compared to diet-matched wild-type mice.  The FFC diet diminished the 

response of wild-type mice to an exogenous intraperitoneal bolus of insulin (Fig. 1G).  In 

contrast, TR
-/- 

mice were protected from diet-induced insulin resistance and displayed preserved 

insulin sensitivity, comparable to chow-fed TR
-/-

 mice.  Collectively, these results suggest 
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deletion of TR confers salutary effects in mice against diet-induced obesity and associated 

insulin-resistant state.  To explain resistance to body weight gain and preserved insulin 

sensitivity in FFC-fed TR
-/-

 mice we looked for differences in caloric intake, physical activity, 

respiratory exchange ratio and energy expenditure (Supplementary Fig. 1).  There were no 

significant differences in these metabolic parameters between FFC-fed wild-type and FFC-fed 

TR
-/-

 mice.  To investigate the tissue injury profiles in these mice, given our interest in the 

pathogenesis of NASH, and the liver being a key target organ in the metabolic syndrome we first 

interrogated parameters of liver injury.   

Hepatic steatosis and liver injury are reduced in FFC-fed TR
-/- 

mice.  FFC-fed wild-

type mice displayed hepatic steatosis as assessed by histology and CARS microscopy (Fig. 2A 

and B), increased relative (normalized to body weight) liver weight, (Fig. 2C) hepatic 

triglyceride content (Fig. 2D), and elevated serum ALT (Fig. 2E) compared to chow-fed mice.  

In contrast, FFC-fed TR
-/- 

mice demonstrated minimal changes in liver histology and no increase 

in relative liver weight or hepatic triglycerides, and near normal serum ALT.  Additional 

parameters of liver injury, including TUNEL positive apoptotic hepatocytes and hepatic fibrosis 

assessed by Sirius red staining (Fig. 2F-I) were also increased in FFC-fed wild-type mice.  Liver 

collagen 1 alpha-1 mRNA expression was significantly increased in FFC-fed wild-type mice 

(Fig. 2J).  In contrast, FFC-fed TR
-/- 

mice were protected from liver injury and fibrosis much as 

they were protected from the obese, insulin resistant state.  Indeed, a significant reduction in liver 

triglyceride accumulation, serum ALT elevation, TUNEL positive apoptotic hepatocytes and 

fibrosis were observed in the FFC-fed TR
-/-

 mice.  Thus, TR deficiency protected against the 

hepatic effects of the FFC diet. 
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Hepatic macrophage infiltration is attenuated in FFC-fed TR
-/- 

mice.  To define the 

mechanisms of the hepatoprotective effects of TR
-/- 

in an unbiased manner we performed a gene 

array study in liver tissue from FFC-fed wild-type and TR
-/- 

mice.  The top ten upregulated and 

downregulated genes in wild-type mice relative to TR
-/- 

mice are reported in Supplementary 

Table 2.  One of the top twenty upregulated genes (26-fold increase) was Cd68, a membrane 

glycoprotein highly expressed by cells of the monocyte/macrophage lineage[23].  Pathway 

analysis networks also highlighted inflammation-associated genes and networks, especially those 

associated with phagocytosis (Supplementary Fig. 2).  Informed by the gene array data 

implicating inflammation due to cells of the monocyte/macrophage lineage in this model of 

steatohepatitis, we next focused on the role of TR in macrophage biology during obesity-

associated inflammation. 

The substantial accumulation of hepatic macrophages in FFC-fed wild-type mice 

compared to TR
-/- 

mice was confirmed by Mac-2 immunohistochemistry, a phenotypic marker 

for phagocytically active macrophages[17] (Fig. 3A).  We saw exuberant macrophage 

accumulation around fatty hepatocytes in FFC-fed wild-type mice, consistent with the literature 

[31].  In addition, qPCR for macrophage markers, Cd68 (Fig. 3B) and F4/80 (Fig. 3C) was 

consistent with the histology, demonstrating a significant increase in these markers in FFC-fed 

wild-type mice.  In contrast, these macrophage markers were significantly reduced in FFC-fed 

TR
-/- 

mice compared to diet-matched wild-type mice.  The accumulation of macrophages was 

accompanied by increased proinflammatory cytokine response in FFC-fed wild-type mice as 

assessed by measurement of Mcp1 (Fig. 3D) and Tnfα (Fig. 3E).  In marked contrast, Tnfα and 

Mcp1 mRNA levels were substantially reduced in FFC-fed TR
-/-

 mice.  Correspondingly, Cd11c 
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and Ly6c, markers of monocyte-derived macrophages, known to be proinflammatory, were 

significantly upregulated in FFC-fed wild-type mice compared to TR
-/-

 mice (Fig. 3F and G).   

Hepatocyte and macrophage TR signaling is upregulated and contributes to the 

inflammation of nutrient excess.  To further examine the role of TR signaling in our model, we 

quantified Trail and TR mRNA expression in liver from FFC-fed and chow-fed mice and found 

an increase in both in liver (Supplementary Fig. 3A and B).  Next, we used a cell fractionation 

approach to define the cellular source of increased hepatic Trail and TR expression, and found 

that the FFC diet increased Trail mRNA abundance in hepatocytes and TR mRNA abundance in 

macrophages and hepatocytes (Supplementary Fig. 3C and E).  These data suggest TR signaling 

in two cell types, hepatocytes and macrophages, contributes to tissue inflammation in this model.  

Given, the existing data on lipotoxic ligand-independent activation of TR signaling in fatty 

hepatocytes leading to lipoapoptosis [4], we further explored TR signaling in macrophages. 

TR signaling in BMDMφφφφ promotes macrophage chemotaxis and activation.  We first 

examined a role for TR signaling in macrophage chemotaxis and activation.  TR
-/-

 and wild-type 

BMDMφ migrated equally to fMLP; however TR
-/-

 BMDMφ demonstrated reduced migration to 

TRAIL (Fig. 4A and B).  Thus, TRAIL was a chemoattractant for macrophages consistent with 

our observations of enhanced macrophage accumulation in FFC-fed wild-type mice.  Due to the 

enhanced liver injury and inflammation in FFC-fed wild-type mice, and its significant abrogation 

in TR
-/-

 mice, we next explored if TRAIL signaling is proinflammatory in macrophages, in 

addition to its chemotaxis effects.  We treated macrophages with palmitate, a known 

proinflammatory saturated fatty acid implicated in lipotoxicity, alone or in combination with low 

dose lipopolysaccharide (LPS)[34].  Palmitate and LPS induced Tnfα, Il1β and Mcp1, in wild-

type, but not TR
-/- 

hepatic macrophages (Fig. 4C-E).  As hepatocyte apoptosis is associated with 
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chemokine production,[8] we measured MCP-1 in cell culture supernatants of hepatocytes from 

wild-type and TR
-/-

 mice treated with palmitate. Treatment with palmitate induced MCP-1 

secretion in wild-type hepatocytes, but not in TR
-/-

 cells (Fig. 4F).  This correlates with the 

increased hepatocyte apoptosis and increased MCP-1 abundance seen in FFC-fed wild-type 

versus TR
-/-

 mice, suggesting that chemokines from injured hepatocytes recruit inflammatory 

macrophages to the liver.  Furthermore, TR
-/-

 macrophages demonstrate reduced chemotaxis and 

activation under lipotoxic conditions.   

To define the mechanisms of diminished recruitment of TR
-/-

 BMDMφ into the liver of 

FFC-fed mice we explored NF-κB signaling, a nonapoptotic signaling pathway activated by 

TRAIL and its cognate receptors[3].  TR
-/-

 BMDMφ manifest reduced p65 NF-κB subunit 

nuclear translocation when stimulated with a combination of palmitate plus LPS compared to 

wild-type cells (Fig. 4G and H).  Because palmitate can induce TR signaling by a ligand-

independent mechanism[4], we postulated that TRAIL could substitute for palmitate in this 

assay.  Indeed, TRAIL plus LPS yielded similar results for p65 NF-κB subunit nuclear 

translocation to palmitate plus LPS.  We confirmed NF-κB activation by examining IκB-α 

phosphorylation.  Palmitate plus LPS induced a substantial increase in IκB-α (Ser32/36) 

phosphorylation (Fig. 4H).  In contrast, IκB-α (Ser32/36) phosphorylation was significantly 

reduced in TR
-/-

 cells.  Similar to the nuclear translocation studies, TRAIL substitutes for 

palmitate in this assay.  Thus, TR
-/-

 BMDMφ display reduced levels of NF-κB activation in 

response to palmitate plus LPS or TRAIL plus LPS stimulation.  This likely contributes to the 

reduced activation of macrophages in vivo in FFC-fed mice.  Having demonstrated a reduction in 

hepatic injury and inflammation in FFC-fed TR-/- mice, and reduced chemotaxis and activation 
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in TR-/- macrophages, we next turned our attention to the expanded white adipose tissue to 

examine its role in the improved metabolic phenotype on TR
-/-

 mice.   

TR
-/- 

mice exhibit decreased adiposity and adipose tissue inflammation.  FFC feeding 

led to adipocyte expansion.  H&E stained adipose tissue is shown in supplementary figure 4A.  

This was quantified by measuring adipocyte diameter in epididymal and inguinal fat pads; these 

fat pads demonstrated larger adipocytes with increased adipocyte diameter in FFC-fed wild-type 

mice as compared to chow-fed mice; however, adipocyte diameter in FFC-fed TR
-/-

 mice was 

comparable to chow-fed mice (Supplementary Fig. 4B and C).  As adipose tissue expansion is 

governed, in part, by master transcriptional regulators C/EBPα and β[19], we examined their 

expression by mRNA and immunoblot analysis.  As anticipated, C/EBPα and β were both 

upregulated in FFC-fed wild-type mice (Supplementary Fig. 4D-G).  In contrast, but likely 

contributing to the lack of adipose tissue expansion in FFC-fed TR
-/-

, we observed lower levels of 

C/EBPα and C/EBPβ.   

To further characterize features of the expanded adipose tissue, we asked if development 

of beige or brown fat-like properties might account for the reduction in adipose tissue expansion 

in FFC-fed TR
-/-

 mice.  We observed no increase in markers of beige fat in adipose tissue from 

FFC-fed wild-type or TR
-/-

 mice (Supplementary Fig. 4H and I).  However, we detected a trend 

towards increased uncoupling protein-1 (UCP-1) mRNA expression in TR
-/-

 mice 

(Supplementary Fig. 4K).  Although there was not a statistically significant difference, this trend 

towards enhanced UCP-1expression in the TR
-/-

 mice, perhaps explains, in part, their improved 

metabolic phenotype.  Correspondingly, we detected an increase in UCP-1 by 

immunohistochemistry in TR
-/-

 mice (Supplementary Fig. 4L).  We confirmed that the UCP1 

antibody worked in our hands by testing it on brown adipose tissue (Supplementary Fig. 6).  The 
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immunohistochemistry for UCP-1 identifies a pattern of adipose tissue browning associated with 

fibroblast-like cells within the tissue, which may account for the improved metabolic phenotype 

in the TR
-/-

 mice [2].  Lastly, we analyzed characteristics of infiltrating macrophages in adipose 

tissues.  First, we found an increase in TR expression in FFC-fed wild-type mice without a 

corresponding increase in adipose tissue TRAIL (Supplementary Fig. 5A and B).  There was a 

significant increase in Cd68 and F4/80 consistent with macrophage accumulation and Tnfα and 

Mcp1 mRNA abundance in FFC-fed wild-type white adipose tissues (Supplementary Fig. 5C-F), 

supporting the accumulation of pro-inflammatory macrophages in FFC-fed wild-type mice, and a 

significant reduction in the accumulation of pro-inflammatory macrophages in white adipose 

tissue in FFC-fed TR
-/-

 mice.  We did not detect an increase in alternatively activated, M2 

macrophages in FFC-fed white adipose tissue (Supplementary Fig. 5G-I).  Thus, consistent with 

the observations in liver tissue, we found increased pro-inflammatory macrophages in adipose 

tissue of FFC-fed obese mice. 
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DISCUSSION 

The current observations provide key mechanistic insights into the signaling pathways 

that form the basis of the inflammation of dietary nutrient excess.  We observed, in a murine 

model of obesity and insulin resistance, genetic deletion of TR provided several salutary effects 

including: i) protection against an increase in adiposity and insulin resistance; ii) reduction in 

steatohepatitis; iii) suppression of accumulation of pro-inflammatory macrophages in the liver; 

and iv) reduction in adipose tissue pro-inflammatory macrophage accumulation.  In vitro, the 

genetic deletion of TR attenuated macrophage activation responses following co-stimulation with 

palmitate plus LPS. These data implicate TR signaling as a potent process in the inflammatory 

response occurring during nutrient excess.  

We employed the FFC diet to mimic a fast food diet and obtain a model of obesity with 

steatohepatitis, which mimics human NASH[5].  Genetic deletion of the TR attenuates many of 

the adverse metabolic features observed in wild-type mice fed this diet.  Interestingly, TR
-/- 

mice 

have reduced body mass, reduced steatohepatitis, reduced macrophage accumulation in liver and 

adipose tissues in spite of equal energy intake and expenditure.  These observations suggest TR 

signaling plays a pivotal role in initiating the inflammatory response to nutrient excess.  Without 

an inflammatory response, insulin resistance, weight gain, and organ lipotoxicity are attenuated, 

highlighting the role of inflammation in the pathogenesis of the metabolic syndrome[26].   

During nutrient excess the resulting surplus of circulating FFAs are extracted by the liver 

with adverse outcomes, namely lipoapoptosis[30].  This hepatocyte lipoapoptosis is, in part, 

mediated by TR signaling in vitro[4].  Our current data extends these concepts by demonstrating 

reduced steatohepatitis in FFC-fed animals with TR deletion.  Consistent with our observations, 

it has been demonstrated that apoptosis resistant mice due to hepatocyte-specific deletion of 
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caspase 8  also have reduced hepatocyte apoptosis and consequently reduced steatohepatitis 

when fed a methionine and choline deficient diet[13].  Proapoptotic TR signaling in hepatocytes 

likely elicits an inflammatory response activating macrophages and promoting the development 

of steatohepatitis[8].  Thus, inhibition of TR proapoptotic signaling may prevent inflammation 

and insulin resistance simply by attenuating cell death in the liver and other tissues, as has been 

demonstrated with pharmacologic caspase inhibition[35].  Alternatively, due to the improved 

metabolic profile of FFC-fed TR
-/- 

mice, and the associated reduction in inflammation, we cannot 

exclude a reduction in hepatocyte lipoapoptosis occurring secondary to a better metabolic 

profile.  Due to the whole body knockout mouse employed in these studies the tissue- and organ- 

specific roles cannot be teased out; however, we hope to address this in the future with tissue-

specific TR
-/-

 mice.   

Although absence of cell death may be sufficient to prevent inflammation, death 

receptors also exert proinflammatory signaling cascades in multiple cell types[3].  Indeed, 

palmitate treatment of primary mouse hepatocytes resulted in MCP-1 generation, similar to 

Fas[8].  As palmitate plus LPS triggers secretion of proinflammatory cytokines in cells of the 

monocyte lineage[34], we employed these mediators in our study of macrophages.  Interestingly, 

enhanced expression of Mcp-1, Tnfα, and Il1β by LPS plus palmitate was suppressed in TR
-/-

 

hepatic macrophages and BMDMφ.  This observation is likely explained by the decrease in 

canonical NF-κB activation in TR
-/-

 cells.  Both TR signaling, and LPS signaling via Toll-like 

receptor 4 (TLR4), can engage TRAF6 as a platform to activate NF-κB[15, 38].  Perhaps overlap 

in this signaling process results in synergy between palmitate induced TR signaling plus LPS-

mediated TLR4 signaling.  This latter testable concept will require further studies to identify how 
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TR non-apoptotic signaling synergizes with LPS stimulation to activate pro-inflammatory NF-κB 

signaling in macrophages. 

Our studies demonstrate an increase in TR expression in FFC-fed wild-type white 

adipose tissue, and an increase in both TRAIL and TR in FFC-fed wild-type livers, suggesting 

that TR signaling in both liver and adipose tissue may play a role in the pathogenesis of obesity 

associated tissue injury.  Indeed, in FFC-fed TR
-/-

 mice a reduction in adipose depots, fat mass, 

and adipocyte size was observed.  In addition, we show that the induction of master regulators of 

adipogenic expansion is impaired in FFC-fed TR
-/-

 mice suggesting that TR signaling is required 

for maximal adipose expansion under FFC feeding conditions.  An increase in brown fat-like 

features of adipose tissue, characterized by fibroblast-like cells within the tissue, was detected in 

TR
-/-

 mice, which may account for the improved metabolic phenotype in the TR
-/-

 mice.  Our data 

suggest that TR signaling is essential for the development of diet-induced obesity and its 

sequelae, and its deletion limits both lipoapoptosis and tissue inflammation.   

One unifying explanation for these findings could be a primary macrophage defect, as the 

current study suggests that TR signaling contributes to the immune response of nutrient excess 

by promoting macrophage chemotaxis and the inflammatory response to FFAs.  Thus, due to the 

lack of macrophage accumulation and activation in both adipose tissue and liver, TR
-/-

 mice are 

protected from insulin resistance and the progressive deleterious effects of diet-induced obesity.  

The pathophysiology of TRAIL and its receptors has remained somewhat enigmatic. TRAIL 

signaling was originally identified as proapoptotic in malignant cell lines but was uneventful in 

healthy, nontransformed cells[16].  Recently, a role for non-apoptotic TR signaling in host 

immune responses has emerged[3, 9].  Our findings are in accord with this growing appreciation 

of the role of TR in inflammatory disorders[7].   
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We propose a model where TR signaling, by promoting both cell death and macrophage 

activation, results in tissue inflammation and insulin resistance during dietary nutrient excess.  

Both processes coordinately participate in the observed phenotype.  Finally, we note that a small 

molecule TR agonist has been described, which suggests that identifying a small molecule TR 

antagonist is also possible[33].  An inhibitor of TR signaling could be salutary in human obesity 

related syndromes if the observations in mice can be extrapolated to humans. 
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FIGURE LEGENDS 

Fig. 1.  TR
-/- 

mice are resistant to diet induced obesity.  (A) Body weight in grams (g), 

(B) Lean mass (%), (C) Fat mass (%), (D) White adipose tissue (g),  (E) Visceral fat (%), (F) 

Serum glucose determinations following an intraperitoneal injection of glucose, and (G) Serum 

glucose determinations following an intraperitoneal injection of insulin in wild-type (WT) and 

TR knockout (TR
-/-

) mice fed chow or FFC diet for 6 months (n=7 per group).  For B and C the 

percent lean and fat mass totals to approximately 90%, as QMR excludes skin and bones which 

accounts for the remaining 10% body mass.  For A-E *p<0.05, **p<0.01.  For F and G the 

differences between FFC-fed WT versus TR
-/-

 mice are statistically significant by two-tailed 

ANOVA (*p<0.05). 

Fig. 2.  Hepatic steatosis and liver injury are reduced in FFC-fed TR
-/- 

mice.  (A) 

H&E stained sections (scale bar 20 µm), (B) CARS and SHG microscopy for lipid droplets and 

extracellular matrix (scale bar 100 µm), (C) Liver weight, (D) Hepatic triglycerides (µg/mg of 

liver tissue), (E) Serum alanine aminotransferase (U/L), (F) TUNEL staining (scale bar 100 µm), 

(G) Sirius red staining (scale bar 100 µm), (H) Quantification of TUNEL positive cells, (I) 

Quantification of Sirius red chromogen, and (J) mRNA abundance of collagen-1α1 in livers from 

WT and TR
-/-

 mice fed chow or FFC diet for 6 months (n=7/group).  *p<0.05, **p<0.01. 

Fig. 3. Liver and adipose tissue macrophage infiltration is attenuated in FFC-fed 

TR
-/- 

mice.  (A) Liver section with Mac-2 immunohistochemistry for macrophages (scale bar 20 

µm), mRNA abundance of (B) Cd68, (C) F4/80, (D) Mcp1, (E) Tnfα, (F) Cd11c and (G) Ly6c in 

liver tissue, (H) Cd68, (I) F4/80, (J) Tnfα and (K) Mcp1 in epididymal fat of WT and TR
-/-

 mice 

fed the FFC diet for 6 months expressed relative to that observed in chow-fed WT mice (n=6 per 

group, *p<0.05, **p<0.01). 
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Fig. 4. Macrophage TR signaling contributes to the inflammation of nutrient excess.  

(A) Fluorescent photomicrographs (scale bar 20 µm) and (B) quantification of DAPI stained 

migrated WT and TR
-/-

 BMDMφ.  (C-E) mRNA abundance of Tnfα, Il1β, and Mcp1 in cells 

treated with 400 µM palmitate (PA) and/or 10 ng/ml lipopolysaccharide (LPS), 8h.  (F) MCP1 

levels in supernatants from cells treated with 400 µM PA, 8h.  (G) Quantification of nuclear 

translocation of NF-κB by immunofluorescence, (H) phosphorylation of IκB-α (Ser32/Ser36) in 

WT and TR
-/- 

BMDMφ treated with 400 µM PA ± 10 ng/ml lipopolysaccharide (LPS) or 10 

ng/ml TRAIL for 1h.  *p<0.05, **p<0.01 
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