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Background & Aims: Liver tumor, especially hepatocellular car- graft growth and impaired IL-6-induced STAT3 phosphorylation

cinoma (HCC), is closely associated with chronic inflammation.
We previously showed that farnesoid X receptor knockout
(FXR�/�) mice displayed chronic inflammation and developed
spontaneous liver tumors when they aged. However, the mecha-
nism by which inflammation leads to HCC in the absence of FXR
is unclear. Because IFNc is one of the most upregulated pro-
inflammatory cytokines in FXR�/� livers, we generated
IFNc�/�FXR�/� double knockout mice to determine IFNc’s roles
in hepatocarcinogenesis.
Methods: IFNc�/� mice were crossed with an FXR�/� C57BL/6
background or injected i.p. with the hepatocarcinogen diethylni-
trosamine (DEN). Hepatocarcinogenesis was analyzed with bio-
chemical and histological methods.
Results: IFNc deletion accelerated spontaneous hepatocarcino-
genesis in FXR�/� mice and increased the susceptibility to DEN-
induced hepatocarcinogenesis. IFNc deletion enhanced activation
of HCC promoters STAT3 and JNK/c-Jun, but abolished induction
of p53 in IFNc�/� livers after acute DEN-induced injury. Further-
more, hepatic p53 expression increased in aged wild type mice
but not in aged IFNc�/� and IFNc�/�FXR�/� mice, while activation
of STAT3 and JNK/c-Jun was enhanced in aged IFNc�/� and
IFNc�/�FXR�/�mice. In addition, IFNc inhibited liver cancer xeno-
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by inducing SOCS1/3 expression.
Conclusions: Increased IFNc expression in FXR�/� livers repre-
sents a protective response of the liver against chronic injury
and tumorigenesis. IFNc suppresses hepatocarcinogenesis by
inducing p53 expression and preventing STAT3 activation.
� 2012 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

HCC is the fifth most prevalent cancer and the third leading cause
of cancer death in the world [1]. HCC commonly develops in a
setting of liver damage, and the major risk factor for liver damage
and HCC is infection with hepatitis B or C viruses [2]. A common
pathological feature of HCC development regardless of etiology is
represented by chronic inflammation triggered by hepatocyte
death, which leads to continuous compensatory hepatocyte pro-
liferation. HCC is also highly connected to liver metabolic disor-
ders. One particular example is spontaneous HCC development
in FXR�/� mice [3].

FXR is a key metabolic regulator of bile acid, lipid, and glucose
homeostasis. FXR also regulates host immunity in some contexts.
For example, FXR prevents bacterial infection in intestine, modu-
lates concanavalin A-induced T cell hepatitis, and antagonizes
LPS-induced hepatic inflammation [4–6]. FXR�/� mice display a
low grade chronic inflammation as early as they are 8-weeks-old
and spontaneously develop liver cancer when they are over 1 year
of age [3]. Furthermore, FXR expression is strongly downregulated
in human HCC, and hepatocarcinogenesis in FXR�/� mice mimics
human HCC progression [7]. Therefore, FXR�/� mice provide a
unique model of HCC in a background of chronic inflammation
induced by metabolic disorders. However, the mechanism by
which chronic inflammation leads to HCC in the absence of FXR
is still unclear.
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A variety of signaling molecules, particularly cytokines and

their downstream mediators, divert inflammation to liver carcino-
genesis. These include TNFa, IL-6, IKK/NF-jB, JAK/STAT3, JNK/c-
Jun [8–11]. IFNc is one of the most upregulated cytokines in
FXR�/� mouse livers [3], but the exact roles of IFNc during HCC
development in FXR�/� mice are unclear. In this study, we show
that IFNc deletion enhanced hepatocarcinogenesis in FXR�/� mice
and sensitized mice to DEN-induced tumorigenesis. We also iden-
tified a novel role of IFNc in maintaining aging-induced activation
of p53 and NF-jB and preventing hyperphosphorylation of STAT3
and JNK in livers. Our results underscore an important role of IFNc
in suppressing hepatocarcinogenesis.
Materials and methods

Animals

IFNc�/� mice were purchased from Jackson Laboratory. To generate
IFNc�/�FXR�/� mice, IFNc�/� mice were crossed with FXR�/� mice in C57BL/6
background. DEN-induced HCC rodent models were generated according to a pre-
vious report [12]. Briefly, 100 mg/kg DEN (Sigma, Santa Louis, MO) was i.p.
injected into 4-week-old mice, and after 2 weeks, 3 mg/kg TCPOBOP (Sigma)
was administered to the mice, once every two weeks for 8 times. Six months after
DEN treatment, mice were euthanized and samples collected. Further details on
xenograft studies with HuH7 cells and IFNc are provided in Supplementary data.
Mice were maintained in a pathogen-free animal facility under standard 12:12-h
light/dark cycle, and were fed standard rodent chow and water ad libitum. All pro-
cedures followed the NIH guidelines for the care and use of laboratory animals.

Liver histology, TUNEL, and PCNA staining

Livers were fixed in 4% PBS-buffered formalin, dehydrated and embedded in par-
affin, sectioned and processed for H&E and immunostaining. Liver specimens
were analyzed by pathologists at City of Hope Research Core Lab. Necrosis and
leukocyte infiltration (inflammation) were graded as described [13]. TUNEL and
PCNA stainings were used to quantify liver cell apoptosis and proliferation with
kits from Roche (San Diego, CA) and Invitrogen (San Diego, CA), respectively.
The specimens for sectioning were made with approximately the same size and
all the positive cells were counted on the specimens. The methods for the other
immunostainings are provided in Supplementary data.

Quantitative real-time PCR

RNAs were isolated with TRI reagents (Molecular Research Center, Cincinnati,
OH). RNAs were reverse transcribed to cDNA using SuperScript First-Strand Syn-
thesis System (Invitrogen) and quantified by Applied Biosystems 7500 Real-Time
PCR System (Forest City, CA). Primers are listed in Supplementary Table 1.

Western blotting

Western blotting was performed as previously described [14]. Anti-b-actin anti-
body was from Sigma.

All the other antibodies, including phospho-Y701-STAT1 and phospho-Y705-
STAT3 antibodies, were purchased from Cell Signaling Technology (Danvers, MA).

Lipid peroxide, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)
analysis

Liver lipid peroxides were measured with a kit from Cayman Chemicals (Ann
Arbor, MI). Serum was obtained by centrifuging mouse blood at 3500 rpm at
4 �C for 10 min. Serum AST and ALT levels were measured at the City of Hope Hel-
ford Research Hospital.

Statistical analysis

All the data were reported as mean ± SEM. Two-tailed Student’s-t test or one way
ANOVA test was used to determine the significance of differences between data
groups.
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Results

IFNc deletion enhances spontaneous liver tumorigenesis in FXR�/�

mice

The FXR�/� background provided a context of spontaneous liver
injury and chronic inflammation [7]. IFNc deletion in FXR�/� mice
led to liver tumorigenesis as early as mice were 8-months-old,
while no tumor incidence was observed in FXR�/� mice at that
time (Table 1). Although livers of 3-month-old IFNc�/� mice did
not display morphological differences from wild type mouse liv-
ers (Supplementary Fig. 1), sparse HCC incidence was observed in
aged IFNc�/� mice but not their wild type littermates over 15-
months-old (Table 1). FXR�/� mice had a low tumor incidence
rate at 10 months of age (Table 2). In contrast, IFNc deletion in
FXR�/� mice resulted in more than 80% incidence and much lar-
ger tumors (Table 2, Fig. 1A). Immunohistochemistry analysis of
hepatic expression of CD34, CK19, and CK20 revealed that tumors
were hepatocellular carcinomas and not derived from bile ducts
or intestinal tissues [15] (Fig. 1B).

Deletion of IFNc elevated levels of ALT and AST in 10-month-
old wild type and FXR�/� mice (Table 2). These results suggested
that IFNc deletion promoted spontaneous liver injury during the
aging process, which was supported by hepatocyte degeneration
and focal necrosis in the livers (Fig. 1C, Supplementary Fig. 2).
Furthermore, IFNc deletion significantly enhanced apoptosis
and inflammatory cell infiltration in FXR�/� mice (Fig. 1C, Supple-
mentary Fig. 3A), and in turn led to increased compensatory
hepatocyte proliferation in IFNc�/�FXR�/� mice (Fig. 1C, Supple-
mentary Fig. 3B), which is believed to be a major driving force
of tumor initiation and expansion. In addition, collagen deposi-
tion and fibrosis-related gene expression were enhanced by IFNc
and/or FXR deletion (Supplementary Fig. 4A and B), which is con-
sistent with the role of IFNc against fibrosis [16].

IFNc deletion enhances chemical-induced liver tumorigenesis

We used DEN-induced HCC models to further determine IFNc’s
roles in hepatocarcinogenesis and followed a protocol of HCC
induction described previously [12]. This method led to �70%
HCC incidence in 7-month-old wild type mice (Table 3). In con-
trast, all the IFNc�/�, FXR�/�, and IFNc�/�FXR�/� mice developed
liver tumors at this age. Moreover, IFNc�/� mice developed more
and larger hepatocellular carcinomas than wild type mice, and
IFNc�/�FXR�/� mice displayed enhanced hepatocarcinogenesis
compared with FXR�/� mice (Table 3, Fig. 2A, Supplementary
Fig. 5).

Serum AST and ALT levels were higher in IFNc�/� mice than in
wild type mice, confirming the protective role of IFNc against
liver injury (Table 3). This role was further supported by the more
severe necrosis and apoptosis in the non-tumor liver tissue of
IFNc�/� mice after DEN treatment compared with wild type con-
trols (Fig. 2B). Histological studies revealed more inflammatory
cell infiltration (Supplementary Fig. 6, Fig. 2B) and fibrogenesis
in IFNc�/� mice than in wild type mice (Supplementary Fig. 7A
and B). In addition, oval cell-like cells appeared more frequently
in mice with IFNc deletion, indicating activation of liver progen-
itor cells was enhanced in these mice (Supplementary Fig. 8),
which was confirmed by the immunostaining for the oval cell
marker A6 (Supplementary Fig. 9) [17]. Consistent with the spon-
taneous liver tumorigenesis model, IFNc deletion led to enhanced
compensatory hepatocyte proliferation in DEN-induced HCC
vol. 57 j 1004–1012 1005



Table 1. Spontaneous hepatocarcinogenesis.

Tumor incidence/
mice

WT IFNγ-/- FXR-/- IFNγ-/- 
FXR-/-

6 mo 0/8 0/8 0/8 0/12
8 mo 0/8 0/6 0/12 5/13
10 mo 0/8 0/12 2/14 24/29
15 mo 0/12 3/21 12/12 17/17
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(Fig. 2B). These results highlight a key role of IFNc in suppressing
the development of both spontaneous and chemical-induced
HCC.

IFNc deletion enhances cell deaths and compensatory proliferation
after DEN treatment

Injury-induced inflammation and compensatory proliferation
following exposure to carcinogen play essential roles in cancer
initiation. To investigate IFNc’s roles in HCC initiation, the
acute phase of DEN-induced liver injury was evaluated in
4-week-old IFNc�/� mice. IFNc�/� mice showed more than
2.5-fold body weight loss and much more robust ALT increase
(Fig. 2C) than wild type mice, 2 days after a single DEN injec-
tion (100 mg/kg). Consistently, IFNc�/� mice carried more
severe focal necrosis, or even submassive necrosis and more
extensive inflammatory cell infiltration (Fig. 2D, Supplemen-
tary Fig. 10A). In addition, TUNEL staining revealed more
apoptotic cells in IFNc�/� livers than in wild type controls
(Fig. 2D, Supplementary Fig. 10B). In response to cell deaths
and inflammation, compensatory hepatocyte proliferation fol-
lowing acute injury was enhanced in IFNc�/� mice (Fig. 2D,
Supplementary Fig. 10B). Consistently, activation of inflamma-
tion mediators STAT3 and JNK/c-Jun was augmented (Fig. 2E).
Furthermore, both basal and DEN-induced p53 expression was
absent in IFNc�/� mice, though no difference in NF-jB activa-
tion was observed. Even without DEN treatment, 4-week-old
IFNc�/� mice already exhibited higher levels of phosphorylated
STAT3 and c-Jun than wild type mice. Overall, the altered
responses of STAT3, JNK, and p53 may contribute to enhanced
Table 2. Spontaneous HCC in 10-month-old mice.

WT IF
Tumor incidence x100% 0.0 0.
Tumor number per liver 0.0 0.
No. of tumor diameter >0.2 cm 0.0 0.
Maximum tumor diameter/cm 0.0 0.
Liver/body weight ratio x100% 5.0 ± 0.1 4.
ALT (U/L)

3 mo 129.3 ± 7.4 12
10 mo 131.2 ± 13.2 47

AST (U/L)
3 mo 44.0 ± 6.1 74
10 mo 37.6 ± 4.7 22

��p <0.01. IFNc�/� vs. wild type.
⁄p <0.05; ⁄⁄p <0.01. IFNc�/�FXR�/� vs. FXR�/�.
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cell deaths, inflammation, and compensatory proliferation in
IFNc�/� livers.

IFNc is required to maintain p53 and NF-jB activation in aging livers

Many types of cancers, including liver cancer, have a strong cor-
relation with aging. The production of IFNc is altered in aged
human individuals [18,19], which prevents proliferation of aged
hepatocyte and may help protect against tumorigenesis [20].
Indeed, hepatic expression of IFNc was also higher in 10-
month-old mice than in 3-month-old mice (Supplementary
Fig. 11A). Therefore, we asked whether the enhanced hepatocar-
cinogenesis in IFNc�/� mice was associated with aging–related
stresses. We compared hepatic activation of proto-oncogenes
and tumor-suppressor genes between 3- and 10-month-old wild
type mice. Among many signal pathways we examined, STAT1
and STAT3 activation did not clearly show a tendency of increase,
but p53 expression and NF-jB activation were significantly
upregulated (Fig. 3A). p53 acts as a checkpoint protein in the cell
cycle and suppresses the uncontrolled cancer cell duplication,
while hepatocyte NF-jB inhibits hepatocarcinogenesis by
repressing reactive oxygen species (ROS) accumulation and pre-
venting necrosis [9]. The activation of these pathways can protect
aging livers from hepatocarcinogenesis.

More surprisingly, absence of IFNc or FXR greatly reduced
STAT1 phosphorylation in precancerous livers (Supplementary
Fig. 11B, and Fig. 3B). Furthermore, induction of p53 and phos-
phorylation of hepatic IjB and p65 were reduced or abolished
in knockout mice, indicating that the age-related activation of
p53 and NF-jB required the presence of IFNc and FXR, consistent
with the reported interaction and synergistic activation of IFNc/
STAT1 and NF-jB pathways [21,22]. ROS, which is capable of
inducing DNA damage, genomic instability, and activating STAT3
and JNK, is antagonized by one of the NF-jB target genes,
MnSOD. MnSOD catalyzes the dismutation of two molecules of
superoxide anion into water and hydrogen peroxides, and thus
reduces ROS and protects the liver from oxidative stresses [9].
Indeed, levels of lipid peroxides, the ROS products, were upregu-
lated in all the precancerous tissues of knockout mice (Fig. 3C),
probably due to a decreased MnSOD expression resulting from
absence of hepatic NF-jB activation (Fig. 3D).
Nγ-/- FXR-/- IFNγ-/-FXR-/-

0 14.0 82.7
0 0.6 ± 0.5 7.4 ± 1.3**
0 0.0 ± 0.0 2.2 ± 0.4**
0 0.1 ± 0.1 0.5 ± 0.1**
8 ± 0.1 6.3 ± 0.2 6.4 ± 0.1

0 ± 6.1 267.0 ± 29.7 288.0 ± 14.0
3.1 ± 50.4†† 572.0 ± 78.2 805.7 ± 52.5*

.7 ± 29.7 214.0 ± 33.2 255.0 ± 61.8
8.4 ± 36.8†† 261.7 ± 71.1 368.0 ± 92.3
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Enhanced STAT3 and JNK1/2 activation and decreased p53
expression in IFNc�/� mice

STAT1 plays a tumor-suppressor role by antagonizing STAT3 [23–
25], and hepatocyte NF-jB suppresses hepatocarcinogenesis by
attenuating both STAT3 and JNK activation, in part by controlling
ROS [9,26]. Therefore, we speculated that in IFNc�/�, FXR�/�, and
IFNc�/�FXR�/� mouse livers the exaggerated activation of STAT3
and JNK can be observed due to decreased STAT1 and NF-jB acti-
vation. Indeed, STAT3 and JNK1/2 were hyperphosphorylated,
especially in IFNc�/�FXR�/� tumors (Fig. 3E). STAT3 can target
many anti-apoptotic genes, including Bcl-2, Bcl-xl, and Mcl-1.
Expression of these 3 genes was increased in knockout animals
(Fig. 3F). The substrate of JNK1/2, c-Jun, is a strong tumor-
Journal of Hepatology 2012
promoter in the liver, since c-Jun�/� mice are more resistant to
hepatocarcinogenesis due to loss of c-Jun suppression on p53
[11]. c-Jun phosphorylation was dramatically increased in aged
IFNc�/�, FXR�/�, and IFNc�/�FXR�/�mouse livers. c-Jun has a posi-
tive auto-feedback loop of its transcription by binding to its own
promoter after being phosphorylated. Consistently, we observed
that a robust increase in c-Jun expression in aged knockout ani-
mals, which indicated that loss of IFNc in the aging liver greatly
enhanced some oncogenic signaling such as c-Jun. In addition,
upregulation of Cyclin D1 and c-Myc and downregulation of
p53 in knockout livers (Fig. 3E and F and Supplementary
Fig. 11C) appeared to be critical. In fact, c-Myc is suppressed by
IFNc [27], and Cyclin D1 and c-Myc are also activated by STAT3
in HCC. Besides, the hyperactivation of STAT3 and JNK1/2, which
vol. 57 j 1004–1012 1007



Table 3. DEN-induced HCC in 7-month-old mice.

WT IFNγ-/- FXR-/- IFNγ-/-FXR-/--

Tumor incidence x100% 70.0 100.0 100.0 100.0
Tumor number per liver 4.4 ± 0.9 24.7 ± 4.3†† 38.2 ± 4.6 64.1 ± 2.6**
No. tumor diameter >0.2 cm 1.7 ± 0.6 4.0 ± 0.4†† 7.8 ± 0.7 8.7 ± 0.7
No. tumor diameter >0.5 cm 0.2 ± 0.1 0.8 ± 0.3 0.8 ± 0.4 2.1 ± 0.3*
Maximum tumor size/cm 0.3 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 1.0 ± 0.1*
Liver/body weight ratio x100% 5.6 ± 0.2 7.1 ± 0.3 8.3 ± 0.6 8.6 ± 0.4
ALT (U/L) 202.0 ± 24.1 803.2 ± 31.2†† 670.0 ± 151.3 1056.0 ± 96.5*
AST (U/L) 74.0 ± 15.9 272.7 ± 30.9†† 196.0 ± 37.9 423.6 ± 31.7**

��p <0.01. IFNc�/� vs. wild type.
⁄p <0.05; ⁄⁄p <0.01. IFNc�/�FXR�/� vs. FXR�/�.
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could also reflect increased hepatic inflammation and immune
cell infiltration, could be attributed to the increased expression
of hepatic TNFa and IL-6, two cytokines well known for promot-
ing hepatocarcinogenesis (Supplementary Fig. 11C).
STAT3 and JNK are persistently hyperactive in IFNc�/� livers after
DEN treatment

We further confirmed the activation of STAT3 and JNK1/2 in the
cancer progression stage in DEN-induced HCC models. In
response to decreased phosphorylation of STAT1, STAT3 and
JNK/c-Jun were hyperactivated in IFNc�/� precancerous tissues
(Fig. 4A). Consistently, STAT3 activator lipid peroxide/ROS was
upregulated in IFNc�/� mice, and expression of STAT3 target
genes Bcl2, Cyclin D1, and c-Myc was significantly increased
(Fig. 4B). However, deregulation of STAT3 and JNK was indepen-
dent of NF-jB pathways since IjB phosphorylation was higher in
IFNc�/� livers than in wild type controls, probably due to a higher
expression of IKKa/b (Fig. 4A). Unlike short-term post-DEN stim-
ulation and spontaneous HCC model, p53 expression at this stage
was not reduced in IFNc�/� livers. Differences in NF-jB and p53
activation might be due to different progression stages and differ-
ent mechanisms of tumorigenesis. In accord with the spontane-
ous HCC model, hepatic expression of certain tumor-promoting
cytokines, for instance TNFa, IL-6, and TGFb, was upregulated
(Supplementary Fig. 12).
IFNc blunts IL-6-induced STAT3 phosphorylation in liver cells and
inhibits liver cancer xenograft

To investigate the direct suppressive effects of IFNc on STAT3
in liver cells, we pretreated HepG2 and Huh7 cells with IFNc
and then added IL-6 to the cells. IFNc greatly reduced IL-6-
induced STAT3 phosphorylation in both cell lines (Fig. 4C).
Moreover, the STAT1 inhibitor fludarabine slightly increased
IL-6-induced STAT3 phosphorylation (Supplementary Fig. 13),
though the inhibitor did not directly alter IjBa and JNK activa-
tion by TNFa. The suppressive effects of IFNc might be due to
the induction of SOCS1 and SOCS3 in liver cells since SOCS pro-
teins were specific inhibitors of STAT3 phosphorylation
(Fig. 4D). Furthermore, we found that treatment of the HuH7
xenograft with IFNc decreased tumor growth (Fig. 4E and F),
which is consistent with reports on applications of IFNc on
liver cancer models [16].
1008 Journal of Hepatology 2012
Discussion

Liver cancer is one of the most common cancers worldwide.
Recent studies have focused on the associations of HCC with met-
abolic diseases. The possible causal link between metabolic dis-
eases and HCC, independent of other well-recognized risk
factors, such as viral infections and alcohol, suggests that meta-
bolic dysfunction of the liver may be an important etiology of
hepatocarcinogenesis. Metabolic dysfunction may act synergisti-
cally with other etiological agents, such as viruses, to promote
HCC. Previously, we have observed that both male and female
FXR�/� mice spontaneously develop liver tumors as they age
[3]. Before tumors emerged, liver injury, inflammation, and irreg-
ular liver regeneration were observed in FXR�/� mice, but not in
wild type mice of the same age [3,7,28]. Therefore, FXR�/� mice
provide a unique animal model for studying metabolic deregula-
tion-related HCC. A key feature of these mice is the chronic
inflammation and upregulation of several inflammatory cyto-
kines such as IFNc in their livers. Interestingly, IFNc modulates
several aspects of metabolism, for instance cytochrome P450
enzyme expression, insulin signaling, and lipid storage [29–31].
In addition, IFNc plays critical roles in many liver diseases [16].
IFNc helps recover from infections of hepatitis viruses by activat-
ing cytotoxic T lymphocytes, prevents fibrosis induced by viral
infection or chemical carcinogen exposure, and decelerates hepa-
tocellular carcinoma progression, whereas inhibition of IFNc
might be required for liver regeneration and to prevent graft
rejection after liver transplantation. Therefore, IFNc might be
suitable for therapeutic applications. Elucidation of IFNc’s roles
in hepatocarcinogenesis in FXR�/� mice will provide insights into
the relationship between metabolic disorders and HCC.

Inflammation could be either pro-tumorigenic or tumor-sup-
pressive, depending on causes, timing, persistence, and intensity
[32]. It is the balance among different immune mediators and
regulators that determines the outcomes of inflammation. IFNc,
secreted by innate and adaptive immune cells, is a critical inflam-
matory and modulatory cytokine against infection of bacteria and
viruses, including hepatitis B or C viruses [33]. It is also involved
in both anti-tumor and tumor-promoting inflammation. On the
one hand, IFNc helps reject transplanted tumors by mechanisms
such as cytotoxicity enhancement to cancer cells [34], angiogen-
esis inhibition [35], and regulation of cancer cell immunogenicity
and immunosurveillance [36]. On the other hand, IFNc promotes
development of cancers such as melanoma and colorectal
carcinoma by inducing chronic inflammation [37,38]. In fact,
vol. 57 j 1004–1012
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endogenous IFNc is potentially a liver proto-oncogene, because
IFNcR�/� mice display slightly decreased tumorigenesis with
chronic DEN treatment in drinking water [39], and loss of IFNc/
STAT1 suppressor SOCS1 promotes liver fibrosis and carcinogen-
esis [24]. Nevertheless, the tumor-suppressor role of IFNc is sup-
ported by the evidence that HCC patients with low IFNc receptor
expression have significantly poorer prognosis [40] and exoge-
nous IFNc inhibits HCC in both tissue culture and carcinogen-
challenged rodents by inducing apoptosis [34,41,42]. Taking
advantage of our unique HCC model in FXR�/� mice, we demon-
strate that IFNc indeed plays a tumor-suppressor role in
hepatocarcinogenesis. In FXR�/� mice, accumulation of toxic bile
acids in the liver induces chronic inflammation and IFNc is
highly upregulated. In contrast to the pro-tumorigenic effect of
Journal of Hepatology 2012
pro-inflammatory cytokines TNFa and IL-6, our results suggest
that IFNc is induced to protect the liver from injury and suppress
signals for cell proliferation. Therefore, the interaction between
both pro-tumorigenic and tumor-suppressive cytokines may
determine the final outcome of hepatocarcinogenesis.

Our studies identified a novel role of IFNc in suppressing HCC
by maintaining the activities of aging-related responses. IFNc sig-
naling was elevated in aged rodent livers in order to tightly con-
trol cell cycling. In primates, the production of IFNc is altered in
aged individuals [18,19]. This implies that IFNc might be essen-
tial for the liver to adapt to metabolism and microenvironment
alternations during the aging process and to prevent tumor initi-
ation or expansion of transformed hepatocytes. We found that
the aging process in mouse livers induces NF-jB activation and
vol. 57 j 1004–1012 1009
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p53 expression, which has not been reported so far. In IFNc�/�

livers, these inductions were absent. Since NF-jB and p53 are
key tumor-suppressors in the liver [8,9,43], increased activation
of these two signaling pathways should help reduce the liver
tumor burden. In fact, IFNc is involved in NF-jB activation and
IFNc inhibits cell cycle progression of both primary hepatocytes
and hepatocyte-derived cell lines via p53-and/or STAT1-
dependent manners [16]. Here, we show that IFNc deletion in
mice leads to deficient p53 and NF-jB signaling in cancer initia-
tion and progression. Our results highlight the significance of inter-
action between IFNc, p53, and NF-jB during hepatocarcinogenesis.

In hepatocytes, IFNc/STAT1 negatively regulates STAT3 by
inducing SOCS1/3 [16,25]. The reduced hepatic STAT1 phosphor-
ylation in IFNc�/� mice can thus exaggerate STAT3 activities dur-
ing hepatocarcinogenesis. This notion is consistent with studies
in human HCC indicating that STAT1 phosphorylation was exten-
sive in non-HCC tissues compared with HCC regions while STAT3
was hyperphosphorylated in HCC regions compared with non-
HCC regions [24]. Furthermore, deficient p53 and NF-jB signaling
in IFNc�/� livers also contribute to aberrant STAT3 activation by a
variety of mechanisms [23,24,26,44]. Similarly, JNK/c-Jun is also
1010 Journal of Hepatology 2012
hyperphosphorylated in IFNc�/� mice due to accumulated ROS
and/or reduced NF-jB activities [26]. These results indicate that
endogenous IFNc is essential for preventing hyperphosphoryla-
tion of STAT3 and JNK/c-Jun in part by maintaining the activities
of NF-jB, p53, and STAT1 in aging livers. The aberrant activation
of STAT3 and JNK/c-Jun has been repeatedly documented in
human HCC and animal models [26,43]. STAT3 and JNK/c-Jun
appear to play central roles in HCC initiation and progression
[45]. Deletion of hepatocyte STAT3 or JNK1 in mice induces resis-
tance to DEN-induced hepatocarcinogenesis [45,46], and phar-
macological inhibition of JAK/STAT3 or JNK/c-Jun suppresses
liver cancer progression [46,47]. Future studies should dissect
the activation of JNK and STAT3 in hepatocytes and non-
parenchymal cells in IFNc�/� mice, which would provide more
information on the roles of IFNc in inflammatory signaling cross-
talk and hepatocarcinogenesis. Nonetheless, the identification of
IFNc as an endogenous modulator of JAK/STAT3 and JNK/c-Jun
will provide more insights into the future therapeutics for HCC.
In this study, the therapeutic strategy of peri-tumor subcutane-
ous injection, which extended elimination half-life of IFNc by
slower release and could simultaneously provide a similar effect
vol. 57 j 1004–1012
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with localized deliveries such as intratumoral injection by short-
ening the delivery distance to tumor sites, effectively inhibited
liver tumor xenograft growth.

In summary, IFNc deletion increases the susceptibility to
spontaneous hepatocarcinogenesis in FXR�/� mice and chemi-
cal-induced HCC. Our studies also demonstrate a key role of IFNc
in maintaining activation of p53 and NF-jB and preventing
hyperphosphorylation of STAT3 and JNK in aging livers.
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