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a b s t r a c t

This work presents a new approach to predict thermal stability of nitroaromatic compounds based on
quantum chemical calculations and on quantitative structure–property relationship (QSPR) methods.
The data set consists of 22 nitroaromatic compounds of known decomposition enthalpy (taken as a
macroscopic property related to explosibility) obtained from differential scanning calorimetry. Geomet-
ric, electronic and energetic descriptors have been selected and computed using density functional theory
eywords:
hermal stability
xplosibility
roperty prediction
uantitative structure–property

elationship (QSPR)

(DFT) calculation to describe the 22 molecules. First approach consisted in looking at their linear correla-
tions with the experimental decomposition enthalpy. Molecular weight, electrophilicity index, electron
affinity and oxygen balance appeared as the most correlated descriptors (respectively R2 = 0.76, 0.75, 0.71
and 0.64). Then multilinear regression was computed with these descriptors. The obtained model is a
six-parameter equation containing descriptors all issued from quantum chemical calculations. The pre-
diction is satisfactory with a correlation coefficient R2 of 0.91 and a predictivity coefficient R2 of 0.84

etho
uantum chemistry using a cross validation m

. Introduction

An important initial step for the management of industrial risks
onsists in identifying and determining as soon and as accurately as
ossible explosive abilities of molecules, whatever their final use.
oreover, the explosive intrinsic property of a substance ranks at

op of physico-chemical hazards that may be feared from the use
f a given chemical [1]. This is a reason why, in addition to the
omplexity with which this hazardous property is triggered in real
ase, the experimental approach has remained the “golden” way

o assess hazards. Keeping on this unique approach would how-
ver be a real burden for the industry with the requirements of
he new regulatory framework REACH1 and its tool the GHS2 given
he tremendous number of substances (up to 30,000) that might

∗ Corresponding author. Tel.: +33 3 44556329; fax: +33 3 44556565.
E-mail address: patricia.rotureau@ineris.fr (P. Rotureau).

1 REACH for “Registration, Evaluation and Authorization of Chemicals” is a new
uropean regulation published by the European Commission in December 2006 and
ntered into force on 1st June 2007. All manufacturers, importers and suppliers of
hemicals must identify and manage risks linked to the substances they manufacture
nd market. http://echa.europa.eu/.

2 GHS for “Globally Harmonized System of classification and labeling of
hemicals” is a United Nations system which aims to identify hazardous chem-
cals and to inform users about these hazards through standard symbols
nd phrases on the packaging labels and through safety data sheets (SDS).
ttp://ecb.jrc.ec.europa.eu/classification-labelling/.
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require a new assessment of hazardous properties. Another interest
for predictive methods is to address needs of screening processes of
substances that are applied to search for a targeted chemical activity
(e.g. phytotoxicity, medical efficiency for a given illness, reactivity,
. . .) at the R&D level.

A number of early works are worth being mentioned in the field
of hazard prediction. At first, some methods of prediction based on
thermodynamic concepts have been developed. Significant weak-
nesses in those methods lie in the chemical thermodynamic and
energy release evaluation (CHETAH) [2] and the calculated adiabatic
reaction temperature (CART) [3]. Grewer [4,5] proposed another
way to predict the thermal stability by considering the influence of
the chemical structure on the decomposition of nitro compounds.
Keshavarz’s works have also to be noted as the elemental composi-
tion of substances is used to predict various properties of energetic
materials such as the impact sensitivity [6]. Saraf et al. [7] out-
lined the pertinence (in terms of way of investigation) of screening
tools based on the identification of relationships between chemical
structure and thermal stability for nitroaromatic compounds and
we have made up our mind to explore this route.

An alternative tool for the prediction of chemical hazards
is the quantitative structure–activity or property relationship

(QSAR/QSPR) methods. Nowadays, they are generally limited to the
scope of toxic property screening (i.e. the nitrobenzene molecule
[8]). Indeed, the first applications of these methods based on sta-
tistical analyses have mainly concerned biology [9,10], toxicology
[11,12] or drug design [13–15]. However, their interest has been

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:patricia.rotureau@ineris.fr
http://echa.europa.eu/
http://ecb.jrc.ec.europa.eu/classification-labelling/
dx.doi.org/10.1016/j.jhazmat.2009.06.088
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4. Descriptors

Different types of descriptors (geometric, electronic and ener-
getic) have been selected to describe the 22 molecules. In Table 2
are presented the 14 descriptors calculated among the large num-

Table 1
Experimental decomposition enthalpies (−�Hexp/kJ/mol) of the 22 substituted
nitrobenzene molecules from [30].

−�Hexp

1 Nitrobenzene 339
2 1,2-Dinitrobenzene 518
3 1,3-Dinitrobenzene 586
4 1,4-Dinitrobenzene 622
5 2-Nitrotoluene 329
6 3-Nitrotoluene 284
7 4-Nitrotoluene 318
8 2,6-Dinitrotoluene 576
9 3,4-Dinitrotoluene 666

10 2,4-Dinitrotoluene 596
11 2-Nitroaniline 307
12 3-Nitroaniline 314
13 4-Nitroaniline 279
14 2-Nitrobenzoic acid 297
15 3-Nitrobenzoic acid 298
16 4-Nitrobenzoic acid 304
17 2-Nitrophenol 345
46 G. Fayet et al. / Journal of Haza

rowing up in recent years for other physico-chemical activities
16–18]. In such methodology, computational chemistry may help
o describe the molecular electronic structure and the decomposi-
ion reaction at quantum chemical level.

In this paper, we decided to explore the abilities of molecular
odeling to predict the explosibility of nitroaromatic compounds

known as potentially explosive chemical substances and present-
ng complex decomposition channels [19]). A series of geometric,
lectronic and energetic descriptors were computed using quan-
um chemical calculations. Correlations between these data and

acroscopic properties related to explosibility were determined.
n particular, explosibility is related to detonation and deflagra-
ion performances and to sensitivity to mechanical (impact, shock
r friction) and thermal stresses or to electric discharges. Here,
e focused on the thermal stability property and more pre-

isely on the experimental decomposition enthalpy (or heat of
ecomposition). Experimental characterization is well defined, par-
icularly by calorimetric measurements [20] but, until now, only
ew approaches concern the prediction of the thermal stability
roperties based on QSPR models [21–23]. In most of the cases,
hey are dedicated to specific (and small) classes of compounds
e.g. chromophores [24] or ionic liquids [25]). In the framework
f chemical hazards management, Saraf et al. [7] proposed, to our
nowledge, the only existing model concerning the heat of decom-
osition with an average absolute error of about 6%:

�H(kcal/mol) = 75 × nNO2 (1)

here nNO2 is the number of nitro groups in the molecule.
Our work presents the first significantly correlated model for the

rediction of this experimental property using an original approach
ombining QSPR methodology with quantum chemical calcula-
ions.

. QSPR methodology

The quantitative structure–property relationship methodology
QSPR) consists in correlating quantitatively an experimental prop-
rty with the molecular structures of the considered compounds.
hus, the relationship has the following general form between
acroscopic and microscopic properties:

roperty = f (Descriptors) (2)

An experimental data set provides the property values. Then dif-
erent descriptors can be calculated to characterize the molecular
tructure of the compounds of the data set. The method can be
ased on neural networks [26], genetic algorithms [27] or statis-
ical analyses such as multilinear regressions. We chose the last
pproach in this study.

The model obtained with such a regression has the following
orm:

= A0 + A1X1 + A2X2 + · · · + AnXn (3)

here Y is the property to predict, Xi are the molecular descrip-
ors and Ai the corresponding regression constants. The reliability
f this model is estimated with the coefficient R2, which character-

ze the fitting of the calculated values with the experimental ones.
o ensure the validation of the models, the use of external data
s recommended. Nevertheless, in this study, the set of available
xperimental data contained only 22 molecules making its division
nto training and validation sets impossible. For this reason, the

oefficient R2

cv, using a cross-validated method, has been considered
o characterize the predictivity of the model.

The cross-validation technique [28] is based on a leave-one-out
rocedure. For each molecule in the data set, a new multilinear
egression is recalculated without changing the descriptors for all
Fig. 1. Sketchs of the considered nitroaromatic molecules (see Table 1 for the exact
nomenclature).

compounds in the data set, except this one. Then, the corresponding
property value is predicted from this model equation. Finally, R2

cv
is calculated by correlating the obtained values for each compound
with the experimental ones.

Once a reliable equation is validated, this model can be used to
predict the property, for other similar compounds to the selected
ones, not yet measured and maybe not yet produced. The results
can also help to understand the mechanisms leading to the studied
property.

3. Data set selection

The choice of the training set of experimental data is a critical
point in a QSPR analysis. Experimental conditions may have a strong
influence on the studied properties. Therefore, all experimental val-
ues used in the fitting procedure have to be obtained in the same
conditions. Differential scanning calorimetry (DSC) is often used to
characterize the thermal stability of explosive compounds [29]. The
experimental property studied in this work is the decomposition
enthalpy taken from literature [30]. Our data set is composed of 22
nitroaromatic compounds, known as potentially explosive chemi-
cals [31]. The 22 molecules and their corresponding experimental
decomposition enthalpy values are presented in Fig. 1 and Table 1.
18 3-Nitrophenol 316
19 4-Nitrophenol 300
20 1-Chloro-4-nitrobenzene 360
21 2,4-Dinitrophenol 662
22 2,4,6-Trinitrophenol 1173
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Table 2
Descriptors.

dCN Carbon nitrogen distance in Å
QNO2 Charge on the nitro group
Vmid Mid-point potential in Å−1

Ediss Carbon nitrogen dissociation energy in a.u.
Mw Molecular weight in g/mol
OB Oxygen balance in percents
Eatom Atomization energy in a.u.
DM Dipole moment in D
˛ Mean polarizability in Å3

IP Ionization potential in a.u.
EA Electron affinity in a.u.
�
�
ω
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Electronegativity in a.u.
Hardness in a.u.
Electrophilicity index in a.u.

er and diversity of those actually used in QSPR methodology
32].

.1. Local descriptors

In nitro compounds, the carbon–nitrogen bond dissociation is
urrently considered as a rate-determining step of decomposition
33]. For this reason, we decided to describe this carbon–nitrogen
ond and its attached nitro group using geometric, electronic and
nergetic descriptors.

First, the length of the carbon–nitrogen bond dCN and the charge
n the NO2 functional group were calculated.

Secondly, the mid-point potential Vmid, also used as a descrip-
or [34,35] in the field of energetic materials, was evaluated. This
escriptor is an approximation of the electrostatic potential at the
idpoint of the carbon–nitrogen bond [36].

mid = QC + QN

0.5dCN
(4)

here QC and QN are, respectively, the atomic charges on carbon
nd nitrogen atoms.

The C–NO2 dissociation bond energy (Ediss) has already been
orrelated to the impact sensitivity [37,38] and considered for the
stimation of decomposition temperatures [39]. To calculate this
nergy, a homolytic dissociation of the R–NO2 molecule is consid-
red:

–NO2 → R• + NO2
• (5)

Finally, the corresponding dissociation energy Ediss is calculated
s the energy difference between products and reactants:

diss = E(R•) + E(NO2
•) − E(RNO2) (6)

It is worth being noted that, for polynitroaromatic compounds,
hese descriptors were extracted for the weakest carbon–nitrogen
ond in the molecules considering their dissociation energy.

.2. Global descriptors

If the previous local descriptors as above defined are specific for
itro compounds, global descriptors present the advantage to be
ore suitable for extended data sets with compounds without any

itro group. Among such descriptors, the molecular weight Mw was
onsidered. It has also been used in the calculation of the oxygen
alance as defined by Shanley and Melhem [40].

[−1600(2X + Y/2 − Z)]

B =

Mw
(7)

, Y and Z are, respectively, the number of carbon, hydrogen and oxy-
en atoms in the molecule. This is a traditional empirical descriptor
sed in hazard prediction related to energetic materials [41].
Materials 171 (2009) 845–850 847

The atomization energy is the energy needed to break all bonds
in the molecule. It can be calculated from the following equation:

Eatomization =
natom∑

i

Ei(atom i) − E(molecule) (8)

The electronic structure can be described by the dipole moment
(DM) and the mean polarizability (˛). Dipole moment and polar-
izability characterize the influence of an external field on the
electronic density. The dipole moment is a scalar entity whereas
the polarizability is a tensor. The mean polarizability is calculated
from the polarizability matrix:

˛ = 1
3

(˛xx + ˛yy + ˛zz) (9)

where ˛ii are the diagonal components of the polarizability matrix.

4.3. Conceptual density functional theory descriptors

Global electronic descriptors can also be estimated from concep-
tual density functional theory [42,43]. This methodology allows to
redefine classical chemical reactivity concepts, e.g. electronegativ-
ity, in the framework of the density functional theory [44].

The ionisation potential (IP) and the electron affinity (EA) are
calculated from the energies of the highest occupied and the lowest
unoccupied molecular orbital εHOMO and εLUMO, according to the
Koopmans theorem [45].

IP = −εHOMO (10)

EA = −εLUMO (11)

The electronegativity (�) characterizing the electron donating
property of the system was identified to be the negative of the
chemical potential (�) [46] and therefore:

� = (IP + EA)
2

= − (εHOMO + εLUMO)
2

= −� (12)

The hardness (�) [47] has been defined similarly to express the
resistance of the system to the change in the number of electrons.

� = IP − EA = εLUMO − εHOMO (13)

These quantities (Eqs. (12) and (13)) are already used as descrip-
tors for different physico-chemical properties such as heats of
formation or boiling points [48].

More recently, Parr et al. [49] constructed the electrophilicity
index (ω) to measure the loss in energy for a maximal electron flow
from donor to acceptor. This index is proportional to the square of
the chemical potential divided by the hardness.

ω = �2

2�
(14)

This descriptor has already been applied to the prediction of bio-
logical activity [50].

5. Computational details

The molecular structures of 22 nitroaromatic compounds have
been calculated. For each one, the structures of their phenyl radicals
were also computed to access to the carbon–nitrogen bond disso-
ciation energy, the NO2 radical being of course also calculated. All
calculations presented in this work were performed using the Gaus-

sian03 package [51], employing the density functional theory (DFT)
with the parameter-free PBE0 [52] hybrid functional. Geometry
optimizations of stable species were performed with a 6-31 + G(d,p)
basis set to describe correctly the geometric structure. Vibrational
frequencies were obtained at the same level of theory. The nature
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Table 3
Descriptors calculated for 22 nitro compounds under study. See Table 1 for acronyms and Fig. 1 for molecules nomenclature.

dCN
a QNO2

b Vmid
a Ediss

a(‡) Mw OB Eatom
a(‡) DMa ˛a IPa(#) EAa(#) �a(#) �a(#) ωa(#)

1 1.467 −0.26 1.64 71.2 123 −163 1497.3 4.832 0.40 0.299 0.097 0.198 0.202 0.097
2 1.467 −0.20 1.74 60.4 168 −95 1666.5 7.000 0.45 0.314 0.117 0.216 0.197 0.118
3 1.470 −0.23 1.65 68.5 168 −95 1676.5 4.458 0.39 0.329 0.122 0.226 0.207 0.123
4 1.472 −0.23 1.71 68.2 168 −95 1676.4 0.000 0.42 0.327 0.136 0.231 0.191 0.140
5 1.446 −0.26 1.65 68.7 137 −181 1778.5 4.542 0.39 0.286 0.091 0.188 0.195 0.091
6 1.467 −0.26 1.66 71.4 137 −181 1778.0 5.196 0.40 0.285 0.094 0.190 0.191 0.094
7 1.462 −0.26 1.61 72.4 137 −181 1778.5 5.567 0.38 0.289 0.092 0.190 0.197 0.092
8 1.468 −0.23 1.68 63.8 182 −114 1950.6 3.071 0.41 0.311 0.110 0.211 0.201 0.111
9 1.468 −0.20 1.78 60.5 182 −114 1948.1 7.722 0.46 0.304 0.112 0.208 0.192 0.113

10 1.469 −0.24 1.68 65.9 182 −114 1955.5 5.177 0.39 0.317 0.115 0.216 0.201 0.116
11 1.441 −0.33 1.45 75.6 138 −151 1663.2 5.026 0.30 0.243 0.087 0.165 0.155 0.088
12 1.468 −0.26 1.71 71.6 138 −151 1660.1 5.904 0.42 0.244 0.090 0.167 0.154 0.091
13 1.448 −0.30 1.49 75.7 138 −151 1662.6 7.472 0.34 0.248 0.080 0.164 0.169 0.080
14 1.466 −0.22 1.77 62.7 167 −120 1862.3 4.259 0.47 0.302 0.101 0.201 0.201 0.101
15 1.468 −0.24 1.63 70.1 167 −120 1870.3 2.815 0.39 0.312 0.106 0.209 0.206 0.106
16 1.470 −0.24 1.57 69.5 167 −120 1869.9 3.762 0.36 0.310 0.115 0.212 0.195 0.116
17 1.460 −0.25 1.49 67.4 139 −132 1589.4 6.091 0.34 0.271 0.086 0.179 0.185 0.086
18 1.469 −0.25 1.70 70.5 139 −132 1594.9 6.066 0.42 0.270 0.096 0.183 0.174 0.096
19 1.455 −0.28 1.54 73.8 139 −132 1596.8 5.504 0.36 0.275 0.090 0.182 0.185 0.090
20 1.464 −0.25 1.62 71.1 157 −122 1480.4 3.299 0.39 0.295 0.104 0.200 0.191 0.104
21 1.463 −0.22 1.53 64.6 184 −78 1769.9 6.289 0.34 0.302 0.110 0.206 0.192 0.111
22 1.466 −0.19 1.56 62.3 229 −45 1951.0 1.757 0.35 0.323 0.149 0.236 0.174 0.160

R2c 0.10 0.46 0.01 0.42 0.76 0.64 0.21 0.10 0.00 0.35 0.71 0.52 0.00 0.75

D ol, polarizability in Å3, energies(‡) in kcal/mol or (#) in a.u.

sition enthalpies in Table 1.
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istances in Å, dipole moments in D, oxygen balance in %, molecular weight in g/m
a At PBE0/6-31 + G(d,p) level.
b At PBE0/6-31 + G(d,p) level from NPA.
c Correlation coefficient for the linear regression with the experimental decompo

f the stationary points was checked by showing no imaginary fre-
uency for our stable structures. The electronic structure of these
olecules has been investigated using the natural population anal-

sis (NPA) [53].
The Codessa software [54] has been used to obtain correlation

oefficients and the QSPR model (using the integrated Best Multi
inear Regression analysis) for the prediction of the experimen-
al decomposition enthalpy from the computed descriptors. The
ignificance of each descriptor in the equations was validated by
erforming a Student’s t-test validation at a 95% confidence level.

. Results and discussion

.1. Linear correlations

The molecular descriptors, presented above, have been calcu-
ated for each molecule of the data set. These data, reported in
able 3, were analyzed to obtain a relationship between the molec-
lar descriptors and the experimental explosibility.

Simple linear fittings were computed between each descriptor
nd the experimental enthalpy change. Correlations were appreci-
ted from the coefficient R2 (in Table 3) as shown for the descriptors
hat provide the best and lowest correlations (see Fig. 2), with R2 of
.76 for molecular weight and less than 0.01 for mean polarizability,
espectively.

The local descriptors related to the C–NO2 bond (presented in
ection 4.1) do not exhibit any significant correlation with the
ecomposition enthalpy (R2 < 0.5). Therefore, a simple and direct
reaking of the carbon–nitrogen bond appears to be not suffi-
ient for the description of the decomposition enthalpy. More
omplex processes might occur [19] and in particular other decom-
osition paths could exist as experimentally observed [55] and

videnced computationally [56]. Furthermore, major decomposi-
ion paths involving interactions between the nitro group and
rtho-substituents have been calculated [57,58].

More substantial correlations are exhibited for the molecular
eight (R2 = 0.76), the electrophilicity index (0.75), the electron

Fig. 2. Plot of (a) molecular weight and (b) mean polarizability with the experimen-
tal decomposition enthalpy.
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ffinity (0.71) and the oxygen balance (0.64). It can be noted that
hese descriptors are auto-correlated. Indeed, the molecular weight
nd the electron affinity are used in the calculation of the oxygen
alance and the electrophilicity index, respectively.

Even if significant correlations appear, a single-descriptor
pproach is not sufficient for the prediction of the experimental
roperty. For instance, considering the molecular weight or oxy-
en balance, the values of these descriptors do not vary with the
osition of the substituent. Indeed, ortho, meta and para nitro-
oluenes present the same molecular weight (137 g/mol) whereas
heir decomposition enthalpies are different, i.e. 329, 284 and
18 kJ/mol, respectively. The use of at least one more descriptor
s needed to characterize the influence of the substituent position
n this case. Therefore, in a next step, multivariable regressions are
nvestigated.

.2. Multilinear model

All the descriptors previously studied have been integrated in a
ultivariable analysis using a multilinear regression. The best QSPR
odel is estimated as the most predictive in term of R2

cv
The obtained model is a six-parameter equation composed with

he hardness, the electrophilicity index, the mean polarizability,
he ionization potential, the dipole moment and the dissociation
nergy.

−�H = 33854� + 40050ω − 1030.3˛ − 33785IP + 25.1DM

− 14.0Ediss + 973.2

R2 = 0.91, R2
cv = 0.84 (15)

First we note that the six descriptors selected by this multilin-
ar fitting procedure are different from the four global descriptors
resenting the best linear correlations with the experimental
ecomposition enthalpy (see Section 6.1). The only exception is
he electrophilicity index. The other parameters (Eq. (15)) are less
inearly correlated with the experimental property.

Obviously, 22 molecules are not sufficient to obtain a robust
redictive model. However, these results (with a R2 of 0.91) are
romising. For instance, when applied to the evaluation of the
ecomposition enthalpy of a molecule not included in the training
et, as 2,4,6-trinitrotoluene (TNT), the predicted value is 920 kJ/mol
hich is close to its experimental value (998 kJ/mol [20]). Work

s in progress in this direction, but here we stress, once again the
ifficulty to obtain homogenous experimental data. Moreover, the
odel gives interesting indications for the future exploration of

arger data sets. Indeed, the presence of descriptors arising from the
o-called conceptual density functional theory (i.e. �, ω, IP) has to
e noticed, all being related to the molecular reactivity. Hence, the
haracterization of the C–NO2 bond, through Ediss in Eq. (15), and
he molecular reactivity properties are important parameters for
he prediction of decomposition properties like thermal stability.

Furthermore, contrary to classical constitutional descriptors (for
nstance, the oxygen balance OB), the selected descriptors in the

odel are able to distinguish between isomers. Hence, a model
ased only on the number of nitro groups (like Eq. (1)) is not suffi-
ient to completely characterize thermal stability of nitroaromatic
ompounds. Nevertheless this parameter is obviously fundamen-
al. Indeed, the presence of chemical groups indicating explosive
roperties (e.g. nitro) in chemicals is a pre-evaluation element
n chemical safety regulations for substances which may have
xplosive properties [59]. Besides, mono-, di- and tri-nitroaromatic
ompounds can be clearly distinguished on Fig. 3, which represents
he calculated values versus the experimental ones. So our model
s consistent with this empirical consideration.

[

Fig. 3. Calculated versus experimental decomposition enthalpies (kJ/mol).

7. Conclusion

Nitroaromatic compounds have been modeled using the density
functional theory. The aim was to observe correlation between the
molecular structure of such compounds and an experimental prop-
erty of explosibility, the decomposition enthalpy. The electronic
and geometric structures were characterized with 14 molecular
descriptors. The molecular weight, the oxygen balance, the elec-
tron affinity and the electrophilicity index are the descriptors the
most correlated with the experimental values of a data set con-
taining 22 nitroaromatic molecules whereas the description of the
direct breaking of the carbon–nitrogen bond does not seem to
be sufficient to describe the energy released during the thermal
decomposition of these nitroaromatic compounds. A multivariable
model has been established. It consists in a six-parameter equation
with promising correlation (R2 = 0.91) and predictivity (R2

cv = 0.84)
coefficients. These first results on the use of descriptors calculated
from quantum chemical calculation to develop QSPR models to pre-
dict decomposition enthalpy are very encouraging. In particular,
parameters characterizing the C–NO2 bond and the molecular reac-
tivity have demonstrated their pertinence in such a study. Keeping
in mind that our data set contains only 22 molecules, a robust
model for the prediction of decomposition enthalpy of nitroaro-
matic compounds can be expected using an extended data set and
associating the selected descriptors of this study with other classes
of descriptors, e.g. constitutional and topological descriptors.
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