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1. INTRODUCTION

In this paper, we study the elliptic equation

Duþ KðxÞup þ mf ðxÞ ¼ 0; ð1:1Þ

where n53; D ¼
Pn
i¼1 ð@

2=@x2i Þ is the Laplace operator, p > 1; m50 is a
parameter, and f as well as K is a given locally H .oolder continuous function
in Rn\f0g: By an entire solution of Eq. (1.1), we mean a positive weak
solution of (1.1) in Rn satisfying (1.1) pointwise in Rn\f0g:

Inhomogeneous elliptic equations have been studied to afford an
understanding of the effects of the inhomogeneous term in the existence
and properties of solutions, compared with those of homogeneous
equations; see [1, 3, 7].

The purpose of this paper is to study the asymptotic behavior of positive
entire solutions and to establish infinite multiplicity for (1.1) which has
diverse physical and geometrical backgrounds. In particular, Eq. (1.1) in the
case K ¼ 1 and p ¼ 2 arises naturally in establishing occupation time limit
theorems for super-Brownian motions which requires analyzing cumulant
generating functions satisfying some integral equations equivalent to the
parabolic counterparts of (1.1). We refer the interested readers to [3, 7] and
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the references therein. On the other hand, the corresponding homogeneous
equation

Duþ KðxÞup ¼ 0 ð1:2Þ

stands for the prescribing scalar curvature problem in Riemannian geometry
when p is the critical Sobolev exponent nþ2

n�2 or for the Lane–Emden equation
in astrophysics when KðxÞ ¼ jxjl: There have been many works devoted
to studying the existence of positive solutions of (1.2) in Rn after
the first contribution by Ni [10] in 1982; see [2, 5, 9–11]. One of the
remarkable features of the equation is that (1.2) can possess infinitely
many solutions as long as the exponent p and the dimension n are
large enough. Recent studies in [1, 5] paid special attention to this
phenomenon.

To illuminate the motivations of this paper in detail, we need the
following notations. Set

pc ¼ pcðn; lÞ ¼
ðn�2Þ2�2ðlþ2ÞðnþlÞþ2ðlþ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþlÞ2�ðn�2Þ2

p
ðn�2Þðn�10�4lÞ if n > 10þ 4l;

1 if n410þ 4l;

8<
: ð1:3Þ

for some l > �2: Let m ¼ 2þl
p�1 and

l1 ¼ l1ðn;p; lÞ ¼
ðn� 2� 2mÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2� 2mÞ2 � 4ðlþ 2Þðn� 2� mÞ

q
2

;

ð1:4Þ

l2 ¼ l2ðn;p; lÞ ¼
ðn� 2� 2mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2� 2mÞ2 � 4ðlþ 2Þðn� 2� mÞ

q
2

:

ð1:5Þ

Observe that l1; l2 2 Rþ if and only if n > 10þ 4l and p5pc: The two
numbers, l1 and l2; play important roles in describing the asymptotic
behavior at1 of positive radial solutions to the Lane–Emden equation with
p5pcðn; lÞ;

Duþ cjxjlup ¼ 0 ð1:6Þ

in Rn for l > �2 and c > 0: It is known that when p > nþ2þ2l
n�2

and l > �2; (1.6)
has a positive radial solution %uua with %uuað0Þ ¼ a for each a > 0 and

lim
r!1

rm %uuaðrÞ ¼ L; ð1:7Þ



INFINITE MULTIPLICITY FOR AN ELLIPTIC EQUATION 369
where

L ¼ Lðn;p; l; cÞ ¼
lþ 2

p � 1
n� 2�

lþ 2

p � 1

� 	
1

c


 � 1
p�1

ð1:8Þ

(see [4, 12]). Furthermore, p5pcðn; lÞ if and only if any two positive radial
solutions of (1.6) cannot intersect each other [12]. By analogy with (1.6), it is
natural to expect that (1.2) with p5pc has infinitely many positive solutions
under suitable conditions on K: In [5], Gui studied conditions on K to
guarantee infinite multiplicity for (1.2) and established the following

Theorem A. Suppose that K50 satisfies

(K1) KðxÞ ¼ OðjxjsÞ at x ¼ 0 for some s > �2; and

(K2) KðxÞ ¼ cjxjl þ Oðjxj�d Þ near jxj ¼ 1

for some c > 0; l > �2; and

d >
n� 2

2
� lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2� 2mÞ2 � 4ðlþ 2Þðn� 2� mÞ

q
: ð1:9Þ

Then, Eq. (1.2) with p5pcðn; lÞ possesses infinitely many positive entire

solutions satisfying

lim
jxj!1

jxjmuðxÞ ¼ Lðn;p; l; cÞ:

The first objective of this paper is to improve Theorem A. We have found
by a barrier method (see [1, 5]) that Theorem A is true for a wider class of K:
For example, we may replace (1.9) in Theorem A with

d > n� l2ðn;p; lÞ � mp:

In fact, a more general assumption on K of integral form shall be given
without any pointwise condition at 1 like (K2). Furthermore, we weaken
the integrability condition again up to the form covering the case

d > n� l2ðn;p; lÞ � mðp þ 1Þ

by imposing an upper bound on K near 1: The monotonicity of %uua with
respect to a is essential for the constructions of infinitely many pairs of
super- and subsolutions. It, therefore, seems interesting to examine
multiplicity for (1.2) satisfying Ljxj�m at 1 when p5pc:

On the other hand, another natural question is whether (1.1) still could
have infinitely many entire solutions. Bae and Ni [1] recently confirmed the
question positively for (1.1) with K � 1; combining the modified version
of the barrier method initiated by Gui [5] and the asymptotic behavior near
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1 of positive solutions of suitable homogeneous equations. The existence
results in [1] for the equation

Duþ up þ mf ðxÞ ¼ 0 in Rn; ð1:10Þ

where m > 0 is a parameter, can be summarized as follows.

Theorem B. (i) If p > pcðn; 0Þ; fc0 and near 1;

max ð
f ðxÞ; 0Þ4jxj�q
 ;

where qþ > n� l2ðn;p; 0Þ and q� > n� l2ðn;p; 0Þ � 2
p�1

; then there exists m
*

> 0 such that for every m 2 ð0; m
*
Þ Eq. (1.10) possesses infinitely many positive

entire solutions with the asymptotic behavior Lðn;p; 0; 1Þjxj�2=ðp�1Þ at 1:

(ii) If p ¼ pcðn; 0Þ; the conclusion in (i) holds with the additional assumption

that either f has a compact support in Rn or f does not change sign in Rn:

Our next objective is to extend the result of Theorem B to the more
general Eq. (1.1) and to remove the extra condition in the critical case p ¼
pc: The main difference between (1.10) and (1.1) lies in the fact that the part
Duþ Kup of (1.1) does not possess any scaling property in general. Hence,
the barrier method used in [1] cannot apply to the problem (1.1) directly. We
formulate a new approach to managing infinite multiplicity for (1.1), which
is to verify certain continuity of a limiting function demonstrating the
asymptotic behavior at 1 of positive solutions of Eq. (1.2) (see Proposition
4.2 below). This observation makes it possible for the infinitely many pairs
of positive solutions of (1.1) constructed by super- and subsolution
arguments to have specific behaviors at 1 in order to discern one another,
which is, in fact, the key idea in [1] to get infinite multiplicity for the
inhomogeneous problem (1.10). When nþ2

n�2
5p5pc; the multiplicity question

for (1.10) is fundamental, but left unanswered.
The main result of this paper is the following

Theorem 1.1. Let p5pcðn; lÞ with l > �2: Assume that K50 holds (K1),
(K2) for some constants c > 0 and d > n� l2ðn;p; lÞ � mðp þ 1Þ while f
holds:

(f1) f ðxÞ ¼ OðjxjtÞ at x ¼ 0 for some t > �2;

(f2) �ð1þ jxjmpÞf ðxÞ4minjzj¼jxj KðzÞ; and

(f3) near jxj ¼ 1; f ðxÞ ¼ Oðjxj�qÞ for some constant q > n� l2
ðn;p; lÞ � m:

Then, there exists m
*
> 0 such that for every m 2 ½0; m

*
Þ; Eq. (1.1) possesses

infinitely many positive entire solutions with the asymptotic behavior

Lðn;p; l; cÞjxj�m at 1:
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This paper is organized as follows. Some preliminaries are reviewed in
Section 2. In Section 3, we study the homogeneous equation (1.2) and apply
multiplicity results to Riemannian geometry. Finally, the asymptotic
behavior of positive solutions of (1.2) is investigated and then Theorem
1.1 is established in Section 4.

2. PRELIMINARIES

In this section, we consider positive radial solutions of (1.2) with a radial
function K: The radial version of Eq. (1.2) is of the form

u00 þ
n� 1

r
u0 þ KðrÞup ¼ 0; uð0Þ ¼ a > 0: ð2:1Þ

Under the assumption

ðA1Þ KðrÞ50; KðrÞ 2 Cðð0;1ÞÞ; and
R
0
rKðrÞdr51;

Eq. (2.1) has a unique solution u 2 C2ðð0; eÞÞ \ Cð½0; eÞÞ for some e > 0
(see [11]). For each a > 0; the local solution ua of (2.1) is decreasing and
extended locally wherever it exists and remains positive.

We first recall the asymptotic behavior of positive radial solutions
%uua of Eq. (1.6) (see [8, 6; Theorem 2.5, Lemma 4.13, and (4.15)] for
details).

Proposition 2.1. Let l > �2 and c > 0: For p5pcðn; lÞ; we have that for

arbitrarily given e > 0;

%uuaðrÞ ¼
L
rm

þ
aa
rmþl1

þ � � � þ O
1

rn�2þe

� 	
if p > pc; ð2:2Þ

%uuaðrÞ ¼
L
rm

þ
aa log r
rmþl1

þ � � � þ O
1

rn�2þe

� 	
if p ¼ pc; ð2:3Þ

near 1; where L is given by (1.8), l1 is given by (1.4), and

aa ¼ a�l1=ma150: ð2:4Þ

Although Theorem 2.5 in [6] deals only with the case l ¼ 0; the
arguments in the proof can proceed similarly to conclude Proposition
2.1. Another direct consequence of Theorem 2.5 in [6] is the
following
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Proposition 2.2. Let v1; v2 be two positive radial solutions of the

equation

Duþ crlup ¼ 0

near 1; where c > 0 and l > �2: Suppose that

lim
r!1

rmv1ðrÞ ¼ L ¼ lim
r!1

rmv2ðrÞ

and

lim
r!1

rl1 ðrmv1ðrÞ � LÞ ¼ lim
r!1

rl1ðrmv2ðrÞ � LÞ if p > pc;

lim
r!1

rl1

log r
ðrmv1ðrÞ � LÞ ¼ lim

r!1

rl1

log r
ðrmv2ðrÞ � LÞ if p ¼ pc:

Then, v1ðrÞ � v2ðrÞ ¼ Oðr�m�l2 Þ near 1; where l2 is given by (1.5).

The existence of a positive radial supersolution of (1.6) having the
following asymptotic behavior is verified similarly as in [6] (see [6; Theorems
2.5 and 4.1 and Lemmas 4.11 and 4.13]).

Proposition 2.3. Let p5pcðn; lÞ with l > �2 and c > 0: Then, for

each a > 0; there exists a positive radial supersolution %uuþ
a ðrÞ of (1.6) such that

%uuþ
a ðrÞ > %uuaðrÞ for r 2 ½0;1Þ and %uuþ

a ðrÞ � %uuaðrÞ ¼ Oðr�m�l2Þ as r! 1:

We now remark that Proposition 2.3 produces an improved form of a
result in [5]. In [5], Gui used an estimation for %uuþ

a ðrÞ � %uuaðrÞ; but by replacing
Theorem 2.3 in [5] with Proposition 2.3 we modify Theorem 3.4 of [5] and
write the following, to be improved again by Theorem 3.2 in the next
section.

Theorem 2.4. Let p5pcðn; lÞ with l > �2: Assume that in the radial case,
K holds ðA1Þ and, for some c > 0;

Z 1

1

jKðrÞ � crljrn�1�mp�l2 dr51;

while in the nonradial case, K holds ðK1Þ and, for some c > 0;

Z 1

1

jKiðrÞ � crljrn�1�mp�l2 dr51; i ¼ 1; 2;
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where K1ðrÞ :¼ inf jxj¼r KðxÞ; K2ðrÞ :¼ supjxj¼r KðxÞ; and l2 ¼ l2ðn;p; lÞ: Then,
there exist infinitely many positive entire solutions of (1.2) (which are radial if

K is radial) and no two of them can intersect. Furthermore, every solution uðxÞ
obtained above satisfies

lim
jxj!1

jxjmuðxÞ ¼ Lðn;p; l; cÞ:

For the radial case, the solution ua of (2.1) exists globally for every a > 0
small under the assumptions of Theorem 2.4 and is monotone with respect
to a: In general, the existence of three separated positive radial solutions of
(2.1) leads to a one-parameter family of positive radial solutions indexed by
initial data.

Lemma 2.5. Assume that Kc0 holds ðA1Þ: Suppose that there exist three

solutions ua; ub; ug of (2.1) such that 05ua5ub5ug in ½0; %RRÞ for some %RR 2
ð0;1�: Then, for each a5d5b; (2.1) possesses a positive radial solution ud in

B %RR satisfying

05uaðrÞ5udðrÞ5ubðrÞ

for 04r5 %RR:

Proof. Suppose that for some a5d5b and 05R5 %RR; w2 :¼ ud � ua > 0
in ½0;RÞ; w2ðRÞ ¼ 0; and w1 :¼ ub � ud > 0 in ½0;R�: Then, w0

2ðRÞ40 and w2

satisfies Dw2 þ Kg2w2 ¼ 0 with w2ð0Þ ¼ d� a > 0; where

g2 :¼
upd � upa
ud � ua

5pup�1
d

in BR: We may assume that KðrÞ50;c0 in ½0;R�: On the other hand, w1

satisfies Dw1 þ Kg1w1 ¼ 0; where

g1 :¼
upb � upd
ub � ud

> pup�1
d

in BR: It follows from Green’s identity that

onRn�1w1ðRÞw0
2ðRÞ ¼onRn�1ðw1ðRÞw0

2ðRÞ � w2ðRÞw0
1ðRÞÞ

¼
Z
BR

ðw1Dw2 � w2Dw1Þ5
Z
BR

ðg1 � g2ÞKw1w2 > 0;

where on denotes the surface area of the unit sphere. Then, w0
2ðRÞ > 0; a

contradiction. Hence, if for some a5d5b; ud meets ua for some Ra > 0; then
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there exists 05Rb5Ra such that ud > 0; w4 :¼ ub � ud > 0 in ½0;RbÞ and
w4ðRbÞ ¼ 0: Replacing w2 and w1 in the above arguments with w4 and
w3 :¼ ug � ub; respectively, we also have a contradiction. Therefore, for each
a5d5b; the local solution ud remains between ua and ub and exists up to
%RR: ]

3. HOMOGENEOUS EQUATION

In this section, we establish the existence of infinitely many positive entire
solutions of (1.2). In order to improve Theorem 2.4, we adopt arguments
similar to those in [1] and pay attention to the supremum of r�lK near 1:
Later, an interpretation of multiplicity results to Riemannian geometry shall
be presented. We first consider the radial case.

Proposition 3.1. Let p5pcðn; lÞ with l > �2: Suppose that K satisfies

ðA1Þ;

ðA2Þ
Z 1

1

ðKðrÞ � crlÞ�r
n�1�mðpþ1Þ�l2dr51;

and either r�lKðrÞ4cp near 1;

ðA3Þ
Z 1

1

ðKðrÞ � crlÞþr
n�1�mðpþ1Þ�l2dr51;

or

ðA4Þ
Z 1

1

ðKðrÞ � crlÞþr
n�1�mp�l2dr51

for some c > 0; where k
 ¼ maxð
k; 0Þ: Then, there exists a positive constant

an ¼ anðp;KÞ such that for each a 2 ð0; an�; Eq. (2.1) possesses a positive radial

solution a with uað0Þ ¼ a satisfying

lim
r!1

rmuaðrÞ ¼ Lðn;p; l; cÞ;

and no two of them can intersect.

Proof. For simplicity, we assume c ¼ 1: It follows from Proposition
2.3 that for each a > 0; there exists a supersolution %uuþ

a > %uua of the
equation Duþ jxjlup ¼ 0 satisfying FaðrÞ :¼ %uuþ

a ðrÞ � %uuaðrÞ ¼ Oðr�m�l2 Þ at 1
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and

DFa4� jxjlðð %uuþ
a Þ
p � %uupa Þ4� pjxjl %uup�1

a Fa:

For all g > 0; there exists a unique positive solution ug of (2.1) locally.
First, we claim that for given b > 0 there exists 05%gg ¼ %ggðbÞ5b
such that for every 05g4%gg; ug5 %uub in BðRgÞ whenever ug > 0 in BðRgÞ
for some Rg > 0:

Suppose that for any 05g5b there exists 05*gg5g such that u*gg > 0 in
BðR*ggÞ; w*ggðrÞ :¼ %uubðrÞ � u*ggðrÞ > 0 on ½0;R*ggÞ; but w*ggðR*ggÞ ¼ 0 for some R*gg > 0:
Then, w*gg satisfies

Dw*gg ¼ �jxjl %uupb þ Kup*gg

in BðR*ggÞ: Fix a > b: Applying Green’s identity, we have

04
Z
BðR*ggÞ

ðw*ggDFa � FaDw*ggÞ

4
Z
BðR*ggÞ

f�pjxjlw*gg %uu
p�1
a Fa þ jxjl %uupbFa � Ku

p
*gg Fag

4
Z
BðR*ggÞ

f�pjxjlw*gg %uu
p�1
a Fa þ pjxj

lw*gg %uu
p�1
b Fa þ ðjxjl � KÞup*gg Fag

and

p
Z
BðR*ggÞ

jxjlw*gg½ %uup�1
a � %uu

p�1
b �Fa4

Z
BðR*ggÞ

ðjxjl � KÞup*gg Fa:

Since %uub > 0 in Rn and u*gg4*gg on ½0;R*gg�; we may assume that for small *gg > 0;
R*gg > 1 and w*gg51

2
%uubð1Þ in B1: Hence, for small g > 0; and thus for small

05*gg4g; we have

p
2
%uubð1Þ

Z
Bð1Þ

jxjl½ %uup�1
a � %uu

p�1
b � Fa 4

Z
BðR*ggÞ

ðjxjl � KÞup*gg Fa ð3:1Þ

4
Z
BðR*ggÞ

ðK � jxjlÞ� %uu
p
bFa:

However, this is impossible because from (1.7), ðA2Þ; and the Dominated
Convergence Theorem the right-hand side of (3.1) goes to 0 as *gg ! 0; while
the left-hand side is a fixed positive constant, which verifies the claim.
Therefore, there exists 05%gg5b such that for all 05g4%gg; 05ug5 %uub

in BðRgÞ:
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Regarding Rg as the supremum of the set fR > 0 : ug > 0 in BRg; we
observe that Rg ! 1 as g ! 0: Indeed, for 04r5Rg;

ugðrÞ ¼ gþ
Z r

0

u0g ds

¼ g�
Z r

0

Z s

0

t
s

� �n�1

KðtÞupg ðtÞ dt ds

5g� gp
Z r

0

tn�1KðtÞ
Z r

t
s1�n ds


 �
dt

5g 1�
gp�1

n� 2

Z r

0

tKðtÞ dt

 �

: ð3:2Þ

Thus, it follows from ðA1Þ that Rg ! 1 as g ! 0 and moreover, for given
R > 0 and 05d51; there exists 05*gg5%gg such that for 05g5*gg; ug > dg in BR:

Case 1: Consider the case that r�lK4p near 1: Choose R51 so large
that r�lKðrÞ4p for r 2 ½R;1Þ: Then, there exists 05*gg14*gg such that for all
05g5*gg1; Rg5R and ugðrÞ5

g
2
on ½0; 1�: Let Jb be the set of 05g5*gg1 satisfying

p
2

Z
Bð1Þ

jxjl %uup�1
b Fb >

Z
BðRÞ
Kup�1

g Fb: ð3:3Þ

Then, Jb contains an interval, say ð0; *gg2�: Suppose that Rg51 for some
05g5*gg2: From Green’s identity, it follows that

04
Z
BðRgÞ

ðugDFb � FbDugÞ

4
Z
BðRgÞ

½�pjxjlug %uu
p�1
b þ Kupg �Fb

4
Z
BðRÞ

½�pjxjlug %uu
p�1
b þ Kupg �Fb

þ
Z
BðRgÞ\BðRÞ

ðK � pjxjlÞug %uu
p�1
b Fb:

Then,

p
Z
Bð1Þ

jxjlug %uu
p�1
b Fb4p

Z
BðRÞ

jxjlug %uu
p�1
b Fb4

Z
BðRÞ
Kupg Fb:

Thus,

gp
2

Z
Bð1Þ

jxjl %uup�1
b Fb4

Z
BðRÞ
Kupg Fb
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and

p
2

Z
Bð1Þ

jxjl %uup�1
b Fb4

Z
BðRÞ
Kup�1

g Fb;

a contradiction. Therefore, Rg ¼ 1 for all 05g5*gg2; which implies that for
every 05g5*gg2; ug is an entire solution and thus, 05ug5 %uub in Rn:

Fix 05g5*gg2: Next, we claim that there exists 05d5g such that %uud5ug in
Rn and thus, for every 05e5d; 05 %uue5ug in Rn:

Suppose that there exist ej > 0 going to 0 and rej > 0 going to 1 as j! 1
such that for each j51; 05ej5g; *wwej ¼ ug � %uuej > 0 in BðrejÞ; and
*wwej ðrejÞ ¼ 0: By Green’s identity,

04
Z
Bðrej Þ

ð *wwejDFb � FbD *wwej Þ

4
Z
Bðrej Þ

f�pjxjl *wwej %uu
p�1
b Fb þ Kupg Fb � jxjl %uupejFbg

and

04
Z
Bðrej Þ

fpjxjl *wwej %uu
p�1
b Fb � jxjlðupg � %uupejÞFbg

4
Z
Bðrej Þ

ðK � jxjlÞupg Fb

4
Z
Bðrej Þ

ðK � jxjlÞ %uupbFb: ð3:4Þ

Since the integrand of (3.4) is positive, it follows by Fatou’s Lemma and the
Dominated Convergence Theorem with ðA2Þ and ðA3Þ that

04
Z
Rn

½pjxjlug %uu
p�1
b Fb � jxjlupg Fb�4

Z
Rn

ðK � jxjlÞupg Fb51:

Hence,

Z
Rn

ðpjxjl %uup�1
b � Kup�1

g ÞugFb40

and thus

Z
BðRÞ

ðpjxjl %uup�1
b � Kup�1

g ÞugFb40:
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Therefore,

p
2

Z
Bð1Þ

jxjl %uup�1
b Fb4

Z
BðRÞ
Kup�1

g Fb;

which contradicts (3.3).

Case 2: For b > 0; let Ib be the set of 05g5%ggðbÞ satisfying

p
2

Z
Bð1Þ

jxjl½ %uup�1
b � up�1

g �Fb >

Z
BðRgÞ

ðK � jxjlÞþu
p�1
g Fb:

Then, Ib � ð0; gbÞ for some gb > 0 since, from (1.7) and ðA4Þ; the right-hand
side goes to 0 as g ! 0 by the Dominated Convergence Theorem while the
left-hand side is bounded below a positive constant which is irrelevant to g
when g > 0 is small.

It follows from (3.2) that there exists 05#gg4gb such that for all 05g5#gg;
Rg > 1; and ugðrÞ53

4
g on ½0; 1�:

We now claim that for small 05g5#gg so that ugðrÞ53
4
g for 04r41, there

exists 05Z5g such that ug > %uuZ in Rn: Suppose that there exists 05#gg15#gg
such that for each 05Z5#gg1 there exists rZ > 0 satisfying #wwZðrÞ ¼
u#gg1 ðrÞ � %uuZðrÞ > 0 in ½0; rZÞ and #wwZðrZÞ ¼ 0: From Green’s identity,

04
Z
BðrZÞ

ð #wwZDFb � FbD #wwZÞ

4
Z
BðrZÞ

f�pjxjl #wwZ %uu
p�1
b Fb þ Ku

p
#gg1
Fb � jxjl %uupZ Fbg

and
Z
BðrZÞ

pjxjl #wwZ½ %uu
p�1
b � up�1

#gg1
�Fb 4

Z
BðrZÞ

½pjxjl #wwZ %uu
p�1
b � jxjlðup#gg1 � %uupZ Þ�Fb

4
Z
BðrZÞ

ðK � jxjlÞþu
p
#gg1
Fb:

Since %uuZ is monotonically decreasing to 0 as Z decreases to 0 so that %uuZ ! 0
uniformly on ½0;R� for any fixed R > 0; we may assume that rZ > 1 and
#wwZðrÞ53

4
#gg1 � %uuZðrÞ51

2
#gg1 in B1 if Z > 0 is small enough. Then, we have

p
2

Z
Bð1Þ

jxjl½ %uup�1
b � up�1

#gg1
�Fb4

Z
BðRgÞ

ðK � jxjlÞþu
p�1
#gg1
Fb;

which is impossible because #gg1 2 Ib:
Repeating the above arguments, we find a decreasing sequence fugig of

positive solutions of (2.1) such that there exists a positive decreasing
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sequence faig going to 0 as i! 0 satisfying ugi > %uuai > ugiþ1
in Rn for each

i51: By virtue of Lemma 2.5, the proof is complete. ]

We apply Proposition 3.1 to the nonradial case under another
assumption:

(K3) For N53; the infimum K1ðrÞ and the supremum K2ðrÞ of KðxÞ
on fx ¼ ðx1; x2Þ 2 Rn�N � RN : jx2j ¼ rg are continuous on ð0;1Þ; andR
0 rK2ðrÞdr51:

Theorem 3.2. Let p5pcðN ; lÞ with N53 and l > �2: Assume that K50
satisfies (K1), (K3) and, for some c > 0; K1 holds ðA2Þ while K2 holds either

ðA4Þ or ðA3Þ and r�lK2ðrÞ4cp near 1: Then, Eq. (1.2) possesses infinitely

many positive entire solutions satisfying

lim
jx2 j!1

jx2j
muðx1; x2Þ ¼ LðN ;p; l; cÞ ð3:5Þ

uniformly in x1 2 Rn�N and no two of them can intersect.

Proof. Applying Proposition 3.1 to K1 and K2; we have a positive radial
solution w1;w2 of Dwþ K1wp ¼ 0 in RN and a positive radial solution v1; v2
of Dvþ K2vp ¼ 0 in RN satisfying

v1 > %uua1 > w1 > %uuZ1 > v2 > %uua2 > w2 in RN ;

where %uua1 ; %uuZ1 ; %uua2 are solutions of (1.6) in RN : Since *vviðx1; x2Þ :¼ viðjx2jÞ and
*wwiðx1; x2Þ :¼ wiðjx2jÞ are supersolutions and subsolutions of (1.2) in Rn\f0g
respectively, by the standard super- and subsolution method there exist
solutions ui of (1.2) in Rn\f0g such that

*vvi5ui5 *wwi; i ¼ 1; 2:

It is easy to see that ui are weak solutions of (1.2) in Rn and entire solutions.
Repeating the above procedure, we construct infinitely many ordered
positive entire solutions satisfying the asymptotic behavior (3.5). ]

An immediate consequence of Theorem 3.2 is the following

Corollary 3.3. Let p5pcðN ; lÞ with N53 and l > �2: Suppose that

K50 satisfies (K1), (K3) and that there exists c > 0 such that

KiðrÞ ¼ crl þ Oðr�d Þ at 1; i ¼ 1; 2;

for some constant d > N � pþ1
p�1

ð2þ lÞ � l2ðN ;p; lÞ; where K1;K2 are defined in

(K3). Then, the same result as in Theorem 3.2 holds.
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We now translate Theorem 3.2 into the context of Riemannian geometry.
Let ðM ; gÞ be an n-dimensional Riemannian manifold and K be a given
function. The scalar curvature problem is to find a metric g1 on M
conformal to g such that the corresponding scalar curvature to g1 is K: The
introduction of u > 0 by g1 ¼ u4=ðn�2Þg; n53; leads to the equation

4ðn� 1Þ
n� 2

Dg � kuþ Ku
nþ2
n�2 ¼ 0; ð3:6Þ

where Dg denotes the Laplace–Beltrami operator on M in the g metric and k
is the scalar curvature of ðM ; gÞ: If M ¼ Rn and g ¼ Sni¼1dx

2
i is the standard

metric, then Eq. (3.6) reduces to

Duþ KðxÞu
nþ2
n�2 ¼ 0 in Rn:

We write x ¼ ðx1; x2Þ 2 Rn�N � RN ¼ Rn; N53:

Theorem 3.4. Let nþ2
n�2

5pcðN ; lÞ with N53 and l > �2: Assume that K
satisfies (K1), (K3), and

Z 1

1

ðK1ðrÞ � crlÞ�r
N�1�

nð2þlÞ
2

�l2 dr51;

and that r�lK2ðrÞ4Nþ2
N�2
c near 1;

Z 1

1

ðK2ðrÞ � crlÞþr
N�1�

nð2þlÞ
2

�l2 dr51;

or

Z 1

1

ðK2ðrÞ � crlÞþr
N�1�

ðnþ2Þð2þlÞ
4

�l2 dr51;

for a constant c > 0; where l2 ¼ l2ðN ; nþ2
n�2

; lÞ and K1; K2 are defined in (K3).
Then, there exist infinitely many Riemannian metrics g1 on Rn with the

following properties:

(i) K is the scalar curvature of g1;

(ii) g1 is conformal to the standard metric g on Rn;

(iii) g1 is complete.

4. INHOMOGENEOUS EQUATION

In this section, we are concerned with infinite multiplicity for the
inhomogeneous Eq. (1.1). Under the assumptions on K as in Proposition 3.1,
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Eq. (2.1) with p5pcðn; lÞ and l > �2 has a family fuag of positive radial
solutions indexed by a 2 ð0; an� for some an > 0 such that uað0Þ ¼ a and ua is
monotonically increasing with respect to a: For a 2 ð0; an� with an > 0 small,
set W ða; tÞ :¼ rmuaðrÞ � L; t ¼ log r; and

Dða; tÞ :¼ el1tW ða; tÞ for p > pc;

Dða; tÞ :¼ t�1el1tW ða; tÞ for p ¼ pc:

From the proof of Proposition 3.1, we observe that for each a 2 ð0; an�; there
exist g5a and b > a such that %uug4ua4 %uub in Rn and, thus, rmuaðrÞ ! L as
r! 1: Moreover, it follows from (2.2), (2.3), and (2.4) that for fixed 05
a5an; Dða; tÞ are uniformly bounded above and below near þ1 on ½a; an�;
that is, there exists M ¼ Mða;pÞ such that for all a 2 ½a; an�;

jW ða; tÞj4Me�l1t for p > pc ð4:1Þ

and

jW ða; tÞj4Mte�l1t for p ¼ pc: ð4:2Þ

For fixed �15t5þ1; Dða; tÞ is continuous with respect to a: The next
observation is that Dða; tÞ converges uniformly on ½a; an� as t! þ1; which
seems of independent interest. To verify this, we need only the condition

Z 1

1

jKðrÞ � crljrn�1�mðpþ1Þ�l2dr51: ð4:3Þ

Lemma 4.1. For given 05a5an; Dða; tÞ converges uniformly on ½a; an� as

t! þ1:

Proof. Setting W ða; tÞ :¼ rmuaðrÞ � L; t ¼ log r; we see that W satisfies

Wtt þ ðn� 2� 2mÞWt þ cðp � 1ÞLp�1W þ cgðW Þ þ hðetÞe�ltðW þ LÞp ¼ 0;

where hðrÞ :¼ KðrÞ � crl and gðsÞ :¼ ðsþ LÞp � Lp � pLp�1s such that for s
near 0;

gðsÞ ¼
pðp � 1Þ

2
Lp�2s2 þ Oðs3Þ: ð4:4Þ

Case 1: Let p > pc: Then, Dða; tÞ ¼ el1tW ða; tÞ holds that

Dtt þ ðl2 � l1ÞDt þ el1t½cgðW Þ þ hðetÞe�ltðW þ LÞp� ¼ 0 ð4:5Þ
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and

ðDteðl2�l1ÞtÞt ¼ �el2t½cgðW Þ þ hðetÞe�ltðW þ LÞp�: ð4:6Þ

Integrating (4.6) over ½T ; t�; we have

Dtða; tÞ ¼ e�ðl2�l1Þtfeðl2�l1ÞTDtða; T Þ

�
Z t

T
el2s½cgðW Þ þ hðesÞe�lsðW þ LÞp� dsg: ð4:7Þ

It follows from (4.1) and (4.4) that for any 05e5minfl1; l2 � l1g and for
some M1 > 0;

eðl1�l2Þt
Z t

T
cel2sjgðW ðsÞÞj ds4eðl1�l2Þt

Z t

T
cM1eðl2�2l1Þsds

4cM1e�et
Z t

T
e�ðl1�eÞsds;

which goes to 0 as t! þ1:
On the other hand, from (4.3), we have

eðl1�l2Þt
Z t

T
eðl2�lÞsjhðesÞj ds ¼ eðl1�l2Þt

Z t

T
eðl2�l1Þseðl1�lÞsjhðesÞj ds

4
Z 1

T
eðl1�lÞsjhðesÞj ds51:

Hence, the function

F ðtÞ :¼ eðl1�l2Þt
Z t

T
eðl2�lÞsjhðesÞj ds

is bounded and holds that

F 0ðtÞ ¼ ðl1 � l2ÞF ðtÞ þ eðl1�lÞtjhðetÞj:

Then,

ðl2 � l1Þ
Z t

T
F ðsÞ ds ¼ F ðT Þ � F ðtÞ þ

Z t

T
eðl1�lÞsjhðesÞj ds

4 F ðT Þ þ
Z 1

T
eðl1�lÞsjhðesÞj ds51; ð4:8Þ
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and thus

Z þ1

T
F ðsÞ ds51: ð4:9Þ

Therefore, from (4.8), F ðtÞ converges as t! þ1 which in turn implies that
from (4.9),

lim
t!þ1

F ðtÞ ¼ 0: ð4:10Þ

Hence, by (4.7) and (4.10), Dtða; tÞ converges uniformly to 0 on ½a; an� as
t! þ1: Integrating (4.5) over ½T ; t�; we see that

ðl2 � l1ÞðDða; tÞ � Dða; T ÞÞ ¼Dtða; T Þ � Dtða; tÞ

�
Z t

T
el1s½cgðW Þ þ hðesÞe�lsðW þ LÞp� ds:

Then, it follows immediately that Dða; tÞ converges uniformly on ½a; an� as
t! þ1:

Case 2: Let p ¼ pc: Then, Dða; tÞ ¼ t�1el1tW ða; tÞ satisfies

Dtt þ
2

t
Dt þ

el1t

t
½cgðW Þ þ hðetÞe�ltðW þ LÞp� ¼ 0 ð4:11Þ

and

ðt2DtÞt ¼ �tel1t½cgðW Þ þ hðetÞe�ltðW þ LÞp�: ð4:12Þ

Integrating (4.12) over ½T ; t�; we have

tDtða; tÞ ¼ t�1 T 2Dtða; T Þ �
Z t

T
sel1s½cgðW Þ þ hðesÞe�lsðW þ LÞp� ds

� �
: ð4:13Þ

First, note that from (4.2) and (4.4),

t�1

Z t

T
csel1sjgðW Þj ds4t�1

Z t

T
cM2se�l1sds

for some M2 > 0: Second, letting

GðtÞ :¼ t�1

Z t

T
seðl1�lÞsjhðesÞj ds;
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we have

G0ðtÞ ¼ �t�1GðtÞ þ eðl1�lÞtjhðetÞj:

Then,

GðtÞ � GðT Þ ¼ �
Z t

T
s�1GðsÞ dsþ

Z t

T
eðl1�lÞsjhðesÞj ds: ð4:14Þ

Hence, we have

Z þ1

T

GðsÞ
s
ds4GðT Þ þ

Z þ1

T
eðl1�lÞsjhðesÞj ds51; ð4:15Þ

which implies that by (4.14), GðtÞ converges as t! þ1 and, thus, to
0 by (4.15) again. Thus, from (4.13), tDtða; tÞ converges uniformly to 0 on
½a; an� as t! þ1: Multiplying (4.11) by t and integrating over ½T ; t�;
we have

Dða; tÞ ¼Dða; T Þ þ TDtða; T Þ � tDtða; tÞ

�
Z t

T
el1s½cgðW Þ þ hðesÞe�lsðW þ LÞp� ds:

Therefore, Dða; tÞ converges uniformly on ½a; an� as t! þ1: ]

An immediate consequence of Lemma 4.1 is that the limit of Dða; tÞ as
t! þ1 is continuous.

Proposition 4.2. Let p5pcðn; lÞ with l > �2: Suppose the assumptions

of Proposition 3.1. Then, DðaÞ :¼ limt!þ1 Dða; tÞ is continuous for a > 0 small.

Moreover, DðaÞ ! �1 as a ! 0:

The continuity of DðaÞ is crucial in establishing the following main
result.

Theorem 4.3. Let p5pcðn; lÞ with l > �2: Assume that K50 and f
satisfy (K1) and (f1) respectively. Suppose there exist radial functions H


such that

(i) H
ðrÞ50; H
ðrÞ 2 Cðð0;1ÞÞ; and
R
0 rH


ðrÞdr51;

(ii) maxð
f ðxÞ; 0Þ4ð1þ jxjmpÞ�1H
ðjxjÞ;

(iii) H�4K� and

Z
Bc
ðK� � H� � cjxjlÞ�jxj

�mðpþ1Þ�l2dx51;
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(iv) HþðrÞ ¼ OðrlÞ; KþðrÞ5cprl near 1 (or 4cprl in the case Hþ � 0),

Z
Bc
ðKþ þ Hþ � cjxjlÞþjxj

�mðpþ1Þ�l2dx51;

or

Z
Bc
ðKþ þ Hþ � cjxjlÞþjxj

�mp�l2dx51;

for some c > 0; where K�ðrÞ :¼ inf jxj¼r KðxÞ; KþðrÞ :¼ supjxj¼r KðxÞ; l2 ¼
l2ðn;p; lÞ; and Bc is the complement of a ball B centered at 0. Then, there

exists mn > 0 such that, for every m 2 ½0;mnÞ; Eq. (1.1) has infinitely many

positive entire solutions with the asymptotic behavior

lim
jxj!1

jxjmuðxÞ ¼ Lðn;p; l; cÞ:

Proof. To construct super- and subsolutions of Eq. (1.1), we consider
the homogeneous problem

v00 þ n�1
r v

0 þ ðK
 
 H
Þvp ¼ 0 in ð0;1Þ; vð0Þ ¼ a > 0: ð4:16Þ

We may assume that Kþ þ Hþ4cpjxjl near 1 in the first case of (iv) by
taking m > 0 small, and we consider only the case that K� � H�ccrlcKþ þ
Hþ and fc0 because the other cases can be handled similarly. By v
a ; we
denote the solutions respectively. From Proposition 3.1, there exists an > 0
such that for each a 2 ð0; an� there exist positive entire solutions v
a of (4.16)
respectively which increase as a increases and which are below %uuy for
some y > an: Moreover, for given a 2 ð0; an�; there exist 05Z5g5x5a such
that

%uuZ5v�g 5 %uux5vþa in Rn:

Define

ga ¼ sup fb 2 ðZ; aÞ : v�b5v
þ
a in Rng:

Obviously, v�ga4v
þ
a : Then, the strong maximum principle implies that

v�ga5v
þ
a in Rn: By Lemma 4.1, we may set

D�ðgaÞ :¼ lim
r!1

rl1 ðv�ga ðrÞ � LÞ and DþðaÞ :¼ lim
r!1

rl1ðvþa ðrÞ � LÞ
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if p > pc; and

D�ðgaÞ :¼ lim
r!1

rl1

log r
ðv�ga ðrÞ � LÞ and DþðaÞ :¼ lim

r!1

rl1

log r
ðvþa ðrÞ � LÞ

if p ¼ pc: Then, it follows from Proposition 4.2 that D�ðgaÞ ¼ D
þðaÞ:

Indeed, if D�ðgaÞ5D
þðaÞ; then v�ga5v

þ
a near 1: Hence, the continuity of D�

implies that there exist R > 0 and d > 0 such that if 05b� ga5d and b5a;
then v�b ðrÞ5v

þ
a ðrÞ for r 2 ½R;1Þ: Since v�b is monotonically decreasing to v�ga

as b decreases to ga and v
�
b ! v�ga uniformly on ½0;R�; there exists ga5g15b

such that v�g15v
þ
a in Rn; which contradicts the definition of ga:

Fix a1 2 ð0; an�: From the proof of Proposition 3.1, there exist 05Z15ga1
and 05Z25a25

Z1
2
such that

%uuZ25v
�
ga2
5vþa25 %uuZ1=25 %uuZ15v

�
ga1

in Rn:

Since aa in (2.4) is strictly increasing as a increases, we have D�

ðga2 Þ ¼ D
þða2Þ5D�ðga1 Þ ¼ D

þða1Þ: By the continuity of Dþ; Dþð½a2; a1�Þ ¼
½Dþða2Þ;Dþða1Þ�: We apply (ii) and (1.7) to find m
 satisfying

mþfþ4Hþðvþa1 Þ
p; m�f�4H�ðv�ga1

Þp:

For each 04m4minfmþ;m�g; we conclude by the super- and subsolution
method (see [5,10]) that for every a 2 ½a2; a1�; Eq. (1.1) possesses a positive
entire solution ua satisfying

v�ga5ua5v
þ
a in Rn;

and moreover,

lim
jxj!1

jxjmuaðxÞ ¼ Lðn;p; l; cÞ:

Every ua is characterized by the asymptotic behavior

lim
jxj!1

jxjl1 ðuaðxÞ � LÞ ¼ DþðaÞ

if p > pc and

lim
jxj!1

jxjl1

logjxj
ðuaðxÞ � LÞ ¼ DþðaÞ

if p ¼ pc: ]
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Theorem 1.1 follows from Theorem 4.3 by taking

H
ðjxjÞ ¼ ð1þ jxjmpÞF
ðjxjÞ;

where F
ðrÞ :¼ maxjxj¼rf
ðxÞ: The first case in (iv) is applied to deduce
Theorem 1.1. Combining (K2) and (f3), we see that the integral conditions in
(iii) and (iv) are satisfied.
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