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1. INTRODUCTION

In this paper, we study the elliptic equation
Au+ K(x)u? + uf(x) =0, (1.1)

where n>3, A=Y, (0°/ox?) is the Laplace operator, p>1, u>0 is a
parameter, and f as well as K is a given locally Holder continuous function
in R"\{0}. By an entire solution of Eq.(1.1), we mean a positive weak
solution of (1.1) in R” satisfying (1.1) pointwise in R"\{0}.

Inhomogeneous elliptic equations have been studied to afford an
understanding of the effects of the inhomogeneous term in the existence
and properties of solutions, compared with those of homogeneous
equations; see [1, 3, 7].

The purpose of this paper is to study the asymptotic behavior of positive
entire solutions and to establish infinite multiplicity for (1.1) which has
diverse physical and geometrical backgrounds. In particular, Eq. (1.1) in the
case K = 1 and p = 2 arises naturally in establishing occupation time limit
theorems for super-Brownian motions which requires analyzing cumulant
generating functions satisfying some integral equations equivalent to the
parabolic counterparts of (1.1). We refer the interested readers to [3, 7] and
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the references therein. On the other hand, the corresponding homogeneous
equation

Au+ K(x)u? =0 (1.2)

stands for the prescribing scalar curvature problem in Riemannian geometry
when p is the critical Sobolev exponent % or for the Lane—Emden equation
in astrophysics when K(x) = |x|'. There have been many works devoted
to studying the existence of positive solutions of (1.2) in R" after
the first contribution by Ni [10] in 1982; see [2,5,9-11]. One of the
remarkable features of the equation is that (1.2) can possess infinitely
many solutions as long as the exponent p and the dimension n are
large enough. Recent studies in [1,5] paid special attention to this
phenomenon.

To illuminate the motivations of this paper in detail, we need the
following notations. Set

(n=2)>=2(142)(n+D+2(1+2)\/ (n+1)> —(n—2)*

if n>10+4 4/,

pe = p(n,1) = (n—2)(n—10—4l) (1.3)
o0 if n<10+41,
for some /> —2. Let m = % and
(n—2-=2m)—\/(n—2—=2m)> —4(l+2)(n — 2 — m)
j~1 :ll(nspal): \/ P 5
(1.4)
(=2 = 2m) 4+ /(0 — 2 = 2m)> — 4(1 + (1 — 2 — m)
/12 = /12(11, P l) = 3 .
(1.5)

Observe that 4,4, e RT if and only if n>10+4/ and p> p.. The two
numbers, A; and Ay, play important roles in describing the asymptotic
behavior at co of positive radial solutions to the Lane-Emden equation with

p> p(,‘(n9 l)a
Au+ clx|'u? =0 (1.6)

in R” for / > —2 and ¢ > 0. It is known that when p > 2252l and /> -2, (1.6)
has a positive radial solution #, with #,(0) = o for each o > 0 and

lim #ity(r) = L, (1.7)

r—00
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where

1

1+2 [+2\1]7 7
L=Lin, pl,c)= [L(n—z—L)—r (1.8)
p—1 p—1)c

(see [4, 12]). Furthermore, p> p.(n, ) if and only if any two positive radial
solutions of (1.6) cannot intersect each other [12]. By analogy with (1.6), it is
natural to expect that (1.2) with p> p. has infinitely many positive solutions
under suitable conditions on K. In [5], Gui studied conditions on K to
guarantee infinite multiplicity for (1.2) and established the following

THEOREM A. Suppose that K >0 satisfies
(K1) K(x) = O(|x|°) at x = 0 for some o > —2, and
(K2) K(x) = clx|" + O(x|~9) near |x| = 0o

for some ¢>0, [ > =2, and

n—2

A1\ Jn—2— U D —2—m). (19)

Then, Eq. (1.2) with p>= p.(n,[) possesses infinitely many positive entire
solutions satisfying

lim |x|"u(x) = L(n, p, 1, ¢).
|x[—00

The first objective of this paper is to improve Theorem A. We have found
by a barrier method (see [1, 5]) that Theorem A is true for a wider class of K.
For example, we may replace (1.9) in Theorem A with

d>n— Jon, p,1) — mp.

In fact, a more general assumption on K of integral form shall be given
without any pointwise condition at oo like (K2). Furthermore, we weaken
the integrability condition again up to the form covering the case

d>n_i2(n7psl)_m(p+l)

by imposing an upper bound on K near co. The monotonicity of u, with
respect to o is essential for the constructions of infinitely many pairs of
super- and subsolutions. It, therefore, seems interesting to examine
multiplicity for (1.2) satisfying L|x|™" at co when p< p..

On the other hand, another natural question is whether (1.1) still could
have infinitely many entire solutions. Bae and Ni [1] recently confirmed the
question positively for (1.1) with K = 1, combining the modified version
of the barrier method initiated by Gui [5] and the asymptotic behavior near
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oo of positive solutions of suitable homogeneous equations. The existence
results in [1] for the equation

Au+u? +uf(x)=0 in R", (1.10)
where > 0 is a parameter, can be summarized as follows.

THEOREM B. (i) If p> p.(n,0), f#£0 and near oo,
max (£ /(x),0)<[x| 7%,

where g >n — Ay(n, p,0) and q_ >n — Jr(n, p,0) — #, then there exists
> 0 such that for every p e (0,u,) Eq. (1.10) possesses infinitely many positive
entire solutions with the asymptotic behavior L(n, p, 0, 1)|x|72/(”71) at oo.

(i) If p = p.(n,0), the conclusion in (1) holds with the additional assumption
that either f has a compact support in R" or f does not change sign in R".

Our next objective is to extend the result of Theorem B to the more
general Eq. (1.1) and to remove the extra condition in the critical case p =
Pe. The main difference between (1.10) and (1.1) lies in the fact that the part
Au + Ku? of (1.1) does not possess any scaling property in general. Hence,
the barrier method used in [1] cannot apply to the problem (1.1) directly. We
formulate a new approach to managing infinite multiplicity for (1.1), which
is to verify certain continuity of a limiting function demonstrating the
asymptotic behavior at oo of positive solutions of Eq. (1.2) (see Proposition
4.2 below). This observation makes it possible for the infinitely many pairs
of positive solutions of (1.1) constructed by super- and subsolution
arguments to have specific behaviors at co in order to discern one another,
which is, in fact, the key idea in [1] to get infinite multiplicity for the
inhomogeneous problem (1.10). When Z_l%< p < pe, the multiplicity question
for (1.10) is fundamental, but left unanswered.

The main result of this paper is the following

THEOREM 1.1. Let p= p.(n,[) with | > —2. Assume that K =0 holds (K1),
(K2) for some constants ¢>0 and d>n— Ay(n, p,1) —m(p+ 1) while f
holds:

(f1) f(x) = O(x|") at x = 0 for some T > —2,

(2) —(1 + x["P) f(x) < minp—y K(z), and

(f3) near |x|=o00, f(x)=O0(x|"7) for some constant q>n—
(n9 D, l) —m.
Then, there exists p, >0 such that for every uel0,pu,), Eq. (1.1) possesses

infinitely many positive entire solutions with the asymptotic behavior
L(n, p,1,0)lx|™™ at cc.
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This paper is organized as follows. Some preliminaries are reviewed in
Section 2. In Section 3, we study the homogeneous equation (1.2) and apply
multiplicity results to Riemannian geometry. Finally, the asymptotic
behavior of positive solutions of (1.2) is investigated and then Theorem
1.1 is established in Section 4.

2. PRELIMINARIES

In this section, we consider positive radial solutions of (1.2) with a radial
function K. The radial version of Eq. (1.2) is of the form

-1
u” + Ty + K(P)u? =0; u(0)=o0>0. (2.1
-

Under the assumption
(/1) K(r)=0, K(r) € C((0,00)), and [, rK(r)dr< oo,

Eq.(2.1) has a unique solution u e C?((0,¢)) n C([0,¢)) for some &> 0
(see [11]). For each o >0, the local solution u, of (2.1) is decreasing and
extended locally wherever it exists and remains positive.

We first recall the asymptotic behavior of positive radial solutions
u, of Eq.(1.6) (see [8, 6; Theorem 2.5, Lemma 4.13, and (4.15)] for
details).

ProPOSITION 2.1.  Let [ > —2 and ¢ > 0. For p>= p.(n,[), we have that for
arbitrarily given ¢ > 0,

_ L a 1 .

Br) = ot g+ 0 <—2> if pzpe (22
_ L a,logr 1 .
) =g e bt 0(m) i p=pe @)

near 0o, where L is given by (1.8), Ay is given by (1.4), and

ay = o ", <0. (2.4)

Although Theorem 2.5 in [6] deals only with the case /=0, the
arguments in the proof can proceed similarly to conclude Proposition
2.1. Another direct consequence of Theorem 2.5 in [6] is the
following
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ProPOSITION 2.2. Let vy, vy be two positive radial solutions of the
equation

Au+ cr'u? =0
near 00, where ¢ >0 and [ > —2. Suppose that

lim #"vi(r) = L = lim #"v:(r)
r—00 r—00

and
lim 7 (" oy(r) — L) = lim 7" (7" 02(r) — L) if p> pe
r—00 r—00
. r;Ll . ;L]
rlglelo logr(rmvl(r) -b= }Lngo logr(rmUZ(r) - ¥ p=pe

Then, v1(r) — v2(r) = O(""""2) near oo, where 2 is given by (1.5).

The existence of a positive radial supersolution of (1.6) having the
following asymptotic behavior is verified similarly as in [6] (see [6; Theorems
2.5 and 4.1 and Lemmas 4.11 and 4.13]).

ProrosiTiON 2.3. Let p= p.(n,l) with [> -2 and c¢>0. Then, for
each o.> 0, there exists a positive radial supersolution u (r) of (1.6) such that
i) (r) > uy(r) for r € [0,00) and @} (r) — ,(r) = O(~""*) as r — oo.

We now remark that Proposition 2.3 produces an improved form of a
result in [5]. In [5], Gui used an estimation for & (r) — i,(r), but by replacing
Theorem 2.3 in [5] with Proposition 2.3 we modify Theorem 3.4 of [5] and
write the following, to be improved again by Theorem 3.2 in the next
section.

THEOREM 2.4. Let p= p.(n, 1) with | > —2. Assume that in the radial case,
K holds (/1) and, for some ¢ >0,

o0
/ \K(r) — cr! [P~ 17"P=% dr < 00,
1
while in the nonradial case, K holds (K1) and, for some ¢ >0,

/ |K,~(V) _ C’,I'rn—l—mp—m dr < 00, i=1,2,
1
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where K(r) = infy, K(x), K>(r) = supy,_, K(x), and iy = Jr(n, p,I). Then,
there exist infinitely many positive entire solutions of (1.2) (which are radial if
K is radial) and no two of them can intersect. Furthermore, every solution u(x)
obtained above satisfies

lim |x|"u(x) = L(n, p, 1, c).
|x|—00

For the radial case, the solution u, of (2.1) exists globally for every o > 0
small under the assumptions of Theorem 2.4 and is monotone with respect
to o. In general, the existence of three separated positive radial solutions of
(2.1) leads to a one-parameter family of positive radial solutions indexed by
initial data.

LEMMA 2.5.  Assume that K#0 holds (.</1). Suppose that there exist three
solutions u,,upg,u, of (2.1) such that 0 <u, <ug<u, in [0, R) for some R e
(0, 00). Then, for each o <0<, (2.1) possesses a positive radial solution us in
By, satisfying

0 <uy(r) <us(r) <ug(r)
for 0<r<R.
Proof. Suppose that for some o <d<f and 0<R<R, wy = us — uy >0

in [0, R), w2(R) = 0, and w; = ug — us >0 in [0, R]. Then, w5(R)<0 and w»
satisfies Aw, 4+ Kgowy = 0 with wy(0) = 6 — « > 0, where

P P
Us —u
) o p—1
g2 = ——=< puj
Us — Uy

in Bgz. We may assume that K(r)>0, #0 in [0, R]. On the other hand, w;
satisfies Aw; + Kgyw; = 0, where

”II; —uy g~
— pus
ug — us

in Bp. It follows from Green’s identity that
0, R Wi (R)WH(R) = 0, R~ (wi(R)WH(R) — wa(R)W/ (R))

= [ WiAwy —wmAw) = [ (g1 — g2)Kwiws >0,
BR BR

where w, denotes the surface area of the unit sphere. Then, w)(R) >0, a
contradiction. Hence, if for some o <0 < f§, us meets u, for some R, > 0, then
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there exists 0<Rg<R, such that u; >0, ws :=ug —us>0 in [0,Rp) and
wa4(Rp) = 0. Replacing w> and w; in the above arguments with ws and
w3 = u, — ug, respectively, we also have a contradiction. Therefore, for each

o< <f, the local solution u; remains between u, and uy and exists up to
R 1

3. HOMOGENEOUS EQUATION
In this section, we establish the existence of infinitely many positive entire
solutions of (1.2). In order to improve Theorem 2.4, we adopt arguments
similar to those in [1] and pay attention to the supremum of »~‘K near oo.
Later, an interpretation of multiplicity results to Riemannian geometry shall
be presented. We first consider the radial case.

ProposITION 3.1.  Let p= p.(n,l) with [ > —2. Suppose that K satisfies
(‘Qfl)’

[o¢]
(£72) / (K(r) — erly_p/ 1m0,
1
and either r~'K(r)<cp near oo,
o0
(o73) / (K(r) — crl)+r”717m(p+l)7)'2dr< 00,
1
or
o0
(:24) / (K(r) = crl) =172 dr < 00
1

for some ¢ > 0, where k;. = max(=+k,0). Then, there exists a positive constant
o* = o*(p, K) such that for each o € (0, 0*], Eq. (2.1) possesses a positive radial
solution , with u,(0) = o satisfying

lim r"u,(r) = L(n, p,1,c),
r—00

and no two of them can intersect.

Proof. For simplicity, we assume ¢ = 1. It follows from Proposition
2.3 that for each «>0, there exists a supersolution i) >, of the
equation Au + |x|'u? = 0 satisfying F,(r) == u(r) — i, (r) = O(r "™ ") at oo



INFINITE MULTIPLICITY FOR AN ELLIPTIC EQUATION 375
and
Lo+ - 1=p—1
AR, < — (@) —al)< — phl'ul ' F,.

For all y> 0, there exists a unique positive solution u, of (2.1) locally.
First, we claim that for given f>0 there exists 0<y=9p(f)<p
such that for every 0<y<y, u,<ug in B(R,) whenever u,>0 in B(R,)
for some R, > 0.

Suppose that for any 0<y<p there exists 0 <y <y such that u; >0 in
B(Rj), wy(r) = ug(r) — uz(r) >0 on [0, R;), but wy(R;) = 0 for some R; > 0.
Then, wy satisfies

Aw; = —|x|]ﬁg + Kuj

in B(Rj). Fix a > B. Applying Green’s identity, we have

0< / (WsAF, — FyAwy)
B(R;)
< / {— plx|'wsu? ' F, + lelﬁ;;F“ — KujF,}
B(Ry)

< / (= pll'wsa? VF, + plllwsiil " F, + (! — K)ulE)
B(Ry)
and
p [t g ns [ Gl - Kt
B(R;) B(Ry)

Since g > 0 in R” and u; <7 on [0, R;], we may assume that for small § > 0,
R;>1 and w;>1ug(l) in By. Hence, for small >0, and thus for small
0<7<y, we have

Do [ Wi -a i Es [ el -mgn G
B(1) B(R;)

<[ &-uh) gr.
B(R;)

However, this is impossible because from (1.7), (.272), and the Dominated
Convergence Theorem the right-hand side of (3.1) goes to 0 as § — 0, while
the left-hand side is a fixed positive constant, which verifies the claim.
Therefore, there exists 0<y<f such that for all 0<y<y, O<u,<ug
in B(R,).
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Regarding R, as the supremum of the set {R>0:u,>0 in By}, we
observe that R, — 00 as y — 0. Indeed, for 0<r<R,,

uy(r)=y+/ u, ds
0
r s l‘”_l
—y— / / (—) K(OuP() dt ds
o Jo \s !
>V—y”/ t’”K(t)[/ sl”ds} dt
0 t

>y {1 - :p__lz/or K (7) dt} (3.2)

Thus, it follows from (/1) that R, — 0o as y — 0 and moreover, for given
R>0and 0<d <1, there exists 0 <y <7y such that for 0 <y <7, u, > dy in Bp.

Case 1: Consider the case that 7 /K< p near oo. Choose R>1 so large

that 7~'K(r)< p for r € [R, 00). Then, there exists 0 <7, <7 such that for all
0<y<7;, R, >R and u,(r)>% on [0, 1]. Let J; be the set of 0 <y <7, satisfying

P / 'l Fy > / Kul~'Fy,. (3.3)
2 Ju BR)

Then, Jy contains an interval, say (0,7,]. Suppose that R, <oco for some
0<y<7,. From Green’s identity, it follows that

0 < / (uyAF/; - F/;Auy)

B(R,)

< / [— plxl'wyif " + Kul)Fy
B(R,)

< / [—p|x|luy12f;71 + Ku?|Fp
B(R) !

I, =p—1

+ / (K — plx[uyuag " Fp.

B(R)\B(R)
Then,
p/ |x|luy12[’;71F/;<p/ |x|lu~,,t_4§71F,;< KuPFy.
B(1) B(R)

B®

Thus,

q
% / 'l Fy < / Ku?Fy
B(1) B(R)
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and

a contradiction. Therefore, R, = oo for all 0 <y <7,, which implies that for
every 0<7y<%,, u, is an entire solution and thus, 0 <u, <ug in R".

Fix 0 <y <7,. Next, we claim that there exists 0 <J <y such that u; <u, in
R" and thus, for every 0 <e<d, 0 <u, <u, in R".

Suppose that there exist ¢; > 0 going to 0 and r;; > 0 going to 00 as j — 00
such that for each j>1, O<g<y, Wy, =u, —u,; >0 in B(ry,), and
W, (r;;) = 0. By Green’s identity,

0< / (W, AFy — FyAWw,)
B(rxzj)
< / (=l W iy~ Fy + Kul Fy — 'l Fy}
B(riij)
and
. —p—1 -
0< / ( {phl o iy — Wl — )
BV::/-
<[ - wwn
B(r::j)

<[ &= wigs. (3.4)
B(rr:j)

Since the integrand of (3.4) is positive, it follows by Fatou’s Lemma and the
Dominated Convergence Theorem with (.«/2) and (o73) that

0< / [p|x|lu},12[’;71F/; — |x|[u§’F/;]< / (K — |x|l)ufF5<oo.
R R
Hence,
(phel'af ™" — KuP~"u,Fg <0
R”

and thus

” (plel'tf ™" — Kul ™" yu, Fp <0,
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Therefore,

3/ |x|’ﬁ§‘1Fﬁ</ Kul~'Fy,
2 Jsa) BR) '

which contradicts (3.3).

Case 2: For >0, let Iz be the set of 0 <y <y(f) satisfying
)4 e _ _
2 / b L™ — w1 > / (K — '), ul” F.
B(1) B(Ry)

Then, I = (0, yp) for some y; > 0 since, from (1.7) and (.«/4), the right-hand
side goes to 0 as y — 0 by the Dominated Convergence Theorem while the
left-hand side is bounded below a positive constant which is irrelevant to y
when y > 0 is small.

It follows from (3.2) that there exists 0 <y <7; such that for all 0 <y <y,
R,>1, and u,(r)=3y on [0, 1].

We now claim that for small 0 <y <7 so that uy(r)>%y for 0<r<1, there
exists 0 <y <7y such that u, > i, in R". Suppose that there exists 0 <7; <y
such that for each O<ny<7y; there exists r, >0 satisfying Ww,(r) =
uz, (r) — uy(r) >0 in [0, 7,) and W,(r,) = 0. From Green’s identity,

0< [ (AR - F)
B(r”)
A =p—1 —
< / {—pll"Wyitf " Fy + Kuf Fy — x|'al Fy}
B(r,7)
and
A r=p—1 —1 ~ =p—1 —
AN e R R R
B(ry) B(ry)
<[ -
B(ry)

Since u, is monotonically decreasing to 0 as # decreases to 0 so that i, — 0
uniformly on [0,R] for any fixed R >0, we may assume that », > 1 and
Wy(r) =35, — @y (r) =17, in By if n >0 is small enough. Then, we have

p/ Ir=p—1 p—1 ! p—1
2t ]Fs/ K — ), u? "' F,
2 Jsa) B 5 B ;) +85, LB

which is impossible because §; € /3.
Repeating the above arguments, we find a decreasing sequence {u, } of
positive solutions of (2.1) such that there exists a positive decreasing
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sequence {o;} going to 0 as i — 0 satisfying u,, >4, > u,_, in R" for each
i> 1. By virtue of Lemma 2.5, the proof is complete. 1

We apply Proposition 3.1 to the nonradial case under another
assumption:
(K3) For N =3, the infimum K;(r) and the supremum K,(r) of K(x)
on {x=(x,x)eR" xR":|x,]=r} are continuous on (0,00), and
fo rK>(r)dr < oo.

THEOREM 3.2. Let p= p.(N,I) with N>=3 and | > —2. Assume that K >0
satisfies (K1), (K3) and, for some ¢ >0, K holds (/2) while K, holds either
(44) or (#3) and ¥ 'Ky(r)<cp near oco. Then, Eq. (1.2) possesses infinitely
many positive entire solutions satisfying

‘ 1‘im beo|"u(x1,x2) = L(N, p, 1, ¢) (3.5)
X2 | =00

uniformly in x; € R™™ and no two of them can intersect.

Proof. Applying Proposition 3.1 to K; and K;, we have a positive radial
solution wi, ws of Aw + Kyw?” = 0 in RY and a positive radial solution vy, vs
of Av+ K>v? = 0 in RY satisfying

- - - . N
V1 > Uy > WL > Uy, > U2 > Uy, > W in RY,

where u,,, ,,, U, are solutions of (1.6) in RY. Since #;(x1,x2) = vi(|x]) and
wi(x1,x2) = w;(|xz]) are supersolutions and subsolutions of (1.2) in R"\{0}
respectively, by the standard super- and subsolution method there exist
solutions u; of (1.2) in R"\{0} such that

v =u; = w;, i=1,2.

It is easy to see that u; are weak solutions of (1.2) in R” and entire solutions.
Repeating the above procedure, we construct infinitely many ordered
positive entire solutions satisfying the asymptotic behavior (3.5). 1

An immediate consequence of Theorem 3.2 is the following

COROLLARY 3.3. Let p=p.(N,I) with N=3 and > —2. Suppose that
K >0 satisfies (K1), (K3) and that there exists ¢ > 0 such that

Ki(r) = cr' + 0% at oo, i=1,2,

for some constant d > N — pfi(2 + 1) — LN, p, 1), where K1, K, are defined in

(K3). Then, the same resu/g as in Theorem 3.2 holds.
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We now translate Theorem 3.2 into the context of Riemannian geometry.
Let (M,g) be an n-dimensional Riemannian manifold and K be a given
function. The scalar curvature problem is to find a metric g; on M
conformal to g such that the corresponding scalar curvature to g; is K. The
introduction of u > 0 by g; = u*/"?g, n>3, leads to the equation

4n—1)

n+2
M= DN, kut Kun =0, (3.6)
n—2

where A, denotes the Laplace—Beltrami operator on M in the g metric and &
is the scalar curvature of (M, g). If M = R" and g = = dx? is the standard
metric, then Eq. (3.6) reduces to

n+2
Au+ K(x)un—2 =0 in R”.
We write x = (x1,x2) e R"¥ x RY =R", N>3.

THEOREM 3.4. Let Zf%)pc(N, l) with N=3 and | > —2. Assume that K

satisfies (K1), (K3), and

/ (Ki(r) — erly N~ -

and that r~'K»(r) <M near oo,

/ (Ka(r) — er'), 7N

n( 2+l

4 dr <00,

or

(n+2)(2+l)

/ (K>(r) — erly A1 T4 Pdr<oo,
1

Jor a constant ¢ > 0, where 7, = Ay(N," ”*2 L) and Ky, K, are defined in (K3).
Then, there exist infinitely many Rzemanman metrics g1 on R" with the
following properties:

(i) K is the scalar curvature of gi;

(ii) gy is conformal to the standard metric g on R";

(i) g; is complete.

4. INHOMOGENEOUS EQUATION

In this section, we are concerned with infinite multiplicity for the
inhomogeneous Eq. (1.1). Under the assumptions on K as in Proposition 3.1,
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Eq. (2.1) with p= p.(n,]) and [ > —2 has a family {u,} of positive radial
solutions indexed by « € (0, «*] for some o* > 0 such that u,(0) = o and u, is
monotonically increasing with respect to . For o € (0, o*] with o* > 0 small,
set W(o,t) = r"u,(r)— L, t =logr, and

D(o, 1) == "' W(a,t) for p> p,,

D(a, f) ==t "' W (a, 1) for p = p..
From the proof of Proposition 3.1, we observe that for each o € (0, «*], there
exist y<a and > a such that %, <u, <ip in R" and, thus, #"u,(r) — L as
r — 00. Moreover, it follows from (2.2), (2.3), and (2.4) that for fixed 0 <

a<o*, D(o,t) are uniformly bounded above and below near +o00 on [a, «*];
that is, there exists M = M(a, p) such that for all o € [a, o*],

|W (e, t)| <Me™ " for p> p. 4.1)

and
\W(a, t)| <Mte ™" for p= p,. 4.2)
For fixed —oco<t< 4 00, D(a,t) is continuous with respect to o. The next

observation is that D(«, f) converges uniformly on [a, «*] as t — +00, which
seems of independent interest. To verify this, we need only the condition

[o}
/l IK(r) — cr' |17t D=% gy < o0, 4.3)

LEMMA 4.1. For given 0<a<o*, D(a,t) converges uniformly on [a,o*] as
t — +00.

Proof. Setting W(a,t) .= r"u,(r) — L, t =logr, we see that W satisfies
Wy +(n—2 = 2m)W, + c(p — DLP™'W + cg(W) + h(e)e™"(W + L)* = 0,

where h(r) = K(r) — cr' and g(s) := (s + L)’ — L? — pL?~'s such that for s
near 0,

o(s) = 22— D - D20 4 o), (4.4)

Case 1: Let p> p.. Then, D(a,t) = e*'W(a, ) holds that

Dy + (72 = 20D + ' [eg(W) + h(e)e "W + L)1 = 0 (4.5)
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and
(D=0 = —eP[eq(W) + h(e)e (W + L)7]. (4.6)
Integrating (4.6) over [7,t], we have
Do, 1) = e 2= T D (o, T)

- / t e [eg(W) + h(e’)e (W + L)P] ds}. 4.7)
T

It follows from (4.1) and (4.4) that for any 0 <e<min{4;, 4, — 4;} and for
some M; >0,

t t
e(“’“)t/ ce™|g(W(s))| ds Se()"’b)’/ M2 ds
T T
t
<cM1e’”/ e =95,
T

which goes to 0 as t - 4o0.
On the other hand, from (4.3), we have

t t
e(/l]*iz)t/ e().zfl)slh(eSNds :e(/llfig)t/ e(/ﬁzfil)se(ﬂ.l7Z)S|h(eS)| ds
T T
o0 N
< / M08 ()| ds < oo
T
Hence, the function
N t N
F(t) — e()v]fAz)t/ e(/vzfl)svl(e‘v)' ds
T

is bounded and holds that
F/(t) = (A1 — 2)F(t) + " |h(e")].

Then,

(2 — 1) /T "F(s)ds = F(T) — F() + /T e ds

o0
< F(T)+ / M3\ n(ef)| ds < o0, (4.8)
T
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and thus

/+OC F(s)ds<oo. 4.9)
T

Therefore, from (4.8), F(¢) converges as t — 400 which in turn implies that
from (4.9),

lim F(¢) =0. (4.10)

t—>+400

Hence, by (4.7) and (4.10), D,(, f) converges uniformly to 0 on [a,o*] as
t - +o00. Integrating (4.5) over [T, (], we see that

(;“2 - il)(D(aa t) - D(O(n T)) :Dt(“a T) - D[(OC, t)

- / | e leg(W) + h(e')e (W + L)?] ds.
T

Then, it follows immediately that D(a,¢) converges uniformly on [a,«*] as
t > +00.

Case 2: Let p = p.. Then, D(a,t) = t~'e"'W(a, 1) satisfies

Dy + %Dt + ele [cg(W) + h(ee (W + L)P] = 0 (4.11)
and
(D)), = —te" [eg(W) + h(e e ""(W + L)*]. (4.12)

Integrating (4.12) over [T, ], we have
t

Do, ) =t {TzD,(oc, T)— / se¥[eg(W) + h(e*)e (W + L)?] ds}. (4.13)

T
First, note that from (4.2) and (4.4),

t X t X
! / eseSlg(W)| ds <t~ / cMyse™ds
T T

for some M, > 0. Second, letting

t
Goy=1r" / e |n(e’)| ds,
T
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we have
G'(t) = —t7'G(t) + €17 h(eh).

Then,
t t X
G()— G(T) = — / s G(s) ds + / eHD8 (e ds. (4.14)
T T
Hence, we have
+00 G +00
/ %)dssG(T) + / M=%\ n(e")| ds < o0, (4.15)
T T

which implies that by (4.14), G(f) converges as t — +0o and, thus, to
0 by (4.15) again. Thus, from (4.13), tD,(«, ) converges uniformly to 0 on
[a,0*] as t — +o0o. Multiplying (4.11) by ¢ and integrating over [7,1],
we have

D(o,t) =D(a, T) + TDy(o, T) — tD,(et, t)

t
— / eS[eg(W) + h(e®)e (W + L)) ds.
T
Therefore, D(, ) converges uniformly on [a,o*] as t — +o00. 1

An immediate consequence of Lemma 4.1 is that the limit of D(x, ) as
t - 400 is continuous.

PrOPOSITION 4.2.  Let p= p.(n,[) with | > —=2. Suppose the assumptions
of Proposition 3.1. Then, D(o) := lim,_, ; «, D(0., t) is continuous for o > 0 small.
Moreover, D(o)) - —00 as o — 0.

The continuity of D(«) is crucial in establishing the following main
result.

THEOREM 4.3. Let p>= p.(n,l) with | > —=2. Assume that K>=0 and f
satisfy (K1) and (f1) respectively. Suppose there exist radial functions H=*
such that

(i) H*(r)=0, H*(r) € C((0,00)), and |, rH>*(r)dr < o0;
(i) max(+/(x),00<(1 + "?)""H*(|x|);
(i) H~ <K~ and

(K~ — H™ — cx])_x| P02 gy < o0;
B¢
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(iv) H(r) = O("), K*(r) < cpr! near oo (or <cpr' in the case Ht = 0),
(KT 4+ HY — x| xRy < o6,
BL‘
or

(Kt 4+ HY — x|, x| "P~*"dx < 00,
BC

for some c¢>0, where K (r):=infy—, K(x), K (r) = supy_, K(x), 4 =
Aa(n, p, 1), and B¢ is the complement of a ball B centered at 0. Then, there
exists >0 such that, for every pel0, ), Eq. (1.1) has infinitely many
positive entire solutions with the asymptotic behavior

lim |x|"u(x) = L(n, p,1,¢).

|x[—00

Proof. To construct super- and subsolutions of Eq. (1.1), we consider
the homogeneous problem

V=Y (KE £ HE P =0 in (0,00);  0(0) = a> 0. (4.16)

We may assume that K™ + H <cplx|’ near oo in the first case of (iv) by
taking u > 0 small, and we consider only the case that K~ — H~ #cr! #K+ +
H*" and f#0 because the other cases can be handled similarly. By v}, we
denote the solutions respectively. From Proposition 3.1, there exists o* > 0
such that for each o € (0, &*] there exist positive entire solutions v of (4.16)
respectively which increase as o increases and which are below uy for
some 0 > o*. Moreover, for given a € (0, 2*], there exist 0<n<y<¢<a such
that

iy <v; <#z<v;  in R".
Define
7o = sup {f € (n,2) : vy <v; in R"}.

Obviously, v, <v). Then, the strong maximum principle implies that
v, <vf in R". By Lemma 4.1, we may set

D (y,) = lim (v, () —L) and  D'(x):= lim r(v; (r) - L)
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if p> p., and

D (y,)=lim — @ () —L) and D)= lim — (v} () — L)
r—oo logr 7= roo logr ™ *

if p= p.. Then, it follows from Proposition 4.2 that D (y,) = D*(x).
Indeed, if D~ (y,) <D*(2), then v, <uv; near co. Hence, the continuity of D~
implies that there exist R >0 dnd 6> 0 such that if 0<p—vy,<dand f<a,
then v, (r)y<uvj(r) for r € [R, 00). Since vy is monotonically decreasing to v,
as f§ decreases to y, and vy — v, uniformly on [0, R], there exists 7, <7, <[3
such that v, <v; in R”, which contradicts the definition of Vorr

Fix o) € (0 a*] From the proof of Proposition 3.1, there exist 0 <, <y,
and 0<, <oy <% such that

12,72<v.',‘az<u;“2<L’t,,l/2<[4,71<u},‘11 in R".
Since a, in (2.4) is strictly increasing as o increases, we have D~
(7,,) = D" (22) <D (y,,) = D" (a1). By the continuity of D*, D*([az,]) =
[D*(02), D™ (at1)]. We apply (ii) and (1.7) to find pu* satisfying

wfe <H (v))?, u‘ﬂéH‘(v;l)".
For each 0<pu<min{u*,u"}, we conclude by the super- and subsolution
method (see [5,10]) that for every o € [0, 1], Eq. (1.1) possesses a positive
entire solution u, satisfying
v, <u;<v,  in R’
and moreover,

‘lllm Ix["uy(x) = L(n, p,1,¢).

Every u, is characterized by the asymptotic behavior
Jim " (ua(x) = L) = D*(@)
x| —00

if p> p. and

|x\ﬁeo1 g|x|

(uz(x) L)=D"(2)

if p=p. 1
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Theorem 1.1 follows from Theorem 4.3 by taking

HE(x]) = (1 + |x|™)F* (|x]),

where F*(r) = max_,f+(x). The first case in (iv) is applied to deduce
Theorem 1.1. Combining (K2) and (f3), we see that the integral conditions in

(ii

1

1) and (iv) are satisfied.
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