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Abstract

In this article we give a complete global classification of the cl@Sgssof planar, essentially
quadratic differential systems (i.e. defined by relatively prime polynomials and whose points at
infinity are not all singular), according to their topological behavior in the vicinity of infinity.
This class depends on 12 parameters but due to the action of the affine group and re-scaling of
time, the family actually depends on five parameters. Our classification theorem (Theorem 7.1)
gives us a complete dictionary connecting very simple integer-valued invariants which encode
the geometry of the systems in the vicinity of infinity, with algebraic invariants and comitants
which are a powerful tool for computer algebra computations helpful in the route to obtain the
full topological classification of the clas®S of all quadratic differential systems.
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1. Introduction

We consider real planar polynomial differential system, i.e. systems of the
form

dx

d
Ezp(xvy)a %ZQ(x’y)a (S)

where p and q are polynomials inx andy with real coefficients(p, ¢ € R[x, y]). In
this article, a system of the above form with max(gég(degg)) = 2 will be called
quadratic.

These are the simplest nonlinear differential systems. However, global problems re-
garding this class are difficult to solve. In 1900 Hilbert gave his list of 23 problems
and one of them still unsolved, the second part of Hilbert’s 16th problem, is on planar
polynomial differential systems. This problem which asks for the maxintixm) of the
numbers of limit cycles occurring in differential systems with rfied p), dedq))=n
(for a discussion of this problem di25]), is still unsolved even for quadratic differen-
tial systems. The interest is in the global behavior of all solutions in the whole plane
and even at infinity (cf[10]) and this for a whole family of systems, which is why
this problem is so hard. The s&S of quadratic differential systems depends on 12
parameters, the coefficients of the two polynomijalandg. On QS acts the group of
affine transformations and of changes of scale on the time axis. The orbit sp&® of
under the group action is five dimensional. But even five is a large number and it is
expected that this class will yield over 2000 topologically distinct phase portraits. For
this reason people began by studying particular subclass€Safnd in some cases a
complete classification of phase portraits with respect to topological equivalence was
obtained (quadratic systems with a cenf#8,23,31] quadratic Hamiltonian systems
[1,7], quadratic chordal systenfi8], quadratic systems with a weak focus of third order
[2,14], etc.).

The goal in most of these articles was to obtain all topologically distinct phase
portraits for that specific subclass QS and whenever possible its bifurcation diagram.
Two systemgS) and(S’) are topologically equivalent if there exists a homeomorphism
f : R> - R? such thatf carries orbits to orbits preserving (or reversing) their
orientation. In most articles, the classifications were done by using specific charts
and normal forms for the systems in these charts with respect to parameters satisfying
certain inequalities or equations. The results are not readily applicable for systems given
in normal forms with respect to other charts. Ever since Felix Klein gave his famous
Erlangen program, we are used to calling a property geometric, if it is invariant under
the action of some group. In this sense, most of the results obtained are not geometrical
since they are chart-dependent.

Chart-independent classifications results were obtained by Sibirsky and his school
(cf. [7,22,30) using the algebraic invariant theory of differential equations developed
by Sibirsky and his disciples (cfi21,28,29,32). Most of the articles of Sibirsky’s
school were published in Russian, only some appeared in translations which partly
explains why this theory is rather unknown in the west. In these articles, invariants
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and comitants are introduced in their multi-index tensorial form, certain rather artificial
polynomial combinations of these are chosen and classifications are given in terms of
these combinations. The geometry of the systems remains hidden behind this technical
language.

When studying truly global problems involving limit cycles such as for example
Hilbert’s 16th problem, second part, the perturbations of the systems possessing a cen-
ter play an essential role. It is thus crucial to choose normal forms such that the
algebraic varieties of systems possessing a center, computed with respect to these nor-
mal forms, be as simple as possible, some of them even linear varieties. This helps
in the display of the bifurcation diagram of the systems with center on these al-
gebraic varieties. We also need the global scheme of singularities finite and infinite
for the classQS. However, a normal form good for the global study of singularities
may yield algebraic varieties of systems with center which are complicated and on
which the display of their bifurcation diagram turns out to be an impossible task.
Vice versa, a normal form which yields simple looking algebraic varieties of systems
with center may turn out to be very inconvenient for the study of singularities and
for their blow-out. It is thus important to obtain the geometric global scheme of sin-
gularities finite or infinite in invariant form, i.e. independent of any specific normal
form.

The goal of this article is to obtain the global geometric scheme of singulari-
ties at infinity, in invariant form, for the whole clas®S. An analogous work for
the finite singularities is presently in progress. We point out that for quadratic sys-
tems the points at infinity are solutions of a cubic form. We need thieiultaneous
study, in invariant form, and this not just for an individual system but for the whole
classQsS.

Furthermore, to easily grasp the geometry of the systems, simple invariants, simpler
than the configuration space of Markus [t%]) are needed. Such simple integer-valued
invariants reflecting the geometry of the systems were usqd4iy26]

In spite of their awesome character, polynomial invariants and comitants are a useful
and very powerful computational tool, applicable to any canonical form, and they can
be programmed on a computer. There is thus a need to merge the purely geometric
invariants above mentioned with the algebraic invariant approach and we do this in the
present work.

We briefly review now the history of the study of singularities at infinity of the class
QS. Kooij and Reyn[13] obtained all possible local phase portraits around a single
singular point at infinity of an arbitrary quadratic vector field. They did not consider the
possible ways of combining such singularities so as to obtain a topological classification
of quadratic systems in a neighborhood of the line at infinity. Nicolaev and \{dle
obtained such a classification in terms of algebraic invariants and comitants and in
[3] the affine invariant classification of quadratic system with respect to the possible
distributions of the multiplicities of singularities at infinity was obtained by Baltag and
Vulpe [3].

These classifications use the technical language of algebraic invariant theory devel-
oped by the school of Sibirsky§,28,32]etc.) and as previously indicated, the geometry
of the systems remains hidden behind this technical language.
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In this work we bring out the global geometry at infinity of the systems by using
some global algebro-geometric concepts such as for example the notion of divisor
and of zero-cycle on the line at infinity. We also combine the geometric approach in
[14,26] with the algebraic invariant approach [i,16] for the topological classification
of quadratic systems in the neighborhood of infinity. A first version of this article,
appeared in27]. Our article proved to be very useful for the ongoing study of the
family of quadratic systems with a second-order weak focus. We point out that in
the attempt to merge the simple integer-valued invariants with the algebraic ones, the
geometry of the systems led us to much simpler algebraic invariants than thfi€g in
and to simpler conditions in our classification Theorem 7.1.

The article is organized as follows: In Secti@we consider the two compactifi-
cations of real planar polynomial systems and the foliations with singularities, on the
real and complex projective planes, associated to these systems.

In Section3 we describe the purely geometric objects, i.e. the divisors attached to
the line at infinity, introduced if26], which encode the multiplicities at infinity of the
systems, and attach to these some integer-valued global affine invariants.

In Section4 we consider group actions on quadratic differential systems and define
algebraic invariants and comitants with respect to these group actions. We also give
using a comitant, canonical forms for these differential systems according to their
behavior at infinity.

In Section5 we state and prove the classification theorem (Theorem 5.1) of the
quadratic differential systems according to their multiplicity divisors at infinity and
for each class we give the necessary and sufficient conditions in terms of algebraic
invariants and comitants with respect to the group action. These conditions allow us to
compute for any system and in any chart the types of the multiplicity divisors associated
to the system.

In Section6 we introduce new classifying tools, among them the index divisor en-
coding globally the topological indices of the singularities at infinity of any polynomial
differential system without a line of singularities at infinity. We also introduce a divisor
encoding globally the number of local separatrices bounding a hyperbolic sector of a
singular point at infinity.

In Section7 we state and prove the topological classification theorem (Theorem 7.1).
This classification is expressed in both geometrical, affine integer-valued invariants, and
in terms of algebraic invariants and comitants. A complete dictionary connecting the
integer-valued geometric invariants with the algebraic invariants and comitants is given.
One side of the dictionary displays the geometry of the systems and the other enables us
to use the powerful tool of computer algebra to perform calculations useful in the route
to obtain the full topological classification of the whole class of quadratic differential
systems.

In the Appendix we list the invariants and comitants used1i@] and which are
needed for the proofs of the main results. These are also listed for the purpose of
comparison with the simpler algebraic invariants and comitants used in this article.
Highlighting the geometry of the systems via the integer-valued invariants, helped us
to choose better algebraic invariants and comitants than tho$&6]n closer to the
geometry of the systems.
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2. The two compactifications of real planar polynomial vector fields

A real planar polynomial syster(S) can be compactified on the sphere as follows:
Consider thex, y plane as being the plang = 1 in the spaceR® with coordinates
X, Y, Z. The central projection of the vector fieldd/dx + qd/dy on the sphere of
radius one yields a diffeomorphic vector field on the upper hemisphere and also another
vector field on the lower hemisphere. Poincaré indicated brieflj2@} that one can
construct an analytic vector fieltd on the whole sphere such that its restriction on
the upper hemisphere has the same phase curves as the one induced by the phase
curves of (S) via the central projection. A complete proof was given much later in
[10]. The analytic vector field’ on the whole sphere obtained in this way is called the
Poincaré field associated to the systéf). The phase curves df coincide in each
chart with phase curves induced by planar polynomial vector fields, in particular in the
chart corresponding t& = 1, denoting the two coordinate axesy corresponding to
the OX and OY directions, they coincide with the phase curves induced $)y The
two planar polynomial vector field#/, V associated to the charts faf = 1 (with
local coordinatequ, z)) and forY =1 (with local coordinategv, w)) and changes of
coordinatest = y/x, z=1/x, orv=1x/y, w=1/y are as follows:

d d
d_” = C(Luz) d—” =C(v, 1, w),
U dt and V dt
w
d_j =zP,u,z) i —wQ(, 1, w),

where P, Q and C are defined further below.

By the compactification of the planar polynomial vector field associatedstowve
understand the restrictiol’|;; (where by’ we understand the upper hemisphere
‘H completed with the equator) of the analytic vector fiéldon the sphere. We are
interested in the behavior of the phase curvegfon R? (or V|%) completed with
its points “at infinity”, i.e. on the equato§! of $2 for which we useU andV above.
Since the vertical projection is a diffeomorphism#f on the disk{(x, y)|x?+ y2<1}
we can view the phase portraits of our syste¢8% on this disk, called the Poincaré
disk.

We shall also use the compactifications (real or complex) associated to the foliations
with singularities (real or complex) attached to a real polynomial sysi&m(cf. [8]
or [25]). These foliations can be described as follows: For a real polynomial system
(S) with n = max(deq p), degq)) we associate to the two polynomigls g € R[x, y]
defining (S), the homogeneous polynomial®, Q in X, Y, Z of degreen with real
coefficients, defined as follows:

P(X,Y,Z2)=Z"p(X/Z,Y/Z), QX.Y,Z)=2Z"q(X/Z,Y|Z).

The real (respectively complex) foliations with singularities associatéd)ton the real
(respectively complex) projective plari#?(R) (respectively,P?(C)) are then described
in homogeneous coordinates by the equation

AX,Y,Z)dX + B(X,Y, Z)dY + C(X,Y,Z)dZ = 0, (2.1)
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whereA = ZQ, B = —ZP,C(X,Y,Z2) = YP(X,Y,Z2) — XQ(X,Y, Z) verify the
following equality:

AX,Y,Z)X + B(X,Y,Z)Y +C(X,Y,Z)Z =0 (2.2)

in R[X, Y, Z]. (For more details sef3] or [25]).

Our goal in this work is to give a topological classification, in terms of both geometric
and algebraic invariants, of the quadratic systéfisand their compactification oil’
in the neighborhood of the equator in the closed upper hemisptieie the Poincaré
sphere. Correspondingly this yields a topological classification of the real foliations, in
the neighborhood of the line at infinity associated to the imbedding of the affine plane:

j:a%(R) = R? > P2(R),
where j(x, y) =[x : y : 1]. The line at infinity in this case is therefoté = 0.

3. Divisors on the line at infinity encoding globally the multiplicities of
singularities

In this section we consider real polynomial systey with n = max(deqp),
dedgq)) and their associated foliations with singularities, real or complex, defined in
the previous section by Eq2.Q) with coefficientsA, B, C verifying (2.2).

Definition 3.1. For a system$) we call divisor on the line at infinity, a formal expres-
sion of the formD = )" n(w)w wherew is a point of the complex lin& = 0 of the
complex protective plane;(w) is an integer and only a finite number of the numbers
n(w) are not zero. We call degree of the divisbrthe integer de@) = > n(w). We
call support of the divisoD the set Suppp) of pointsw such thatz(w) # 0.

For systemgS) two divisors on the line at infinity were introduced jR6]. These
were applied in[14] for classifying topologically the quadratic systems with a weak
focus of third order.

Definition 3.2. Assume that a systeng)(is such thatp(x, y) andg(x, y) are relatively
prime overC and thatyp, —xq, is not identically zero (i.eZtC). Here p,, (respectively
qn) is the sum of terms of degree of p (respectively ofg) in case at least one of
them has a non-zero coefficient and zero otherwise.

The following divisor on the line at infinity is then well defined:

Ds(P,Q:Z) =Y L,(P, Q)w,
where the sum is taken for all points = [X : Y : 0] on the lineZ =0 and/, (P, Q)
is the intersection number (or multiplicity of intersection)uafcf. [11]) of the complex
projective curvesP(X,Y,Z)=0andQ(X,Y,Z) =0.

We thus have SupDs(P, Q; Z)) = {w € {Z = 0}|P(w) = 0 = Q(w)}.
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The above divisor is a purely geometric object which encodes the contribution to the
multiplicities of the singularities at infinity of systeli®), arising from singularities in
the finite plane, i.e. how many singular points in the finite plane could appear from
those singularities at infinity in polynomial perturbations of degneef (S).

Let us list a number of integer-valued invariants which are attached to this divisor.

Notation 3.1.
Noo, £(S) = #Supp(Ds(P, Q; Z));
v(S) = max{I, (P, Q)lw € Supp(Ds(P, Q; Z))}:
for everym <v(S), s(m) = #{w € {Z = O}|1,(P, Q) = m}.
Note that N s is the number of distinct infinite singularities ¢§) which could
produce finite singular points in a polynomial perturbation of degrex (S).
We also need another divisor on the line at infinity which was usefd4r26] and

which is defined as follows:

Definition 3.3. SupposeZ{C and consider

Ds(C,Z) =) I,(C, Z)w,

where the sum is taken for all points = [X : Y : O] on the lineZ = 0 of the complex
projective plane.

Clearly for quadratic differential systems dég(C, Z)) = 3.

Definition 3.4. A point w of the projective plané??(C) is said to be of multiplicity
(r, s) for a system §) if

(ra S) = (Iw(P’ Q)7 Iw(C, Z))

Following [26] we fuse the above two divisors on the line at infinity into just one
but with values in the ringZ%:

Definition 3.5. Dg = Z (I“’(P’ 2 ) w,

1,(C, Z)
wherew belongs to the line&Z = 0 of the complex projective plane.
The above-defined divisor describes the number of singularities which could arise in

a perturbation of(S) from singularities at infinity of(S) in both the finite plane and
at infinity.



364 D. Schlomiuk, N. Vulpe / J. Differential Equations 215 (2005) 357-400
Definition 3.6. We call type of the divisorDg(P, Q; Z) the set
{(s(m), m)Im < v(S)}.

Remark 3.1. We observe that the types dbs(P, Q; Z) and of Dg(C, Z) are affine
invariants since botl,, (P, Q) and I,,(C, Z) remain invariant under the action of the
affine group on systemsSY [19,24]

Notation 3.2. Let us introduce for planar systemS)(the following notations:
As =degDs(P, 0; Z), Mc =maxly(C,Z)lw € Supp(Ds(C, Z))}.

Consider a real quadratic differential systef):(

dx

o + p1(x,y) + pa2(x, y) = p(x, y),

dy

2= go+q1(x,y) + q2(x, y) = q(x, y). (3.1)

Suppose gogh, g) = constant, wherep; (respectivelyg;) is the sum of terms inc
and y of degreei of p (respectively ofg) in case at least one such term has non-zero
coefficient and zero otherwise. Recall tH@6 denotes the class of all real quadratic
systems.

We want to list all possible divisor®g for quadratic systemé&S) and characterize in
terms of invariants and comitants the types of these divisors. This would make possible
for any given system and in any chart the computation of the type of its divigor
To do this we need to construct invariants and comitants with respect to group actions,
which we do in the next section.

4. Group actions on quadratic systems (3.1) and invariants and comitants with
respect to these actions
4.1. Group actions on quadratic systems (3.1)

More explicitly systems3.1) can be written in the form:

dx 2 2
o = 400 + aiox + aory + azxox” + 2a11xy + apzy”,
D _ oot biox + bory + baox? + 2b boay?
7 00 + b10x + bo1y + baox™ + 2b11xy + D02y~
and let a = (ago,...,bo2). Consider the ringR[ago, a1o, ..., ao2, boo, b10, - - -,

bo2, x, y] which we shall denotdR[a, x, y].
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On the setQS of all quadratic differential system$.() acts the group Aff2, R) of
affine transformations on the plane. Indeed for everg Aff (2, R), g : R> — R? we

have
g:<{>=M<x>+B, g_l:(x>=M_1()f>—M_1B,
y y y y

where M = ||M;;]l is a 2x 2 non-singular matrix an® is a 2x 1 matrix overR. For
every S € QS we can form its transformed systefn= gS:

i dy 2
E—P(x’)’)a _—Q(xa)’)v (S)

(ﬁ(ﬁ)) —u ((p og‘h(ﬂ))
q(x.3) (qog™HE. 3 )

Aff (2, R) x QS — QS

where

The map

(g,5) — S:gS

verifies the axioms for a left group action. For every subgréug Aff (2, R) we have
an induced action os on QS . We can identify the se@QS of systems §.1) with a
subset ofR*? via the embedding)S < R'? which associates to each systenl) the
12-tuple @oo, - - ., bo2) of its coefficients.

On systems (S) such that m@aed p), deqq)) <2 we consider the action of the
group Aff(2, R) which yields an action of this group dR'?. For everyg € Aff (2, R)
let r, : R — R'? be the map which corresponds govia this action. We know (cf.
[30]) thatr, is linear and that the map: Aff (2, R) — GL(12 R) thus obtained is a
group homomorphism. For every subgroGpof Aff (2, R), r induces a representation
of G onto a subgrou; of GL(12, R).

4.2. Invariants and comitants associated to the group actions

Definition 4.1. A polynomial U (a, x, y) € R[a, x, y] is called a comitant of systems
(3.1 with respect to a subgrou® of Aff (2, R), if there existsy € Z such that for
every (g, a) € G x R* and for every(x, y) € R? the following relation holds:

U(rg(a), g(x, y)) = (detg) *U (@, x, y),

where detg = detM. If the polynomialU does not explicitly depend ox andy then
it is called invariant. The number € Z is called the weight of the comitait(a, x, y).
If G =GL(2,R) (or G = Aff (2, R)) then the comitant/(a, x, y) of systems §.1) is
called GL-comitant (respectively, affine comitant).
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Definition 4.2. A subsetX c R'? will be called G-invariant, if for everyg € G we
haver,(X) € X.

As it can easily be verified, the following polynomials are GL-comitants of system
3.1:

Ci(a,x,y) = ypi(x,y) —xqi(x,y), i=012
M(a, x,y) = 2HesqC2(a, x, y));
n(a) = Discrim(Caz(a, x, y));
K(a, x,y) = Jacoh(pa(x, y), q2(x, y));
Ho(a) = Res.(p2, g2)/y"* = Discrim (K (a. x, ))/16;
H(a,x,y) = —Discrim(apa(x, y) + Bq2(x, ) ljy=y, p=—x};
L(a,x,y) = 2K —4H — M,
Ki(a,x,y) = pi(x, y)q2(x, y) — p2(x, y)qa(x, y). (4.1)
Let 7(2, R) be the subgroup of Af2, R) formed by translations. Consider the linear

representation of' (2, R) into its corresponding subgroup C GL(12, R), i.e. for every
1eT@2,R), t:x=%+0o,y=7+f we consider as above : R*? - R'?.

Definition 4.3. A GL-comitant U (a, x, y) of systems 3.1) is called aT-comitant if
for every(r,a) € T(2, R) x R12 and for every(x, y) € R? the relationU (r; - &, %, y) =
U(a, X, y) holds.

Let

d;
Ui(a,x,y) = Z U,‘j(a)xd"*fyj, i=1...,s
j=0

be a set of GL-comitants of system3.1) whered; denotes the degree of the binary

form U;(a, x, y) in x andy with coefficients inR[a] where R[a] = R[aqo, . .., bo2].
We denote by

U={Uij@) eRlalli=1,...,s, j=0,1,...,4d},

the set of the coefficients ifk[a] of the GL-comitantsU;(a, x, y),i =1,...,s, and
by V() its associated algebraic set:

VU) = {ae RY|U; (@) = 0 YU;;(a) € U).

Definition 4.4. A GL-comitant U (a, x, y) of systems 3.1) is called a conditionall'-
comitant (or CT-comitant) modul®Uy, Uy, ..., U,) if the following two conditions are
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satisfied:
(i) the algebraic subset (/) C R12 is affinely invariant (see Definition 4.2);
(ii) for every (r,a) € T(2,R) x V(UU) we haveU(r;-a,x,y) = U(a x, y) in R[x, y].

In other words, a CT-comitant/ (a, x, y) modulo (U1, Ua, ..., U) is a T-comitant
on the algebraic subseét/) c R'2.
The following proposition is straightforward.

Proposition 4.1. Let S € QS and leta € R*? be its 12-tuple of coefficientsThe
common points off = 0 and Q = 0 on the lineZ = 0 are given by the common
linear factors overC of p, andgy. This yields the geometrical meaning of the comitants
Uo, K and H

constant iff ug(@) # 0,
bx + ¢y iff ug =0, K(a,x,y) #0,

U@ =0,K(a x,y) =0,
and H(@,x,y) #0;

o =0, K(a x,y) =0,
and H(a,x,y)=0;

ged (pa(x, y), ga(x, y)) = (bx + cy)(dx + ey) iff

(bx + cy)? iff

wherebx + cy, dx + ey € C[x, y] are some linear forms an#le — cd # O.

Definition 4.5. The polynomialU (a, x, y) € Rla, x, y] has well determined sign on
vV c R with respect tox, y if for every fixeda e V, the sign of the polynomial
function U(a, x, y) on R? is constant where this function is not zero.

Observation 4.1. We draw the attention to the fact, that if a CT-comitdnfa, x, y)
of even weight is a binary form in, y, of even degree in the coefficients @&.1)
and has well-determined sign on some affine invariant algebraic sitigbtthen this
property is conserved by any affine transformation and the sign is conserved.

4.3. Canonical forms of planar quadratic systems in the neighborhood of infinity

Lemma 4.1. For a system(3.1) with C2(a, x, y) # 0 the divisor Dg(C, Z) is well de-
fined and its type is determined by the corresponding conditions indicated in
Table 1, where we writeq{ + g5 + ¢3 if two of the pointsi.e. ¢f, g5, are com-
plex but not real. Moreoverfor each type of the divisoDs(C, Z) given by Tablel

the quadratic systemg.1) can be brought via a linear transformation to one of the
following canonical system&S)—(Syy) corresponding to their behavior at infinity

Proof. The Tablel follows easily from the definitions of(a) and M (a, x, y) in (4.1).
Let us consider the GL-comitartfz(a, x, y) # 0 simply as a cubic binary form ix
and y. For everya € R'? the binary formCx(a, x, y) can be reduced to one of the
canonical forms given below, by a linear transformation, i.e. there gxisGL(2, R) :
g(x,y) = (u, v) such that the transformed binary fo@>(a, x, y) = Ca2(a, g~ 1(u, v))
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Table 1
Mc Type of Dg(C, Z) Necessary and sufficient Notation for the conditions
conditions on the comitants
1 q1+492+43 n>0 (T1)
91 +45+43 n<0 2)

2 241 + g2 n=0 M+#0 Z3)

3 3y M =0 (Za)
dx
— —k+cx+dy+gx2+ (h—Dxy,
dt
0y (S)
I =1l+ex+ fy+ (g — Dxy + hy?;
dx

— —k+cx+dy+gx’+ (h+ Dxy,
a (S1)

—— =l4ex+ fy—x>+gxy+hy?

E=k+cx+dy+gx2+hxy,
(Smr)

d
d—)t)=1+ex+fy+(g—1)xy+hy2;
d
d—)tc:k+cx+dy+gx2+hxy,
(Swv)
dy 2 2
E—l—i—ex—i—fy—x + gxy + hy<,

is one of the following:

MHxy(x —y); (II))c()c2 + yz); (Ill)xzy; (IV)x3, (4.2)
which correspond to the types of the divisbrs(C, Z) indicated in Tablel. On the
other hand, according to the Definitighl of the GL-comitant, forC2(a, x, y) whose
weight isy = —1, we have forg € GL(2, R)

Ca(re(a), g(x, y)) = det(g)Ca(a, x, y).
Using g(x, y) = («, v) we obtain

Ca(rg(@), u, v) = 1C2(a, g u,v)), LeR,

where we may considet = 1 by rescalingu = u1//, v = v1/J.
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Thus, recalling that

p2(x, y) = azox? + 2a11x, y + aoay®,  qa(x, y) = baox? + 2b11x, y + boy?,

for the first canonical form in4.2) we have

Ca(@, x, y) = —boox® + (az0 — 2b11)x%y + (2a11 — bo2)xy? + ao2y® = xy(x — y).

Identifying the coefficients of the above identity we get the canonical f@m Anal-
ogously for the cases Il, Il and IV we obtain the canonical fon)( (Sy) and Sv)
associated to the respective polynomials 42\, O

5. Classification of the quadratic systems according to the types of the
multiplicity divisor Dg

A specific type of a divisorDyg yields a class of quadratic systen&1j. We want
to list all possible types of the divisor®g and for each specific type to determine
the subset ofQS where Dg has this type. We want to give this subset in terms of
algebraic invariants and comitants so as to be able to check these conditions for every
system 8.1) in any chart.

In order to construct other necessary invariant polynomials let us consider the
differential operator. = x - L, — y - L1 acting on R[a, x, y] constructed in[4],
where

0 o 1 @ P o 1 @
L1 = 2ap00—— + + — +2b +b + —bo1——,
1= aOOa 10 alin— 66120 261016 a1 00— 6b 10— abzo 2 Olabll

P o 1 0 p P
= 2ag0— + + +2b +b + Zbhig—
L2 = 2a007 — Fdorm — + 50105 -+ 2hoog, - A borg =+ Sbiog

as well as the classical differential operatof, )@ acting on R[a, x, y] which is
called transvectantof the second index (see, for examp]&2,17):

(f (p)(Z)Zaz_faz_(’D_Zazf azq) az_faz_q)
. 0x2 0y2 Ox0y 0x0y  0y? 0x2’

Here f(x, y) and ¢(x, y) are polynomials inx and y.

In [5] it is shown that if a polynomiall € R[a, x, y] is a comitant of system3(1)
with respect to the group GR, R) then £L(U) is also a GL-comitant. The same is true
for the operator transvectant of two comitantsand .
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So by using these operators and the GL-comitagt®), M (a, x, y) and K (a, x, y)
we shall construct the following polynomials:

1 .
u,-(a,x,y)=l.—,£(”(uo), i=1...,4
K@) = (M, K)?, xi(a) = (M, C1)®P, (5.1)

where L9 (ug) = LLD (ug)).

These polynomials are in fact comitants of systedril)( with respect to the group
GL(2, R).

To reveal the geometrical meaning of the comitami&z, x, y), i =0,1,...,4 we
use the following resultants whose calculation yield:

Resc (P, Q) = uo¥* + 110V °Z + ppo¥ 22 + pigo¥ 72 + ugoZ*, (5.2)
Res (P, Q) = uoX* + 101 X°Z + 10pX*2% + 105X 2° + 1042, (5.3)

On the other hand foy;, i =0,1,...,4 from (5.1) we have

tola) = pg,
pala, x,y) = puipx + Uory,
pa(a, x, y) = tpox” + pyaxy + Hopy’,
pa(a, x,y) = pgox® + pipx®y + pipxy® + pogy®,
pa@, x,y) = pgox® + pggx®y + popx®y? + pyzey® + pogy™.

We observe that the leading coefficients of the comitagts i = 0,1,...,4 with
respect tox (respectivelyy) are the corresponding coefficients i6.2) (respectively
(5.3).

We draw the attention to the fact, that if the comitania, x, y)(i =0,1,...,4) is
not equal to zero then we may assume that its leading coefficients are both non-zero,
as this can be obtained by applying a rotation of the phase plane of sy&t#BmFfom
here and §.2), (5.3) and the above values ¢f,i =0,1,...,4 we have:

Lemma 5.1. The systenP (X, Y, Z) = Q(X, Y, Z) = 0 possessesi(= Ag)(1<m<4)
solutions[X; : Y; : Z;] with Z; =0 (i = 1,...,m) (considered with multiplicitigsif

and only if for everyi € {0,1,...,m — 1} we havey;(a, x,y) = 0 in R[a, x, y] and
f(a, x, y) # 0.

Remark 5.1. It can easily be checked that the following identity holds:

tala, X,Y) =Res(P(X,Y, 2), Q(X,Y, 2)).
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Hence, clearly for any solutiofiXp : Yo : Zo] (including those withZg = 0) of the
system of equation® (X, Y, Z) = Q(X, Y, Z) = 0, the following relation is satisfied:
Ugla, Xo, Yo) = 0.

We give below our theorem of classification of the types of all divisddgsoccurring
in quadratic systems and we associate to each type the necessary and sufficient condi-
tions in terms of algebraic invariants and comitants. The computation of these invariants
and comitants can be programmed using symbolic manipulations and implemented on
computers. Thus for any specific systeil we can calculate explicitly its divisor
type in whatever chart3(1) is given.

Theorem 5.1. We consider here the famil@S.ss of all systems (S) iQS which are
essentially quadratici.e. gcd(P, Q) = 1 and Z{C. All possible values which could
be taken byAs for such systemg¢3.1) are as listed in the first column of Tabl&
For each value ofAg, all possibilities we have forM¢, are listed in the second
column For each combinatior{Ag, M¢) all the possibilities we have for the form of
Dg are those indicated in the third columior a specified(Ag, M¢), the necessary
and sufficient conditions to have the form bfy as indicated in the third column
are those indicated in the corresponding fourth colunfWWe recall thatZ; are the
conditions indicated in Tabld. In the last column of Tabl& we denote byX; the
class of all quadratic systems which possgss, M, Ds) as indicated in the first three
columns)

Proof. We need to examine the four distinct cases corresponding to the canonical forms
(S)—(Swv), respectively.

5.1. Systems of typ§

For systems &) we haveug = gh(g + h — 1) and for uy # 0 according to Lemma
5.1 we haveAg = 0 and, hence, we obtain a system of the clasgsee Table 2).

Let us consider nowiy = 0. In this case we haveh(g +h — 1) = 0 and without
loss of generality we may assurge= 0. Indeed, ifA = 0 (respectivelyg +h —1 = 0)
we can apply the linear transformation which will replace the straight jine- 0
with x = O (respectively,y = 0 with y = x). Let ¢ = 0. By using the translation
x=x1+(f +eh)/2, y=y1+e¢/2 we may assume = f = 0. In this way system
(S)) will be brought to the following canonical form:

f=k+cx+dy+ (h—Dxy, y=I1—xy+hy (5.4)
for which we have
fy=ch(L—h)y, x=6541-h), K=2hh-1)y>

For iy # 0, from Lemma5.1 we obtainAs = 1 which leads us to the casss.
Consideringu; = 0 we shall examine two cases:# 0 andx = 0.
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Table 2
Ag Me Value of Ds Nep_essary and suﬁigient 5.
conditions on the comitants i
1 (E)P + (g)q + (?)r Ko #0, (S2) 21
Dr+@Da+ @ | wo#0 92 %
N @+ (©g 1o £0, (S3) s
3 @ Ho #0, (Ja) 24
L @p+ Qe+ @r Ho=0. py #0. (S1) %5
Dr+Qa+ @ | mo=0 m#0 2 %6
1 5 D+ O Mo =0, pp #0, k#0, (J3) 27
D+ @) Mo =0, up #0, k=0, (J3) 2g
3 @r Ho=0. py #£0, (Ja) %
@r+@a+@r Ho1=0. pp #0, k#0, (S1) 210
1 Dp+@Da+Or Ho1=0, pp #0, k=0, (J1) 211
@r+ Qe+ O Ho1 =0, pp #0, kK#0, (J2) 212
) @Dp+@a+@Dr¢ | Ho1=0 ua#0, k=0, (S 13
Dr+ g Ho1=0. 1 #0, K£0, (S3) 14
2 D+ (g Ho1=0, p2#0, k=0, L=0, (/3 | Z15
Dr+ (e Ho1=0. p2#0, k=0, L£0 (J3) | Y16
3 (g)l’ Ho1 =0, up #0, (Jyg) 217
@r+@a+@r to12=0. ug#0, k#0, (J1) 218
1 @r+@Da+@r Ho12=0, u3#0, k=0, (1) 219
@p+ Qe+ @re Ho12=0. uz#0, (S2) 220
3 Dp+ e Ho12=0 pg#0, k#0, (f3) I
5 @r+a Ho12=0pu3#0, k=L =0,xK1#0(S3) | 222
D+ () Ho,1,2=0,u3#0,k=L=0k1=0,(S3) | 223
D+ Ho12=0, ug#0, k=0, L#0 (J3) | 224
3 (g)l’ Ho12=0, uz3#0, (Ja) o5
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Table 2
(Continued
Ag M Value of Ds Ne_c'essary and suffic_:ient 5.
conditions on the comitants i
Dr+Qa+@r | Ho123=0 ma#0 K£0 (S 26
@r+@Da+@r 1o,1,23=0, g #0, k=0, K1 #0, (J1) 297
1 @r+Ga+@r 10,1,23=0. pg#0, k=0 K1 =0, (J1) 228
Dr+Qa+@r H0,123=0, g #0, K #0, (J2) Z29
Qr+@ac+Ere 10,1,23=0, pg#0, k=0, (J2) 230
4 @+ 101,23=0. ug#0, K #0, (J3) 231
@Dr+ Qe H0123=0 My #0, K=L=0, K10, (J3) | Tz
2 @r+Ba 10,1,23=0, ttg # 0, k=L =k1=0,K1 = 0,(f3) | 233
@+ 1o,1,2,3=0, ug #0,k=L=x1=0,K1 #0,(J3) | 234
(2)17 + (g)q 10,1,23=0, g #0, k=0, L#0, (S3) Xas5
3 @)p fo123=0, ita #0. (Jg) Y36

5.1.1. Casex #0

As the conditionx # 0 is equivalent to conditiorK # 0, according to Proposition
4.1 we conclude that Supps(P, Q; Z) contains exactly one poinp = [1: 0 : 0]
since gcdpz, g2) = y. By Lemmab.1its multiplicity 7, (P, Q) depends of the number
of vanishing comitantsy; (a, x, y). In this way we obtain that a quadratic system
belongs to the sekip (respectivelyXig; 226) for ug; = 0, uy # O (respectively for
Ho12 =0, u3 #0; ug123=0, uy # 0). We use the compact notatiqn ; , = 0 for
o =g =y =0.

51.2. Casex =0
In this caseh(h — 1) = 0 and analogously to the previous case, without loss of the
generality we may assume= 0. Thus, for system54) we obtain

po=Ht1 =0, pp=—cdxy, pz=k-—0(dy—cx)xy,
g = —xy[lc2x2 — (k — l)zxy + 2lcdxy + ld2y2], K1 = —xy(cx +dy).

So, if u, # 0 taking into consideration Remagk1 and the value of the comitant,,
we obtain the case&’11 in Table 3.
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If uy =0 andpug # 0 thencd = 0, ¢? + d? # 0 and clearly we arrive at the case
219.
Let us now suppose that the conditiops= p3 = 0 hold.

5.1.2.1.K1 # 0: Thenc? + d? # 0 and fromuz; = 0 we obtaink = [ which yields
either u, = —1d?xy® (for ¢ = 0) or u, = —Ic?x%y (for d = 0). Both these cases lead
us to the casely7 in Table 3.

5.1.2.2. K1 = 0: In this case it follows at once that= d = 0 and, henceyu, =
4(k — 1)?x?y2. Thus taking into consideration RemaBkl we obtain the cas&os.

5.2. Systems of typ&()

For a canonical systen() we obtain

to = —h[g?+ (h+1)2], Kk =—64g%+ (h+1)(A—3n)],
K = 2(g%+ h + 1)x? + 4ghxy + 2h(h + 1)y?

and for ug # 0 according to Lemm&.1 we haveAg = 0. Thus we obtain the cas®
in Table 3.
Let us consider nowi, = 0, i.e. h[g? + (h + 1)2] = 0.

5.2.1. Casex #0

In this case we havée = 0 and since the conditiom # O is equivalent to the
condition K # 0, according to Proposition 4.1, Supg(P, Q; Z) contains only one
point, namely the real one. By Lemntal its multiplicity depends of the number
of the vanishing comitantg,. Therefore the quadratic system belongs to the et
(respectively X12; 220, 229) for u; # O (respectively foruy = 0, py # 05 g, =
0, u3 #0; g 23=0, ug #0).

5.2.2. Casex =0
The conditionsyy = « = 0 yield g = 0, h = —1 and translating the origin of
coordinates at the point[(4, f/4) the system %) will be brought to the form

s=k+cx+dy, y=I1—x%—y> (5.5)
for which
po=p =0, pp=(?+d)(x*+y%),
fig = (X% + Y2 [(k? = ?1)x? — 2cdixy + (k° — d°1)y?].

Thus, according to the Remark 5.1, fps # 0 we obtain the cas&s.



D. Schlomiuk, N. Vulpe / J. Differential Equations 215 (2005) 357-400 375

Let us admit that conditioni, = O is satisfied. Therr = d = 0 and for systems
(5.5 we haveus; = 0, uy = k%(x? 4 y?)2. This leads us to the casgso.

5.3. Systems of typ&()

For canonical systemsS(;) one can calculate
1o = gh®, kK =—642 K =2g(g— Dx2+2ghxy+ h?y?].

It is quite clear that foruy # O we haveAs = 0 and this leads us to the caga.
Supposeyy; = 0. We examine the two cases:# 0 andx = 0.

5.3.1. Casex #0

Thenh # 0 which yieldsg = 0 and thus for the systemS() we have gcdp2, ¢2) =
y. So, taking into consideration the Remd&K and the fact that for the systemS;()
the polynomialCz(x, y) = x?y we obtain the cas€7 if u; # 0.

On the other hand the conditign# 0 implies K # 0. Hence, by Propositiod.1 and
Lemma 5.1, Supps(P, Q; Z) contains exactly one point [1:0:0] of the multiplicity
(As, 1). Consequently we conclude that the quadratic system belongs to the set
(respectively,221; 231) for uy =0, u, # O (respectively,u; , =0, uz # 0; py 3 =
O’ 27 7& 0)

5.3.2. Casex =0
In this caser = 0 and for systemsS) with p» = gx2, g2 = (g — 1)xy we have

po=0, p=dg(g—1D%, L =8gx>

and gcdp2, g2) = x. By Lemmab.1 for u; # 0 the quadratic systems belong to the
set2g.
Supposingu; = 0 we shall consider two subcasds:# 0 and L = 0.

5.3.2.1. SubcaseL # 0: Theng # 0 and hence gctp, g2) = x for ¢ # 1 and
gcd(p2, g2) = x2 for g = 1. Hence in both cases by Propositiérl and Lemma 5.1,
SuppDs(P, Q; Z) contains exactly one point [0:1:0] whose multiplicity depends of the
number of vanishing comitants; (a, x, y). Therefore we conclude that the quadratic
systems belong to the séljg (respectivelyXos; 235) for u, #= 0 (respectivelyu, =

0, u3 #0; pup3=0, pyg #0).

5.3.2.2. SubcaseL = 0: For the systemsS) we haveg = 0 and applying the
translation of the phase plane (to obtain= f = 0) these systems can be brought to
the form

X=k+cx+dy, y=I1-—xy. (5.6)
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For systemsq.6) we haveyy = 1y =0 and

fo = —cdxy, jig=—kxy(cx —dy), K1=—32d,
Ug = —xy[czlx2 + (2cdl — k2)xy + dzlyz].

So, if u, # 0 by the Remarls.1 and Lemma5.1 systems %.6) belong to the class
215.
Let us suppose that the conditipz = 0 holds.

5.3.2.2.1If k1 # 0 thend # 0 which impliesc = 0. Thenug = dkxy? and taking into
consideration the factorization of the comitan, we obtain the casé&y, for uz # 0
and the casesz, for u3 =0, uy # 0.

5.3.2.2.2.Let us suppose1 = 0. Thend = 0 and for the system5(6) we obtain
Uz = —ckxzy, g = —xzy(czlx — kzy), K1 = —cxzy.

Therefore, ifuz # 0 by Remark5.1 and Lemmab.1 systems §.6) belong to the class
223. If u3 =0 we obtainck = 0 and we need to distinguish two casés; # 0 and
K1 =0.

The conditionK # 0 yieldsc¢ # 0 and, hencek = 0. This leads us to the cages.
If K1 =0 thenc =0 and we obtain the casEszs.

5.4. Systems of typ&()

Note that for systems of the type&Sy) we have Dg(C, Z) = 3q. So, Sups
(P, Q; Z) could contain only the point [0:1:0]. By Lemnfal its multiplicity depends
of the number of the vanishing comitants. Therefore we obtain that the quadratic
system belongs to the s&y (respectivelyXq; X17; 225, 236) for ug # 0 (respectively

for o =0, 1 #0; o1 =0, ip #0; po12="0, u3 #0; pig 123 =0, pg # 0).
As all cases are examined, Theor& is proved. [J

6. Divisors encoding the topology of singularities at infinity

We now need to consider the topological types of the singularities at infinity of
quadratic systems. For this we shall introduce a third divisor at infinity:

Definition 6.1. We call index divisor on the real line at infinity d2, associated to a
real system £) such thatZ{C, the expressior}_ i(w)w wherew is a singular point on
the line at infinity Z = 0 of system §) andi(w) is the topological index (cf[14]) of
w, i.e. i(w) is the topological index of one of the two opposite singular poinfsw’
of V on §2.
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Remark 6.1. This is a well-defined divisor which could be extended trivially to a
divisor }_ j(w)w, w € {Z = 0} on the line at infinityZ = 0 of C? by letting

iw) if wePAR),
jw) = _ y
if we P2C)\P?R),

where we identifyP?(R) with its image via the inclusio®?(R) <> P?(C) induced
by R C.

Notation 6.1. We denote byl (S) the above divisor orZ = 0 in P2(C), i.e. I(S) =
> j(ww.

Notation 6.2. We denote byN¢ (S) (respectively, byNr(S)) the total number of distinct
singular points, be they real or complex (respectively, real), on the line at infinity0
of the complex (respectively, real) foliation with singularities associateds}o (

We need to see how the divisé(S) =Y j(w)w and the divisorsDs(P, Q; Z) =
> Iy(P, Q)w and Ds(C, Z) = >_ I,,(C, Z)p constructed in SectioB are combined.
For this we shall fuse these three divisors on the complex line at infinity into just one
but with the values in the abelian grod:

Notation 6.3. Let us consider the following divisor with the value & on Z = 0:

Ds = (I,(C,2), L,(P, Q). j(w))w,

wherew belongs to the line&Z = 0 of the complex projective plane.

We cannot detect the multiplicities of the singularities at infinity of a syst#n)
for the parameter valué from just the phase portrait of(/1). On the other hand
Dg(;y has dynamic qualities since it gives us some information about what could
happen to the phase portraits in the neighborhood.dfor example ifw € {Z = 0}
and if I,,(P, Q) = 2 for S(4g), then we know that in the neighborhood &§ the
phase portraits of (1) will have 2 finite points arising fromw in the neighborhood
of w.

We denote byH’ and H the following sets:

H ={X?>+Y2+27°2=1Z>0}, H={(X?>+Y>+272=1Z>0)}.

For (S) in QS satisfying the hypothesis of Theorefl let ¢(S) be the set of all
neo = 2Ng(S) real singular points at infinity considered on the equatérof the
Poincaré sphere.

We consider the functiongect: 0(S) — N wherengec{w) is the number of distinct
local sectors of the poini € ST on H.
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Let w € a(S) and letp(S) = (w1, wo, ..., w,,,) be the ordered sequence of singu-
larities of S on ST, enumerated whes? is described in the positive sense and such
that wy = w.

Let Os(w) = (nsecw1), nsecw?), ..., nsecWn,,)). Then we have:

Os(w;) = (nsecw;), nsecWi+1), - - -, ”sect(wnoo), NsecW1), - . ., NsecWi—1)).
Notation 6.4. We denote byO(S) anyone of the sequencéss(w;).

Notation 6.5. We denote by maksec) the maximum value of the functionsec; by
Nmax(”lsect) = #{w € Sllnse(;I(U)) = max(nsect)} and by Nhsec(S) the total number of
hyperbolic sectors ir{’ of singularities at infinity of a systemS) € QSegs

Definition 6.2. Let h1(w1) and ha(w2) be two distinct hyperbolic sectors of singular-
ities at infinity w1, wy of a system(S) € QSgss. (i) We say thathi(w1) and h(w2)
are finitely adjacent ifw1 = w2 = w and the two sectoré;(w1) and hz2(w2) have a
common border which is a separatrix of in the finite plane.

(i) We say thath;(w1) andhz(w2) are adjacent at infinity ifvy andw, are opposite
points of ST and wy (also w,) as a point of$? has two hyperbolic sectors with a
common border, part of the equator.

Notation 6.6. We shall use the following notation

fooa
Nhsect - (Nhsecl’ hsect)

where Nhsect (respectivelyN{c. ) is the total number of finitely adjacent couples of
hyperbolic sectors (respectively adjacent at infinity).

7. Classification of quadratic differential systems according to their behavior in
the neighborhood of infinity

The study of the geometry of the systems yields a simpler set of algebraic invariants
than those used ifiL6]. We refine here the invariants which appearedlié] so as to
reveal the geometry of the systems.

We now need to relate the geometrical invariants defined in the previous section to
their algebraic counterparts, i.e. the comitants and algebraic invariants.

To do this we construct below the GL-comitants which we need, by using the
following basic ones:

Ci = ypi(x,y) —xqi(x,y), i=0,12,

0 0 .
D; = - —pi(x,y) + yq,(x y), i=12  J3=JacohCo, D),

Jo» = JacoliCo, C2), J3 = Discrim(C1), J4 = JacoliCy, Dy).
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Using comitants (4.1) and5(1) we constructed in Sectiond and 5 we define the
following new polynomials:

N

K+H, R=L+8K, kp=-J1, ({=M-2K,
K2 = 4Jacoly, &) + 3JacoliCy, &) Dy — E(16J1 + 3J3 4 3D?), (7.1)
K3 = 2C§(2]1 —3J3) + C2(3CoK — 2C1J4) + 2K1(C1D2 + K1).

All these polynomials are GL-comitants, being obtained from simpler GL-comitants.
In the statement of the next Theordryg. j for j = 1,...,40 will denote a phase
portrait in the vicinity of infinity of a quadratic system QS.ss The notation for the
figures in[16] was Figj, j = 1, ..., 40. The correspondence between the two notations
is indicated in columns 6 and 7 in Tab&
In our next theorem we relate the geometry at infinity of quadratic systems with
algebraic and geometric invariants.

Theorem 7.1 (The classification theoremWe consider here the famil@)S.4 of all
systemgS) in QS which are essentially quadratid.e. gcd(P, Q) = 1 and Z{C.

(A) The phase portraits in the vicinity of infinity of the claQS.s are classified
topologically by the integer-valued affine invariaght = (O, Nhsect Nr{;fg) which ex-
presses geometrical properties of the systesrgs number of real singularitiegumber
of their sectors and the way in which these numbers are concateretied’he clas-
sification appears in Tabl& with the corresponding phase portraits in Taldewhere
they are listed for each value d¥r(S) in order of increasing topological complexity

(B) The geometrical properties in the neighborhood of infinity of quadratic systems
(9 in QSessare expressed in terms of algebraic invariants and comitants as indicated
in Table 4, which contains the full information regarding multiplicities and indices of
the singularities at infinity for all quadratic differential systemsQ%®.ss The conditions
appearing in the last column of Tabke are affinely invariant

The proof is based on the Theorehil as well as on the invariant classification
of quadratic systems at infinity given {i6], subject to some corrections as we shall
indicate below.

We point out that the affinely invariant conditions occurring in faf the theorem,
greatly simplify the analogous conditions [h6].

Remark 7.1 (Corrections to Nikolaev and Vulp@6]). In the statement of Theorem

2 (a),b)) in [5, p. 92] A, > 0 must be replaced by, < 0 and conversely. Since
this theorem was used ifiL6] we have to note that several expressions in the se-
quences of the invariant conditions given[i6] must be taken with opposite sign, more
precisely:

e Fig. 4. the inequalityF'S; > 0 must be replaced by S; < O;
e Fig. 5. the inequalityFS1 < 0 must be replaced by S1 > 0;
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Table 3
Nr(S) maX(nsect) Nmax(nsect) 0(S) Nhsect ,ff of Plgures Nl
eW[ old hsect
1 6 1,1,11,1,1) O 1 2
1 2,1,1,1,11) 2 2 4
(2,21,1,11) 4 3 7
3 ) 2 (21,2111 4 4 |6
(2,1,1,211) 4 5 1
3 (2,21,1,2,1) 6 6 5
4 (221221 8 713
2 8 | 22
1 4 (1111 | 1 9 |12
0 10 | 18
3 11 | 15
1 (2111 | 2 12 | 26 (2,0)
13 | 16 0,2)
1 14 | 23
(2,2,1,1) 3 15 | 29
2 5 16 | 13
2 @.1.2.1) 4 17 | 20
X 2 18 | 8 0,1)
19 | 21 (0,0)
3 (2,1,2,2) 4 20 | 10 2.2
21 | 25 (2,0)
4 (2222 | 6 22| 9
3.1.1.1) 4 23 | 11
1 3 24 | 28
3,1,2,1) 4 25 | 24
3 (3212 | 5 26 | 14
(3.1.3.1) 6 27 | 19
2 2 28 | 27
(3232 | 6 29 | 17
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Table 3
(Continued
# of Figures fooa
Nr(S) max(nsect) Nmax(nsect O(S)| Nnsect New] OId Npsect
1 2 Lyl o 30 | 30
2 31 | 32
1 el 1 32 | 34
0 33 | 38
2
4 34 | 31
1 2 (2,2) 2 35 | 40 (2,0)
36 | 39 0,2)
37 | 33 2,0
@ 2 (2.0)
5 1 38 | 37 (0,0)
3.2 3 39 | 36
2 (3,3) 4 40 | 35
Table 4
[ Figures | Value of Zg | Necessary and sufficient conditions
Fig. 1 (L,0,1)p+(1,0,1)g + (1,0, Hyr n>0 pp<0 x>0
1,2,)p+(1,0,1)q + (1,0, 1)r n>0 pu1=0, <0 x>0
(L1.0p+(1,0,1)g + (L0, Dr n>0 pg=0,u3 #0, x>0
Fig.2 | (L3, )p+ (L0,1g+ (1,0, Ir n>0 tp12=0 ug#0 k>0
(1,2)p+ (11 1Hg+ (1,0 Dr n>0, po12=x=0 pu3ky <0
Fig.3 (L,1,0p+(1,1,0q + (1,0, Dr >0 pp1=x=0 L <0
(1, 3, O)p + (1, 1, 0)q + (1, 0, 1)}" n=> 0, :“O.l,2.3 =K= 0, ,l,l4L < O, K]_ 7& 0
Fig. 4 1,1.0p+ 11,049+ (1,0, Dr >0 upy=x=0, gL >0
(L,3,00p+(1,1,0g + (1,0, Hr n>0, Uu123=k=0, iuL >0, K1 #0
(L0,Dp+(1,0,)g + (1,0, =Dr n>0 pu>0
(1,2,)p+(1,0,1)g + (1,0, -Dr >0, pg1=0 pp>0x<0
Fig. 5 (L4, Dp+(1,0,1)g + (1,0, -Dr N>0,1123=0 ug#0 k<0
(1,0,H)p+(1,0,1)g+ (1,2 —-Dr n>0, 14 1=0 >0 x>0
(1, 0, l)p + (1, 0, l)q + (1, 4, —1)}" n> O, H0,1,2.3 = 0, Ha 75 0, k>0
(1, 2, l)p + (1, 0, 1)q + (1, 2, —1)}" n> O, HO,1,2.3 = 0, Ha ;ﬁ 0, K= K]_ =0
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Table 4
(Continued
[ Figures | Value of Zg | Necessary and sufficient conditions
(L,1,0p+(1,0,1)g + (1,0, —D)r >0 pp=0,u #0 k<0
Fig.6 1,3, )p+(1,0,1)g + (1,0, -D)r n>0, pg12=0 u3#0 k<0
(1L,2,H)p+ (1,1, Dg+(1,0,-Dr N>0 up12=x=0, u3kK1 >0
Fig. 7 (1,0,-1)p+(1,0,Dg+(1,0, —D)r n>0 <0 x<0
1,2,-1)p+(1,0,1)g+(1,0, —D)r n>0,pu91=0 <0 xk<0
n=0 M#0 ugg=rx=x1=0,
(2,200 p+(1,0,1)¢ fip>0,L >0, Kp<0
. I’IZO,M#O, ﬂ0.172,3=K=K1=0,
Fig.8 (2,4,00p+(1,0,1) ¢ >0, L >0, K=0 Ky <0
UIO,M#O, ”0.1,2.3:’<:Kl:0
(2,20 p+(1,21)q (4 #0 L=K1=0 xp<0
(21,1 p+(101g n=0 Mu;#0, pug=x=0,L>0,K <0
Fig. 9 2,3, D)p+(1,0Dgqg =0, MK1L#0, pg1,=Kk=0, u3K1 <0
n=0 M#0, Ho12 = K = L =0,
(2,1,1)p+(1,2,1)q Kl?é , ,113K1<0
. n=0, M #0, ,uoyl—K—Kl—O,
Fig. 10 (2,2,2)p+(1,0,1) g lp <0, L >0, K <0
2,1,1 1,1 =0, M =Kk=L=
Fig. 11 2,1,)p+(L10g¢q n=0,M#0 u=x 0, pp #0
2,L,1)p+(1,3,0¢q N=0,M#0,uyq23=K=L=0, g1 #0
. 11=0,M7é0,u0!1Y2=K=K1=0,
Fig. 12 (2,22 p+(L10g =0 Ky <0
Fig. 13 (2,21 p+(1,0,1)¢ N=0,M#0,uy1=r=0uy#0,K1L#0
(2,4)p+(1,30¢q =0 Mus#0, g 123=xk=0,Kk1L#0
- =0, M#0, g1 =r=xK1=0,
Fig. 14 (2,3 1)p+(L0,1g ra A0 =0 K =0
Flng (2,3, 1)p+(1, 1,0)q 11=0, M,u4K17é0, /10123=K=K1=L=0
Fig. 16 21D p+(L0,-1)q n=0 Mu #0, ug=rx=0,L<0, N <0
_ nzO’M#OﬂHO,LZ:K:L:O,
2,1,)p+(1,2,-1)¢q K1 # 0, igK1 > 0
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Table 4
(Continued
[ Figures [ Value of g Necessary and sufficient conditions
(22,2 p+(10,-1)q |[n=0, M #0, pg1=r=r1=0, tp >0, L <0
Fig.17 |24.2p+(1.0,~-1)g [n=0, M #0, pgq23=Kk=k1=0, 14> 0, L <0
(2,22 p+ (1,2, -1)q |[n=0,M#0, ug123=rK=k1=L=K1=0, ig#0, k>0
(20,00 p+(1,0,1)g |n=0 M#0, ug>0
(2,0,00p+(1,2,1)g |[n=0, M #0, ug1 =0, up >0, kK #0
20,0p+@4g =0 M#0, 09123=0, g #0, k#0
Fig. 18
n=0,M#0 Ug1r3=r=r1=0,
ug>0,L>0 K=+#0 R>0
(2,400 p+(1,0,1¢q
=0, M#0, fig1023=K=K1=0,
ug>0,L >0, K=0, Kp >0
Fig.19 |(2,200p+(1,0,1)¢ n=0,M#0, up1=k=xk1=0, ip >0, L>0, K»>0
2,0,0 1,1,0 =0, M#0 =0 0, k#0
Fig. 20 2.00p+@1,10g n=0M#0, ug=0, g #0, K #
(2,00 p+(1,3,0¢q N=0,M#0, uy12=0 pz3#0 K#0
Fig.21 | (2,20 p+(110q |7=0 M#0, gqo,=x=r1=L=0, 3K1>0
2,0,0 1,01 =0, M#0 0
Fig. 22 2.0,0p+@1.01qg =0 M#0, yg<
(2,000 p+(1L2,1)¢q n=0 M#0, up1 =0, up <0, Kk #0
Fig. 23 2,1, -)p+(1,0,)g |n=0M#0, ug=x=0, u1 #0,L>0,K >0
(2,3, -D)p+(1,0,1)g |[n=0,M#0, ug1o=x=0,Kx1L#0, u3K1>0
Fig.24 (2,400 p+(1,0,1) g n=0 ML#0, ug123=rk=xk1=0, g <0
- _ n=0 M#0, gy =r=r1=0,
Fig.25 (2,3, -D)p+(1,0,1)¢q is £0, L >0 K >0
Fig. 26 2,1,)p+(1,0,-1)g |n=0,M#0, ug=x=0, uy #0, L<0, N>0
(2,3, D) p+(1,0,-1)g |[n=0,M#0, ug1o=rk=x1=0, u3#0, L <0
; _ =0, M#0, ijg1=k=x1=0,
Fig.27 (2,2,-2)p+(1,0,1) ¢ iy <0, L>0 K >0
. =0, M#0, fig1023=K=K1=0,
Fig.28 | (24,0 p+(1.0,1)g¢ e 0L 20 K20 R0
Fig.29 |2.20)p+(1,0,-1)g |p=0,M £0, ug1=rk=r1=0, tip <0, L <0
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Table 4
(Continued
[ Figures Value of g [ Necessary and sufficient conditions
(1,0,1)p + (1,0,0)¢¢ + (1,0, 0)r¢ n<0, >0
1,2,)p+ (1,0,0)¢ + (1,0, 0)r¢ n1<0, pp1=0, >0 Kk#0
1,4,H)p+(1,0,0)4¢ + (1,0,0)r¢ N1<0, pg123=0 pg#0, K #0
1,0,Hp+(1,1,04¢ + (1,1,0r° N<0 pup1=x=0,uy#0
Fig. 30 (1,0, Dp+ (1,204 +(1,2,0r¢ <0 po123=x=0, ug#0
(3,0, p M=0, >0
M =0, =0, 0, K#0, K2 <0
@.21p Ho,1 Ko > # 2 <
MZO, :uO,l:O’ ,Lt2>0, K=0
(3, 4, 1)p M = 0, M0,1.2.3 = 0, Hg > 0, K3 > 0
(1,1,00p + (1,0, 0)¢° + (1,0, 0)r¢ <0 =0 u #0
Fig. 31 (1,3,00p + (1,0,0)4° + (1,0, 0)r¢ <0, 1912=0 uz#0
(3,3,00 p M =0, pug102=K=0, i31>0, K3>0
= = >
Fig. 32 3.2 p M=0,p91=0, >0 K#0, K2>0
(3,4,1)p M=0,[.toy1273:K:O,ﬂ4>o,K3<0
F|g33 (3,3,2)p M =0, ﬂ01.2=K=0, M3K1<0
(1,0, -1)p + (1,0,0)¢“ + (1,0, 0)r¢ n<0, <0
Fig. 34 1,2, -1)p+(1,0,0¢° + (1,0,0)r¢ n1<0, pp1=0 up<0 k#0
3,0,-1) p M=0, uy<0
Fig. 35 3,4Dp M=0, pp123=0 114 <0
Flg 36 (3, 4, 1) P M = 0, HO,1,2,3 = O, Ny > O, K;éO, K3<0
Fig. 37 3,1,0 p M=0, ug=0, uy #0
(3,3,0)]) MZO,ﬂOlz:O,ﬂ3K7éO,K3>O
Fig. 38 (3,30 p M =0, pp1,=K=0 1i3K1>0, K3<0
Fig. 39 3,30 p M =0, 1ig12=0, i3k #0, K3 <0
F|g40 (3, 2, —1) p M = 0, ”O,l = 0, Ho < 0
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Fig. 6. the inequalityGA < O must be replaced b A > 0O;

Fig. 7. the inequalityGA > 0 must be replaced b A < O;

Fig. 37. the inequalitySs < 0 must be replaced bys < 0, FS1 < 0;

Fig. 38. the inequalitiess > 0, FS1 < 0 must be replaced bys > 0, FS1 < 0.
Furthermore the saddle-node given in Fig. 29[b6] is not correctly placed. The
correct phase portrait is given here in Fig. 15.

Proof of the Theorem 5.1. (A) The phase portraits in the vicinity of infinity dDSqgs
where obtained i16]. All calculations were done again for this article and as we
indicated in Remark 7.1, all phase portraits obtainedlL8] with exception of Fig. 29
turned out to be correct. Fig. 29 [ti6] needed to be modified at one of its singularities
and we give the respective corrected figure in Tablg-ig. 15).

In [16, p. 481-484], the phase portraits appeared as they were obtained from calcu-
lations and not listed according to their geometry. To draw attention to the geometry
we list them here for each possible value 8k(S) according to their topological
complexity. In Table3 we first place the numbeNR(S) of real singularities of the
real foliation on P?(R), followed by the maximum number méxec) Of sectors of
singularities. Although these numbers could be read on the value(§j, we place
them in separate columns as they are important invariants for the geometry at infinity
of the systems. We complete the table going through all phase portraits and listing
O(S) which by itself determines uniquely 27 of the 40 phase portraits. To distinguish
the remaining 13 phase portraits we use the invanﬁ{;fc”’t = (N,{S_eg, Npeeet) Whose
values we place in the last column, thus completing the classification.

(B) As in the proof of part (A) we use the results[it6] subject to the modifications
in Remark 7.1. Since some letters appear both here arjii6jhbut not always with
the same meaning, we shall use the convention to apply “tilde” to letters which are
used to denote comitants [d6].

The proof of part (B) proceeds in 3 steps:

() In this step we replace the conditions jh6] subject to the maodifications in
Remark 7.1 with conditions involving newly defined comitants and invariants as we
shall indicate below.

(1D In this part we simplify the conditions obtained in step (I) in order to obtain the
corresponding conditions in the last column of TaBle

(1) We prove that these last conditions are affinely invariant.

Proof of step (I). First of all we shall prove that the comitants used[i6] (see
Appendix) can be replaced respectively by the comitants used here as follows:

/1:>H0, ﬁ:>,ul, G:>/12, F:>,Ug, ‘7:>,U4, Z:>C2, M:>M,

h=n 0=k, N=K, S1=Ki, A=L A+4N = R,

A+N=N, Gd=k1, Sr= Koz S3= K3, S4= Ko. (7.2)
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Figure 1 Figure 2 Figure 3 Figure 4
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Figure 5 Figure 6 Figure 7 Figure 8
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(o)
()

Figure 9 Figure 10 Figure 11 Figure 12

(J
()
(L
o)

Figure 13 Figure 14 Figure 15 Figure 16

-
(J
L

Figure 17 Figure 18 Figure 19 Figure 20

Indeed, firstly the following relations among the comitar@s?)( hold:

po=p m=2H, 1,=G, pz=F,
a=V, Co=L, M=8M,
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Table 5
(Continued

AN

L

L
T
w
P
JLFL
P
JL

Figure 21 Figure 22 Figure 23 Figure 2/,

(W
(o)
(L
(W

Figure 25 Figure 26 Figure 27 Figure 28

L
S
8
¢

Figure 29 Figure 30 Figure 31 Figure 32

¢
8
B
¢ 3

Figure 33 Figure 3/ Figure 35 Figure 36

)
8
&
@

Figure 37 Figure 38 Figure 39 Figure 40

n=r, K=64é, K=4N, Klzgl,

L =8A, R=8(A+4N). (7.3)
Therefore we only have to compare the conditions involving the comitants
N’ Klv K27 KZ’ K3 (74)
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and show the corresponding equivalence with the conditions involving the comitants

A+ N, g, §4, Sz, S3 (7.5)
n [16], respectively.

We point out that all comitants7(5) are only used for the systeni§y;) and (Sy).
So, in what follows we shall examine each one of this cases.

We first consider the systems of for(&y ).

In this case we have four singularities on the equator .0, M = 0). The phase
portraits in the vicinity of infinity of these systems are given by one of the Figs. 8-29
both here and if16]. One can observe, that all comitant&4j (respectively, 1.5)
are used for system&S;;) only in the case whem =0 (respectively,?) = 0). In this
case for systemsSy;) the conditionk = —64h2 = 0 yieldsh = 0 and we obtain the
systems

)'C:k—i—cx—l—dy—i—gxz, y=Il+ex+ fy+ (g — Dxy, (7.6)

for which L = 8gx? and
_ . d 5 N — (o 2 7,51t 2
K1=32d,6 = 4(5g 20+ 1;N=(g 1)(g+1)x,A+N—2g(g+l)x.

Clearly, the conditiorx, = O is equivalent tog = 0. We now compare the signs df
and A + N. As in Table4 the comitantN appears only in two cases (i.e. Figs. 16 and
26) and in these cases the conditibn< 0 (i.e. g < 0) is used, from the expressions
of N and A + N above we obtain sigiN) = sign(A + N).

We observe from Tablé that the comitantK, is applied for systemgS) only
whenk = k1 =0, L # 0. Sincex; = 0 impliesd = 0 systems {.6) become

)'C:k—i—cx—l—dy—i—gxz, y=Il+ex+ fy+ (g — Dxy, (7.7)

and we calculatek, = 48(g2 — g + 2)(c? — 4gk)x2, S» = 2g2%(c? — 4gk)x2. Hence,K»
has a well-determined sign and since for evgrwe haveg? —g+2 > 0, from L # 0
we obtain sigik2) = sign(S).

We note that the invariankz(a) is here used only to distinguish Figs. 8 and 17
in the case when system&y) belong to the class'z3 in Table 3. Since for this
class the conditions = L = K1 = 0 hold for systemgS;;), we obtain respectively
h=g=c%2+d%=0. So, the system&S;;) become

x=k, y=Il+4+ex+ fy—xy, (7.8)

for which k2 = —k, S4 = —2k and, hence, sigr,) = sign(Ss).
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It remains to consider systems of the fori®y) For the Figs. 30—40 which can
occur for this class of systems, only the comitafgsand Sz of (7.5) were used in
[16]. Hence we only have to examine the conditions given in terms of comiténts
and K3 from (7.4).

We observe that the comitark, is used to distinguish Figs. 30 and 32 when we
also haveK # 0. In this case the system{§y) belong to the clas€17 in Table 3
with conditions ug = 1y = 0. For systemgSy) we havepy = —8h3. Henceh = 0
and the systemsSyy) become

x=k+cx+dy—+2gx% y=I+ex+ fy—x>+2gxy, (7.9)

for which K = 2¢°x?, uy = 8dg3x. As K # 0, the conditiony; = 0 impliesd = 0
and we obtain the systems

f=k+cx+dy+2gx% y=I+ex+ fy— x>+ 2gxy, (7.10)

for which we have:K, = 24g2(c2 — 8gk)x2, S» = 4g2(c%2 — 8gk)x2. Thus, in the
case under consideration the comitdfit has a well-determined sign and sigf) =
Sign(S2).

We examine now the comitarts which is applied for systemgSy/) only in the
cases whemMs>3, i.e. up1, = 0. So, we shall consider systems.q) for which
o =0 and we examine two subcasés:# 0 andK = 0.

If K # 0 theng # 0 and for systems7(9) the conditiony; = 0 givesd = 0.
Moreover we may assume= f = 0 via a translation. So, we obtain the systems

X =k+cx+2gx%,  y=1—x?+2gxy, (7.12)

for which u, = 8¢3%x? and asg # 0 the conditionu, = 0 yields k = 0. Then for
systems 7.11) we obtain K3 = —12¢%1x8, §3 = —12¢%1x5. Hence K3 has a well-
determined sign and sigki3) = sign(Ss).

Assume nowk =0, i.e. g =0 and for systems7(9 we obtainu, = 0, u, = d?x?.
Thus, the conditioru, = 0 yieldsd = 0 and we obtain the following systems:

X =k +cx, j}:l—i—ex—i—fy—xz, (7.12)

for which K3 = 3f(2c — f)x% = Sa.

Proof of step (ll). We show below how some of the conditions [t6] can be sub-
stituted by simpler ones in Tablé. To do this we shall prove the following five
lemmas.

Lemma 7.1. Let € be the conjunction of the all the conditiong = 1 = H = 0=
&=0andMGA + 0. Let € be the conjunction of the following COI’]dItIOI’T$ Uo =
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uy=rk=rx1=0and Mu,L # 0. We have the following equivalences

Fig. 8: @,G;&O,A>O, S, <0 < G, 1y, > 0,L>0, K2<O0;
Fig.10:@,G<0,A>O,S‘2>O,N<O < Cu,>0L>0K <0
Fig.17: €, G #0,A <0,(52<0 V(G >0,85>0) < € pu,>0L <0
Fig.19:€,G#0,A>0,(52=0v(G>0,8>0 < € u>0L>0 Ky>0;
Fig.27:@,G<O,A>O,S’2>O,]§7>O < € u,<0,L>0,K>0;
Fig.29:€,G <0,A<0,5 >0 & @ u,<0,L<0.

Proof. According to {.3) the conditions€ and € are equivalent. We are in the class of
systems(Sy;) for which we must apply the conditions on the right, iig.= 1y =0,

Uy #0, andk = k1 = 0, L # 0. For systemsSy) we havex = —64h?, k1 = —32d
and hence conditions = k1 = 0 yield h =d = 0. Then

po=1 =0, pp=glf’g+cf(g—1 +k(g—D%x*#0
and sinceg # 0 we may assume = 0 via a translation. Hence we get the systems
)'C:k—i—gxz, y=Il+ex+ fy+ (g — Dxy, (7.13)
for which

o1 = 0. pp=glfg+k(g—1*x°G #0, L=gx*>=8A+#0,
K = 2g(g — Dx? = 4N, K» = —192k(g? — g + 2)x2, S = —8¢%k. (7.14)

We observe, that sigi,) = sign(S») because the discriminant of the quadratic poly-
nomial g2 — g + 2 is negative. We shall consider two casésx 0 andL > 0.

CaseL < O: If u, <0 (thenG < 0) from (7.14) it follows that S, > 0 and hence
we obtain the conditions indicates on the left in the lemma, which correspond to Fig.
29. Thus the conditiong < 0 andu, < 0 lead to Fig. 29.

Assumeyu, > 0 (thenG > 0). If either K» > 0 (then S, > 0) or K»<0 (then
S,<0) we obtain the conditions on the left for Fig. 17. Taking into account that for
iy # 0 from (7.14) it follows that the conditionS, <0 implies u, > 0 (thenG > 0)
we conclude, that the conditior’s < 0 and ., > 0 lead to Fig. 17.

CaseL > 0: Suppose firstly, <0 . ThenG < 0 and from .14 we haveS, > 0
and N # 0 (i.e. K # 0). Hence we obtain the conditions for Fig. 10 (on the left in
the lemma) ifK < 0 and for Fig. 27 ifK > 0.

Assume nowu, > 0 (then G > 0). From (.14 we obtain S,<0 (then K»<0)
which yields u, > 0. Hence we conclude, that the conditiohs> 0, u, > 0, K2>0
lead to Fig. 19, whereas the conditiohs> 0, u, > 0, K2 < 0 lead to the Fig. 8. U
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Lemma 7.2. Let €; be the conjunction of the following conditiong = i = H =
G=F=0=6=0and MVA # 0. Let € be the conjunction of the following
conditions n = pug = 1y = o = Uz = kK = k1 = 0 and Mpu,L # 0. We have the
following equivalences

Fig.8: €, V#0,A#0,N=038 <0 < €1, 4>0,L >0 Kz <0;

Fig.17: €,V #0,N #0,A <0 & CLu>0,L <0
€1, AV #£0,(N =0, 5 =0) €1, 04 >0,L >0,
Fig.18: | V(N #0,A>0,A+4N>0) | & | (R=0,K #0Vv |;
V(N#£0,V>0,8 >0 (K2=0,K =0)
Fig.24:C,N=0,A#0,V <0 & G,y <0, L#0;

Fig.28: €1, VN #0,A>0,A+4N <0 < @€, 4>0,L >0, R <0,

Proof. We are in the class of systen{§y) for which we must set the conditions
ﬂ0=M1=M2=ﬂ3=0,ﬂ4750andK=K1=O,L=8A750. It was shown
before (see p. 35) that for systen§) the conditionsk = k1 = 0 yield h =d = 0.
ThenL = gx? # 0 and K = 2g(g — 1)x2 and we shall construct two canonical forms
corresponding to the casés # 0 and K = 0.

Assume firstlyK # 0. Theng — 1 # 0 and we may assume= f = 0 due to a
translation. Therefore considering the conditigns d = ¢ = f = 0, for systemdqS))
calculations yield:uy = 1y = Ou, = gk(g — 1)® and by g(g — 1) # 0 the condition
i, = 0 yields k = 0. This impliesug = —clg(g — Dx3, g = Ix3[1g%x + (g — Dyl.
Hence, the conditiong; = 0 andu, # 0 yield c = 0 and we get the systems

x=gx° y=I1+(g—Dxy, (7.15)
for which
o123 =0y =g%’x* =V, L=8sx"=8A#0, K2=0=3,,
K =2g(g — D)x?>=4N # 0, R = 8g(2g — 1)x?> = 8(A + 4N). (7.16)

Suppose now that the conditioki = 2¢(g — 1)x2 = 0 holds. SincelL = gx2 # 0
this yields g = 1 and we may assume = 0 via a translation. Then we obtain
iy = f2x2 = 0 which implies f = 0 and we get the systems

f=k+x% y=I+ex, (7.17)
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for which
ﬂ0’1’2.3 = 0, Hq = (12 + kez)x4 = ‘7 # O, L = 8x2 = 8A~,

K=0=N,R=28c2=8(A+4N), K= —384x?=485,. (7.18)

We shall consider two caseg; < 0 andy, > O.

Casep, < 0: ThenV < 0 and from 7.16) and (.18 we have the conditiond/ = 0
and S, > 0. Hence the conditiong, < 0 and L # O lead to the conditions in the
lemma corresponding to Fig. 24.

Casey, > 0: In this caseV > 0 and we shall examine two subcasés< 0 and
L > 0.

Subcasel < 0: ThenA < 0. From (.16 and (.18 we conclude thatV # 0 and
we obtain the conditions corresponding to Fig. 17. Hence we conclude tha, ter0
and L < 0 we get Fig. 17.

Subcasel > 0: HenceA > 0.

(@) If R <0 (thenA +4N < 0) from (7.16 and (7.19 we obtainN # 0 and hence
we get the conditions for Fig. 28.

(b) Assume nowr >0. If K # 0 (thenN # 0) we obtain one sequence of conditions
for Fig. 18, and namelyN # 0, A > 0 and A + 4N >0.

SupposeK = 0 (i.e. N = 0). If in addition K2 < 0 (then S < 0) then we obtain
the conditions for Fig. 8. From7(16 and (7.18 we obtain that the conditiok, < O
implies N = 0. Then we conclude, that fqr > 0, L > 0 and K» < 0 we obtain the
conditions for Fig. 8.

AssumingK» >0 (thenS >0) and taking into account that we are in the cage- 0,
we get two of the series of conditions for Fig. 18, which can be combined into the
following series:y, >0, K =0, L > 0, K2<0. O

Lemma 7.3. Let €, be the conjunction of all the conditiond? = i = H = 0 and
LG # 0. Let €, be the conjunction of the following conditiond/ = g = uy = 0
and Cau, # 0. We have the following equivalences

Fig.30: C2,G#0,(N#0,5 <0 V(N=0 < €z >0 (K #0, Kz <0)

V(K =0);
Fig.32: C3,GN #0,(G>0,85 >0 Vv (S2=0) & €z, >0,K #0,K2>0;
Fig. 40: €5, G <0, N #0,8, >0 & Gy < 0.

Proof. We are in the class of systenm{§y) for which we must set the conditions
U = 1y = 0, pup # 0. We haveyy = —h3 = 0 which impliesk = 0 and then
1y = dg®x and K = 2gx?. We shall consider two subcases:# 0 and K = 0.

Assume firstly K # 0. Theng # 0 and the conditionu; = 0 yieldsd = 0. We
can assumg = 1 ande = f = 0 due to the rescaling — x/g,y — y/g2 and a
translation. Then we get the systems

)'C:k—l—cx—i—xz, y':l—xz—i—xy, (7.19)
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for which
o1 =01y =kx?=G #£0,K = 2x* = 4N, Kp = 48(c? — 4k)x? = 245,.  (7.20)

Admit now K = 0. Henceg = 0 and we can assume= 0 due to a translation.
Then we obtain the systems

f=k+cx—+dy, y=I1+fy—x> (7.22)
for which

fo1 =0, p=d’x*=G#0,K=0=N,L,=0= 5. (7.22)

Casepu, < 0: From (7.20 and (7.22 it follows that the conditionu, < 0 implies
N #0 and S, > 0. Hence we obtain the conditions for Fig. 40 and we conclude that
the conditiony, < 0 immediately leads to the conditions for Fig. 40.

Casep, > 0 (i.e. G > 0): Assume that the conditiok # 0 holds (thenN # 0).
If K» <0 we haveS, < 0 and then we obtain the conditions for Fig. 30. If either
K> >0 or K =0 via G > 0 in both cases we get Fig. 32

Supposek = 0 (i.e. N = 0. In this case we obtain the conditiots# 0, N = 0
which lead to Fig. 30. Note that fron¥ 20 and (/.22 it follows that the condition
K =0 impliesp, > 0. O

Lemma 7.4. Let 0:3 be the conjunction of the following conditions/ = i = H =
G=N=0andLF ;é 0. Let €3 be the conjunction of the following conditions

M = pg = = u, =K =0 and Couz # 0. We have the following equivalences
. €3, F #0,(53=0)
Fig. 31: -~ 2 €3, u3K 0, K3>0;
& |:v(FSl>O,S3>0) @ Se kel =5 A3

Fig. 33: 6:3, F§1<0,§3<0<:>(53,u31(1<0;
Fig. 38: @3, F§1>0,§3<0<:>(S3,,u31(1>0,K3<O.

Proof. We are in the class of system§y() for which we must set the conditions
to =y = tip =0 = K, uz # 0. We haveug = —h® = 0 henceh = 0 and then
K = 2gx2. The conditionk = 0 yields ¢ = 0 and this leads to systemg.21) for
which the conditionu, = d2x? = 0 yieldsd = 0. Hence we obtain the systems
i=k+cx, y=I+fy—x2 (7.23)
for which
IuO,l,Z = 0, H3 = —szd2X3 = ﬁ 75 0, K=0= N,

Ki=—cx3=81, K3=6f(2c— f)x%=3Ss. (7.24)
We note thatuzK1 = 3 fx8 # 0 and hence sigriugK1) = sign(cf) = sign(FSy).
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Case uzK1 < 0: From (7.24 we obtainS3 < 0 and hence we conclude that the
condition u3K1 < O leads to the conditions for Fig. 33.

Case u3k1 > 0: For K3 < 0 (then S3 < 0) we obtain the conditions for
Fig. 38. If eitherK3 > 0 or K3 = 0 we observe that in both cases we get the conditions
for Fig. 31. From {.24) it follows that the conditionkz = 0 implies u3K1 > 0. There-
fore we conclude that the conditiongK; > 0 and K3>0 lead to the conditions for
Fig. 31. O

I:emma 7.5. Let (54 be the conjunction of the following conditions/ = i = H =
= F =0and LV # 0. Let € be the conjunction of the following conditions
M = pg = 1y = up = u3 = 0 and Couy # 0. We have the following equivalences

Ca, V#0,(N #£0, 83> 0)
Fig.30: | V(N =81 =S83=0V & €4, 14 > 0, K320;
(N=0,5#0,V >0)

Fig.32:64,V#0 N=5=0,8#0« €4, p4>0K3<0,K=0;
Fig. 35:@4,\7<0,N=O,§1#0©(‘:4,u4<0;
Fig. 36:Q4, V#0,N#0,83 <0« G4, 14 >0 K3 <0, K #0.

Proof. We are in the class of systen{§) for which we must set the conditions
to =y = tly = uz = 0, uy # 0. We haveuy = —h® = 0 which impliesh = 0 and
then iy = dg®x and K = 2gx?. We shall consider two subcase:# 0 andK = 0.

If K # 0 then the conditionu; = 0 leads to systems7(19 for which u, = kx?2.
Hence the condition, = 0 yields k = 0 and we calculateyu; = —clx® and u, =
—I(c?x —Ix — c?y)x3. Hence the conditiongz = 0 andy, # 0 yield c = 0, # 0 and
we obtain the systems

¥=x2 y=1-—x%+xy, (7.25)

for which

~ 1
Ho123=0 pa=1x*=V #0, K=§x2=4N,
Ka=—6x" = 53 0. (7.26)

Admit now thatK = 0. This leads to system&.@3 for which the conditionu; =
—c2fd?x3 = 0 yieldsc¢f = 0. Then we get the systems
f=k+ecx, y=I+fy—x> (7.27)
with ¢f =0 and
Ho123 =0, pu=0k*—c*Dx*=V #£0, K=0=N,

K1 = —ex3 = 5’1, K3 = —6f2x6 = 53, K1K3=0. (7.28)
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Table 6
Case GL-comitants Degree in Weight Algebraic subset
a xandy V(*)
1 n(a), pola), k(a) 4 0 2 V(0)
2 Co(a, x,y) 1 3 -1 V(0)
3 K(a,x,y) 2 2 0 V(0)
4 L(a,x,y) 2 2 0 V(0)
5 M(a, x,y) 2 2 0 V(0)
6 N(a, x,y) 2 2 0 V(0)
7 R(a,x,y) 2 2 0 V(0)
8 K1(a) 3 0 1 Vn, k)
9 K2(a) 2 0 0 Vin,x, L, K1)
10 Ko, x,y) 4 2 0 V(1. o, g K. K1)
11 K3(a,x,y) 4 6 -2 VM, ug. pig, M)
12 Ki(a,x,y) 2 3 -1 V(K)
13 py(a, x,y) 4 1 1 V(o)
14 pola, x,y) 4 2 0 V(po, 1)
15 uz(a, x,y) 4 3 -1 V(ug, tg, 1)
16 tala, x,y) 4 4 -2 V(ug, uy, po, 13)

Caseyy < 0 (i.e. V < 0): From (7.26 and (7.28 we obtain that the condition
g < 0 implies N = 0 and §; # 0. Hence foru, < O we obtain the conditions for
Fig. 35.

Casepy > 0: ThenN > 0 and we shall consider 3 subcaség; < 0, K3 > 0 and
K3=0.

Subcasekz < 0: If K # 0 then N # 0 and we have the conditions for Fig. 36.
Supposek =0, i.e. N = 0. Then byK3 # 0 from (7.28 we haveS; = 0. Therefore
we conclude that condition&s < 0 and K = 0 lead to the Fig. 32.

Subcasekz > 0: ThenSs; > 0 and from .26 and (.29 we conclude thak # 0,
i.e. N # 0. Hence we obtain one series of the conditions for Fig. 30.

Subcaseks = 0: ThenS3 = 0 and according to7(26) and (.28 we havek = 0.
This leads to systems/ 27 for which the conditionKz = 0 yields f = 0. Then we
have eitherk; # 0 (i.e. S1 # 0) or K1 = 0 (i.e. S1 = 0). Since the condition¥ > 0
and S3 = 0 hold, both cases lead to the conditions for Fig. 30.

Lemma7.1lis proved and this completes the proof of the step (ll).

Proof of step (Ill). We draw the attention to the fact that all the constructed polyno-
mials which were used in Theorems 5.1 and are GL-comitants. But in fact we are
interested in the action of the affine group Aff@,on these systems. We shall prove
the following lemma.

Lemma 7.6. The polynomials which are used in Theorems or 7.1 have the prop-
erties indicated in the Tablé. In the last column are indicated the algebraic sets on
which the GL-comitants on the left ar€€T-comitants The Table6 shows us that all
conditions included in the statements of Theordnisor 7.1 are affinely invariant
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Proof. (I) Cases 1-7: The polynomials n(a), x(a), ug(a), K (a, x, y), L(a, x, y),
M(a,x,y), N(a,x,y) and R(a,x,y) are T-comitants, because these GL-comitants
were constructed only by using the coefficients of the polynomjaléx, y) and
q2(x, y).

(I) Cases8-11: (a) We consider the GL-invariart (a) which according to Table
4 was used only in the class of systerf ). It was shown before (see p. 33) that
for kx = 0 systems(Sy;) can be brought by an affine transformation to systeims§) (
for which k1 = —324. On the other hand for any system in the orbit under the
translation group action of a syster.§) corresponding to a poira € R*? we obtain
k1(8) = —324. Hence the value ofc; does not depend of the vector defining the
translations. Therefore we conclude that the polynomigalis a CT-comitant modulo
n, k).

(b) We consider now the GL-invariamt(a). From Table4 we observe thakz(a) is
only applied to distinguish the Figs. 8 and 17 when for systé8ys) the conditions
k = L = K1 = 0 hold. As it was shown before (see p. 33) for= L = K; =0
the systems(S;) can be brought by an affine transformation to systems§) (for
which k2 = —«x. On the other hand for any system in the orbit under the trans-
lation group action of a systen¥.8) corresponding to a poind € R? we obtain
K2(a) = —k. Hence we conclude that the polynomig is a CT-comitant modulo
(n,x, L, K1).

(c) We examine now the GL-invariank(a) which was used in case&y) and
(Siv). Assume firstlyy = 0 and M # 0 i.e. we are in the class of systenf ). We
have shown before (see p. 33) that fo= k1 = 0 the systemgS;) can be brought by
an affine transformation to systema.q) for which Ko = 48(g% — g + 2)(c? — 4gk)x2.
Suppose now that the conditiold = 0 and C2 # 0 hold, i.e. we are in the class
of systems(Sy). It was shown before (see p. 34) that fop = p; = 0 systems
(Sv) can be brought by an affine transformation to systemha( for which K, =
24g%(c? — 8gk)x2.

On the other hand for any system in the orbit under the translation group action
of a system 7.7) (respectively, of a systeni(10) corresponding to a poira € R*?
(respectivelya; € R'?) we obtainKa(a, x, y) = 48(g%2—g+2)(c2—4gk)x? (respectively,
Ko(ay, x, y) = 24g2%(c?—8gk)x?). Calculations yield that for systerd.() (respectively,
for system 7.10) we haveuy = pu; = 0 (respectivelyx = k1 = 0). Hence we conclude
that the GL-comitantks(a, x, y) is a CT-comitant moduldn, pg, i1, x, K1).

(d) We examine now the comitakiz which is applied for systemé&Sy/) only in the
cases wherhs >3, i.e. ug = uq = pup = 0. It was shown before (see p. 34) that fer=
Uy = pp = 0 systemgSyy) can be brought by an affine transformation either to systems
(7.1 for K # 0 or to systemsq.12 for K = 0. Calculations yield, that for any system
in the orbit under the translation group action of a systgdhil (respectively, of a
system {.12) corresponding to a poinh ¢ R'? (respectively,a; € R'?) we obtain
K3(a, x,y) = —12¢%Ix% (respectively,K3(az, x, y) = 3f(2c — f)x%). Hence in both
cases the values &3 do not depend of the vector defining the translations. Therefore
the GL-comitantK3(a, x, y) is a CT-comitant moduldM g, 11, t).

(1) Cases 12-16: Let € T(2, R) be the translationx = ¥ +a,y = y + f and
consider a quadratic system (3.1) which corresponds to a painR'?. It is sufficient
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to verify that the following relations occur, whete= x§ — ya:
Kl(r‘l,' : aax~7 5}) = Kl(‘hia 5)) - éK(a7jE7 y)’
s—1 4k
u(re-a, %, 5) = @ 5.5 + Y ( ) @5y, s=1,234
i \S— k

So, Lemma7.6 is proved and this completes the proof of the Theorem 7(1.

Appendix
Let us consider the tensorial form of quadratic system:

dx/ ) , .
% =al +ajx* —l—a;ﬁxo‘xﬁ (.o, p=1,2).

The following invariants and comitants, defined by polynomials/afR; which are
tensorially defined GL-comitants, were used[1%] for the classification in the neigh-
borhood of infinity of quadratic differential systems:

2i=Jy, &=J7, 20 = Js, L= R,
2M = 9R3+ 6Rg — 8R?;, 1 = Rs,

Sz = 2J12R5 + 2J1R% — 2JoRg + JzR%l + 8J3R3 — 8J3Rs — 4R7 — Rg, H= R13,
3'3 = R§2(7J2 — 6]12 — 8J3) — R12(10J1R5 + 4R1R10 — 6R3R9) + 4R3R%0 — 4R§,

§4 =4J3 — Jp, V= Rézl — R2Rs, 2A = 2Rs — 3R3,
2i1 = Ja+ 20J5 — 8Js

2N = R3, 2G =2R? —2J,R3+ 4R7 + Rs,

2F = JoRs + 4R2R3 + 4R R4,

where
B B

_ _ 0 Pq —
J1=a,, Jz_apaqsaﬁa , J3=a yps

«a B v 5 rs ki mn
J4=ap,,aqkamalmsa/;sy(;gpqs eremm,
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p

IS¢ kl _ 0 .pqrs
Je—a agqamaﬁya e,

2,b 14
Js —ayam qkaﬂzaﬂa €

p rq.
J7 = apa,qaxﬁs

— x%dPa s N | N B 0 L pg
R1i=x apwf,/;i Ro = x"a asepy, Rz =x"x Apody o™,

Ry = x*xPa’a® 2y

o :B o ﬂ 7
Rs = x"x"x"a; a/}/b(;,u, Re = x*x a,pa 70,

_ o p o M
R7=x x/ayalpaﬁsaqr oeuel e,

o M o
Rg = x%x a%a“,gapraqY aueovel e, Rg=x aﬁsm,

_ Ve
Rig=x"x agyEyps

o B o y 0
Ri1=x aaﬂ, Rip = x"x x’awa(;},,
a B v 5 K s ki
Riz=x apaa,aqkaslslgya(;#sp‘fs’58 ,
and
=P =e11=60=0, P=¢p=—-61=—g1=1
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