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Abstract

In this article we give a complete global classification of the classQSessof planar, essentially
quadratic differential systems (i.e. defined by relatively prime polynomials and whose points at
infinity are not all singular), according to their topological behavior in the vicinity of infinity.
This class depends on 12 parameters but due to the action of the affine group and re-scaling of
time, the family actually depends on five parameters. Our classification theorem (Theorem 7.1)
gives us a complete dictionary connecting very simple integer-valued invariants which encode
the geometry of the systems in the vicinity of infinity, with algebraic invariants and comitants
which are a powerful tool for computer algebra computations helpful in the route to obtain the
full topological classification of the classQS of all quadratic differential systems.
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1. Introduction

We consider real planar polynomial differential system, i.e. systems of the
form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (S)

wherep and q are polynomials inx and y with real coefficients(p, q ∈ R[x, y]). In
this article, a system of the above form with max(deg(p), deg(q)) = 2 will be called
quadratic.

These are the simplest nonlinear differential systems. However, global problems re-
garding this class are difficult to solve. In 1900 Hilbert gave his list of 23 problems
and one of them still unsolved, the second part of Hilbert’s 16th problem, is on planar
polynomial differential systems. This problem which asks for the maximumH(n) of the
numbers of limit cycles occurring in differential systems with max(deg(p), deg(q))=n

(for a discussion of this problem cf.[25]), is still unsolved even for quadratic differen-
tial systems. The interest is in the global behavior of all solutions in the whole plane
and even at infinity (cf.[10]) and this for a whole family of systems, which is why
this problem is so hard. The setQS of quadratic differential systems depends on 12
parameters, the coefficients of the two polynomialsp and q. On QS acts the group of
affine transformations and of changes of scale on the time axis. The orbit space ofQS
under the group action is five dimensional. But even five is a large number and it is
expected that this class will yield over 2000 topologically distinct phase portraits. For
this reason people began by studying particular subclasses ofQS and in some cases a
complete classification of phase portraits with respect to topological equivalence was
obtained (quadratic systems with a center[18,23,31], quadratic Hamiltonian systems
[1,7], quadratic chordal systems[9], quadratic systems with a weak focus of third order
[2,14], etc.).

The goal in most of these articles was to obtain all topologically distinct phase
portraits for that specific subclass ofQS and whenever possible its bifurcation diagram.
Two systems(S) and(S′) are topologically equivalent if there exists a homeomorphism
f : R2 → R2 such thatf carries orbits to orbits preserving (or reversing) their
orientation. In most articles, the classifications were done by using specific charts
and normal forms for the systems in these charts with respect to parameters satisfying
certain inequalities or equations. The results are not readily applicable for systems given
in normal forms with respect to other charts. Ever since Felix Klein gave his famous
Erlangen program, we are used to calling a property geometric, if it is invariant under
the action of some group. In this sense, most of the results obtained are not geometrical
since they are chart-dependent.

Chart-independent classifications results were obtained by Sibirsky and his school
(cf. [7,22,30]) using the algebraic invariant theory of differential equations developed
by Sibirsky and his disciples (cf.[21,28,29,32]). Most of the articles of Sibirsky’s
school were published in Russian, only some appeared in translations which partly
explains why this theory is rather unknown in the west. In these articles, invariants
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and comitants are introduced in their multi-index tensorial form, certain rather artificial
polynomial combinations of these are chosen and classifications are given in terms of
these combinations. The geometry of the systems remains hidden behind this technical
language.

When studying truly global problems involving limit cycles such as for example
Hilbert’s 16th problem, second part, the perturbations of the systems possessing a cen-
ter play an essential role. It is thus crucial to choose normal forms such that the
algebraic varieties of systems possessing a center, computed with respect to these nor-
mal forms, be as simple as possible, some of them even linear varieties. This helps
in the display of the bifurcation diagram of the systems with center on these al-
gebraic varieties. We also need the global scheme of singularities finite and infinite
for the classQS. However, a normal form good for the global study of singularities
may yield algebraic varieties of systems with center which are complicated and on
which the display of their bifurcation diagram turns out to be an impossible task.
Vice versa, a normal form which yields simple looking algebraic varieties of systems
with center may turn out to be very inconvenient for the study of singularities and
for their blow-out. It is thus important to obtain the geometric global scheme of sin-
gularities finite or infinite in invariant form, i.e. independent of any specific normal
form.

The goal of this article is to obtain the global geometric scheme of singulari-
ties at infinity, in invariant form, for the whole classQS. An analogous work for
the finite singularities is presently in progress. We point out that for quadratic sys-
tems the points at infinity are solutions of a cubic form. We need theirsimultaneous
study, in invariant form, and this not just for an individual system but for the whole
classQS.

Furthermore, to easily grasp the geometry of the systems, simple invariants, simpler
than the configuration space of Markus (cf.[15]) are needed. Such simple integer-valued
invariants reflecting the geometry of the systems were used in[14,26].

In spite of their awesome character, polynomial invariants and comitants are a useful
and very powerful computational tool, applicable to any canonical form, and they can
be programmed on a computer. There is thus a need to merge the purely geometric
invariants above mentioned with the algebraic invariant approach and we do this in the
present work.

We briefly review now the history of the study of singularities at infinity of the class
QS. Kooij and Reyn[13] obtained all possible local phase portraits around a single
singular point at infinity of an arbitrary quadratic vector field. They did not consider the
possible ways of combining such singularities so as to obtain a topological classification
of quadratic systems in a neighborhood of the line at infinity. Nicolaev and Vulpe[16]
obtained such a classification in terms of algebraic invariants and comitants and in
[3] the affine invariant classification of quadratic system with respect to the possible
distributions of the multiplicities of singularities at infinity was obtained by Baltag and
Vulpe [3].

These classifications use the technical language of algebraic invariant theory devel-
oped by the school of Sibirsky ([6,28,32]etc.) and as previously indicated, the geometry
of the systems remains hidden behind this technical language.
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In this work we bring out the global geometry at infinity of the systems by using
some global algebro-geometric concepts such as for example the notion of divisor
and of zero-cycle on the line at infinity. We also combine the geometric approach in
[14,26] with the algebraic invariant approach in[3,16] for the topological classification
of quadratic systems in the neighborhood of infinity. A first version of this article,
appeared in[27]. Our article proved to be very useful for the ongoing study of the
family of quadratic systems with a second-order weak focus. We point out that in
the attempt to merge the simple integer-valued invariants with the algebraic ones, the
geometry of the systems led us to much simpler algebraic invariants than those in[16]
and to simpler conditions in our classification Theorem 7.1.

The article is organized as follows: In Section2 we consider the two compactifi-
cations of real planar polynomial systems and the foliations with singularities, on the
real and complex projective planes, associated to these systems.

In Section3 we describe the purely geometric objects, i.e. the divisors attached to
the line at infinity, introduced in[26], which encode the multiplicities at infinity of the
systems, and attach to these some integer-valued global affine invariants.

In Section4 we consider group actions on quadratic differential systems and define
algebraic invariants and comitants with respect to these group actions. We also give
using a comitant, canonical forms for these differential systems according to their
behavior at infinity.

In Section 5 we state and prove the classification theorem (Theorem 5.1) of the
quadratic differential systems according to their multiplicity divisors at infinity and
for each class we give the necessary and sufficient conditions in terms of algebraic
invariants and comitants with respect to the group action. These conditions allow us to
compute for any system and in any chart the types of the multiplicity divisors associated
to the system.

In Section6 we introduce new classifying tools, among them the index divisor en-
coding globally the topological indices of the singularities at infinity of any polynomial
differential system without a line of singularities at infinity. We also introduce a divisor
encoding globally the number of local separatrices bounding a hyperbolic sector of a
singular point at infinity.

In Section7 we state and prove the topological classification theorem (Theorem 7.1).
This classification is expressed in both geometrical, affine integer-valued invariants, and
in terms of algebraic invariants and comitants. A complete dictionary connecting the
integer-valued geometric invariants with the algebraic invariants and comitants is given.
One side of the dictionary displays the geometry of the systems and the other enables us
to use the powerful tool of computer algebra to perform calculations useful in the route
to obtain the full topological classification of the whole class of quadratic differential
systems.

In the Appendix we list the invariants and comitants used in[16] and which are
needed for the proofs of the main results. These are also listed for the purpose of
comparison with the simpler algebraic invariants and comitants used in this article.
Highlighting the geometry of the systems via the integer-valued invariants, helped us
to choose better algebraic invariants and comitants than those in[16], closer to the
geometry of the systems.
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2. The two compactifications of real planar polynomial vector fields

A real planar polynomial system(S) can be compactified on the sphere as follows:
Consider thex, y plane as being the planeZ = 1 in the spaceR3 with coordinates
X, Y, Z. The central projection of the vector fieldp�/�x + q�/�y on the sphere of
radius one yields a diffeomorphic vector field on the upper hemisphere and also another
vector field on the lower hemisphere. Poincaré indicated briefly in[20] that one can
construct an analytic vector fieldV on the whole sphere such that its restriction on
the upper hemisphere has the same phase curves as the one induced by the phase
curves of (S) via the central projection. A complete proof was given much later in
[10]. The analytic vector fieldV on the whole sphere obtained in this way is called the
Poincaré field associated to the system(S). The phase curves ofV coincide in each
chart with phase curves induced by planar polynomial vector fields, in particular in the
chart corresponding toZ = 1, denoting the two coordinate axesx, y corresponding to
the OX andOY directions, they coincide with the phase curves induced by(S). The
two planar polynomial vector fieldsU,V associated to the charts forX = 1 (with
local coordinates(u, z)) and for Y = 1 (with local coordinates(v,w)) and changes of
coordinatesu = y/x, z = 1/x, or v = x/y, w = 1/y are as follows:

U




du

dt
= C(1, u, z)

dz

dt
= zP (1, u, z)

and V




dv

dt
= C(v, 1, w),

dw

dt
= −wQ(v, 1, w),

whereP,Q andC are defined further below.
By the compactification of the planar polynomial vector field associated to(S) we

understand the restrictionV|H′ (where by H′ we understand the upper hemisphere
H completed with the equator) of the analytic vector fieldV on the sphere. We are
interested in the behavior of the phase curves of(S) on R2 (or V|H) completed with
its points “at infinity’’, i.e. on the equatorS1 of S2 for which we useU andV above.
Since the vertical projection is a diffeomorphism ofH′ on the disk{(x, y)|x2+y2�1}
we can view the phase portraits of our systems(S) on this disk, called the Poincaré
disk.

We shall also use the compactifications (real or complex) associated to the foliations
with singularities (real or complex) attached to a real polynomial system(S) (cf. [8]
or [25]). These foliations can be described as follows: For a real polynomial system
(S) with n = max(deg(p), deg(q)) we associate to the two polynomialsp, q ∈ R[x, y]
defining (S), the homogeneous polynomialsP,Q in X, Y, Z, of degreen with real
coefficients, defined as follows:

P(X, Y,Z) = Znp(X/Z, Y/Z), Q(X, Y,Z) = Znq(X/Z, Y/Z).

The real (respectively complex) foliations with singularities associated to(S) on the real
(respectively complex) projective planeP2(R) (respectively,P2(C)) are then described
in homogeneous coordinates by the equation

A(X, Y,Z) dX + B(X, Y,Z) dY + C(X, Y,Z) dZ = 0, (2.1)
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where A = ZQ, B = −ZP, C(X, Y,Z) = YP (X, Y,Z) − XQ(X, Y,Z) verify the
following equality:

A(X, Y,Z)X + B(X, Y,Z)Y + C(X, Y,Z)Z = 0 (2.2)

in R[X, Y,Z]. (For more details see[8] or [25]).
Our goal in this work is to give a topological classification, in terms of both geometric

and algebraic invariants, of the quadratic systems(S) and their compactification onH ′
in the neighborhood of the equator in the closed upper hemisphereH ′ of the Poincaré
sphere. Correspondingly this yields a topological classification of the real foliations, in
the neighborhood of the line at infinity associated to the imbedding of the affine plane:

j : a2(R) = R2 → P2(R),

wherej (x, y) = [x : y : 1]. The line at infinity in this case is thereforeZ = 0.

3. Divisors on the line at infinity encoding globally the multiplicities of
singularities

In this section we consider real polynomial systems(S) with n = max(deg(p),

deg(q)) and their associated foliations with singularities, real or complex, defined in
the previous section by Eq. (2.1) with coefficientsA,B,C verifying (2.2).

Definition 3.1. For a system (S) we call divisor on the line at infinity, a formal expres-
sion of the formD = ∑

n(w)w wherew is a point of the complex lineZ = 0 of the
complex protective plane,n(w) is an integer and only a finite number of the numbers
n(w) are not zero. We call degree of the divisorD the integer deg(D) = ∑

n(w). We
call support of the divisorD the set Supp(D) of pointsw such thatn(w) �= 0.

For systems(S) two divisors on the line at infinity were introduced in[26]. These
were applied in[14] for classifying topologically the quadratic systems with a weak
focus of third order.

Definition 3.2. Assume that a system (S) is such thatp(x, y) andq(x, y) are relatively
prime overC and thatypn−xqn is not identically zero (i.e.Z�C). Herepn (respectively
qn) is the sum of terms of degreen of p (respectively ofq) in case at least one of
them has a non-zero coefficient and zero otherwise.

The following divisor on the line at infinity is then well defined:

DS(P,Q;Z) =
∑

Iw(P,Q)w,

where the sum is taken for all pointsw = [X : Y : 0] on the lineZ = 0 andIw(P,Q)

is the intersection number (or multiplicity of intersection) atw (cf. [11]) of the complex
projective curvesP(X, Y,Z) = 0 andQ(X, Y,Z) = 0.

We thus have Supp(DS(P,Q;Z)) = {w ∈ {Z = 0}|P(w) = 0= Q(w)}.
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The above divisor is a purely geometric object which encodes the contribution to the
multiplicities of the singularities at infinity of system(S), arising from singularities in
the finite plane, i.e. how many singular points in the finite plane could appear from
those singularities at infinity in polynomial perturbations of degreen of (S).

Let us list a number of integer-valued invariants which are attached to this divisor.

Notation 3.1.

N∞,f (S) = #Supp(DS(P,Q;Z));

�(S) = max{Iw(P,Q)|w ∈ Supp(DS(P,Q;Z))};

for everym��(S), s(m) = #{w ∈ {Z = 0}|Iw(P,Q) = m}.

Note thatN∞,f is the number of distinct infinite singularities of(S) which could
produce finite singular points in a polynomial perturbation of degreen of (S).

We also need another divisor on the line at infinity which was used in[14,26] and
which is defined as follows:

Definition 3.3. SupposeZ�C and consider

DS(C,Z) =
∑

Iw(C,Z)w,

where the sum is taken for all pointsw = [X : Y : 0] on the lineZ = 0 of the complex
projective plane.

Clearly for quadratic differential systems deg(DS(C,Z)) = 3.

Definition 3.4. A point w of the projective planeP2(C) is said to be of multiplicity
(r, s) for a system (S) if

(r, s) = (Iw(P,Q), Iw(C,Z)).

Following [26] we fuse the above two divisors on the line at infinity into just one
but with values in the ringZ2:

Definition 3.5. DS =
∑ (

Iw(P,Q)

Iw(C,Z)

)
w,

wherew belongs to the lineZ = 0 of the complex projective plane.

The above-defined divisor describes the number of singularities which could arise in
a perturbation of(S) from singularities at infinity of(S) in both the finite plane and
at infinity.
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Definition 3.6. We call type of the divisorDS(P,Q;Z) the set

{(s(m),m)|m��(S)}.

Remark 3.1. We observe that the types ofDS(P,Q;Z) and of DS(C,Z) are affine
invariants since bothIw(P,Q) and Iw(C,Z) remain invariant under the action of the
affine group on systems (S) [19,24].

Notation 3.2. Let us introduce for planar systems (S) the following notations:

�S = degDS(P,Q;Z), MC = max{Iw(C,Z)|w ∈ Supp(DS(C,Z))}.

Consider a real quadratic differential system (S):

dx

dt
= p0 + p1(x, y)+ p2(x, y) ≡ p(x, y),

dy

dt
= q0 + q1(x, y)+ q2(x, y) ≡ q(x, y). (3.1)

Suppose gcd(p, q) = constant, wherepi (respectivelyqi) is the sum of terms inx
and y of degreei of p (respectively ofq) in case at least one such term has non-zero
coefficient and zero otherwise. Recall thatQS denotes the class of all real quadratic
systems.

We want to list all possible divisorsDS for quadratic systems(S) and characterize in
terms of invariants and comitants the types of these divisors. This would make possible
for any given system and in any chart the computation of the type of its divisorDS .
To do this we need to construct invariants and comitants with respect to group actions,
which we do in the next section.

4. Group actions on quadratic systems (3.1) and invariants and comitants with
respect to these actions

4.1. Group actions on quadratic systems (3.1)

More explicitly systems (3.1) can be written in the form:

dx

dt
= a00+ a10x + a01y + a20x

2 + 2a11xy + a02y
2,

dy

dt
= b00+ b10x + b01y + b20x

2 + 2b11xy + b02y
2,

and let a = (a00, . . . , b02). Consider the ringR[a00, a10, . . . , a02, b00, b10, . . . ,

b02, x, y] which we shall denoteR[a, x, y].
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On the setQS of all quadratic differential systems (3.1) acts the group Aff(2,R) of
affine transformations on the plane. Indeed for everyg ∈ Aff (2,R), g : R2 → R2 we
have

g :
(

x̃

ỹ

)
= M

(
x

y

)
+ B, g−1 :

(
x

y

)
= M−1

(
x̃

ỹ

)
−M−1B,

whereM = ‖Mij‖ is a 2× 2 non-singular matrix andB is a 2× 1 matrix overR. For
every S ∈ QS we can form its transformed system̃S = gS:

dx̃

dt
= p̃(x̃, ỹ),

dỹ

dt
= q̃(x̃, ỹ), (S̃)

where (
p̃(x̃, ỹ)

q̃(x̃, ỹ)

)
= M

(
(p ◦ g−1)(x̃, ỹ)

(q ◦ g−1)(x̃, ỹ)

)
.

The map

Aff (2,R)×QS→ QS

(g, S) → S̃ = gS

verifies the axioms for a left group action. For every subgroupG ⊆ Aff (2,R) we have
an induced action ofG on QS . We can identify the setQS of systems (3.1) with a
subset ofR12 via the embeddingQS ↪→ R12 which associates to each system (3.1) the
12-tuple (a00, . . . , b02) of its coefficients.

On systems (S) such that max(deg(p), deg(q))�2 we consider the action of the
group Aff(2,R) which yields an action of this group onR12. For everyg ∈ Aff (2,R)

let rg : R12 → R12 be the map which corresponds tog via this action. We know (cf.
[30]) that rg is linear and that the mapr : Aff (2,R)→ GL(12,R) thus obtained is a
group homomorphism. For every subgroupG of Aff (2,R), r induces a representation
of G onto a subgroupG of GL(12,R).

4.2. Invariants and comitants associated to the group actions

Definition 4.1. A polynomial U(a, x, y) ∈ R[a, x, y] is called a comitant of systems
(3.1) with respect to a subgroupG of Aff (2,R), if there exists� ∈ Z such that for
every (g,a) ∈ G× R12 and for every(x, y) ∈ R2 the following relation holds:

U(rg(a), g(x, y)) ≡ (detg)−�U(a, x, y),

where detg = detM. If the polynomialU does not explicitly depend onx and y then
it is called invariant. The number� ∈ Z is called the weight of the comitantU(a, x, y).
If G = GL(2,R) (or G = Aff (2,R)) then the comitantU(a, x, y) of systems (3.1) is
called GL-comitant (respectively, affine comitant).
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Definition 4.2. A subsetX ⊂ R12 will be called G-invariant, if for everyg ∈ G we
have rg(X) ⊆ X.

As it can easily be verified, the following polynomials are GL-comitants of system
(3.1):

Ci(a, x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;
M(a, x, y) = 2 Hess(C2(a, x, y));

�(a) = Discrim(C2(a, x, y));
K(a, x, y) = Jacob(p2(x, y), q2(x, y));

�0(a) = Resx(p2, q2)/y
4 = Discrim(K(a, x, y))/16;

H(a, x, y) = −Discrim(�p2(x, y)+ �q2(x, y))|{�=y,�=−x};
L(a, x, y) = 2K − 4H −M;

K1(a, x, y) = p1(x, y)q2(x, y)− p2(x, y)q1(x, y). (4.1)

Let T (2,R) be the subgroup of Aff(2,R) formed by translations. Consider the linear
representation ofT (2,R) into its corresponding subgroupT ⊂ GL(12,R), i.e. for every
� ∈ T (2,R), � : x = x̃ + �, y = ỹ + � we consider as abover� : R12 → R12.

Definition 4.3. A GL-comitant U(a, x, y) of systems (3.1) is called aT -comitant if
for every (�,a) ∈ T (2,R)×R12 and for every(x̃, ỹ) ∈ R2 the relationU(r� ·a, x̃, ỹ) =
U(a, x̃, ỹ) holds.

Let

Ui(a, x, y) =
di∑

j=0

Uij (a)x
di−j yj , i = 1, . . . , s

be a set of GL-comitants of systems (3.1) wheredi denotes the degree of the binary
form Ui(a, x, y) in x and y with coefficients inR[a] where R[a] = R[a00, . . . , b02].
We denote by

U = {Uij (a) ∈ R[a]|i = 1, . . . , s, j = 0, 1, . . . , di},

the set of the coefficients inR[a] of the GL-comitantsUi(a, x, y), i = 1, . . . , s, and
by V (U) its associated algebraic set:

V (U) = {a ∈ R12|Uij (a) = 0 ∀Uij (a) ∈ U}.

Definition 4.4. A GL-comitant U(a, x, y) of systems (3.1) is called a conditionalT -
comitant (or CT-comitant) modulo〈U1, U2, . . . , Us〉 if the following two conditions are
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satisfied:
(i) the algebraic subsetV (U) ⊂ R12 is affinely invariant (see Definition 4.2);

(ii) for every (�,a) ∈ T (2,R)×V (U) we haveU(r� ·a, x̃, ỹ) = U(a, x̃, ỹ) in R[x̃, ỹ].

In other words, a CT-comitantU(a, x, y) modulo 〈U1, U2, . . . , Us〉 is a T -comitant
on the algebraic subsetV (U) ⊂ R12.

The following proposition is straightforward.

Proposition 4.1. Let S ∈ QS and let a ∈ R12 be its 12-tuple of coefficients. The
common points ofP = 0 and Q = 0 on the lineZ = 0 are given by the common
linear factors overC of p2 andq2. This yields the geometrical meaning of the comitants
�0, K and H:

gcd (p2(x, y), q2(x, y)) =




constant iff �0(a) �= 0,

bx + cy iff �0 = 0,K(a, x, y) �= 0,

(bx + cy)(dx + ey) iff

{
�0(a) = 0,K(a, x, y) = 0,
and H(a, x, y) �= 0;

(bx + cy)2 iff

{
�0 = 0,K(a, x, y) = 0,
and H(a, x, y) = 0;

wherebx + cy, dx + ey ∈ C[x, y] are some linear forms andbe − cd �= 0.

Definition 4.5. The polynomialU(a, x, y) ∈ R[a, x, y] has well determined sign on
V ⊂ R12 with respect tox, y if for every fixed a ∈ V , the sign of the polynomial
function U(a, x, y) on R2 is constant where this function is not zero.

Observation 4.1.We draw the attention to the fact, that if a CT-comitantU(a, x, y)

of even weight is a binary form inx, y, of even degree in the coefficients of (3.1)
and has well-determined sign on some affine invariant algebraic subsetV (U) then this
property is conserved by any affine transformation and the sign is conserved.

4.3. Canonical forms of planar quadratic systems in the neighborhood of infinity

Lemma 4.1. For a system(3.1) with C2(a, x, y) �≡ 0 the divisorDS(C,Z) is well de-
fined and its type is determined by the corresponding conditions indicated in
Table 1, where we writeqc

1 + qc
2 + q3 if two of the points, i.e. qc

1, q
c
2, are com-

plex but not real. Moreover, for each type of the divisorDS(C,Z) given by Table1
the quadratic systems(3.1) can be brought via a linear transformation to one of the
following canonical systems(SI)–(SIV ) corresponding to their behavior at infinity.

Proof. The Table1 follows easily from the definitions of�(a) andM(a, x, y) in (4.1).
Let us consider the GL-comitantC2(a, x, y) �≡ 0 simply as a cubic binary form inx
and y. For everya ∈ R12 the binary formC2(a, x, y) can be reduced to one of the
canonical forms given below, by a linear transformation, i.e. there existg ∈ GL(2,R) :
g(x, y) = (u, v) such that the transformed binary formgC2(a, x, y) = C2(a, g−1(u, v))
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Table 1

MC Type of DS(C,Z) Necessary and sufficient Notation for the conditions
conditions on the comitants

1 q1 + q2 + q3 � > 0 (I1)
qc

1 + qc
2 + q3 � < 0 (I2)

2 2q1 + q2 � = 0, M �= 0 (I3)
3 3q M = 0 (I4)




dx

dt
= k + cx + dy + gx2 + (h− 1)xy,

dy

dt
= l + ex + fy + (g − 1)xy + hy2;

(SI )




dx

dt
= k + cx + dy + gx2 + (h+ 1)xy,

dy

dt
= l + ex + fy − x2 + gxy + hy2;

(SII )




dx

dt
= k + cx + dy + gx2 + hxy,

dy

dt
= l + ex + fy + (g − 1)xy + hy2;

(SIII )




dx

dt
= k + cx + dy + gx2 + hxy,

dy

dt
= l + ex + fy − x2 + gxy + hy2,

(SIV )

is one of the following:

(I) xy(x − y); (II ) x(x2 + y2); (III ) x2y; (IV ) x3, (4.2)

which correspond to the types of the divisorDS(C,Z) indicated in Table1. On the
other hand, according to the Definition4.1 of the GL-comitant, forC2(a, x, y) whose
weight is � = −1, we have forg ∈ GL(2,R)

C2(rg(a), g(x, y)) = det(g)C2(a, x, y).

Using g(x, y) = (u, v) we obtain

C2(rg(a), u, v) = �C2(a, g−1(u, v)), � ∈ R,

where we may consider� = 1 by rescaling:u = u1/�, v = v1/�.
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Thus, recalling that

p2(x, y) = a20x
2 + 2a11x, y + a02y

2, q2(x, y) = b20x
2 + 2b11x, y + b02y

2,

for the first canonical form in (4.2) we have

C2(a, x, y) = −b20x
3+ (a20− 2b11)x

2y + (2a11− b02)xy
2 + a02y

3 = xy(x − y).

Identifying the coefficients of the above identity we get the canonical form (SI ): Anal-
ogously for the cases II, III and IV we obtain the canonical form (SII ), (SIII ) and (SIV )
associated to the respective polynomials in (4.2). �

5. Classification of the quadratic systems according to the types of the
multiplicity divisor DS

A specific type of a divisorDS yields a class of quadratic systems (3.1). We want
to list all possible types of the divisorsDS and for each specific type to determine
the subset ofQS where DS has this type. We want to give this subset in terms of
algebraic invariants and comitants so as to be able to check these conditions for every
system (3.1) in any chart.

In order to construct other necessary invariant polynomials let us consider the
differential operatorL = x · L2 − y · L1 acting on R[a, x, y] constructed in[4],
where

L1 = 2a00
�

�a10
+ a10

�
�a20

+ 1

2
a01

�
�a11

+ 2b00
�

�b10
+ b10

�
�b20

+ 1

2
b01

�
�b11

,

L2 = 2a00
�

�a01
+ a01

�
�a02

+ 1

2
a10

�
�a11

+ 2b00
�

�b01
+ b01

�
�b02

+ 1

2
b10

�
�b11

as well as the classical differential operator(f,	)(2) acting on R[a, x, y] which is
called transvectantof the second index (see, for example,[12,17]):

(f,	)(2) = �2
f

�x2

�2	

�y2
− 2

�2
f

�x�y
�2	

�x�y
+ �2

f

�y2

�2	

�x2
.

Here f (x, y) and 	(x, y) are polynomials inx and y.
In [5] it is shown that if a polynomialU ∈ R[a, x, y] is a comitant of system (3.1)

with respect to the group GL(2,R) thenL(U) is also a GL-comitant. The same is true
for the operator transvectant of two comitantsf and 	.
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So by using these operators and the GL-comitants�0(a), M(a, x, y) andK(a, x, y)

we shall construct the following polynomials:

�i (a, x, y) =
1

i! L
(i)(�0), i = 1, . . . , 4,


(a) = (M,K)(2), 
1(a) = (M,C1)
(2), (5.1)

whereL(i)(�0) = L(L(i−1)(�0)).
These polynomials are in fact comitants of system (3.1) with respect to the group

GL(2,R).
To reveal the geometrical meaning of the comitants�i (a, x, y), i = 0, 1, . . . , 4 we

use the following resultants whose calculation yield:

ResX(P,Q) = �0Y
4 + �10Y

3Z + �20Y
2Z2 + �30YZ3+ �40Z

4, (5.2)

ResY (P,Q) = �0X
4 + �01X

3Z + �02X
2Z2 + �03XZ3+ �04Z

4, (5.3)

where�ij = �ij (a) ∈ R[a00, . . . , b02].
On the other hand for�i , i = 0, 1, . . . , 4 from (5.1) we have

�0(a) = �0,

�1(a, x, y) = �10x + �01y,

�2(a, x, y) = �20x
2 + �11xy + �02y

2,

�3(a, x, y) = �30x
3+ �21x

2y + �12xy
2 + �03y

3,

�4(a, x, y) = �40x
4 + �31x

3y + �22x
2y2 + �13xy

3+ �04y
4.

We observe that the leading coefficients of the comitants�i , i = 0, 1, . . . , 4 with
respect tox (respectivelyy) are the corresponding coefficients in (5.2) (respectively
(5.3)).

We draw the attention to the fact, that if the comitant�i (a, x, y)(i = 0, 1, . . . , 4) is
not equal to zero then we may assume that its leading coefficients are both non-zero,
as this can be obtained by applying a rotation of the phase plane of system (3.1). From
here and (5.2), (5.3) and the above values of�i , i = 0, 1, . . . , 4 we have:

Lemma 5.1. The systemP(X, Y,Z) = Q(X, Y,Z) = 0 possessesm(= �S)(1�m�4)
solutions[Xi : Yi : Zi] with Zi = 0 (i = 1, . . . , m) (considered with multiplicities) if
and only if for everyi ∈ {0, 1, . . . , m − 1} we have�i (a, x, y) = 0 in R[a, x, y] and
�m(a, x, y) �= 0.

Remark 5.1. It can easily be checked that the following identity holds:

�4(a,X, Y ) = ResZ(P (X, Y,Z),Q(X, Y,Z)).
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Hence, clearly for any solution[X0 : Y0 : Z0] (including those withZ0 = 0) of the
system of equationsP(X, Y,Z) = Q(X, Y,Z) = 0, the following relation is satisfied:
�4(a,X0, Y0) = 0.

We give below our theorem of classification of the types of all divisorsDS occurring
in quadratic systems and we associate to each type the necessary and sufficient condi-
tions in terms of algebraic invariants and comitants. The computation of these invariants
and comitants can be programmed using symbolic manipulations and implemented on
computers. Thus for any specific system (3.1) we can calculate explicitly its divisor
type in whatever chart (3.1) is given.

Theorem 5.1.We consider here the familyQSess of all systems (S) inQS which are
essentially quadratic, i.e. gcd(P,Q) = 1 and Z�C. All possible values which could
be taken by�S for such systems(3.1) are as listed in the first column of Table3.
For each value of�S , all possibilities we have forMC , are listed in the second
column. For each combination(�S,MC) all the possibilities we have for the form of
DS are those indicated in the third column. For a specified(�S,MC), the necessary
and sufficient conditions to have the form ofDS as indicated in the third column
are those indicated in the corresponding fourth column. (We recall thatIj are the
conditions indicated in Table1. In the last column of Table3 we denote by�i the
class of all quadratic systems which possess(�S,MC,DS) as indicated in the first three
columns.)

Proof. We need to examine the four distinct cases corresponding to the canonical forms
(SI )–(SIV ), respectively.

5.1. Systems of typeSI

For systems (SI ) we have�0 = gh(g + h− 1) and for �0 �= 0 according to Lemma
5.1 we have�S = 0 and, hence, we obtain a system of the class�1 (see Table 2).

Let us consider now�0 = 0. In this case we havegh(g + h − 1) = 0 and without
loss of generality we may assumeg = 0. Indeed, ifh = 0 (respectively,g+h−1= 0)
we can apply the linear transformation which will replace the straight liney = 0
with x = 0 (respectively,y = 0 with y = x). Let g = 0. By using the translation
x = x1 + (f + eh)/2, y = y1 + e/2 we may assumee = f = 0. In this way system
(SI ) will be brought to the following canonical form:

ẋ = k + cx + dy + (h− 1)xy, ẏ = l − xy + hy2, (5.4)

for which we have

�1 = ch(1− h)y, 
 = 64h(1− h), K = 2h(h− 1)y2.

For �1 �= 0, from Lemma5.1 we obtain�S = 1 which leads us to the case�5.
Considering�1 = 0 we shall examine two cases:
 �= 0 and
 = 0.
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Table 2

�S MC Value of DS

Necessary and sufficient
�iconditions on the comitants

1

(0
1
)
p + (0

1
)
q + (0

1
)
r �0 �= 0, (I1) �1(0

1
)
p + (0

1
)
qc + (0

1
)
rc �0 �= 0, (I2) �2

0
2

(0
1
)
p + (0

2
)
q �0 �= 0, (I3) �3

3
(0

3
)
p �0 �= 0, (I4) �4

1

(1
1
)
p + (0

1
)
q + (0

1
)
r �0 = 0, �1 �= 0, (I1) �5(1

1
)
p + (0

1
)
qc + (0

1
)
rc �0 = 0, �1 �= 0, (I2) �6

1
2

(1
1
)
p + (0

2
)
q �0 = 0, �1 �= 0, 
 �= 0, (I3) �7(0

1
)
p + (1

2
)
q �0 = 0, �1 �= 0, 
 = 0, (I3) �8

3
(1

3
)
p �0 = 0, �1 �= 0, (I4) �9(2

1
)
p + (0

1
)
q + (0

1
)
r �0,1 = 0, �2 �= 0, 
 �= 0, (I1) �10

1

(1
1
)
p + (1

1
)
q + (0

1
)
r �0,1 = 0, �2 �= 0, 
 = 0, (I1) �11(2

1
)
p + (0

1
)
qc + (0

1
)
rc �0,1 = 0, �2 �= 0, 
 �= 0, (I2) �12

2

(0
1
)
p + (1

1
)
qc + (1

1
)
rc �0,1 = 0, �2 �= 0, 
 = 0, (I2) �13(2

1
)
p + (0

2
)
q �0,1 = 0, �2 �= 0, 
 �= 0, (I3) �14

2
(1

1
)
p + (1

2
)
q �0,1 = 0, �2 �= 0, 
 = 0, L = 0, (I3) �15(0

1
)
p + (2

2
)
q �0,1 = 0, �2 �= 0, 
 = 0, L �= 0, (I3) �16

3
(2

3
)
p �0,1 = 0, �2 �= 0, (I4) �17(3

1
)
p + (0

1
)
q + (0

1
)
r �0,1,2 = 0, �3 �= 0, 
 �= 0, (I1) �18

1
(2

1
)
p + (1

1
)
q + (0

1
)
r �0,1,2 = 0, �3 �= 0, 
 = 0, (I1) �19(3

1
)
p + (0

1
)
qc + (0

1
)
rc �0,1,2 = 0, �3 �= 0, (I2) �20

3

(3
1
)
p + (0

2
)
q �0,1,2 = 0, �3 �= 0, 
 �= 0, (I3) �21

2

(2
1
)
p + (1

2
)
q �0,1,2 = 0,�3 �= 0,
 = L = 0,
1 �= 0, (I3) �22(1

1
)
p + (2

2
)
q �0,1,2 = 0,�3 �= 0,
 = L = 0,
1 = 0, (I3) �23(0

1
)
p + (3

2
)
q �0,1,2 = 0, �3 �= 0, 
 = 0, L �= 0, (I3) �24

3
(3

3
)
p �0,1,2 = 0, �3 �= 0, (I4) �25
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Table 2
(Continued)

�S MC Value of DS

Necessary and sufficient
�iconditions on the comitants

(4
1
)
p + (0

1
)
q + (0

1
)
r �0,1,2,3=0, �4 �= 0, 
 �= 0, (I1) �26(3

1
)
p + (1

1
)
q + (0

1
)
r �0,1,2,3=0, �4 �= 0, 
 = 0, K1 �= 0, (I1) �27

1
(2

1
)
p + (2

1
)
q + (0

1
)
r �0,1,2,3=0, �4 �= 0, 
 = 0, K1 = 0, (I1) �28(4

1
)
p+(0

1
)
qc+(0

1
)
rc �0,1,2,3=0, �4 �= 0, 
 �= 0, (I2) �29(0

1
)
p+(2

1
)
qc+(2

1
)
rc �0,1,2,3=0, �4 �= 0, 
 = 0, (I2) �30

4
(4

1
)
p + (0

2
)
q �0,1,2,3=0, �4 �= 0, 
 �= 0, (I3) �31(3

1
)
p + (1

2
)
q �0,1,2,3=0, �4 �= 0, 
 = L = 0, 
1 �= 0, (I3) �32

2
(2

1
)
p + (2

2
)
q �0,1,2,3=0,�4 �= 0,
=L =
1=0,K1 = 0, (I3) �33(1

1
)
p + (3

2
)
q �0,1,2,3=0,�4 �= 0,
=L=
1=0,K1 �= 0, (I3) �34(0

1
)
p + (4

2
)
q �0,1,2,3=0, �4 �= 0, 
 = 0, L �= 0, (I3) �35

3
(4

3
)
p �0,1,2,3 = 0, �4 �= 0, (I4) �36

5.1.1. Case
 �= 0
As the condition
 �= 0 is equivalent to conditionK �= 0, according to Proposition

4.1 we conclude that SuppDS(P,Q;Z) contains exactly one pointp = [1 : 0 : 0]
since gcd(p2, q2) = y. By Lemma5.1 its multiplicity Ip(P,Q) depends of the number
of vanishing comitants�i (a, x, y). In this way we obtain that a quadratic system
belongs to the set�10 (respectively�18;�26) for �0,1 = 0, �2 �= 0 (respectively for
�0,1,2 = 0, �3 �= 0; �0,1,2,3 = 0, �4 �= 0). We use the compact notation�0,1,2 = 0 for
�0 = �1 = �2 = 0.

5.1.2. Case
 = 0
In this caseh(h− 1) = 0 and analogously to the previous case, without loss of the

generality we may assumeh = 0. Thus, for system (5.4) we obtain

�0 = �1 = 0, �2 = −cdxy, �3 = (k − l)(dy − cx)xy,

�4 = −xy[lc2x2 − (k − l)2xy + 2lcdxy + ld2y2], K1 = −xy(cx + dy).

So, if �2 �= 0 taking into consideration Remark5.1 and the value of the comitant�4,
we obtain the case�11 in Table 3.
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If �2 = 0 and �3 �= 0 then cd = 0, c2 + d2 �= 0 and clearly we arrive at the case
�19.

Let us now suppose that the conditions�2 = �3 = 0 hold.

5.1.2.1.K1 �= 0: Then c2 + d2 �= 0 and from�3 = 0 we obtaink = l which yields
either �4 = −ld2xy3 (for c = 0) or �4 = −lc2x3y (for d = 0). Both these cases lead
us to the case�27 in Table 3.

5.1.2.2.K1 = 0: In this case it follows at once thatc = d = 0 and, hence,�4 =
4(k − l)2x2y2. Thus taking into consideration Remark5.1 we obtain the case�28.

5.2. Systems of type (SII )

For a canonical system (SII ) we obtain

�0 = −h[g2 + (h+ 1)2], 
 = −64[g2 + (h+ 1)(1− 3h)],
K = 2(g2 + h+ 1)x2 + 4ghxy + 2h(h+ 1)y2

and for�0 �= 0 according to Lemma5.1 we have�S = 0. Thus we obtain the case�2
in Table 3.

Let us consider now�0 = 0, i.e. h[g2 + (h+ 1)2] = 0.

5.2.1. Case
 �= 0
In this case we haveh = 0 and since the condition
 �= 0 is equivalent to the

condition K �= 0, according to Proposition 4.1, SuppDS(P,Q;Z) contains only one
point, namely the real one. By Lemma5.1 its multiplicity depends of the number
of the vanishing comitants�i . Therefore the quadratic system belongs to the set�6
(respectively�12; �20; �29) for �1 �= 0 (respectively for�1 = 0, �2 �= 0; �1,2 =
0, �3 �= 0; �1,2,3 = 0, �4 �= 0).

5.2.2. Case
 = 0
The conditions�0 = 
 = 0 yield g = 0, h = −1 and translating the origin of

coordinates at the point (e/4, f/4) the system (SII ) will be brought to the form

ẋ = k + cx + dy, ẏ = l − x2 − y2, (5.5)

for which

�0 = �1 = 0, �2 = (c2 + d2)(x2 + y2),

�4 = (x2 + y2)[(k2 − c2l)x2 − 2cdlxy + (k2 − d2l)y2].

Thus, according to the Remark 5.1, for�2 �= 0 we obtain the case�13.
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Let us admit that condition�2 = 0 is satisfied. Thenc = d = 0 and for systems
(5.5) we have�3 = 0, �4 = k2(x2 + y2)2. This leads us to the case�30.

5.3. Systems of type (SIII )

For canonical systems (SIII ) one can calculate

�0 = gh2, 
 = −64h2, K = 2[g(g − 1)x2 + 2ghxy + h2y2].

It is quite clear that for�0 �= 0 we have�S = 0 and this leads us to the case�3.
Suppose�0 = 0. We examine the two cases:
 �= 0 and
 = 0.

5.3.1. Case
 �= 0
Thenh �= 0 which yieldsg = 0 and thus for the systems (SIII ) we have gcd(p2, q2) =

y. So, taking into consideration the Remark5.1 and the fact that for the systems (SIII )
the polynomialC2(x, y) = x2y we obtain the case�7 if �1 �= 0.

On the other hand the conditionh �= 0 impliesK �= 0. Hence, by Proposition4.1 and
Lemma 5.1, SuppDS(P,Q;Z) contains exactly one point [1:0:0] of the multiplicity
(�S, 1). Consequently we conclude that the quadratic system belongs to the set�14
(respectively,�21; �31) for �1 = 0, �2 �= 0 (respectively,�1,2 = 0, �3 �= 0; �1,2,3 =
0, �4 �= 0).

5.3.2. Case
 = 0
In this caseh = 0 and for systems (SIII ) with p2 = gx2, q2 = (g − 1)xy we have

�0 = 0, �1 = dg(g − 1)2x, L = 8gx2,

and gcd(p2, q2) = x. By Lemma 5.1 for �1 �= 0 the quadratic systems belong to the
set �8.

Supposing�1 = 0 we shall consider two subcases:L �= 0 andL = 0.

5.3.2.1. SubcaseL �= 0: Then g �= 0 and hence gcd(p2, q2) = x for g �= 1 and
gcd(p2, q2) = x2 for g = 1. Hence in both cases by Proposition4.1 and Lemma 5.1,
SuppDS(P,Q;Z) contains exactly one point [0:1:0] whose multiplicity depends of the
number of vanishing comitants�i (a, x, y). Therefore we conclude that the quadratic
systems belong to the set�16 (respectively�24; �35) for �2 �= 0 (respectively�2 =
0, �3 �= 0; �2,3 = 0, �4 �= 0).

5.3.2.2. SubcaseL = 0: For the systems (SIII ) we haveg = 0 and applying the
translation of the phase plane (to obtaine = f = 0) these systems can be brought to
the form

ẋ = k + cx + dy, ẏ = l − xy. (5.6)
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For systems (5.6) we have�0 = �1 = 0 and

�2 = −cdxy, �3 = −kxy(cx − dy), 
1 = −32d,

�4 = −xy[c2lx2 + (2cdl − k2)xy + d2ly2].

So, if �2 �= 0 by the Remark5.1 and Lemma5.1 systems (5.6) belong to the class
�15.

Let us suppose that the condition�2 = 0 holds.

5.3.2.2.1.If 
1 �= 0 thend �= 0 which impliesc = 0. Then�3 = dkxy2 and taking into
consideration the factorization of the comitant�4, we obtain the case�22 for �3 �= 0
and the case�32 for �3 = 0, �4 �= 0.

5.3.2.2.2.Let us suppose
1 = 0. Thend = 0 and for the system (5.6) we obtain

�3 = −ckx2y, �4 = −x2y(c2lx − k2y), K1 = −cx2y.

Therefore, if�3 �= 0 by Remark5.1 and Lemma5.1 systems (5.6) belong to the class
�23. If �3 = 0 we obtainck = 0 and we need to distinguish two cases:K1 �= 0 and
K1 = 0.

The conditionK �= 0 yields c �= 0 and, hence,k = 0. This leads us to the case�34.
If K1 = 0 thenc = 0 and we obtain the case�33.

5.4. Systems of type (SIV )

Note that for systems of the type (SIV ) we haveDS(C,Z) = 3q. So, SuppDS

(P,Q;Z) could contain only the point [0:1:0]. By Lemma5.1 its multiplicity depends
of the number of the vanishing comitants�i . Therefore we obtain that the quadratic
system belongs to the set�4 (respectively�9; �17; �25; �36) for �0 �= 0 (respectively
for �0 = 0, �1 �= 0; �0,1 = 0, �2 �= 0; �0,1,2 = 0, �3 �= 0; �0,1,2,3 = 0, �4 �= 0).

As all cases are examined, Theorem5.1 is proved. �

6. Divisors encoding the topology of singularities at infinity

We now need to consider the topological types of the singularities at infinity of
quadratic systems. For this we shall introduce a third divisor at infinity:

Definition 6.1. We call index divisor on the real line at infinity ofR2, associated to a
real system (S) such thatZ�C, the expression

∑
i(w)w wherew is a singular point on

the line at infinityZ = 0 of system (S) and i(w) is the topological index (cf.[14]) of
w, i.e. i(w) is the topological index of one of the two opposite singular pointsw, w′
of V on S2.
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Remark 6.1. This is a well-defined divisor which could be extended trivially to a
divisor

∑
j (w)w, w ∈ {Z = 0} on the line at infinityZ = 0 of C2 by letting

j (w) =
{

i(w) if w ∈ P2(R),

0 if w ∈ P2(C)\P2(R),

where we identifyP2(R) with its image via the inclusionP2(R) ↪→ P2(C) induced
by R ↪→ C.

Notation 6.1. We denote byI (S) the above divisor onZ = 0 in P2(C), i.e. I (S) =∑
j (w)w.

Notation 6.2. We denote byNC(S) (respectively, byNR(S)) the total number of distinct
singular points, be they real or complex (respectively, real), on the line at infinityZ = 0
of the complex (respectively, real) foliation with singularities associated to (S).

We need to see how the divisorI (S) = ∑
j (w)w and the divisorsDS(P,Q;Z) =∑

Iw(P,Q)w and DS(C,Z) = ∑
Iw(C,Z)p constructed in Section3 are combined.

For this we shall fuse these three divisors on the complex line at infinity into just one
but with the values in the abelian groupZ3:

Notation 6.3. Let us consider the following divisor with the value inZ3 on Z = 0:

DS =
∑
w

(Iw(C,Z), Iw(P,Q), j (w))w,

wherew belongs to the lineZ = 0 of the complex projective plane.

We cannot detect the multiplicities of the singularities at infinity of a systemS(�)
for the parameter value� from just the phase portrait ofS(�). On the other hand
DS(�) has dynamic qualities since it gives us some information about what could
happen to the phase portraits in the neighborhood of�. For example ifw ∈ {Z = 0}
and if Iw(P,Q) = 2 for S(�0), then we know that in the neighborhood of�0 the
phase portraits ofS(�) will have 2 finite points arising fromw in the neighborhood
of w.

We denote byH′ and H the following sets:

H′ = {X2 + Y 2 + Z2 = 1|Z�0}, H = {X2 + Y 2 + Z2 = 1|Z > 0}.

For (S) in QS satisfying the hypothesis of Theorem5.1 let 
(S) be the set of all
n∞ = 2NR(S) real singular points at infinity considered on the equatorS1 of the
Poincaré sphere.

We consider the functionnsect : 
(S)→ N wherensect(w) is the number of distinct
local sectors of the pointw ∈ S1 on H.
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Let w ∈ 
(S) and let�(S) = (w1, w2, . . . , wn∞) be the ordered sequence of singu-
larities of S on S1, enumerated whenS1 is described in the positive sense and such
that w1 = w.

Let OS(w) = (nsect(w1), nsect(w2), . . . , nsect(wn∞)). Then we have:

OS(wi) = (nsect(wi), nsect(wi+1), . . . , nsect(wn∞), nsect(w1), . . . , nsect(wi−1)).

Notation 6.4. We denote byO(S) anyone of the sequencesOS(wi).

Notation 6.5. We denote by max(nsect) the maximum value of the functionnsect, by
Nmax(nsect) = #{w ∈ S1|nsect(w) = max(nsect)} and by Nhsect(S) the total number of
hyperbolic sectors inH′ of singularities at infinity of a system(S) ∈ QSess.

Definition 6.2. Let h1(w1) and h2(w2) be two distinct hyperbolic sectors of singular-
ities at infinity w1, w2 of a system(S) ∈ QSess . (i) We say thath1(w1) and h2(w2)

are finitely adjacent ifw1 = w2 = w and the two sectorsh1(w1) and h2(w2) have a
common border which is a separatrix ofw in the finite plane.

(ii) We say thath1(w1) andh2(w2) are adjacent at infinity ifw1 andw2 are opposite
points of S1 and w1 (also w2) as a point ofS2 has two hyperbolic sectors with a
common border, part of the equator.

Notation 6.6. We shall use the following notation

N
f∞a
hsect = (N

f−a
hsect, N

∞−a
hsect ),

where N
f−a
hsect (respectivelyN∞−a

hsect ) is the total number of finitely adjacent couples of
hyperbolic sectors (respectively adjacent at infinity).

7. Classification of quadratic differential systems according to their behavior in
the neighborhood of infinity

The study of the geometry of the systems yields a simpler set of algebraic invariants
than those used in[16]. We refine here the invariants which appeared in[16] so as to
reveal the geometry of the systems.

We now need to relate the geometrical invariants defined in the previous section to
their algebraic counterparts, i.e. the comitants and algebraic invariants.

To do this we construct below the GL-comitants which we need, by using the
following basic ones:

Ci = ypi(x, y)− xqi(x, y), i = 0, 1, 2,

Di = �
�x

pi(x, y)+ �
�y

qi(x, y), i = 1, 2, J1 = Jacob(C0,D2),

J2 = Jacob(C0, C2), J3 = Discrim(C1), J4 = Jacob(C1,D2).
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Using comitants (4.1) and (5.1) we constructed in Sections4 and 5 we define the
following new polynomials:

N = K +H, R = L+ 8K, 
2 = −J1, � = M − 2K,

K2 = 4Jacob(J2, �)+ 3Jacob(C1, �)D1− �(16J1+ 3J3+ 3D2
1), (7.1)

K3 = 2C2
2(2J1− 3J3)+ C2(3C0K − 2C1J4)+ 2K1(C1D2 +K1).

All these polynomials are GL-comitants, being obtained from simpler GL-comitants.
In the statement of the next TheoremFig. j for j = 1, . . . , 40 will denote a phase

portrait in the vicinity of infinity of a quadratic system inQSess. The notation for the
figures in[16] was Figj, j = 1, . . . , 40. The correspondence between the two notations
is indicated in columns 6 and 7 in Table3.

In our next theorem we relate the geometry at infinity of quadratic systems with
algebraic and geometric invariants.

Theorem 7.1 (The classification theorem). We consider here the familyQSess of all
systems(S) in QS which are essentially quadratic, i.e. gcd(P,Q) = 1 and Z�C.

(A) The phase portraits in the vicinity of infinity of the classQSess are classified
topologically by the integer-valued affine invariantJ = (O,Nhsect, N

f∞a
hsect) which ex-

presses geometrical properties of the systems, e.g. number of real singularities, number
of their sectors and the way in which these numbers are concatenated, etc. The clas-
sification appears in Table3 with the corresponding phase portraits in Table5, where
they are listed for each value ofNR(S) in order of increasing topological complexity.

(B) The geometrical properties in the neighborhood of infinity of quadratic systems
(S) in QSess are expressed in terms of algebraic invariants and comitants as indicated
in Table 4, which contains the full information regarding multiplicities and indices of
the singularities at infinity for all quadratic differential systems inQSess. The conditions
appearing in the last column of Table4 are affinely invariant.

The proof is based on the Theorem5.1 as well as on the invariant classification
of quadratic systems at infinity given in[16], subject to some corrections as we shall
indicate below.

We point out that the affinely invariant conditions occurring in partB of the theorem,
greatly simplify the analogous conditions in[16].

Remark 7.1 (Corrections to Nikolaev and Vulpe[16] ). In the statement of Theorem
2 (a), b)) in [5, p. 92] �m > 0 must be replaced by�m < 0 and conversely. Since
this theorem was used in[16] we have to note that several expressions in the se-
quences of the invariant conditions given in[16] must be taken with opposite sign, more
precisely:

• Fig. 4. the inequalityFS1 > 0 must be replaced byFS1 < 0;
• Fig. 5. the inequalityFS1 < 0 must be replaced byFS1 > 0;
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Table 3

NR(S) max(nsect) Nmax(nsect) O(S) Nhsect
# of Figures

N
f∞a
hsectNew Old

1 6 (1,1,1,1,1,1) 0 1 2

1 (2,1,1,1,1,1) 2 2 4

(2,2,1,1,1,1) 4 3 7

3
2

2 (2,1,2,1,1,1) 4 4 6

(2,1,1,2,1,1) 4 5 1

3 (2,2,1,1,2,1) 6 6 5

4 (2,2,1,2,2,1) 8 7 3

2 8 22

1 4 (1,1,1,1) 1 9 12

0 10 18

3 11 15

1 (2,1,1,1) 2
12 26 (2,0)

13 16 (0,2)

1 14 23

(2,2,1,1) 3 15 29

2
5 16 13

2
(2,1,2,1)

4 17 20

2 2
18 8 (0,1)

19 21 (0,0)

3 (2,1,2,2) 4
20 10 (2,2)

21 25 (2,0)

4 (2,2,2,2) 6 22 9

(3,1,1,1)
4 23 11

1
3 24 28

(3,1,2,1) 4 25 24

3 (3,2,1,2) 5 26 14

(3,1,3,1)
6 27 19

2 2 28 27

(3,2,3,2) 6 29 17
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Table 3
(Continued)

NR(S) max(nsect) Nmax(nsect) O(S) Nhsect
# of Figures

N
f∞a
hsectNew Old

1 2 (1,1) 0 30 30

2 31 32

1 (2,1) 1 32 34

2
0 33 38

4 34 31

1 2 (2,2)
2

35 40 (2,0)

36 39 (0,2)

(3,1) 2
37 33 (2,0)

3
1 38 37 (0,0)

(3,2) 3 39 36

2 (3,3) 4 40 35

Table 4

Figures Value of DS Necessary and sufficient conditions

Fig. 1
(1, 0, 1)p + (1, 0, 1)q + (1, 0, 1)r � > 0, �0 < 0, 
 > 0

(1, 2, 1)p + (1, 0, 1)q + (1, 0, 1)r � > 0, �0,1 = 0, �2 < 0, 
 > 0

(1, 1, 0)p + (1, 0, 1)q + (1, 0, 1)r � > 0, �0 = 0, �1 �= 0, 
 > 0

Fig. 2 (1, 3, 1)p + (1, 0, 1)q + (1, 0, 1)r � > 0, �0,1,2 = 0, �3 �= 0, 
 > 0

(1, 2, 1)p + (1, 1, 1)q + (1, 0, 1)r � > 0, �0,1,2 = 
 = 0, �3K1 < 0

Fig. 3
(1, 1, 0)p + (1, 1, 0)q + (1, 0, 1)r � > 0, �0,1 = 
 = 0, �2L < 0

(1, 3, 0)p + (1, 1, 0)q + (1, 0, 1)r � > 0, �0,1,2,3 = 
 = 0, �4L < 0, K1 �= 0

Fig. 4
(1, 1, 0)p + (1, 1, 0)q + (1, 0, 1)r � > 0, �0,1 = 
 = 0, �2L > 0

(1, 3, 0)p + (1, 1, 0)q + (1, 0, 1)r � > 0, �0,1,2,3 = 
 = 0, �4L > 0, K1 �= 0

(1, 0, 1)p + (1, 0, 1)q + (1, 0,−1)r � > 0, �0 > 0

(1, 2, 1)p + (1, 0, 1)q + (1, 0,−1)r � > 0, �0,1 = 0, �2 > 0, 
 < 0

Fig. 5
(1, 4, 1)p + (1, 0, 1)q + (1, 0,−1)r � > 0, �0,1,2,3 = 0, �4 �= 0, 
 < 0

(1, 0, 1)p + (1, 0, 1)q + (1, 2,−1)r � > 0, �0,1 = 0, �2 > 0, 
 > 0

(1, 0, 1)p + (1, 0, 1)q + (1, 4,−1)r � > 0, �0,1,2,3 = 0, �4 �= 0, 
 > 0

(1, 2, 1)p + (1, 0, 1)q + (1, 2,−1)r � > 0, �0,1,2,3 = 0, �4 �= 0, 
 = K1 = 0
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Table 4
(Continued)

Figures Value of DS Necessary and sufficient conditions

(1, 1, 0)p + (1, 0, 1)q + (1, 0,−1)r � > 0, �0 = 0, �1 �= 0, 
 < 0

Fig. 6 (1, 3, 1)p + (1, 0, 1)q + (1, 0,−1)r � > 0, �0,1,2 = 0, �3 �= 0, 
 < 0

(1, 2, 1)p + (1, 1, 1)q + (1, 0,−1)r � > 0, �0,1,2 = 
 = 0, �3K1 > 0

Fig. 7
(1, 0,−1)p+(1, 0, 1)q+(1, 0,−1)r � > 0, �0 < 0, 
 < 0

(1, 2,−1)p+(1, 0, 1)q+(1, 0,−1)r � > 0, �0,1 = 0, �2 < 0, 
 < 0

(2, 2, 0) p + (1, 0, 1) q
� = 0, M �= 0, �0,1 = 
 = 
1 = 0,

�2 > 0, L > 0, K2 < 0

Fig. 8 (2, 4, 0) p + (1, 0, 1) q
� = 0, M �= 0, �0,1,2,3 = 
 = 
1 = 0,

�4 > 0, L > 0, K = 0, K2 < 0

(2, 2, 0) p + (1, 2, 1) q
� = 0,M �= 0, �0,1,2,3 = 
 = 
1 = 0

�4 �= 0, L = K1 = 0, 
2 < 0

(2, 1, 1) p + (1, 0, 1) q � = 0,M�1 �=0, �0=
=0, L>0,K<0

Fig. 9 (2, 3, 1) p + (1, 0, 1) q � = 0,M
1L �=0,�0,1,2=
=0,�3K1<0

(2, 1, 1) p + (1, 2, 1) q � = 0, M �= 0, �0,1,2 = 
 = L = 0,

1 �= 0, �3K1 < 0

Fig. 10 (2, 2, 2) p + (1, 0, 1) q
� = 0, M �= 0, �0,1=
=
1=0,

�2 < 0, L > 0, K < 0

Fig. 11
(2, 1, 1) p + (1, 1, 0) q � = 0, M �= 0, �0,1 = 
 = L = 0, �2 �= 0

(2, 1, 1) p + (1, 3, 0) q � = 0,M �= 0,�0,1,2,3=
= L=0,�4
1 �=0

Fig. 12 (2, 2, 2) p + (1, 1, 0) q
� = 0,M �= 0,�0,1,2 = 
 = 
1 = 0,

L = 0, �3K1 < 0

Fig. 13
(2, 2, 1) p + (1, 0, 1) q � = 0,M �= 0,�0,1 = 
 = 0,�2 �=0,
1L �=0

(2, 4, 1) p + (1, 3, 0) q � = 0,M�4 �=0,�0,1,2,3=
=0,
1L �=0

Fig. 14 (2, 3, 1) p + (1, 0, 1) q
� = 0, M �= 0,�0,1,2=
=
1=0,

�3 �= 0, L > 0, K < 0

Fig. 15 (2, 3, 1) p + (1, 1, 0) q � = 0, M�4K1 �=0, �0,1,2,3=
=
1=L=0

Fig. 16
(2, 1, 1) p + (1, 0,−1) q � = 0,M�1 �= 0,�0=
=0, L<0, N≤0

(2, 1, 1) p + (1, 2,−1) q
� = 0, M �= 0, �0,1,2= 
 = L = 0,


1 �= 0, �3K1 > 0
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Table 4
(Continued)

Figures Value of DS Necessary and sufficient conditions

(2, 2, 2) p + (1, 0,−1) q � = 0, M �= 0, �0,1=
=
1=0, �2 > 0, L < 0

Fig. 17 (2, 4, 2) p + (1, 0,−1) q � = 0, M �= 0, �0,1,2,3=
=
1=0, �4 > 0, L < 0

(2, 2, 2) p + (1, 2,−1) q �=0,M �=0, �0,1,2,3=
=
1=L=K1=0,�4 �=0,
2>0

(2, 0, 0) p + (1, 0, 1) q � = 0, M �= 0, �0 > 0

(2, 0, 0) p + (1, 2, 1) q � = 0, M �= 0, �0,1 = 0, �2 > 0, 
 �= 0

Fig. 18

(2, 0, 0) p + (1, 4, 1) q � = 0, M �= 0, �0,1,2,3 = 0, �4 �= 0, 
 �= 0

(2, 4, 0) p + (1, 0, 1) q

� = 0, M �= 0, �0,1,2,3 = 
 = 
1 = 0,
�4 > 0, L > 0, K �= 0, R ≥ 0

� = 0, M �= 0, �0,1,2,3 = 
 = 
1 = 0,
�4>0, L > 0, K=0, K2 ≥ 0

Fig. 19 (2, 2, 0) p + (1, 0, 1) q � = 0, M �= 0, �0,1=
=
1=0, �2 > 0, L>0, K2≥0

Fig. 20
(2, 0, 0) p + (1, 1, 0) q � = 0, M �= 0, �0 = 0, �1 �= 0, 
 �= 0

(2, 0, 0) p + (1, 3, 0) q � = 0, M �= 0, �0,1,2 = 0, �3 �= 0, 
 �= 0

Fig. 21 (2, 2, 0) p + (1, 1, 0) q � = 0, M �= 0, �0,1,2=
=
1=L=0, �3K1>0

Fig. 22
(2, 0, 0) p + (1, 0, 1) q � = 0, M �= 0, �0 < 0

(2, 0, 0) p + (1, 2, 1) q � = 0, M �= 0, �0,1 = 0, �2 < 0, 
 �= 0

Fig. 23
(2, 1,−1) p + (1, 0, 1) q � = 0,M �=0,�0=
=0,�1 �=0, L>0,K>0

(2, 3,−1) p + (1, 0, 1) q � = 0,M �=0,�0,1,2=
=0,
1L �=0,�3K1>0

Fig. 24 (2, 4, 0) p + (1, 0, 1) q � = 0, ML �= 0, �0,1,2,3=
=
1=0,�4<0

Fig. 25 (2, 3,−1) p + (1, 0, 1) q
� = 0, M �= 0, �0,1,2=
=
1=0,

�3 �= 0, L > 0, K > 0

Fig. 26
(2, 1, 1) p + (1, 0,−1) q � = 0,M �=0,�0=
=0,�1 �=0, L<0, N >0

(2, 3, 1) p + (1, 0,−1) q � = 0,M �=0,�0,1,2=
=
1=0,�3 �=0, L<0

Fig. 27 (2, 2,−2) p + (1, 0, 1) q
� = 0, M �= 0, �0,1=
=
1=0,

�2 < 0, L > 0, K > 0

Fig. 28 (2, 4, 0) p + (1, 0, 1) q
� = 0, M �= 0, �0,1,2,3 = 
 = 
1 = 0,

�4 > 0, L > 0, K �= 0, R < 0

Fig. 29 (2, 2, 0) p + (1, 0,−1) q � = 0,M �= 0,�0,1=
=
1=0,�2<0, L<0
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Table 4
(Continued)

Figures Value of DS Necessary and sufficient conditions

(1, 0, 1)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0 > 0

(1, 2, 1)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0,1 = 0, �2 > 0, 
 �= 0

(1, 4, 1)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0,1,2,3 = 0, �4 �= 0, 
 �= 0

(1, 0, 1)p + (1, 1, 0)qc + (1, 1, 0)rc � < 0, �0,1 = 
 = 0, �2 �= 0

Fig. 30 (1, 0, 1)p + (1, 2, 0)qc + (1, 2, 0)rc � < 0, �0,1,2,3 = 
 = 0, �4 �= 0

(3, 0, 1) p M = 0, �0 > 0

(3, 2, 1) p
M = 0, �0,1 = 0, �2 > 0, K �= 0, K2 < 0

M = 0, �0,1 = 0, �2 > 0, K = 0

(3, 4, 1) p M = 0, �0,1,2,3 = 0, �4 > 0, K3 ≥ 0

(1, 1, 0)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0 = 0, �1 �= 0

Fig. 31 (1, 3, 0)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0,1,2 = 0, �3 �= 0

(3, 3, 0) p M = 0, �0,1,2 = K = 0, �3K1>0, K3≥0

Fig. 32
(3, 2, 1) p M = 0, �0,1 = 0, �2 > 0, K �= 0, K2 ≥ 0

(3, 4, 1) p M = 0, �0,1,2,3 = K = 0, �4 > 0, K3 < 0

Fig. 33 (3, 3, 2) p M = 0, �0,1,2 = K = 0, �3K1 < 0

(1, 0,−1)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0 < 0

Fig. 34 (1, 2,−1)p + (1, 0, 0)qc + (1, 0, 0)rc � < 0, �0,1 = 0, �2 < 0, 
 �= 0

(3, 0,−1) p M = 0, �0 < 0

Fig. 35 (3, 4, 1) p M = 0, �0,1,2,3 = 0, �4 < 0

Fig. 36 (3, 4, 1) p M = 0, �0,1,2,3 = 0, �4 > 0,K �=0,K3<0

Fig. 37
(3, 1, 0) p M = 0, �0 = 0, �1 �= 0

(3, 3, 0) p M = 0, �0,1,2 = 0, �3K �= 0, K3 > 0

Fig. 38 (3, 3, 0) p M = 0, �0,1,2 = K = 0, �3K1>0, K3<0

Fig. 39 (3, 3, 0) p M = 0, �0,1,2 = 0, �3K �= 0, K3 < 0

Fig. 40 (3, 2,−1) p M = 0, �0,1 = 0, �2 < 0



D. Schlomiuk, N. Vulpe / J. Differential Equations 215 (2005) 357–400 385

• Fig. 6. the inequalityGA < 0 must be replaced byGA > 0;
• Fig. 7. the inequalityGA > 0 must be replaced byGA < 0;
• Fig. 37. the inequalityS3 < 0 must be replaced byS3 < 0, FS1 < 0;
• Fig. 38. the inequalitiesS3 > 0, FS1 < 0 must be replaced byS3 > 0, FS1 < 0.

Furthermore the saddle-node given in Fig. 29 of[16] is not correctly placed. The
correct phase portrait is given here in Fig. 15.

Proof of the Theorem 5.1. (A) The phase portraits in the vicinity of infinity ofQSess
where obtained in[16]. All calculations were done again for this article and as we
indicated in Remark 7.1, all phase portraits obtained in[16] with exception of Fig. 29
turned out to be correct. Fig. 29 in[16] needed to be modified at one of its singularities
and we give the respective corrected figure in Table5 (Fig. 15).

In [16, p. 481–484], the phase portraits appeared as they were obtained from calcu-
lations and not listed according to their geometry. To draw attention to the geometry
we list them here for each possible value ofNR(S) according to their topological
complexity. In Table3 we first place the numberNR(S) of real singularities of the
real foliation on P2(R), followed by the maximum number max(nsect) of sectors of
singularities. Although these numbers could be read on the value ofO(S), we place
them in separate columns as they are important invariants for the geometry at infinity
of the systems. We complete the table going through all phase portraits and listing
O(S) which by itself determines uniquely 27 of the 40 phase portraits. To distinguish
the remaining 13 phase portraits we use the invariantN

f∞a
hsect = (N

f−a
hsect, N

∞−a
hsect ) whose

values we place in the last column, thus completing the classification.
(B) As in the proof of part (A) we use the results in[16] subject to the modifications

in Remark 7.1. Since some letters appear both here and in[16] but not always with
the same meaning, we shall use the convention to apply “tilde” to letters which are
used to denote comitants in[16].

The proof of part (B) proceeds in 3 steps:
(I) In this step we replace the conditions in[16] subject to the modifications in

Remark 7.1 with conditions involving newly defined comitants and invariants as we
shall indicate below.

(II) In this part we simplify the conditions obtained in step (I) in order to obtain the
corresponding conditions in the last column of Table4.

(III) We prove that these last conditions are affinely invariant.

Proof of step (I). First of all we shall prove that the comitants used in[16] (see
Appendix) can be replaced respectively by the comitants used here as follows:

�̃ ⇒ �0, H̃ ⇒ �1, G̃⇒ �2, F̃ ⇒ �3, Ṽ ⇒ �4, L̃⇒ C2, M̃ ⇒ M,

�̃ ⇒ �, �̃ ⇒ 
, Ñ ⇒ K, S̃1 ⇒ K1, Ã⇒ L, Ã+ 4Ñ ⇒ R,

Ã+ Ñ ⇒ N, 
̃ ⇒ 
1, S̃2 ⇒ K2, S̃3 ⇒ K3, S̃4 ⇒ 
2. (7.2)
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Table 5

Indeed, firstly the following relations among the comitants (7.2) hold:

�0 = �̃, �1 = 2H̃ , �2 = G̃, �3 = F̃ ,

�4 = Ṽ , C2 = L̃, M = 8M̃,
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Table 5
(Continued)

� = �̃, 
 = 64�̃, K = 4Ñ, K1 = S̃1,

L = 8Ã, R = 8(Ã+ 4Ñ). (7.3)

Therefore we only have to compare the conditions involving the comitants

N, 
1, 
2, K2, K3 (7.4)
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and show the corresponding equivalence with the conditions involving the comitants

Ã+ Ñ, 
̃, S̃4, S̃2, S̃3 (7.5)

in [16], respectively.

We point out that all comitants (7.5) are only used for the systems(SIII ) and (SIV ).
So, in what follows we shall examine each one of this cases.

We first consider the systems of form(SIII ).
In this case we have four singularities on the equator (i.e.� = 0,M �= 0). The phase

portraits in the vicinity of infinity of these systems are given by one of the Figs. 8–29
both here and in[16]. One can observe, that all comitants (7.4) (respectively, (7.5))
are used for systems(SIII ) only in the case when
 = 0 (respectively,�̃ = 0). In this
case for systems(SIII ) the condition
 = −64h2 = 0 yields h = 0 and we obtain the
systems

ẋ = k + cx + dy + gx2, ẏ = l + ex + fy + (g − 1)xy, (7.6)

for which L = 8gx2 and


1 = 32d, 
̃ = −d

4
(5g2 − 2g + 1);N = (g − 1)(g + 1)x2, Ã+ Ñ = 1

2
g(g + 1)x2.

Clearly, the condition
1 = 0 is equivalent to
̃ = 0. We now compare the signs ofN
and Ã+ Ñ . As in Table4 the comitantN appears only in two cases (i.e. Figs. 16 and
26) and in these cases the conditionL < 0 (i.e. g < 0) is used, from the expressions
of N and Ã+ Ñ above we obtain sign(N) = sign(Ã+ Ñ).

We observe from Table4 that the comitantK2 is applied for systems(SIII ) only
when 
 = 
1 = 0, L �= 0. Since
1 = 0 implies d = 0 systems (7.6) become

ẋ = k + cx + dy + gx2, ẏ = l + ex + fy + (g − 1)xy, (7.7)

and we calculateK2 = 48(g2− g+ 2)(c2− 4gk)x2, S̃2 = 2g2(c2− 4gk)x2. Hence,K2
has a well-determined sign and since for everyg we haveg2− g+2 > 0, from L �= 0
we obtain sign(K2) = sign(S̃2).

We note that the invariant
2(a) is here used only to distinguish Figs. 8 and 17
in the case when systems(SIII ) belong to the class�33 in Table 3. Since for this
class the conditions
 = L = K1 = 0 hold for systems(SIII ), we obtain respectively
h = g = c2 + d2 = 0. So, the systems(SIII ) become

ẋ = k, ẏ = l + ex + fy − xy, (7.8)

for which 
2 = −k, S̃4 = −2k and, hence, sign(
2) = sign(S̃4).
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It remains to consider systems of the form(SIV ) For the Figs. 30–40 which can
occur for this class of systems, only the comitantsS̃2 and S̃3 of (7.5) were used in
[16]. Hence we only have to examine the conditions given in terms of comitantsK2
and K3 from (7.4).

We observe that the comitantK2 is used to distinguish Figs. 30 and 32 when we
also haveK �= 0. In this case the systems(SIV ) belong to the class�17 in Table 3
with conditions�0 = �1 = 0. For systems(SIV ) we have�0 = −8h3. Henceh = 0
and the systems(SIV ) become

ẋ = k + cx + dy + 2gx2, ẏ = l + ex + fy − x2 + 2gxy, (7.9)

for which K = 2g2x2, �1 = 8dg3x. As K �= 0, the condition�1 = 0 implies d = 0
and we obtain the systems

ẋ = k + cx + dy + 2gx2, ẏ = l + ex + fy − x2 + 2gxy, (7.10)

for which we have:K2 = 24g2(c2 − 8gk)x2, S̃2 = 4g2(c2 − 8gk)x2. Thus, in the
case under consideration the comitantK2 has a well-determined sign and sign(K2) =
sign(S̃2).

We examine now the comitantK3 which is applied for systems(SIV ) only in the
cases when�S �3, i.e. �0,1,2 = 0. So, we shall consider systems (7.9) for which
�0 = 0 and we examine two subcases:K �= 0 andK = 0.

If K �= 0 then g �= 0 and for systems (7.9) the condition�1 = 0 gives d = 0.
Moreover we may assumee = f = 0 via a translation. So, we obtain the systems

ẋ = k + cx + 2gx2, ẏ = l − x2 + 2gxy, (7.11)

for which �2 = 8g3kx2 and asg �= 0 the condition�2 = 0 yields k = 0. Then for
systems (7.11) we obtain K3 = −12g2lx6, S̃3 = −12g2lx6. HenceK3 has a well-
determined sign and sign(K3) = sign(S̃3).

Assume nowK = 0, i.e. g = 0 and for systems (7.9) we obtain�1 = 0,�2 = d2x2.
Thus, the condition�2 = 0 yields d = 0 and we obtain the following systems:

ẋ = k + cx, ẏ = l + ex + fy − x2, (7.12)

for which K3 = 3f (2c − f )x6 = S̃3.

Proof of step (II). We show below how some of the conditions in[16] can be sub-
stituted by simpler ones in Table4. To do this we shall prove the following five
lemmas.

Lemma 7.1. Let C̃ be the conjunction of the all the conditions: �̃ = �̃ = H̃ = �̃ =

̃ = 0 andM̃G̃Ã �= 0. Let C be the conjunction of the following conditions: � = �0 =
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�1 = 
 = 
1 = 0 andM�2L �= 0. We have the following equivalences:

Fig. 8 : C̃, G̃ �= 0, Ã>0, S̃2 < 0 ⇔ C,�2 > 0, L>0,K2<0;
Fig. 10 : C̃, G̃ < 0, Ã > 0, S̃2 > 0, Ñ < 0 ⇔ C,�2 > 0, L > 0,K < 0;
Fig. 17 : C̃, G̃ �= 0, Ã < 0, (S̃2�0) ∨ (G̃ > 0, S̃2 > 0) ⇔ C,�2 > 0, L < 0;
Fig. 19 : C̃, G̃ �= 0, Ã > 0, (S̃2 = 0) ∨ (G̃ > 0, S̃2 > 0) ⇔ C,�2 > 0, L > 0,K2�0;
Fig. 27 : C̃, G̃ < 0, Ã > 0, S̃2 > 0, Ñ > 0 ⇔ C,�2 < 0, L > 0,K > 0;
Fig. 29 : C̃, G̃ < 0, Ã < 0, S̃2 > 0 ⇔ C,�2 < 0, L < 0.

Proof. According to (7.3) the conditionsC̃ andC are equivalent. We are in the class of
systems(SIII ) for which we must apply the conditions on the right, i.e.�0 = �1 = 0,
�2 �= 0, and
 = 
1 = 0, L �= 0. For systems(SIII ) we have
 = −64h2, 
1 = −32d
and hence conditions
 = 
1 = 0 yield h = d = 0. Then

�0 = �1 = 0, �2 = g[f 2g + cf (g − 1)+ k(g − 1)2]x2 �= 0

and sinceg �= 0 we may assumec = 0 via a translation. Hence we get the systems

ẋ = k + gx2, ẏ = l + ex + fy + (g − 1)xy, (7.13)

for which

�0,1 = 0, �2 = g[f 2g + k(g − 1)2]x2G̃ �= 0, L = gx2 = 8Ã �= 0,

K = 2g(g − 1)x2 = 4Ñ,K2 = −192gk(g2 − g + 2)x2, S̃2 = −8g3k. (7.14)

We observe, that sign(K2) = sign(S̃2) because the discriminant of the quadratic poly-
nomial g2 − g + 2 is negative. We shall consider two cases:L < 0 andL > 0.
CaseL < 0: If �2 < 0 (then G̃ < 0) from (7.14) it follows that S̃2 > 0 and hence

we obtain the conditions indicates on the left in the lemma, which correspond to Fig.
29. Thus the conditionsL < 0 and�2 < 0 lead to Fig. 29.

Assume�2 > 0 (then G̃ > 0). If either K2 > 0 (then S̃2 > 0) or K2�0 (then
S̃2�0) we obtain the conditions on the left for Fig. 17. Taking into account that for
�2 �= 0 from (7.14) it follows that the conditionS̃2�0 implies �2 > 0 (then G̃ > 0)
we conclude, that the conditionsL < 0 and�2 > 0 lead to Fig. 17.
CaseL > 0: Suppose firstly�2 < 0 . ThenG̃ < 0 and from (7.14) we haveS̃2 > 0

and N �= 0 (i.e. K �= 0). Hence we obtain the conditions for Fig. 10 (on the left in
the lemma) ifK < 0 and for Fig. 27 ifK > 0.

Assume now�2 > 0 (then G̃ > 0). From (7.14) we obtain S̃2�0 (then K2�0)
which yields �2 > 0. Hence we conclude, that the conditionsL > 0, �2 > 0, K2�0
lead to Fig. 19, whereas the conditionsL > 0, �2 > 0, K2 < 0 lead to the Fig. 8. �
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Lemma 7.2. Let C̃1 be the conjunction of the following conditions: �̃ = �̃ = H̃ =
G̃ = F̃ = �̃ = 
̃ = 0 and M̃Ṽ Ã �= 0. Let C1 be the conjunction of the following
conditions: � = �0 = �1 = �2 = �3 = 
 = 
1 = 0 and M�4L �= 0. We have the
following equivalences:

Fig. 8 : C̃1, Ṽ �= 0, Ã �= 0, Ñ = 0, S̃2 < 0 ⇔ C1,�4 > 0, L > 0,K2 < 0;
Fig. 17 : C̃1, Ṽ �= 0, Ñ �= 0, Ã < 0 ⇔ C1,�4 > 0, L < 0;

Fig. 18 :

 C̃1, ÃṼ �= 0, (Ñ = 0, S̃2 = 0)
∨ (Ñ �= 0, Ã > 0, Ã+ 4Ñ �0)
∨ (Ñ �= 0, Ṽ > 0, S̃2 > 0)


 ⇔


 C1,�4 > 0, L > 0,

(R�0,K �= 0)∨
(K2�0,K = 0)


 ;

Fig. 24 : C̃1, Ñ = 0, Ã �= 0, Ṽ < 0 ⇔ C1,�4 < 0, L �= 0;
Fig. 28 : C̃1, Ṽ Ñ �= 0, Ã > 0, Ã+ 4Ñ < 0 ⇔ C1,�4 > 0, L > 0, R < 0.

Proof. We are in the class of systems(SIII ) for which we must set the conditions
�0 = �1 = �2 = �3 = 0,�4 �= 0 and 
 = 
1 = 0, L = 8Ã �= 0. It was shown
before (see p. 35) that for systems(SIII ) the conditions
 = 
1 = 0 yield h = d = 0.
Then L = gx2 �= 0 andK = 2g(g − 1)x2 and we shall construct two canonical forms
corresponding to the casesK �= 0 andK = 0.

Assume firstlyK �= 0. Theng − 1 �= 0 and we may assumee = f = 0 due to a
translation. Therefore considering the conditionsh = d = e = f = 0, for systems(SIII )

calculations yield:�0 = �1 = 0�2 = gk(g − 1)2 and by g(g − 1) �= 0 the condition
�2 = 0 yields k = 0. This implies�3 = −clg(g − 1)x3,�4 = lx3[lg2x + c2(g − 1)y].
Hence, the conditions�3 = 0 and�4 �= 0 yield c = 0 and we get the systems

ẋ = gx2, ẏ = l + (g − 1)xy, (7.15)

for which

�0,1,2,3 = 0,�4 = g2l2x4 = Ṽ , L = 8gx2 = 8Ã �= 0, K2 = 0= S̃2,

K = 2g(g − 1)x2 = 4Ñ �= 0, R = 8g(2g − 1)x2 = 8(Ã+ 4Ñ). (7.16)

Suppose now that the conditionK = 2g(g − 1)x2 = 0 holds. SinceL = gx2 �= 0
this yields g = 1 and we may assumec = 0 via a translation. Then we obtain
�2 = f 2x2 = 0 which impliesf = 0 and we get the systems

ẋ = k + x2, ẏ = l + ex, (7.17)
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for which

�0,1,2,3 = 0, �4 = (l2 + ke2)x4 = Ṽ �= 0, L = 8x2 = 8Ã,

K = 0= Ñ, R = 8x2 = 8(Ã+ 4Ñ), K2 = −384kx2 = 48S̃2. (7.18)

We shall consider two cases:�4 < 0 and�4 > 0.
Case�4 < 0: ThenṼ < 0 and from (7.16) and (7.18) we have the conditions̃N = 0

and S̃2 > 0. Hence the conditions�4 < 0 and L �= 0 lead to the conditions in the
lemma corresponding to Fig. 24.
Case�4 > 0: In this caseṼ > 0 and we shall examine two subcases:L < 0 and

L > 0.
SubcaseL < 0: Then Ã < 0. From (7.16) and (7.18) we conclude thatÑ �= 0 and

we obtain the conditions corresponding to Fig. 17. Hence we conclude that for�4 > 0
and L < 0 we get Fig. 17.
SubcaseL > 0: HenceÃ > 0.
(a) If R < 0 (thenÃ+ 4Ñ < 0) from (7.16) and (7.18) we obtainÑ �= 0 and hence

we get the conditions for Fig. 28.
(b) Assume nowR�0. If K �= 0 (thenÑ �= 0) we obtain one sequence of conditions

for Fig. 18, and namely:Ñ �= 0, Ã > 0 and Ã+ 4Ñ �0.
SupposeK = 0 (i.e. Ñ = 0). If in addition K2 < 0 (then S̃2 < 0) then we obtain

the conditions for Fig. 8. From (7.16) and (7.18) we obtain that the conditionK2 < 0
implies Ñ = 0. Then we conclude, that for� > 0, L > 0 andK2 < 0 we obtain the
conditions for Fig. 8.

AssumingK2�0 (thenS̃2�0) and taking into account that we are in the case�4 > 0,
we get two of the series of conditions for Fig. 18, which can be combined into the
following series:�4 > 0, K = 0, L > 0, K2�0. �

Lemma 7.3. Let C̃2 be the conjunction of all the conditions: M̃ = �̃ = H̃ = 0 and
L̃G̃ �= 0. Let C2 be the conjunction of the following conditions: M = �0 = �1 = 0
and C2�2 �= 0. We have the following equivalences:

Fig. 30 : C̃2, G̃ �= 0, (Ñ �= 0, S̃2 < 0) ∨ (Ñ = 0) ⇔ C2,�2 > 0, (K �= 0,K2 < 0)
∨ (K = 0);

Fig. 32 : C̃2, G̃Ñ �= 0, (G̃ > 0, S̃2 > 0) ∨ (S̃2 = 0) ⇔ C2,�2 > 0,K �= 0,K2�0;
Fig. 40 : C̃2, G̃ < 0, Ñ �= 0, S̃2 > 0 ⇔ C2,�2 < 0.

Proof. We are in the class of systems(SIV ) for which we must set the conditions
�0 = �1 = 0, �2 �= 0. We have�0 = −h3 = 0 which implies h = 0 and then
�1 = dg3x and K = 2gx2. We shall consider two subcases:K �= 0 andK = 0.

Assume firstlyK �= 0. Then g �= 0 and the condition�1 = 0 yields d = 0. We
can assumeg = 1 and e = f = 0 due to the rescalingx → x/g, y → y/g2 and a
translation. Then we get the systems

ẋ = k + cx + x2, ẏ = l − x2 + xy, (7.19)
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for which

�0,1 = 0,�2 = kx2 = G̃ �= 0,K = 2x2 = 4Ñ, K2 = 48(c2 − 4k)x2 = 24S̃2. (7.20)

Admit now K = 0. Henceg = 0 and we can assumee = 0 due to a translation.
Then we obtain the systems

ẋ = k + cx + dy, ẏ = l + fy − x2, (7.21)

for which

�0,1, = 0, �2 = d2x2 = G̃ �= 0,K = 0= Ñ, L2 = 0= S̃2. (7.22)

Case�2 < 0: From (7.20) and (7.22) it follows that the condition�2 < 0 implies
Ñ �= 0 and S̃2 > 0. Hence we obtain the conditions for Fig. 40 and we conclude that
the condition�2 < 0 immediately leads to the conditions for Fig. 40.
Case�2 > 0 (i.e. G̃ > 0): Assume that the conditionK �= 0 holds (thenÑ �= 0).

If K2 < 0 we haveS̃2 < 0 and then we obtain the conditions for Fig. 30. If either
K2 > 0 or K2 = 0 via G̃ > 0 in both cases we get Fig. 32

SupposeK = 0 (i.e. Ñ = 0. In this case we obtain the conditions̃G �= 0, Ñ = 0
which lead to Fig. 30. Note that from (7.20) and (7.22) it follows that the condition
K = 0 implies �2 > 0. �

Lemma 7.4. Let C̃3 be the conjunction of the following conditions: M̃ = �̃ = H̃ =
G̃ = Ñ = 0 and L̃F̃ �= 0. Let C3 be the conjunction of the following conditions:
M = �0 = �1 = �2 = K = 0 and C2�3 �= 0. We have the following equivalences:

Fig. 31 :
[

C̃3, F̃ �= 0, (S̃3 = 0)
∨ (F̃ S̃1 > 0, S̃3 > 0)

]
⇔ C3,�3K1 > 0,K3�0;

Fig. 33 : C̃3, F̃ S̃1 < 0, S̃3 < 0⇔ C3,�3K1 < 0;
Fig. 38 : C̃3, F̃ S̃1 > 0, S̃3 < 0⇔ C3,�3K1 > 0,K3 < 0.

Proof. We are in the class of systems (SIV ) for which we must set the conditions
�0 = �1 = �2 = 0 = K,�3 �= 0. We have�0 = −h3 = 0 henceh = 0 and then
K = 2gx2. The conditionK = 0 yields g = 0 and this leads to systems (7.21) for
which the condition�2 = d2x2 = 0 yields d = 0. Hence we obtain the systems

ẋ = k + cx, ẏ = l + fy − x2, (7.23)

for which

�0,1,2 = 0, �3 = −c2f d2x3 = F̃ �= 0, K = 0= Ñ,

K1 = −cx3 = S̃1, K3 = 6f (2c − f )x6 = S̃3. (7.24)

We note that�3K1 = c3f x6 �= 0 and hence sign(�3K1) = sign(cf ) = sign(F̃ S̃1).
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Case�3K1 < 0: From (7.24) we obtain S̃3 < 0 and hence we conclude that the
condition �3K1 < 0 leads to the conditions for Fig. 33.
Case �3K1 > 0: For K3 < 0 (then S̃3 < 0) we obtain the conditions for

Fig. 38. If eitherK3 > 0 or K3 = 0 we observe that in both cases we get the conditions
for Fig. 31. From (7.24) it follows that the conditionK3 = 0 implies�3K1 > 0. There-
fore we conclude that the conditions�3K1 > 0 andK3�0 lead to the conditions for
Fig. 31. �

Lemma 7.5. Let C̃4 be the conjunction of the following conditions: M̃ = �̃ = H̃ =
G̃ = F̃ = 0 and L̃Ṽ �= 0. Let C4 be the conjunction of the following conditions:
M = �0 = �1 = �2 = �3 = 0 and C2�4 �= 0. We have the following equivalences:

Fig. 30 :

 C̃4, Ṽ �= 0, (Ñ �= 0, S̃3 > 0)
∨ (Ñ = S̃1 = S̃3 = 0)∨
(Ñ = 0, S̃1 �= 0, Ṽ > 0)


 ⇔ C4,�4 > 0,K3�0;

Fig. 32 : C̃4, Ṽ �= 0, Ñ = S̃1 = 0, S̃3 �= 0⇔ C4,�4 > 0,K3 < 0,K = 0;
Fig. 35 : C̃4, Ṽ < 0, Ñ = 0, S̃1 �= 0⇔ C4,�4 < 0;
Fig. 36 : C̃4, Ṽ �= 0, Ñ �= 0, S̃3 < 0⇔ C4,�4 > 0,K3 < 0,K �= 0.

Proof. We are in the class of systems(SIV ) for which we must set the conditions
�0 = �1 = �2 = �3 = 0,�4 �= 0. We have�0 = −h3 = 0 which impliesh = 0 and
then �1 = dg3x and K = 2gx2. We shall consider two subcases:K �= 0 andK = 0.

If K �= 0 then the condition�1 = 0 leads to systems (7.19) for which �2 = kx2.
Hence the condition�2 = 0 yields k = 0 and we calculate:�3 = −clx3 and �4 =
−l(c2x− lx− c2y)x3. Hence the conditions�3 = 0 and�4 �= 0 yield c = 0, l �= 0 and
we obtain the systems

ẋ = x2, ẏ = l − x2 + xy, (7.25)

for which

�0,1,2,3 = 0, �4 = l2x4 = Ṽ �= 0, K = 1

2
x2 = 4Ñ,

K3 = −6lx6 = S̃3 �= 0. (7.26)

Admit now thatK = 0. This leads to systems (7.23) for which the condition�3 =
−c2f d2x3 = 0 yields cf = 0. Then we get the systems

ẋ = k + cx, ẏ = l + fy − x2, (7.27)

with cf = 0 and

�0,1,2,3 = 0, �4 = (k2 − c2l)x4 = Ṽ �= 0, K = 0= Ñ,

K1 = −cx3 = S̃1, K3 = −6f 2x6 = S̃3, K1K3 = 0. (7.28)
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Table 6

Case GL-comitants Degree in Weight Algebraic subset
a x and y V (∗)

1 �(a),�0(a),
(a) 4 0 2 V (0)
2 C2(a, x, y) 1 3 −1 V (0)
3 K(a, x, y) 2 2 0 V (0)
4 L(a, x, y) 2 2 0 V (0)
5 M(a, x, y) 2 2 0 V (0)
6 N(a, x, y) 2 2 0 V (0)
7 R(a, x, y) 2 2 0 V (0)
8 
1(a) 3 0 1 V (�,
)
9 
2(a) 2 0 0 V (�,
, L,K1)

10 K2(a, x, y) 4 2 0 V (�,�0,�1,
,
1)

11 K3(a, x, y) 4 6 −2 V (M,�0,�1,�2)

12 K1(a, x, y) 2 3 −1 V (K)

13 �1(a, x, y) 4 1 1 V (�0)

14 �2(a, x, y) 4 2 0 V (�0,�1)

15 �3(a, x, y) 4 3 −1 V (�0,�1,�2)

16 �4(a, x, y) 4 4 −2 V (�0,�1,�2,�3)

Case �4 < 0 (i.e. Ṽ < 0): From (7.26) and (7.28) we obtain that the condition
�4 < 0 implies Ñ = 0 and S̃1 �= 0. Hence for�4 < 0 we obtain the conditions for
Fig. 35.
Case�4 > 0: Then Ñ > 0 and we shall consider 3 subcases:K3 < 0,K3 > 0 and

K3 = 0.
SubcaseK3 < 0: If K �= 0 then Ñ �= 0 and we have the conditions for Fig. 36.

SupposeK = 0, i.e. Ñ = 0. Then byK3 �= 0 from (7.28) we haveS̃1 = 0. Therefore
we conclude that conditionsK3 < 0 andK = 0 lead to the Fig. 32.
SubcaseK3 > 0: Then S̃3 > 0 and from (7.26) and (7.28) we conclude thatK �= 0,

i.e. Ñ �= 0. Hence we obtain one series of the conditions for Fig. 30.
SubcaseK3 = 0: Then S̃3 = 0 and according to (7.26) and (7.28) we haveK = 0.

This leads to systems (7.27) for which the conditionK3 = 0 yields f = 0. Then we
have eitherK1 �= 0 (i.e. S̃1 �= 0) or K1 = 0 (i.e. S̃1 = 0). Since the conditions̃V > 0
and S̃3 = 0 hold, both cases lead to the conditions for Fig. 30.

Lemma 7.1 is proved and this completes the proof of the step (II).

Proof of step (III). We draw the attention to the fact that all the constructed polyno-
mials which were used in Theorems 5.1 and7.1 are GL-comitants. But in fact we are
interested in the action of the affine group Aff(2,R) on these systems. We shall prove
the following lemma.

Lemma 7.6. The polynomials which are used in Theorems5.1 or 7.1 have the prop-
erties indicated in the Table6. In the last column are indicated the algebraic sets on
which theGL-comitants on the left areCT-comitants. The Table6 shows us that all
conditions included in the statements of Theorems5.1 or 7.1 are affinely invariant.
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Proof. (I) Cases 1–7: The polynomials �(a),
(a),�0(a),K(a, x, y), L(a, x, y),
M(a, x, y),N(a, x, y) and R(a, x, y) are T -comitants, because these GL-comitants
were constructed only by using the coefficients of the polynomialsp2(x, y) and
q2(x, y).

(II) Cases8–11: (a) We consider the GL-invariant
1(a) which according to Table
4 was used only in the class of systems(SIII ). It was shown before (see p. 33) that
for 
 = 0 systems(SIII ) can be brought by an affine transformation to systems (7.6)
for which 
1 = −32d. On the other hand for any system in the orbit under the
translation group action of a system (7.6) corresponding to a pointa ∈ R12 we obtain

1(a) = −32d. Hence the value of
1 does not depend of the vector defining the
translations. Therefore we conclude that the polynomial
1 is a CT-comitant modulo
〈�,
〉.

(b) We consider now the GL-invariant
2(a). From Table4 we observe that
2(a) is
only applied to distinguish the Figs. 8 and 17 when for systems(SIII ) the conditions

 = L = K1 = 0 hold. As it was shown before (see p. 33) for
 = L = K1 = 0
the systems(SIII ) can be brought by an affine transformation to systems (7.8) for
which 
2 = −
. On the other hand for any system in the orbit under the trans-
lation group action of a system (7.8) corresponding to a pointa ∈ R12 we obtain

2(a) = −k. Hence we conclude that the polynomial
2 is a CT-comitant modulo
〈�,
, L,K1〉.

(c) We examine now the GL-invariantK2(a) which was used in cases(SIII ) and
(SIV ). Assume firstly� = 0 andM �= 0 i.e. we are in the class of systems(SIII ). We
have shown before (see p. 33) that for
 = 
1 = 0 the systems(SIII ) can be brought by
an affine transformation to systems (7.7) for which K2 = 48(g2− g + 2)(c2− 4gk)x2.
Suppose now that the conditionsM = 0 and C2 �= 0 hold, i.e. we are in the class
of systems(SIV ). It was shown before (see p. 34) that for�0 = �1 = 0 systems
(SIV ) can be brought by an affine transformation to systems (7.10) for which K2 =
24g2(c2 − 8gk)x2.

On the other hand for any system in the orbit under the translation group action
of a system (7.7) (respectively, of a system (7.10)) corresponding to a pointa ∈ R12

(respectively,a1 ∈ R12) we obtainK2(a, x, y) = 48(g2−g+2)(c2−4gk)x2 (respectively,
K2(a1, x, y) = 24g2(c2−8gk)x2). Calculations yield that for system (7.7) (respectively,
for system (7.10)) we have�0 = �1 = 0 (respectively
 = 
1 = 0). Hence we conclude
that the GL-comitantK2(a, x, y) is a CT-comitant modulo〈�,�0,�1,
,
1〉.

(d) We examine now the comitantK3 which is applied for systems(SIV ) only in the
cases when�S �3, i.e.�0 = �1 = �2 = 0. It was shown before (see p. 34) that for�0 =
�1 = �2 = 0 systems(SIV ) can be brought by an affine transformation either to systems
(7.11) for K �= 0 or to systems (7.12) for K = 0. Calculations yield, that for any system
in the orbit under the translation group action of a system (7.11) (respectively, of a
system (7.12)) corresponding to a pointa ∈ R12 (respectively,a1 ∈ R12) we obtain
K3(a, x, y) = −12g2lx6 (respectively,K3(a1, x, y) = 3f (2c − f )x6). Hence in both
cases the values ofK3 do not depend of the vector defining the translations. Therefore
the GL-comitantK3(a, x, y) is a CT-comitant modulo〈M�0,�1,�2〉.

(III) Cases 12–16: Let� ∈ T (2,R) be the translation:x = x̃ + �, y = ỹ + � and
consider a quadratic system (3.1) which corresponds to a pointa ∈ R12. It is sufficient
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to verify that the following relations occur, where� = x̃�− ỹ�:

K1(r� · a, x̃, ỹ) = K1(a, x̃, ỹ)− �K(a, x̃, ỹ),

�s(r� · a, x̃, ỹ) = �s(a, x̃, ỹ)+
s−1∑
k=0

(
4− k

s − k

)
�s−k�k(a, x̃, ỹ), s = 1, 2, 3, 4.

So, Lemma7.6 is proved and this completes the proof of the Theorem 7.1.�

Appendix

Let us consider the tensorial form of quadratic system:

dxj

dt
= aj + a

j
�x

� + a
j

��x
�x� (j, �,� = 1, 2).

The following invariants and comitants, defined by polynomials ofJi, Ri which are
tensorially defined GL-comitants, were used in[16] for the classification in the neigh-
borhood of infinity of quadratic differential systems:

2�̃ = J4, 
̃ = J7, 2�̃ = J5, L̃ = R12,

2M̃ = 9R3+ 6R6− 8R2
11, S̃1 = R5,

S̃2 = 2J 2
1 R6+ 2J1R

2
1 − 2J2R6+ J2R

2
11+ 8J3R3− 8J3R6− 4R7− R8, H̃ = R13,

S̃3 = R2
12(7J2 − 6J 2

1 − 8J3)− R12(10J1R5+ 4R1R10− 6R3R9)+ 4R3R
2
10− 4R2

5,

S̃4 = 4J3− J2, Ṽ = R2
4 − R2R5, 2Ã = 2R6− 3R3,

2�̃ = J4 + 20J5− 8J6

2Ñ = R3, 2G̃ = 2R2
1 − 2J2R3+ 4R7+ R8,

2F̃ = J2R5+ 4R2R3+ 4R1R4,

where

J1 = a�
�, J2 = a�

pa
�
q ����

pq, J3 = a�a
�
��,

J4 = a�
pra

�
qka

�
sna

�
lm�������

pq�rs�kl�mn,
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J5 = a�
�a

�
�ra

�
qka

�
sl����

pq�rs�kl, J6 = a�
pra

�
�qa

�
�sa

�
���

pq�rs ,

J7 = a�
pa

�
�qa

�
���

pq,

R1 = x�a
�
q a

�
p�����

pq, R2 = x�a�a
�
����, R3 = x�x�a

�
p�a

�
q�����

pq,

R4 = x�x�a�a�
�����,

R5 = x�x�x�a�
�a

�
�����, R6 = x�x�a

�
��a

�
��,

R7 = x�x�a�a�
�pa

�
�sa

�
qr�������pq�rs ,

R8 = x�x�a
�
�a

�
�a

�
pra

�
qs�������

pq�rs , R9 = x�a����,

R10 = x�x�a
�
����,

R11 = x�a
�
��, R12 = x�x�x�a�

�����,

R13 = x�a
�
pa

�
ara

�
qka

�
sl�������

pq�rs�kl,

and

�11 = �22 = �11 = �22 = 0, �12 = �12 = −�21 = −�21 = 1.
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