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Abstract

By using the fibering method, we study the existence of non-negative solutions for a class of indefi-
nite quasilinear elliptic problems on unbounded domains with noncompact boundary, in the presence of
competing subcritical and supercritical lower order nonlinearities.
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1. Introduction

Let Ω be a connected open set in R
N , N � 2, with smooth boundary and consider the quasi-

linear elliptic problem

−div
(
ρ(x)|∇u|p−2∇u

) = f (x,u), x ∈ Ω, (1)

k(x)|∇u|p−2 ∂u

∂ν
+ h(x)|u|p−2u = 0, x ∈ ∂Ω, (2)
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where 1 < p < N , 0 < ρ0 � ρ(x) ∈ L∞(Ω), f :Ω × R → R is a Carathéodory function,
k(x),h(x) ∈ L∞(∂Ω) and ν is the outward unit normal on ∂Ω .

Equations of the type (1) arise in many and diverse contexts like differential geometry (e.g.,
in the scalar curvature problem and the Yamabe problem) [16], nonlinear elasticity [9], non-
Newtonian fluid mechanics [10], glaciology [18], mathematical biology [4], and elsewhere. As
a result, questions concerning the solvability of problem (1), (2) have received great attention,
particularly after the seminal work of Brézis and Nirenberg [7]. Among the vast number of results
recorded in the literature so far, the case which has been studied extensively concerns the class
of positive or non-negative solutions under a variety of assumptions which usually imply that
the nonlinear term f (x,u) does not change sign in Ω . However, an exhaustive review of the
existing bibliography is beyond our present scope and the interested reader should consult the
survey in [3], as well as the references cited therein.

By contrast, considerably less seems to be known in the case where (1) has indefinite character,
i.e., when f (x,u) may change sign in Ω . Most notably, the semilinear case p = 2 with Neumann
conditions was investigated in [6] for the model problem where Ω is bounded, ρ(x) ≡ 1 and

f (x,u) = −m(x)u + a(x)|u|q−2u, 1 < q < 2∗ := 2N

N − 2
.

By extending variational techniques to this framework, the authors succeeded there in delivering
a rather complete picture of the situation. As it turns out, for instance, in the simplest noncoercive
case where m(x) ≡ 0 the following two conditions

a(x) changes sign in Ω,

∫
Ω

a(x)dx < 0,

are necessary and sufficient for the existence of a positive solution. Furthermore, their results
were extended via degree theory in [5] to the class of equations whose left-hand side involves
a general uniformly elliptic linear operator while the right-hand side is of the form f (x,u) =
a(x)g(u) and g(u) has precise power-like growth at infinity.

A thorough treatment of the Dirichlet problem when Ω is bounded, p = 2, ρ(x) ≡ 1 and

f (x,u) = λu + a(x)|u|q−2u − b(x)|u|s−2u, 2 < q < s,

with a(·), b(·) being non-negative bounded functions, is provided in [2], also from a varia-
tional viewpoint. In particular, the analysis in [2] examines the influence of the competing terms
a|u|q−2u and b|u|s−2u on the structure of the solution set when λ varies in a neighborhood of
the first eigenvalue of −Δ in H 1

0 (Ω). When λ = 0, some interesting nonexistence phenomena
are discussed in [17] depending on the smoothness properties of a nonconstant diffusion coeffi-
cient ρ(x).

Several of the aforementioned results admit proper extensions to the quasilinear case p �= 2.
As a matter of fact, the Dirichlet problem in a bounded domain Ω (as well as the problem in the
whole of R

N ) for the p-Laplace equation

−Δpu := −div
(|∇u|p−2∇u

) = λg(x)|u|p−2u + a(x)|u|q−2u,

where 1 < p < q < p∗ := Np
N−p

and g(·), a(·) are sign-changing functions, was studied via the
fibering method in [14]. More specifically, the analysis carried out there examines the issues of
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existence, nonexistence and multiplicity of positive solutions in connection to the first eigenvalue
of −Δp and the obtained results generalize those concerning the semilinear case p = 2, with
g(x) ≡ 1 [1]. When Ω = R

N , the same equation was also studied in [11,12] by applying a
bifurcation-type approach in conjunction with critical point theory.

At the same time, when Ω is bounded, some results under Neumann or more general boundary
conditions are also available. More precisely, the existence and nonexistence of non-negative
solutions for the Neumann problem with

f (x,u) = a(x)|u|q−2u − b(x)|u|s−2u, q, s ∈ (
1,p∗),

(p,q, s unequal), was studied in [21]; again by the fibering method; assuming that a(·) changes
sign while b(·) is non-negative in Ω . In addition, existence and multiplicity results in connection
to related eigenvalue problems were established in [8] and [15,22], under Neumann and mixed
boundary conditions, respectively.

Our goal in this paper is to investigate the solvability, within the class of non-negative solu-
tions, of the problem

−div
(
ρ(x)|∇u|p−2∇u

) = a(x)|u|q−2u − b(x)|u|s−2u − c(x)|u|t−2u, x ∈ Ω, (3)

ρ(x)|∇u|p−2 ∂u

∂ν
+ h(x)|u|p−2u = 0, x ∈ ∂Ω, (4)

where Ω is an unbounded domain in R
N with noncompact smooth boundary, 1 < p < N ,

q, s ∈ (1,p∗), t > p∗ (p,q, s unequal), 0 < ρ0 � ρ(x) ∈ L∞(Ω) ∩ L∞(∂Ω) and 0 < h(x) ∈
L∞(∂Ω). We assume further that the function a(·) changes sign while b(·) and c(·) remain
non-negative in Ω (more precise conditions will be given in the next section).

The principal feature studied here is the interplay of subcritical and supercritical nonlinearities
on the right-hand side of (3) whose competitive dominance affects essentially the indefinite char-
acter of the problem. Our approach is based on Pohozaev’s fibering strategy [20] whose main
advantage lies on the fact that it can separate the algebraic from the topological factors of the
problem.

2. Preliminaries

Throughout the paper we assume that the following structure conditions are satisfied:

(�0)

{
1 < p < N, 1 < q < p∗, 1 < s < p∗ (p, q, s unequal), t > p∗,
ρ ∈ L∞(Ω) ∩ L∞(∂Ω) and 0 < ρ0 � ρ(x) a.e. in Ω.

(�1) meas(Ω+
a ) > 0, where Ω+

a := {x ∈ Ω: a+(x) > 0} and there exist positive constants Λ1,
α1, such that

∣∣a(x)
∣∣ � Λ1

(1 + |x|)α1
a.e. in Ω.

(�2) There exist positive constants Λ2 and α2, such that

0 � b(x) � Λ2

(1 + |x|)α2
a.e. in Ω.
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(�3) c ∈ L∞(Ω) and c(x) � 0 a.e. in Ω .
(�4) h ∈ L∞(∂Ω) and

1

K(1 + |x|)p−1
� h(x) � K

(1 + |x|)p−1
a.e. on ∂Ω,

for some K > 1.

Let wθ(x) := 1
(1+|x|)θ where θ > 0. For any 1 < σ < +∞ we define the weighted Lebesgue

space Lσ (wθ ,Ω) := {u:
∫
Ω

wθ |u|σ dx < +∞} equipped with the norm

‖u‖wθ ,σ :=
(∫

Ω

wθ |u|σ dx

)1/σ

.

For the non-negative measurable function c :Ω → R, the space Lt(c,Ω) is similarly defined.
We associate with it the semi-norm |u|c,t := (

∫
Ω

c|u|t dx)1/t .
Furthermore, let C∞

δ (Ω) be the space of C∞
0 (RN)-functions restricted on Ω . Then the

weighted Sobolev space Ep(Ω) is defined as the completion of C∞
δ (Ω) under the norm

|||u|||1,p :=
(∫

Ω

|∇u|p dx +
∫
Ω

wp|u|p dx

)1/p

. (5)

The proposition below records all the embedding properties which are relevant to our purposes:

Theorem 1.

(i) If

p � σ � p∗ := Np

N − p
and N > θ � N

(
1 − σ

p∗

)
,

then the embedding Ep(Ω) ⊆ Lσ (wθ ,Ω) is continuous. In particular, if the upper bound
for σ in the first inequality and the lower bound for θ in the second are strict, then the
embedding is compact.

(ii) If

p � τ � p∗
(

1 − 1

N

)
and N > η � N

(
1 − τ

p∗

)
− 1,

then the trace operator Ep(Ω) → Lτ (wη, ∂Ω) is continuous. Moreover, if the upper bound
for τ in the first inequality and the lower bound for η in the second are strict, then the trace
is compact.

(iii) If

1 < σ < p and α > N

(
1 − σ

p∗

)
,

then the embedding Lp(wp,Ω) ⊆ Lσ (wα,Ω) is continuous.
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Proof. The first and second part of the theorem are just a restatement of [19, Theorem 1], while
the third is a consequence of the inequality

∫
Ω

1

(1 + |x|)α |u|σ dx �
(∫

Ω

1

(1 + |x|)d dx

) p−σ
p

(∫
Ω

1

(1 + |x|)p |u|p dx

) σ
p

,

where d = (α−σ)p
p−σ

> N . �
Moreover, the following fact holds.

Lemma 2. [19, Lemma 2] If ρ(·) and h(·) conform with (�0) and (�4), respectively, then

‖u‖Ep :=
(∫

Ω

ρ|∇u|p dx +
∫

∂Ω

h|u|p dω

)1/p

defines a norm in Ep(Ω) which is equivalent to ||| · |||1,p .

We set E(Ω) := Ep(Ω) ∩ Lt(c,Ω). Then, E endowed with the natural norm ‖ · ‖E :=
‖ · ‖Ep + | · |c,t becomes a Banach space.

Assume now that the exponents α1, α2 in conditions (�1), (�2), respectively, are such that the
embeddings Ep(Ω) ⊆ Lq(wα1 ,Ω) and Ep(Ω) ⊆ Ls(wα2 ,Ω) hold (cf. Theorem 1) and consider
the Euler–Lagrange functional Φ :E → R associated with problem (3), (4), defined as

Φ(u) := 1

p

(∫
Ω

ρ|∇u|p dx +
∫

∂Ω

h|u|p dω

)
− 1

q

∫
Ω

a|u|q dx + 1

s

∫
Ω

b|u|s dx + 1

t

∫
Ω

c|u|t dx.

(6)

Clearly, Φ(·) is well defined in E. Furthermore, by applying standard arguments it can be easily
verified that Φ ∈ C1(E) and for any φ ∈ E

〈
Φ ′(u),φ

〉 = ∫
Ω

ρ|∇u|p−2∇u∇φ dx +
∫

∂Ω

h|u|p−2uφ dω

−
∫
Ω

(
a|u|q−2u − b|u|s−2u − c|u|t−2u

)
φ dx.

As usual, by a weak solution of problem (3), (4) we mean a critical point of Φ(·).
According to the next proposition, if a(·) decays rapidly enough at infinity then any nontrivial

non-negative weak solution of (3), (4) is essentially bounded on compact subsets of Ω and,
therefore, strictly positive in Ω .

Lemma 3. Suppose that conditions (�0)–(�4) hold and let u ∈ E be a nontrivial non-negative
weak solution of (3), (4). If α1 > p then wpu ∈ L∞(Ω) and u > 0 in Ω .
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Proof. Fix m > 0 and set um(x) := min{u(x),m}. Then, multiply (3) with u
kp+1
m , where k > 0,

integrate over Ω and use (4), (�1)–(�4), to get

∫
Ω

ρ(x)|∇um|p−2∇um∇u
kp+1
m dx +

∫
∂Ω

h(x)up−1u
kp+1
m dω

=
∫
Ω

(
a(x)uq−1 − b(x)us−1 − c(x)ut−1)ukp+1

m dx �
∫
Ω

a+(x)ukp+q dx. (7)

On the other hand, by virtue of Theorem 1 and Lemma 2, we obtain

∫
Ω

ρ(x)|∇um|p−2∇um∇u
kp+1
m dx +

∫
∂Ω

h(x)up−1u
kp+1
m dω

= kp + 1

(k + 1)p

∫
Ω

ρ(x)
∣∣∇(

uk+1
m

)∣∣p dx +
∫

∂Ω

h(x)up−1u
kp+1
m dω

� kp + 1

(k + 1)p

(∫
Ω

ρ(x)
∣∣∇(

uk+1
m

)∣∣p dx +
∫

∂Ω

h(x)u
(k+1)p
m dω

)

� c1
kp + 1

(k + 1)p

(∫
Ω

1

(1 + |x|)p u
(k+1)p∗
m dx

) p

p∗
, (8)

where c1 is a positive constant independent of k and m. Thus, by (7) and (8)

c1
kp + 1

(k + 1)p

(∫
Ω

1

(1 + |x|)p u
(k+1)p∗
m dx

) p

p∗
�

∫
Ω

a+(x)ukp+q dx. (9)

Assume first q > p. Then, for q1 = p∗
p∗−q

and β, δ > 0 to be determined later, we have formally

∫
Ω

a+(x)ukp+q dx � Λ1

∫
Ω

1

(1 + |x|)α1
ukp+q dx

� Λ1

(∫
Ω

[
1

(1 + |x|)β
]q1+δ

dx

) 1
q1+δ

(∫
Ω

up∗
dx

) ζ−p(q1+δ)′
ζ(q1+δ)′

×
(∫ [

1

(1 + |x|)α1−β
u

](k+1)ζ

dx

) p
ζ

, (10)
Ω
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where ζ = pp∗(q1+δ)′
p∗−(q−p)(q1+δ)′ and (q1 + δ)′ is the Hölder-conjugate of q1 + δ. Note that, on account

of Theorem 1(i), u ∈ Lp∗
(Ω). Therefore, since ζ ∈ (p(q1 + δ)′,p∗), by taking β = α1(p

∗−1)
p∗ and

selecting δ large enough so that β(q1 + δ) > N , (10) yields

∫
Ω

a+(x)ukp+q dx � c2

(∫
Ω

1

(1 + |x|)α1(k+1)ζ/p∗ u(k+1)ζ dx

) p
ζ

, (11)

for some constant c2 > 0 independent of k and m. Hence, upon combining (9) with (11) and
letting m → +∞, we derive the estimate

(∫
Ω

1

(1 + |x|)p u(k+1)p∗
dx

) 1
p∗

� c3
k + 1

(kp + 1)1/p

(∫
Ω

1

(1 + |x|)α1(k+1)ζ/p∗ u(k+1)ζ dx

) 1
ζ

,

(12)

where c3 = (c2/c1)
1/p . The above inequality can now serve as the backbone for a bootstrap

procedure. We let k := k1 > 0 so that (k1 +1)ζ = p∗ and apply (12) recursively with (kn +1)ζ =
(kn−1 + 1)p∗, n � 2. Since kn = (

p∗
ζ

)n − 1 → +∞ while α1 > p, by continuing as in [13,
Lemma 3.2] we eventually deduce that wpu ∈ L∞(Ω).

Next assume q < p. For γ ∈ (0, a1) and λ > p we have formally

∫
Ω

a+(x)ukp+q dx � Λ1

∫
Ω

1

(1 + |x|)α1
ukp+q dx

� Λ1

(∫
Ω

1

(1 + |x|)(α1−γ )λ/(λ−p)
dx

) λ−p
λ

(∫
Ω

1

(1 + |x|)γ λ/p
u

(kp+q) λ
p dx

) p
λ

.

(13)

By restricting now λ ∈ (p,min{p(N−p)
N−α1

,p∗}) if α1 ∈ (p,N) or λ ∈ (p,p∗) if α1 � N and taking
γ = p2

λ
, (13) gives

∫
Ω

a+(x)ukp+q dx � Λ1

(∫
Ω

1

(1 + |x|)(λα1−p2)/(λ−p)
dx

) λ−p
λ

(∫
Ω

1

(1 + |x|)p u
(k+ q

p
)λ

dx

) p
λ

.

(14)

Note that λα1−p2

λ−p
> N . Thus, on combining (9) with (14) and letting m → +∞, we obtain the

estimate

(∫
Ω

1

(1 + |x|)p u(k+1)p∗
dx

) 1
p∗

� c4
k + 1

(kp + 1)1/p

(∫
Ω

1

(1 + |x|)p u
(k+ q

p
)λ

dx

) 1
λ

, (15)

for some c4 > 0 independent of k. As before, (15) provides the key for a bootstrap argument. We
let k := k1 > 0 so that (k1 + q

)λ = p∗ and apply (15) recursively with (kn + q
)λ = (kn−1 +1)p∗,
p p
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n � 2. Since kn > (
p∗
λ

)n − q
p

→ +∞, by continuing as in [13, Lemma 3.2] we finally conclude
that wpu ∈ L∞(Ω).

Thus u ∈ L∞
loc(Ω) and by virtue of the Harnack inequality [24], u > 0 in Ω. �

The previous lemma in conjunction with the regularity results obtained in [23] renders imme-
diately the following:

Corollary 4. Suppose that conditions (�0)–(�4) hold and let u ∈ E be a non-negative solution
of (3), (4). If ρ ∈ C1(Ω) and α1 > p then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

3. Main results

Our search for critical points of the functional Φ(·) will be based on the so-called one-
parameter fibration of the underlying space E. To this end, we define the extended functional
F : R × E → R by setting for any r ∈ R and v ∈ E

F(r, v) := Φ(rv) = |r|p
p

‖v‖p
Ep

− |r|q
q

A(v) + |r|s
s

B(v) + |r|t
t
C(v), (16)

where

A(v) :=
∫
Ω

a(x)|v|q dx, B(v) :=
∫
Ω

b(x)|v|s dx, C(v) :=
∫
Ω

c(x)|v|t dx.

If u = rv is a critical point of Φ(·), then necessarily

Fr (r, v) = 0, (17)

which is referred to as the bifurcation equation of the fibering scheme. If r �= 0 then (17) is
equivalent to

Θ(r, v) = ‖v‖p
Ep

, (18)

where

Θ(r, v) := A(v)|r|q−p −B(v)|r|s−p − C(v)|r|t−p. (19)

Assume r = r(v) �= 0 solves (18) for any v in some open subset G ⊆ E \ {0} and r ∈ C1(G).
Then the reduced functional

Φ̂(v) := Φ
(
r(v)v

)
=

(
1

p
− 1

q

)
A(v)

∣∣r(v)
∣∣q +

(
1

s
− 1

p

)
B(v)

∣∣r(v)
∣∣s +

(
1

t
− 1

p

)
C(v)

∣∣r(v)
∣∣t (20)

is well defined and continuously differentiable in G. To compensate the introduction of the fiber-
ing parameter r ∈ R, we impose also the constraint

H(v) = 1,
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where H :E → R is some appropriately chosen functional. The essence of the fibering method
relies on the following key fact.

Lemma 5. [14, Lemma 3.4] Let H :E → R be a functional which is continuously Fréchet-
differentiable in E \ {0} and satisfies the conditions:

〈
H ′(v), v

〉 �= 0 if H(v) = 1,

and H(0) = 0. If v �= 0 is a conditional critical point of Φ̂(·) under the constraint H(v) = 1,
then u := r(v)v is a nonzero critical point of Φ(·).

Throughout the paper, the fibering functional of our choice will be

H(v) := ‖v‖E = ‖v‖Ep + C(v)1/t . (21)

Clearly, 〈H ′(v), v〉 = 1 for every v ∈ S1, where

S1 := {
v ∈ E: H(v) = 1

}
. (22)

Hence, by virtue of Lemma 5, the problem of finding solutions for (3), (4) will be reduced in the
sequel to that of locating critical points of Φ̂(·) on S1. Note that since Θ(r, v) is even with respect
to r , it suffices to look only for positive solutions r(v) of (18). Thus, in what follows, |r| will be
tacitly replaced by r . Moreover, if v �= 0 is a critical point of Φ̂(·) then, by (18) and (20), so is
|v| and, by Lemma 5, u = r(|v|)|v| is a nontrivial non-negative solution of (3), (4).

We proceed by defining the set

G1 := {
v ∈ E: A(v) > 0

}
. (23)

Due to assumption (�1), G1 �= ∅.
Depending on the relative ordering of the exponents p,q, s, we partition our analysis into six

separate cases.

Case 1: q < p < s.

Theorem 6. Let assumptions (�0)–(�4) be satisfied where q < p < s,

α1 ∈
(

N

(
1 − q

p∗

)
,+∞

)
and α2 ∈

(
N

(
1 − s

p∗

)
,N

)
.

Then problem (3), (4) admits a nontrivial non-negative solution u ∈ E. In particular, u > 0 in Ω .
Furthermore, if ρ ∈ C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Proof. Let us first rewrite the bifurcation equation (18) in the form

‖v‖p
Ep

rp−q +B(v)rs−q + C(v)rt−q = A(v). (24)

It is clear that for every v ∈ G1, (24) admits a unique solution r(v) > 0. Moreover, r ∈ C1(G1)

by the implicit function theorem [25, Theorem 4.B, p. 150]. At the same time, on account of
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Theorem 1(iii), A(·) is bounded on S1. On the other hand, if v ∈ S1 then, by (22), we should
either have ‖v‖Ep � 1

2 or C(v)1/t � 1
2 . Hence, by (24),

min

{
1

2
r(v)p−q,

1

2t
r(v)t−q

}
� A(v), (25)

which implies that r(·) is bounded on G1 ∩ S1. As a consequence, Φ̂(·) is also bounded on
G1 ∩S1. Furthermore, it is easily checked that for every μ > 0 and every v ∈ G1, μr(μv) = r(v)

while

Φ̂(μv) = Φ̂(v). (26)

We now set

M := inf
v∈G1∩S1

Φ̂(v), (27)

and note that, by (20), M < 0. If {vn}n∈N is a minimizing sequence in G1 ∩ S1, then, for a
subsequence (still denoted by {vn}n∈N), vn → ṽ weakly in Ep(Ω) and c1/t vn → c1/t ṽ weakly in
Lt(Ω). By invoking Theorem 1(i), (iii) and our current hypotheses, we can assume further that
{A(vn)}n∈N and {B(vn)}n∈N converge to A(ṽ) � 0 and B(ṽ) � 0, respectively, while, by (21)
and (22),

0 � C(ṽ) � lim inf
n→+∞C(vn) � 1. (28)

Moreover, up to a new subsequence, r(vn) → r̃ . Therefore, by employing (16),

Φ(r̃ṽ) � lim inf
n→+∞Φ

(
r(vn)vn

) = M < 0, (29)

and so r̃ ṽ �= 0. Also, by applying (24) for the sequence {vn}n∈N and passing to the limit, we
obtain

‖ṽ‖p
Ep

r̃p−q +B(ṽ)r̃s−q + C(ṽ)r̃ t−q � A(ṽ), (30)

which shows that A(ṽ) > 0 since, otherwise, r̃ ṽ = 0. Hence, ṽ ∈ G1 while the unique solution
r(ṽ) of (18) satisfies

‖ṽ‖p
Ep

r(ṽ)p−q +B(ṽ)r(ṽ)s−q + C(ṽ)r(ṽ)t−q = A(ṽ). (31)

On comparing (30) with (31), we deduce r̃ � r(ṽ). We claim that r̃ = r(ṽ). Indeed, if r̃ < r(ṽ),
then, since the function z �→ Φ(zṽ), z ∈ (0, r(ṽ)], is strictly decreasing, in view of (29), we
should have

M � Φ(r̃ṽ) > Φ
(
r(ṽ)ṽ

) = Φ̂(ṽ). (32)

But then, by virtue of (26) and (32),

Φ̂

(
ṽ

)
= Φ̂(ṽ) < M,
‖ṽ‖E
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which contradicts (27). As a result, by passing to the limit in (24) (when applied to {vn}n∈N) and
using (31), we deduce

lim
n→+∞

{‖vn‖p
Ep

+ C(vn)r(vn)
t−p

} = ‖ṽ‖p
Ep

+ C(ṽ)r(ṽ)t−p, (33)

from which it readily follows that ‖vn‖Ep → ‖ṽ‖Ep and C(vn) → C(ṽ). Consequently, ṽ ∈ S1

and Φ̂(ṽ) = M . Because now |ṽ| is also a minimizer of Φ̂(·), we may assume ṽ � 0. Then,
Lemma 5 guarantees that u = r(ṽ)ṽ is a nontrivial non-negative solution of (3), (4). In particular,
by verifying that α1 > p and recalling Lemma 3, u > 0 in Ω . Furthermore, if ρ ∈ C1(Ω) then
u ∈ C

1,α
loc (Ω), by Corollary 4. �

Case 2: q < s < p.
Arguing exactly as in the proof of the previous theorem one can establish:

Theorem 7. Let assumptions (�0)–(�4) be satisfied where q < s < p,

α1 ∈
(

N

(
1 − q

p∗

)
,+∞

)
and α2 ∈

(
N

(
1 − s

p∗

)
,+∞

)
.

Then problem (3), (4) admits a nontrivial non-negative solution u ∈ E. In particular, u > 0 in Ω .
Furthermore, if ρ ∈ C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Case 3: s < q < p.

Theorem 8. Let assumptions (�0)–(�4) be satisfied where s < q < p,

α1 ∈
(

N

(
1 − q

p∗

)
,+∞

)
and α2 ∈

(
N

(
1 − s

p∗

)
,+∞

)
.

Moreover, suppose that the following condition holds:

(�5) V := (suppa+ \ suppb)o �= ∅.

Then problem (3), (4) admits a nontrivial non-negative solution u ∈ E. In particular, u > 0 in Ω .
Furthermore, if ρ ∈ C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Proof. Let v ∈ G1. If B(v) = 0 then the bifurcation equation (18) has a unique solution r(v) > 0
which satisfies

‖v‖p
Ep

rp−q + C(v)rt−q = A(v).

On the other hand, if B(v) > 0 then the function Θ(·, v) (see (19)) has a unique critical point
r∗ := r∗(v) which corresponds to a global maximum and satisfies

(p − s)B(v) = (p − q)A(v)r
q−s∗ + (t − p)C(v)rt−s∗ . (34)
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Clearly, if ‖v‖p
Ep

< Θ(r∗(v), v) then (18) has exactly two positive solutions r1(v), r2(v) with
r1(v) < r∗(v) < r2(v). We set r := r(v) to be the unique solution of (18) in case B(v) = 0 or the
greater solution r2 in case B(v) > 0. Note that, if B(v) > 0 then

rp−s+1Θr(r, v) = (q − p)A(v)rq−s − (s − p)B(v) − (t − p)C(v)rt−s ,

which, on account of (34), yields

rp−s+1Θr(r, v) = (q − p)A(v)
(
rq−s − r

q−s∗
) − (t − p)C(v)

(
rt−s − rt−s∗

)
< 0,

while if B(v) = 0,

rp+1Θr(r, v) = (q − p)A(v)rq − (t − p)C(v)rt < 0.

Thus, r(·) is continuously differentiable by the implicit function theorem. We now define

G2 := {
v ∈ G1: B(v) = 0

} ∪ {
v ∈ G1: B(v) > 0 and ‖v‖p

Ep
< Θ

(
r∗(v), v

)}
, (35)

where r∗(v) is determined by (34). Under assumptions (�1) and (�5), G2 �= ∅ since for any
v ∈ E with suppv ⊆ V there holds A(v) > 0 and B(v) = 0. We claim that G2 is also open.
Indeed, let v̂ ∈ G2 and assume that there is a sequence {vn}n∈N ⊆ E \ G2 with vn → v̂ strongly
in E. By a straightforward continuity argument we may assume, without loss of generality, that
B(v̂) = 0 while B(vn) > 0 for every n ∈ N. Therefore,

‖vn‖p
Ep

� Θ
(
r∗(vn), vn

)
for every n ∈ N. (36)

Moreover, since A(v̂) > 0, on account of (34), r∗(vn) → 0. At the same time, on combining (19)
with (34), we get

Θ
(
r∗(vn), vn

) = q − s

p − s
A(vn)r∗(vn)

q−p − t − s

p − s
C(vn)r∗(vn)

t−p,

and so limn→+∞ Θ(r∗(vn), vn) = +∞, in contradiction to (36).
Next, we set

M := inf
v∈G2∩S1

Φ̂(v).

By the same reasoning employed in the proof of Theorem 6, it follows that r(·), as well as Φ̂(·)
are bounded on G2 ∩ S1 while, on account of (20) and (�5), M < 0. Let {vn}n∈N be a mini-
mizing sequence in G2 ∩ S1. By invoking Theorem 1(i) and (iii) and our current hypotheses, we
can assume that, for a subsequence (still denoted by {vn}n∈N), there is ṽ ∈ E so that A(vn) →
A(ṽ) � 0, B(vn) → B(ṽ) � 0 while (28) holds. Furthermore, up to a new subsequence,
r(vn) → r̃ . In particular, r̃ > 0 for if r̃ = 0 then, by (20), M = limn→+∞ Φ̂(vn) = 0; a con-
tradiction. In return, this implies A(ṽ) > 0. Indeed, from the bifurcation equation (18) we have

‖vn‖p
r(vn)

p−q � A(vn),
Ep
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and by passing to the limit,

‖ṽ‖p
Ep

r̃p−q � lim inf
n→+∞

(‖vn‖p
Ep

r(vn)
p−q

)
� lim

n→+∞A(vn) = A(ṽ). (37)

Thus, if A(ṽ) = 0 then ṽ = 0 since r̃ > 0. However, this induces contradiction because, upon
using (16), we should have 0 = Φ(0) � lim infn→+∞ Φ(r(vn)vn) = M .

We proceed now to show that ṽ ∈ G2. Of course, if B(ṽ) = 0 then ṽ ∈ G2 automatically. Let
us therefore assume B(ṽ) > 0. By our earlier discussion, for every vn with n large enough, the
function Θ(·, vn) has a unique critical point r∗(vn) > 0 which corresponds to a global maximum
and satisfies

(p − s)B(vn) = (p − q)A(vn)r∗(vn)
q−s + (t − p)C(vn)r∗(vn)

t−s . (38)

Since r∗(vn) < r(vn), the sequence {r∗(vn)}n∈N is also bounded. Thus, up to a further subse-
quence, r∗(vn) → r̃∗. In particular, by our assumption B(ṽ) > 0 and (38), r̃∗ > 0. Hence,

‖ṽ‖p
Ep

� lim sup
n→+∞

‖vn‖p
Ep

� lim sup
n→+∞

Θ
(
r∗(vn), vn

)
� lim sup

n→+∞
{
A(vn)r∗(vn)

q−p −B(vn)r∗(vn)
s−p

} − lim inf
n→+∞C(vn)r∗(vn)

t−p

�A(ṽ)r̃
q−p∗ −B(ṽ)r̃

s−p∗ − C(ṽ)r̃
t−p∗ = Θ(r̃∗, ṽ), (39)

and so, a fortiori,

‖ṽ‖p
Ep

� Θ
(
r∗(ṽ), ṽ

)
. (40)

We claim that strict inequality holds in (40). Indeed, let us suppose

‖ṽ‖p
Ep

= Θ
(
r∗(ṽ), ṽ

)
. (41)

Since r̃ > 0, by applying (18) for v = vn and passing to the limit, we also obtain

‖ṽ‖p
Ep

� lim sup
n→+∞

‖vn‖p
Ep

� lim sup
n→+∞

Θ
(
r(vn), vn

)
� lim sup

n→+∞
{
A(vn)r(vn)

q−p −B(vn)r(vn)
s−p

} − lim inf
n→+∞C(vn)r(vn)

t−p

� A(ṽ)r̃q−p −B(ṽ)r̃s−p − C(ṽ)r̃ t−p = Θ(r̃, ṽ). (42)

Consequently, on comparing (39), (41) and (42), we should have r̃ = r̃∗ = r∗(ṽ). On the other
hand, by passing to the limit in (38) and recalling that r∗(ṽ) satisfies

(p − s)B(ṽ) = (p − q)A(ṽ)r∗(ṽ)q−s + (t − p)C(ṽ)r∗(ṽ)t−s ,

we immediately infer that, along a subsequence, C(vn) → C(ṽ) and

B(ṽ) = p − qA(ṽ)r̃q−s + t − p C(ṽ)r̃ t−s . (43)

p − s p − s
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But then, by combining (20) with (43), we deduce

M = lim
n→+∞ Φ̂(vn) = (q − s)(p − q)

qsp
A(ṽ)r̃q + (t − s)(t − p)

tsp
C(ṽ)r̃ t > 0,

which is a contradiction. Therefore, ṽ ∈ G2 as claimed.
We shall show in the sequel that r̃ = r(ṽ). Since ṽ �= 0, we set μ := ‖ṽ‖−1

E and assume first
B(ṽ) > 0. Clearly, μṽ ∈ G1 ∩ S1 while, by using (34), it is easy to verify

μr∗(μṽ) = r∗(ṽ). (44)

Moreover, on account of (19), (35) and (44), we have

‖ṽ‖p
Ep

< Θ
(
r∗(ṽ), ṽ

) = Θ
(
μr∗(μṽ), ṽ

) = μ−pΘ
(
r∗(μṽ),μṽ

)
,

and so

‖μṽ‖p
Ep

< Θ
(
r∗(μṽ),μṽ

)
,

which implies μṽ ∈ G2 ∩ S1. Furthermore, by (18) and (19), r(μṽ) satisfies

Θ
(
μr(μṽ), ṽ

) = ‖ṽ‖p
Ep

= Θ
(
r(ṽ), ṽ

)
. (45)

Thus, since μr(μṽ) > μr∗(μṽ) = r∗(ṽ) and r(ṽ) > r∗(ṽ), (45) yields

μr(μṽ) = r(ṽ). (46)

On the other hand, by virtue of (42),

Θ
(
r(ṽ), ṽ

) = ‖ṽ‖p
Ep

� Θ(r̃, ṽ), (47)

and so r̃ � r(ṽ). Suppose r̃ < r(ṽ). Then, upon using (16), (46) and noticing that the function

ψ(z) := ∂

∂z
Φ(zṽ) = zp−1{‖ṽ‖p

Ep
− Θ(z, ṽ)

}
, z > r̃, (48)

is strictly negative for z ∈ (r̃, r(ṽ)), we deduce

M = lim inf
n→+∞Φ

(
r(vn)vn

)
� Φ(r̃ṽ) > Φ

(
r(ṽ)ṽ

) = Φ
(
r(μṽ)μṽ

) = Φ̂(μṽ),

which is impossible. To show that r̃ = r(ṽ) when B(ṽ) = 0 is easier. Indeed, since the function
z �→ Θ(z, ṽ), z > 0, is now strictly decreasing, the bifurcation equation (18) implies directly
μr(μṽ) = r(ṽ). The desired conclusion then follows by applying the same reasoning as be-
fore and observing that the function ψ(z), as defined by (48), is again strictly negative for
z ∈ (r̃, r(ṽ)). Hence, by passing to the limit in (18) (when applied to {vn}n∈N), we rederive
(33) from which we infer that ṽ ∈ S1 and Φ̂(ṽ) = M . Arguing similarly to Case 1, one can now
establish all the assertions of the theorem. �
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In the analysis of the remaining three cases we find it necessary to strengthen our hypothe-
sis (�3) by assuming that the function c(·) is essentially bounded away from zero on compact
subsets of Ω+

a := {x ∈ Ω: a+(x) > 0} while it may decay to zero on Ω+
a , as |x| → +∞ , at a

controlled rate if, of course, Ω+
a is unbounded. For this purpose, (�3) will be replaced henceforth

by the following condition:

(�6) c ∈ L∞(Ω), c(·) � 0 a.e. in Ω \ Ω+
a while

Γ

(1 + |x|)γ � c(x) a.e. in Ω+
a , (49)

where γ ∈ (0, t
q
(α1 − N(1 − q

t
))) and Γ > 0.

Apart from this change, the rest of our hypotheses (�0), (�1), (�2) and (�4) will continue to
remain in force. Note, however, that if (�6) holds then an indirect restriction on the possible
values of the exponent α1 in (�1) is imposed, namely,

α1 > N

(
1 − q

t

)
.

Nevertheless, as we shall see in the sequel, this is merely a reflection of the fact that when q > p,
the derivation of a priori bounds for solutions of the bifurcation equation (18) under the fiber-
ing constraint (22), hinges on a rather delicate balance between the competing effects induced
by the terms a(x)|u|q−2u and −c(x)|u|t−2u on the right-hand side of (3). Another simple, yet
important, implication of (�1) and (�6) is that C(v) > 0 whenever A(v) > 0.

Case 4: s < p < q .
Let v ∈ G1. Then the function Θ(·, v) has a unique critical point r∗ := r∗(v) > 0 which cor-

responds to a global maximum and satisfies

(q − p)A(v)r
q−t∗ + (p − s)B(v)rs−t∗ = (t − p)C(v). (50)

In particular, by combining (19) with (50), we obtain

Θ
(
r∗(v), v

) = t − q

t − p
A(v)r∗(v)q−p − t − s

t − p
B(v)r∗(v)s−p. (51)

Therefore, for every v ∈ G3, where

G3 := {
v ∈ G1: ‖v‖p

Ep
< Θ

(
r∗(v), v

)}
, (52)

the bifurcation equation (18) has exactly two positive solutions r1(v), r2(v) where r1(v) <

r∗(v) < r2(v). We set r := r(v) to be the greater solution r2. Since

rp−t+1Θr(r, v) = (q − p)A(v)rq−t + (p − s)B(v)rs−t − (t − p)C(v),

by virtue of (50), we find

rp−t+1Θr(r, v) = (q − p)A(v)
(
rq−t − r

q−t∗
) + (p − s)B(v)

(
rs−t − rs−t∗

)
< 0.

Hence, r ∈ C1(G3) by the implicit function theorem.
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We now define the set

G4 :=
{
v ∈ G1: ‖v‖p

Ep
<

p

q

t − q

t − p
A(v)r∗(v)q−p − p

s

t − s

t − p
B(v)r∗(v)s−p

}
, (53)

and assume G4 �= ∅. Since p
q

< 1 and p
s

> 1, by using (51), we immediately see that G4 ⊆ G3
and so G3 is also nonempty. At the same time, by using (50), the following scaling property
holds

μr∗(μv) = r∗(v), for any μ > 0 and v ∈ G1. (54)

Consequently, if v ∈ G4 then, from (53), μv ∈ G4, as well. In particular, by choosing μ = ‖v‖−1
E ,

G4 ∩ S1 �= ∅. On the other hand, Φ̂(v) < 0 for any v ∈ G4. Indeed, recalling that r(v) > r∗(v),
(53) yields directly

‖v‖p
Ep

<
p

q

t − q

t − p
A(v)r(v)q−p − p

s

t − s

t − p
B(v)r(v)s−p,

which, after a straightforward rearrangement using (18) and (20), proves the assertion.
We proceed to show that under the validity of (�6),

inf
v∈G3∩S1

C(v) > 0. (55)

As it turns out, (55) provides the key ingredient needed in the investigation of the constrained
minimization problem for the reduced functional Φ̂(·) in the present, as well as in the remaining
two cases. In proving (55), note first that if v ∈ G3 then, (19) in conjunction with (50) and (52)
imply

0 < Θ
(
r∗(v), v

) = t − s

p − s

(
q − s

t − s
A(v) − C(v)r∗(v)t−q

)
r∗(v)q−p,

and so

r∗(v) <

(
q − s

t − s

A(v)

C(v)

) 1
t−q

. (56)

Hence, by using (51), (52), (56) and noticing that q > p, we get

‖v‖p
Ep

<
t − q

t − p
A(v)r∗(v)q−p − t − s

t − p
B(v)r∗(v)s−p

� t − q

t − p
A(v)r∗(v)q−p <

t − q

t − p
A(v)

(
q − s

t − s

A(v)

C(v)

) q−p
t−q

. (57)

In particular, if v ∈ G3 ∩ S1 then, on account of (21), (22) and (57), we deduce

A(v)t−p >

(
t − p

)t−q(
t − s

)q−p

C(v)q−p
(
1 − C(v)

1
t
)p(t−q)

. (58)

t − q q − s
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On the other hand, by employing assumptions (�1) and (�6), we obtain via Hölder’s inequality

A(v) �
∫

Ω+
a

a+(x)|v|q dx � Λ1

∫
Ω+

a

1

(1 + |x|)α1
|v|q dx

� Λ1

( ∫
Ω+

a

1

(1 + |x|)(α1− γ q
t

) t
t−q

dx

) t−q
t

( ∫
Ω+

a

1

(1 + |x|)γ |v|t dx

) q
t

� Λ1

Γ
q
t

( ∫
Ω+

a

1

(1 + |x|)(α1− γ q
t

) t
t−q

dx

) t−q
t

C(v)
q
t . (59)

Observe now that, since (α1 − γ q
t

) t
t−q

> N , the last integral in (59) converges. Thus, on com-
bining (58) with (59), we find out that for some constant ξ > 0, depending only on p,q, s, t,Λ1
and Γ ,

C(v) >

{
1 + ξ

( ∫
Ω+

a

1

(1 + |x|)(α1− γ q
t

) t
t−q

dx

) t−p
tp

}−t

for any v ∈ G3 ∩ S1, (60)

whence (55) follows.
Next, suppose α1 ∈ (N(1 − q

t
),N) and α2 ∈ (N(1 − s

p∗ ),+∞). Then, due to Theorem 1(i),

(iii) and since t > p∗, we infer that A(·) and B(·) are bounded on S1. At the same time, from the
bifurcation equation (cf. (24)) we have

r(v) <

(A(v)

C(v)

) 1
t−q

, (61)

and so, by virtue of (55), r(·) must be bounded on G3 ∩ S1. As a result, Φ̂(·) is also bounded on
G3 ∩ S1.

We are now ready to consider the variational problem

M := inf
v∈G3∩S1

Φ̂(v) < 0.

If {vn}n∈N is a minimizing sequence in G3 ∩ S1 then, by invoking again Theorem 1(i) and (iii),
there exists ṽ ∈ E such that, for a subsequence (not relabelled), A(vn) → A(ṽ) � 0, B(vn) →
B(ṽ) � 0 while, by (21), (22) and (60),

0 < C(ṽ) � lim inf
n→+∞C(vn) � 1. (62)

Since r∗(vn) < r(vn), on account of (61), up to a further subsequence, r(vn) → r̃ and
r∗(vn) → r̃∗. Clearly, r̃ > 0 since M = limn→+∞ Φ̂(vn) < 0. In return, A(ṽ) > 0 because, oth-
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erwise, (61) and (62), would imply r̃ = 0. Furthermore, r̃∗ > 0 since, by (50),

r∗(vn) �
(

q − p

t − p

A(vn)

C(vn)

) 1
t−q

.

We claim that ṽ ∈ G3. Indeed, if not, then, by applying the same arguments as in the proof of
Theorem 8, we would have r̃ = r̃∗ = r∗(ṽ), while, along a subsequence, C(vn) → C(ṽ) where,
by (50),

C(ṽ) = q − p

t − p
A(ṽ)r̃q−t + p − s

t − p
B(ṽ)r̃s−t . (63)

This, however, leads to contradiction since, (20) in conjunction with (63) yields

M = lim
n→+∞ Φ̂(vn) = (t − q)(q − p)

tqp
A(ṽ)r̃q + (t − s)(p − s)

tsp
B(ṽ)r̃s > 0.

A similar reasoning as in Case 3 shows that r(ṽ) = r̃ . Finally, by passing to the limit in (18) we
rederive (33) which, in return, implies ṽ ∈ S1 and Φ̂(ṽ) = M . Hence, by recalling Lemmas 5, 3
and Corollary 4, we have the following:

Theorem 9. Let s < p < q and assume that conditions (�0), (�1), (�2), (�4) and (�6) hold,
with

α1 ∈
(

N

(
1 − q

t

)
,N

)
and α2 ∈

(
N

(
1 − s

p∗

)
,+∞

)
.

Assume further that the set G4 (as defined by (53)) is nonempty. Then problem (3), (4) admits
a nontrivial non-negative solution u ∈ E. In particular, if α1 > p then u > 0 in Ω . If also ρ ∈
C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Remark 10. It is easy to verify that G4 �= ∅ if, for example, condition (�5) holds (cf. Theorem 8)
and a+(·) is large with respect to c(·) in the sense that the inequality

A(v)t−p > ζC(v)q−p‖v‖p(t−q)
Ep

,

is satisfied for some v ∈ G1 with suppv ⊆ V , where ζ = (
q
p
)t−q (t−p)t−p

(t−q)t−q (q−p)q−p .

Case 5: p < q < s.
Since this case shares some of the characteristics presented already in Case 4, we shall only

give a brief outline of the analysis by paying more attention to those details which are different.
Indeed, if v ∈ G1 then also here the function Θ(·, v) has a unique critical point r∗ := r∗(v) > 0
which corresponds to a global maximum and satisfies

(q − p)A(v) = (s − p)B(v)r
s−q∗ + (t − p)C(v)r

t−q∗ . (64)
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Moreover, if B(v) > 0 then from (64) we get

r∗(v) <

(
q − p

s − p

A(v)

B(v)

) 1
s−q

,

and so

r∗(v)p−qΘ
(
r∗(v), v

) = t − q

t − p
A(v) − t − s

t − p
B(v)r∗(v)s−q

>
t − q

t − p
A(v) − t − s

t − p

q − p

s − p
A(v) = s − q

s − p
A(v) > 0, (65)

while if B(v) = 0,

r∗(v) =
(

q − p

t − p

A(v)

C(v)

) 1
t−q

,

and

r∗(v)p−qΘ
(
r∗(v), v

) = t − q

t − p
A(v) > 0. (66)

Thus, if v ∈ G3 (cf. (52)), the bifurcation equation (18) has exactly two positive solutions r1(v),
r2(v) with r1(v) < r∗(v) < r2(v). As before, we set r := r(v) to be the greater solution r2.
Furthermore, by using (64), we find

rp−q+1Θr(r, v) = (s − p)B(v)
(
r
s−q∗ − rs−q

) + (t − p)C(v)
(
r
t−q∗ − rt−q

)
< 0,

and so r ∈ C1(G3). Next, we define the set

G5 :=
{
v ∈ G1: ‖v‖p

Ep
<

p

q

s − q

s − p
A(v)r∗(v)q−p

}
, (67)

and assume G5 �= ∅. Since p
q

< 1 and s−q
s−p

<
t−q
t−p

, by virtue of (65) and (66), we immediately see

that G5 ⊆ G3 and so G3 �= ∅, as well. Moreover, by (67), G5 ∩ S1 �= ∅ since r∗(·) enjoys again
the scaling property (54). Furthermore, Φ̂(v) < 0 for any v ∈ G5. Indeed, since r(v) > r∗(v),
(67) yields

‖v‖p
Ep

<
p

q

s − q

s − p
A(v)r(v)q−p,

which, after a straightforward rearrangement using (18), becomes(
1

p
− 1

q

)
A(v)r(v)q +

(
1

s
− 1

p

)
B(v)r(v)s +

(
1

s
− 1

p

)
C(v)r(v)t < 0.

The assertion now follows on observing that 1
t

< 1
s

and recalling (20). On the other hand, given
(�6), the procedure employed in proving (55) carries over to the present case with only one
modification: the needed upper estimate for r∗(v) (cf. (56)) is now implied directly by (64);
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namely, we have

r∗(v) �
(

q − p

t − p

A(v)

C(v)

) 1
t−q

.

As a consequence, one eventually rederives estimate (60), albeit with a different constant ξ > 0.
At the same time, if α1 ∈ (N(1 − q

t
),N) and α2 ∈ (N(1 − s

p∗ ),N) then, by Theorem 1(i), A(·)
and B(·) are bounded on S1. Moreover, by virtue of (55) and (61), r(·), as well as Φ̂(·), are
bounded on G3 ∩ S1.

The investigation of the variational problem

M := inf
v∈G3∩S1

Φ̂(v) < 0,

can now be pursued along lines similar to those already presented in Case 4. As a matter of
fact, the necessary modifications in the analysis are rather straightforward. Nevertheless, for the
convenience of the reader who wishes to keep up with all the details, we find it worth mentioning
that in proving ṽ ∈ G3:

(i) there is no need to show also r̃∗ > 0, because here p is the smallest of all the exponents
involved and so no problem arises when passing to the limit in (19), if v = vn, n ∈ N;

(ii) having shown that r̃ = r̃∗ = r∗(ṽ) and, along a subsequence, C(vn) → C(ṽ), one must elimi-
nate A(ṽ) from the expression concerning limn→+∞ Φ̂(vn) to reach the impossibility

M = lim
n→+∞ Φ̂(vn) = (s − q)(s − p)

sqp
B(ṽ)r̃s + (t − q)(t − p)

tqp
C(ṽ)r̃ t > 0.

In summary, the following holds:

Theorem 11. Let p < q < s and assume that conditions (�0), (�1), (�2), (�4) and (�6) hold,
with

α1 ∈
(

N

(
1 − q

t

)
,N

)
and α2 ∈

(
N

(
1 − s

p∗

)
,N

)
.

Assume further that the set G5 (as defined by (67)) is nonempty. Then problem (3), (4) admits
a nontrivial non-negative solution u ∈ E. In particular, if α1 > p then u > 0 in Ω . If also ρ ∈
C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Remark 12. It is easily checked that G5 �= ∅ if, for example, the same conditions stated in
Remark 10 hold but with ζ = (

q
p
)t−q(

s−p
s−q

)t−q(
t−p
q−p

)q−p .

Case 6: p < s < q .
This is the most complicated case of all for it combines, on the one hand, the delicate compe-

tition induced by the subcritical and supercritical nonlinearities on the right-hand side of (3) with
a richer qualitative behavior of the function Θ(·, v), on the other. As a matter of fact, it becomes
here necessary to examine in parallel two essentially different subcases.
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Let v ∈ G1 and assume first B(v) > 0. We set

T (r, v) := rp−sΘ(r, v) = A(v)rq−s −B(v) − C(v)rt−s , r � 0. (68)

Clearly, T (0, v) = −B(v) < 0 while limr→+∞ T (r, v) = −∞. Moreover, T (·, v) has a unique
critical point r̄(v) > 0 which corresponds to a global maximum and

T
(
r̄(v), v

) = t − q

t − s
A(v)r̄(v)q−s −B(v), (69)

where

r̄(v) :=
(

q − s

t − s

A(v)

C(v)

) 1
t−q

. (70)

Therefore, on account of (68), Θ(r, v) > 0 for some r > 0 if and only if T (r̄(v), v) > 0, that is

r̄(v) > r̂(v) :=
(

t − s

t − q

B(v)

A(v)

) 1
q−s

. (71)

Let condition (71) holds. Then, an elementary investigation of the function

ϕ(r) := rp−s+1Θr(r, v) = (q − p)A(v)rq−s − (s − p)B(v) − (t − p)C(v)rt−s

shows that ϕ(·) has exactly two positive roots r1∗(v) and r2∗(v) with r1∗(v) < r2∗(v). As a matter
of fact, r1∗(v) is a point of local minimum of Θ(·, v) with Θ(r1∗(v), v) < 0 and r2∗(v) is a point
of global maximum of Θ(·, v) with Θ(r2∗(v), v) > 0. We set r∗(v) := r2∗(v) and claim that

r̄(v) < r∗(v). (72)

Indeed, by (68) we have

rs−pTr(r, v) = Θr(r, v) + (p − s)
Θ(r, v)

r
, r > 0,

and since Tr(r̄(v), v) = 0 while Θ(r̄(v), v) = r̄(v)s−pT (r̄(v), v) > 0, we deduce

Θr

(
r̄(v), v

) = (s − p)
Θ(r̄(v), v)

r̄(v)
> 0,

whence (72) immediately follows.
Next, let v ∈ G1 and assume B(v) = 0. Then Θ(·, v) has a unique critical point r∗(v) > 0

which corresponds to a global maximum and

Θ
(
r∗(v), v

) = t − q A(v)r∗(v)q−p, (73)

t − p
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where

r∗(v) :=
(

q − p

t − p

A(v)

C(v)

) 1
t−q

. (74)

In particular, by direct verification, (72) holds in this case, as well. Because now r∗(v) must
satisfy in both cases the equation Θr(r, v) = 0 or, equivalently,

(q − p)A(v) = (s − p)B(v)r∗(v)s−q + (t − p)C(v)r∗(v)t−q, (75)

the following inequality is always true

r∗(v) �
(

q − p

t − p

A(v)

C(v)

) 1
t−q

. (76)

From the above discussion we conclude that if G3 is defined as in (52) and if condition (71) holds,
then for any v ∈ G3 Eq. (18) has two positive solutions r1(v), r2(v) with r1(v) < r∗(v) < r2(v).
As before, we set r(v) := r2(v). Since Θr(r, v) < 0 for all r > r∗(v), by the implicit function
theorem, r ∈ C1(G3).

We now define the set

G6 :=
{
v ∈ G1: ‖v‖p

Ep
<

p

s

t − s

t − p

(
s

q

t − q

t − s
A(v)r̄(v)q−s −B(v)

)
r̄(v)s−p

}
, (77)

and assume G6 �= ∅. Observe that the nonemptiness of G6 implies a stronger condition than (71),
namely,

r̄(v) >

(
q

s

t − s

t − q

B(v)

A(v)

) 1
q−s

.

We proceed to show that G6 ⊆ G3. Indeed, let v ∈ G6 and assume first B(v) > 0. Then, since
p
s

< 1, t−s
t−p

< 1 and s
q

< 1, from (68), (69), (72) and (77) we obtain

‖v‖p
Ep

<

(
s

q

t − q

t − s
A(v)r̄(v)q−s −B(v)

)
r̄(v)s−p <

(
t − q

t − s
A(v)r̄(v)q−s −B(v)

)
r̄(v)s−p

= T
(
r̄(v), v

)
r̄(v)s−p = Θ

(
r̄(v), v

)
< Θ

(
r∗(v), v

)
,

and so v ∈ G3. Next, let v ∈ G6 and assume B(v) = 0. Then, from (72), (73) and (77),

‖v‖p
Ep

<
p

q

t − q

t − p
A(v)r̄(v)q−p <

t − q

t − p
A(v)r∗(v)q−p = Θ

(
r∗(v), v

)
,

which implies again v ∈ G3. Notice also that G6 ∩S1 �= ∅ since r̄(v) enjoys the scaling property:
μr̄(μv) = r̄(v) for any μ > 0 and v ∈ G1. Moreover, since r̄(v) < r∗(v) < r(v), for any v ∈ G6
we clearly have
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‖v‖p
Ep

<
p

s

t − s

t − p

(
s

q

t − q

t − s
A(v)r(v)q−s −B(v)

)
r(v)s−p,

which, after using (18) and (20), is equivalent to

Φ̂(v) < 0, v ∈ G6.

On the other hand, by employing the upper estimate (76) for r∗(v), we easily confirm (re-
tracing the corresponding steps already presented in Case 4) that the key inequality (55) holds
here, as well. If now α1 ∈ (N(1 − q

t
),N) and α2 ∈ (N(1 − s

p∗ ), N) then, by Theorem 1(i), A(·)
and B(·) are bounded on S1. Furthermore, by virtue of (55) and (61), r(·), as well as Φ̂(·), are
bounded on G3 ∩ S1.

The ground is thus well-prepared to consider the variational problem

M := inf
v∈G3∩S1

Φ̂(v) < 0. (78)

If {vn}n∈N is a minimizing sequence in G3 ∩S1 then, by invoking again Theorem 1(i), there exists
ṽ ∈ E such that, for a subsequence (not relabelled), A(vn) → A(ṽ) � 0, B(vn) → B(ṽ) � 0
while (62) holds. Moreover, up to a further subsequence, r(vn) → r̃ and r∗(vn) → r̃∗. Due to
(20), (61), (62) and (78), r̃ > 0 and A(ṽ) > 0. In particular, by virtue of (71) and (72), we must
have

r̃ � r̃∗ � r̂(ṽ) =
(

t − s

t − q

B(ṽ)

A(ṽ)

) 1
q−s

. (79)

We claim ṽ ∈ G3. Indeed, if not, then, as in the proof of Theorem 8, r̃ = r̃∗ = r∗(ṽ) where r∗(ṽ)

is the (unique) point of global maximum of Θ(·, ṽ) and satisfies

(q − p)A(ṽ) = (s − p)B(ṽ)r∗(ṽ)s−q + (t − p)C(ṽ)r∗(ṽ)t−q .

Consequently, by passing to the limit in (75) when v = vn, n ∈ N, and noticing that the function
z �→ (q − p)A(ṽ)zq−t − (s − p)B(ṽ)zs−t , z > 0, is strictly decreasing for z � r̂(ṽ), we infer
that, for a subsequence, C(vn) → C(ṽ) where,

C(ṽ) = q − p

t − p
A(ṽ)r̃q−t − s − p

t − p
B(ṽ)r̃s−t . (80)

But then, on combining (20) with (80), we deduce

0 > M = lim
n→+∞ Φ̂(vn) = (t − q)(q − p)

tqp

(
r̃q−s − q

s

s − p

q − p

t − s

t − q

B(ṽ)

A(ṽ)

)
A(ṽ)r̃s ,

which is impossible upon verifying that q
s

s−p
q−p

< 1 and taking into account the lower esti-

mate (79). A similar reasoning as in Case 3 shows r(ṽ) = r̃ , ṽ ∈ S1 and Φ̂(ṽ) = M . Hence,
by recalling Lemmas 5, 3 and Corollary 4, we have established the following
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Theorem 13. Let p < s < q and assume that conditions (�0), (�1), (�2), (�4) and (�6) hold,
with

α1 ∈
(

N

(
1 − q

t

)
,N

)
and α2 ∈

(
N

(
1 − s

p∗

)
,N

)
.

Assume further that the set G6 (as defined by (77)) is nonempty. Then problem (3), (4) admits
a nontrivial non-negative solution u ∈ E. In particular, if α1 > p then u > 0 in Ω . If also ρ ∈
C1(Ω) then u ∈ C

1,α
loc (Ω) for some α ∈ (0,1).

Remark 14. It is readily confirmed that G6 �= ∅ if, for example, the same conditions stated in
Remark 10 hold but with ζ = (

q
p
)t−q(

t−p
t−q

)t−q( t−s
q−s

)q−p .
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