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In this paper, we investigate the spatial dynamics of a nonlocal
and time-delayed reaction–diffusion system, which is motivated by
an age-structured population model with distributed maturation
delay. The spreading speed c∗, the existence of traveling waves
with the wave speed c � c∗, and the nonexistence of traveling
waves with c < c∗ are obtained. It turns out that the spreading
speed coincides with the minimal wave speed for monotone
traveling waves.
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1. Introduction

Over the years, great attention has been paid to the study of spreading speeds and traveling waves
for reaction–diffusion equation models. A prototype equation is the KPP–Fisher equation

∂u

∂t
= u(1 − u) + ∂2u

∂x2
. (1.1)
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Hutchinson [7] first introduced the time-delayed Fisher equation

∂u

∂t
= u(t, x)

(
1 − u(t − τ , x)

) + ∂2u

∂x2
. (1.2)

Since then there have appeared many time-delayed and diffusive models, see, e.g., [5,8,11,13,14,18]
and references therein. In particular, Gourley and Wu [5] presented a survey on delayed nonlocal dif-
fusive systems in biological invasion and disease spread. As a starting point of this paper, we consider
the following population model introduced by Aiello and Freedman [1]:

{
u′

i(t) = αum(t) − γ ui(t) − αe−γ τ um(t − τ ),

u′
m(t) = αe−γ τ um(t − τ ) − βu2

m,
(1.3)

where α, β , γ and the delay τ are positive constants. In this system, ui and um denote respectively
the numbers of immature and mature members of a single species population. The delay τ is the time
taken from birth to maturity. The αum term is the birth rate, −γ ui represents deaths of immatures,
−βu2

m deaths of matures and the remaining delayed term, appearing in both equations with opposite
signs, is the adult recruitment. Gourley and Kuang [4] introduced a diffusive term to system (1.3) by
allowing for individuals moving around:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
= di

∂2ui

∂x2
− γ ui + αum − e−γ τ α

∫
R

1√
4πdiτ

e
−(x−y)2

4diτ × um(t − τ , y)dy,

∂um

∂t
= dm

∂2um

∂x2
+ e−γ τ α

∫
R

1√
4πdiτ

e
−(x−y)2

4diτ × um(t − τ , y)dy − βu2
m.

(1.4)

Al-Omari and Gourley [2] studied the traveling waves for the second equation of system (1.4) with
di = 0. Thieme and Zhao [16] investigated a large class of scalar integral equations and, as an ap-
plication example, proved the coincidence of the spreading speed and the minimal wave speed of
monotone traveling waves for the following equation describing mature individuals:

⎧⎪⎪⎨
⎪⎪⎩

∂um

∂t
= dm�um − g(um) +

∫
Rn

Γ
(
η(τ ), x − y

)
F (τ ) f

(
um(t − τ , y)

)
dy,

um(t, x) = φ(t, x), t ∈ [−τ ,0], x ∈ R
n,

(1.5)

which is more general than the second equation of system (1.4). As mentioned in [2], a more realistic
population model is the following nonlocal reaction–diffusion equations with distributed time delay:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
= di

∂2ui

∂x2
− γ ui + αum − α

∞∫
0

∞∫
−∞

1√
4πdi s

e
−(x−y)2

4di s × um(t − s, y)e−γ s f (s)dy ds,

∂um

∂t
= dm

∂2um

∂x2
+ α

∞∫ ∞∫
1√

4πdi s
e

−(x−y)2

4di s × um(t − s, y)e−γ s f (s)dy ds − βu2
m.

(1.6)
0 −∞
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Al-Omari and Gourley [3] obtained the existence of traveling wavefronts of the second equation
of (1.6) in the case where f (s) = (s/r2)e−s/r and r is sufficiently small. If we assume that F : R

2 → R

satisfies the symmetry F (s, y) = F (s,−y) > 0, then the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d�u + α

τ∫
0

∫
R

F (s, y)u(t − s, x − y)dy ds − βu2(t, x),

∂v

∂t
= D�v − γ v + αu − α

τ∫
0

∫
R

F (s, y)u(t − s, x − y)dy ds,

(1.7)

where τ ∈ (0,∞], is a generalization of system (1.6). Clearly, when u = um , v = ui , d = dm , D = di ,
τ = ∞ and

F (s, y) = 1√
4πdi s

e
− y2

4di s −γ s
f (s),

system (1.7) is reduced to (1.6).
The purpose of this paper is to study the asymptotic speed of spread, the existence and nonex-

istence of traveling waves for system (1.7). Our methods are quite different from those in [2,3]. For
convenience, we call the u and v equations in (1.7) as the mature and immature equations, respec-
tively. Throughout this paper, we assume that d, D,α,β,γ are positive and

(H1)
∫ ∞

0

∫ ∞
−∞ F (s, y)dy ds = A, 0 < A < 1, F (s, y) = F (s,−y) > 0, s � 0, y ∈ R;

(H2)
∫ ∞

0

∫ ∞
−∞ F (s, y)eλ(y−cs) dy ds < ∞ for all c � 0 and λ � 0.

The rest of this paper is organized as follows. In Section 2, we use the theory developed in [9] to
establish the spreading speed c∗

τ and traveling waves for the mature equation in the case of τ < ∞,
and show that c∗

τ coincides with the minimal wave speed for monotone traveling waves. We then
extend these results to the case τ = ∞ by the method of the finite-delay approximation introduced
in [20]. In Section 3, we obtain the spreading speed and traveling waves for immature equation by
using the expression of v in terms of u. Consequently, both mature and immature equations have the
same spreading speed and minimal wave speed.

2. The mature equation

Let C be the set of all bounded continuous functions from [−τ ,0] × R to R, X be the set of all
bounded continuous functions from R to R, R+ := [0,+∞) and R− := (−∞,0]. Clearly, any element
in X or in the space C̄ := C([−τ ,0],R) can be regarded as a function in C . We equip C with the
compact open topology, that is, φn → φ in C means that the sequence of functions φn(θ, x) converges
to φ(θ, x) uniformly for (θ, x) in every compact set. Moreover, we can define the metric function d(·,·)
in C with respect to this topology by

d(φ,ψ) =
∞∑

k=1

maxθ∈[−τ ,0], |x|�k |φ(θ, x) − ψ(θ, x)|
2k

, ∀φ,ψ ∈ C,

so that (C,d) is a metric space.
Define f : C → X by

f (φ)(x) = α

τ∫ ∫
F (s, y)φ(−s, x − y)dy ds − βφ2(0, x), ∀x ∈ R.
0 R
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It then follows that the mature equation can be written as

∂u

∂t
(t, x) = d�u(t, x) + f (ut)(x), t > 0, x ∈ R, (2.1)

where ut ∈ C with ut(θ, x) = u(t + θ, x), θ ∈ [−τ ,0], x ∈ R. Let {T (t)}t�0 be the solution semigroup
on X generated by the heat equation

∂u

∂t
= d�u, (2.2)

that is,

T (t)φ(x) =
∫
R

e− (x−y)2

4dt√
4πdt

φ(y)dy, ∀φ ∈ X, t > 0, x ∈ R. (2.3)

Thus, we can write (2.1) into the following integral equation:

u(t, x) = T (t)u(0, ·)(x) +
t∫

0

T (t − s) f (us)(x)ds, t > 0. (2.4)

Definition 2.1. A function u ∈ C([−τ ,∞) × R,R) is called an upper (a lower) solution of (2.1) if it
satisfies

u(t, x) � (�) T (t)u(0, ·)(x) +
t∫

0

T (t − s) f (us)(x)ds, ∀t > 0, x ∈ R. (2.5)

2.1. The case of τ < ∞

In order to apply the theory developed in [9] to the mature equation with τ < ∞, we first intro-
duce some necessary notations and assumptions from there.

Define the reflection operator R on C by R[u](θ, x) = u(θ,−x). Given y ∈ R, define the translation
operator Ty on C by Ty[u](θ, x) = u(θ, x − y). For any given r > 0, define Cr := {φ ∈ C : 0 � φ � r} and
C̄r := {φ ∈ C̄ : 0 � φ � r}. A set D ⊂ Cr is said to be T -invariant if Ty[D] = D for any y ∈ R. For a given
operator Q : Cr → Cr , we make the following assumptions:

(A1) Q [R[u]] = R[Q [u]],Ty[Q [u]] = Q [Ty[u]],∀y ∈ R.
(A2) Q : Cr → Cr is continuous with respect to the compact open topology.
(A3) Q : Cr → Cr is monotone (order preserving) in the sense that Q [u] � Q [v] whenever u � v

in Cr .
(A4) Q : C̄r → C̄r admits exactly two fixed points 0 and r, and for any positive number ε , there is

α ∈ C̄r with ‖α‖ < ε such that Q [α] � α.
(A5) One of the following two statements holds:

(a) Q [Cr] is precompact in Cr .
(b) The set Q [Cr](0, ·) is precompact in X , and there is a positive number ζ � τ such that

Q [u](θ, x) = u(θ + ζ, x) for −τ � θ � −ζ , and the operator

S[u](θ, x) =
{

u(0, x), −τ � θ < −ζ,

Q [u](θ, x), −ζ � θ � 0,
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has the property that S[D] is precompact in Cr for any T -invariant set D ⊂ Cr with D(0, ·)
precompact in X .

In applications, the operator Q is taken as the solution maps of a given evolutionary system with
spatial structure. (A1) is implied by the property that both u(t,−x) and u(t, x + y),∀y ∈ R, are also
solutions whenever u(t, x) is a solution; (A2) follows from the continuity of solutions for initial val-
ues with respect to the compact open topology; (A3) is a consequence of the comparison principle;
(A4) is satisfied if the spatially homogeneous system has exactly two equilibria 0 and e∗ � 0 in the
order interval [0, e∗], and there exist positive sub-equilibria as close to 0 as we wish, the latter being
implied by the existence of a strongly monotone full orbit in [0, e∗] connecting 0 to e∗; and (A5) rep-
resents certain compactness property of solution maps with respect to the compact open topology. In
particular, (A5)(b) was motivated by time-delayed reaction–diffusion equations.

A straightforward computation shows that the spatially homogeneous equilibria of (2.1) are u1 = 0
and uτ

2 = α
β

∫ τ
0

∫
R

F (s, y)dy ds. To establish the spreading speed and traveling waves for (2.1) with
τ < ∞, we use [9, Theorems 2.17, 4.3 and 4.4] with β = uτ

2 . In what follows, we present a series of
lemmas to verify the conditions assumed in these theorems.

Lemma 2.1. For any τ < ∞ and φ ∈ Cuτ
2

, (2.1) has a unique mild solution u(t, x;φ) on [0,∞) and u(t, x;φ)

is a classical solution to (2.1) for (t, x) ∈ (τ ,∞) × R. For any pair of upper solution ū(t, x) and lower solution
u(t, x) with ū0 � u0 , ū(t, x) � u(t, x) holds for t � 0 and x ∈ R.

Proof. Under the abstract setting in [10], a mild solution of (2.1) is a solution to its associated integral
equation (2.4). By expression of f , we know that f is Lipschitz continuous on any bounded subset
of C and quasi-monotone on C in the sense that

f (φ) − f (ψ) � 0 whenever φ � ψ with φ(0) = ψ(0).

Then the existence and uniqueness of u(t, x;φ) follows from [10, Corollary 5] with S(t, s) = T (t, s) =
T (t − s), t � s � 0, B(t, φ) = f (φ) and v+(t, x) ≡ uτ

2 , v−(t, x) ≡ 0. Moreover, by [10, Theorem 1], it fol-
lows that u(t, x;φ) is a classical solution if t > τ . Using [10, Corollary 5] with v+(t, x) = ū(t, x;φ1) and
v−(t, x) = −∞, we have ū(t, x;φ1) � u(t, x; φ1+φ2

2 ). Again using [10, Corollary 5] with v+(t, x) = ∞
and v−(t, x) = u(t, x;φ2), we have u(t, x; φ1+φ2

2 ) � u(t, x;φ2). This implies that the comparison prin-
ciple holds. �

Let Q t be the solution map of (2.4), that is,

Q t(φ)(θ, x) = u(t + θ, x;φ), ∀θ ∈ [−τ ,0], x ∈ R, φ ∈ Cuτ
2
.

Then we have the following result.

Lemma 2.2. {Q t}t�0 is a semiflow on Cuτ
2

, and for any t > 0, Q t : Cuτ
2

→ Cuτ
2

is subhomogeneous.

Proof. Suppose φ,φ1, φ2 ∈ Cuτ
2

. For any ε > 0 and t0 > 0, define

w(t, x) := ∣∣u(t, x;φ1) − u(t, x;φ2)
∣∣; k0 := sup

t∈[0,t0], x∈R

w(t, x);

Ωρ(z) := [−τ ,0] × [−ρ + z, z + ρ], ∀ρ > 0, z ∈ R;
|φ|Ωρ(z) := sup

(θ,x)∈Ωρ(z)

∣∣φ(θ, x)
∣∣; ε0 := ε

2(2 + 3αt0)e3αt0
.
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Without loss of generality, we assume k0 � supθ∈[−τ ,0], x∈R w(θ, x). Then, there exists (t∗, x∗) ∈
[0, t0]×R such that wt(θ, x) � k0 � w(t∗, x∗)+ε0, (t, θ, x) ∈ [0, t0]×[−τ ,0]×R. We choose η = ε

2e3αt0

and M = M(ε, t0) > 0 such that for any t ∈ [0, t0],
∫

|y|>M

1√
4πdt

e− y2

4dt dy � βε0

α
; (2.6)

τ∫
0

∫
R

F (r, z)w(s − r, x∗ − z)dz dr � |ws|ΩM (x∗) + ε0; (2.7)

and

∫
R

τ∫
0

∫
R

1√
4πdt

e− y2

4dt F (r, z)w(s − r, x∗ − y − z)dz dr dy < |ws|ΩM (x∗) + ε0. (2.8)

Therefore, together with (2.4) and 0 � u(t, x;φi) � uτ
2 � α

β
(i = 1,2), we have if |φ1(θ, x) −

φ2(θ, x)|ΩM (x∗) < η, then

|wt |ΩM (x∗) � ε0 + w(t∗, x∗)

� ε0 + T (t∗)w(0, ·)(x∗) +
t∗∫

0

T (t∗ − s)
∣∣ f

(
us(·,·;φ1)

) − f
(
us(·,·;φ2)

)∣∣(x∗)ds

� ε0 +
∫
R

1√
4πdt∗ e− y2

4dt∗ w(0, x∗ − y)dy

+ α

t∗∫
0

∫
R

τ∫
0

∫
R

1√
4πd(t∗ − s)

e− y2

4d(t∗−s) F (r, z)w(s − r, x∗ − y − z)dz dr dy ds

+ 2α

t∗∫
0

∫
R

1√
4πd(t∗ − s)

e− y2

4d(t∗−s) ws(0, x∗ − y)dy ds

� ε0 + η + ε0 + α

t0∫
0

[|ws|ΩM (x∗) + ε0
]

ds + 2α

t0∫
0

[|ws|ΩM (x∗) + ε0
]

ds

= η + ε0(2 + 3αt0) + 3α

t0∫
0

|ws|ΩM (x∗) ds. (2.9)

By Gronwall’s inequality, we have

|wt |ΩM (x∗) �
[
η + ε0(2 + 3αt0)

]
e3αt0 = ε, ∀t ∈ [0, t0].

Summarizing the discussion above, we obtain that for any ε > 0, t0 > 0, and compact subset K ⊂
[−τ ,0] × R, there exist η > 0 and a compact set ΩM(x∗) such that K ⊂ ΩM(x∗) and

|wt |K � |wt |ΩM (x∗) < ε for t ∈ [0, t0] whenever |φ1 − φ2|ΩM (x∗) < η.
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This shows that Q t is continuous in φ with respect to the compact open topology uniformly for
t ∈ [0, t0]. Note that the metric space (Cuτ

2
,d) is complete. By the triangle inequality and the continuity

of Q t in t from Lemma 2.1, it then follows that Q t(φ) is continuous in (t, φ) with respect to the com-
pact open topology. Since (2.4) is an autonomous system, {Q t}t�0 is a semiflow on Cuτ

2
. Because u ≡ 0

and u ≡ uτ
2 are solutions of (2.4), it follows from the comparison principle that Q t(Cuτ

2
) ⊂ Cuτ

2
, t > 0.

For any φ ∈ Cuτ
2

and ρ ∈ [0,1], ρu(t, x;φ) is a lower solution to (2.1), which implies ρQ t(φ) � Q t(ρφ).
Hence, Q t is subhomogeneous on Cuτ

2
for t > 0. �

Lemma 2.3. For any t > 0, Q t satisfies (A5) with r = uτ
2 .

Proof. Let T (t) be the solution map of (2.2). It follows that {T (t)}t>0 is a linear semigroup on X and
T (t) is compact for each t > 0. Given t0 > τ ,

Q t0 [φ](θ, x) = u(t0 + θ, x;φ) = T (t0 + θ)φ(0, ·)(x) +
t0+θ∫
0

T (t0 + θ − s) f (us)(x)ds.

By the properties of T (t) and the boundedness of f , we see that Q t0 is compact when t0 > τ .
Thus, Q t satisfies (A5)(a) when t > τ . Given t0 ∈ (0, τ ], we now prove that Q t0 satisfies (A5)(b) with
Q = Q t0 . To prove S[D] is precompact, it suffices to show that for any given compact interval I ⊂ R,
u(t, x;φ) is equi-continuous in (t, x) ∈ [0, t0] × I for all φ ∈ D .

By the absolute continuity of integral, we have that for any ε > 0, there exists δ0 > 0 such that
| ∫ t

0 T (t − s) f (us)(x)ds| < ε
12 for any t ∈ (0, δ0]. On the other hand, D(0, ·) is precompact in X , so for

any ε > 0 and the above I , there exists δ1 > 0 such that |φ(0, x1) − φ(0, x2)| < ε
24 for all φ ∈ D when

x1, x2 ∈ I with |x1 − x2| < δ1. Thus, for any t1, t2 ∈ [0, δ0], x1, x2 ∈ I with |x1 − x2| < δ1, we have

∣∣u(t1, x1;φ) − u(t2, x2;φ)
∣∣ �

∣∣u(t1, x1;φ) − φ(0, x1)
∣∣ + ∣∣u(t2, x2;φ) − φ(0, x2)

∣∣
+ ∣∣φ(0, x1) − φ(0, x2)

∣∣ (2.10)

and each term in the right-hand side of (2.10) is less than ε
6 under appropriate choice of δ0. As

illustration, we take the first term for example. Choose M > 0 and δ0 properly such that

uτ
2√
π

∫
|y|>M

e−y2
dy <

ε

48
and

√
4dδ0 M < δ1,

then we have

∣∣u(t1, x1;φ) − φ(0, x1)
∣∣

� 1√
π

∫
R

e−y2 ∣∣φ(0, x1 −
√

4dt1 y) − φ(0, x1)
∣∣dy +

∣∣∣∣∣
t1∫

0

T (t1 − s) f (us)ds

∣∣∣∣∣
� 1√

π

∫
|y|>M∪|y|�M

e−y2 ∣∣φ(0, x1 −
√

4dt1 y) − φ(0, x1)
∣∣dy + ε

12

� ε

24
+ ε

24
+ ε

12
= ε

6
. (2.11)

Therefore, we obtain |u(t1, x1;φ) − u(t2, x2;φ)| < ε
2 . Since Q t is compact when t > τ , it follows that

u(t, x;φ) is equi-continuous in (t, x) ∈ [δ0, t0] × I for all φ ∈ D . That is, for above ε and I , there
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exists δ2 > 0 such that |u(t1, x1;φ) − u(t2, x2;φ)| < ε
2 for all φ ∈ D when t1, t2 ∈ [δ0, t0] and x1, x2 ∈ I

with |t1 − t2| + |x1 − x2| < δ2. Let δ := min{δ0, δ1, δ2}, then we have for any ε and I ∈ R, there exists
δ > 0 such that |u(t1, x1;φ) − u(t2, x2;φ)| < ε for all φ ∈ D when t1, t2 ∈ [0, t0] and x1, x2 ∈ I with
|t1 − t2| + |x1 − x2| < δ. Hence, Q t satisfies (A5)(b) when t ∈ (0, τ ]. �

Let Q̂ t be the restriction of Q t to C̄uτ
2

. It is easy to see that Q̂ t : C̄uτ
2

→ C̄uτ
2

is the solution semiflow

on C̄uτ
2

generated by the following functional differential equation

du

dt
= f̂ (ut), t � 0, (2.12)

where

f̂ (φ) = α

τ∫
0

φ(−s)

∫
R

F (s, y)dy ds − βφ2(0), ∀φ ∈ C̄uτ
2
.

Then we have the following result.

Lemma 2.4. For any t > 0, Q t satisfies (A4) with r = uτ
2 .

Proof. Since (2.12) is cooperative and irreducible, it generates an eventually strongly monotone semi-
flow on C̄uτ

2
(see [12, Corollary 5.3.5]). Note that

f̂ ′(0) = α

τ∫
0

∫
R

F (s, y)dy ds > 0,

which implies that the equilibrium 0 is unstable. Thus, the equilibrium uτ
2 is globally attractive for

(2.12) in C̄uτ
2

\ {0}. Let t > 0 be given. Then there is an integer n0 = n0(t) > 0 such that Q̂ n0
t = Q̂ n0t is

strongly monotone on C̄uτ
2

. By the Dancer–Hess connecting orbit lemma (see, e.g., [19, Section 2.1]), it

follows that there exists a two-sided sequence of points {ψn}n∈Z in C̄uτ
2

such that

ψn+1 = Q̂ t(ψn), ψn+1 > ψn, ∀n ∈ Z,

and

lim
n→−∞ψn = 0, lim

n→∞ψn = uτ
2 .

Then we further have

ψn+n0+1 = Q̂ n0
t ψn+1 � Q̂ n0

t ψn = ψn+n0 , ∀n ∈ Z,

and hence, {ψn}n∈Z is a strongly monotone full orbit of the map Q̂ t . This implies that Q t satisfies
(A4) with r = uτ

2 . �
Lemma 2.5. For any φ ∈ Cuτ

2
\ {0}, there exists t0 = t0(φ) � 0 such that

u(t, x;φ) > 0, ∀t � t0, x ∈ R.
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Proof. We first claim that u(t, x;φ) > 0 for all t > 0 and x ∈ R when the initial data φ satisfies
φ(0, ·) �≡ 0. In fact, since f (φ)(x) � −β[φ(0, x)]2 when φ � 0, we have

u(t) � T (t)φ(0, ·) +
t∫

0

T (t − s)
[−βu2(s)

]
ds, ∀t > 0. (2.13)

Let v(t) be the solution to the following integral equation

v(t) = T (t)v(0) +
t∫

0

T (t − s)
[−βv2(s)

]
ds, ∀t > 0, (2.14)

with v(0) = φ(0, ·). By the comparison principle for the integral equation (2.14), it follows that

u(t)(x) � v(t)(x), ∀t � 0, x ∈ R.

Since (2.14) is the integral form of the reaction–diffusion equation

vt = d�v − βv2(t, x), t > 0, (2.15)

we see that all mild solutions to (2.15) are classical for t > 0. Since v(0) = φ(0, ·) �≡ 0, by the standard
strong comparison theorem for reaction–diffusion equation (2.15), we have v(t)(x) > 0, ∀t > 0, x ∈ R,
and hence, u(t)(x) > 0, ∀t > 0, x ∈ R.

Let φ ∈ Cuτ
2

\ {0} be given. By the semigroup property of the solution maps of (2.4) and the claim
above, it suffices to prove that there is t0 � 0 such that u(t0, ·) �≡ 0. Assume, by contradiction, that
u(t, ·) ≡ 0 for all t � 0. Since

u(t) = T (t)φ(0, ·) +
t∫

0

T (t − s) f (us)ds, ∀t > 0,

it then follows that f (ut) ≡ 0 for all t > 0. Letting t → 0+ , we obtain f (φ) ≡ 0. Since φ(0, ·) ≡ 0, we
have

0 = f (φ)(x) = α

τ∫
0

∫
R

F (s, y)φ(−s, x − y)dy ds.

Thus, φ(s, y) = 0,∀s ∈ [−τ ,0], y ∈ R, that is, φ ≡ 0, which is a contradiction. Clearly, this proof works
for either τ < +∞ or τ = +∞. �

Now we are in a position to prove the main results of this section.

Theorem 2.1. Let τ < +∞ be given. Then there exists c∗
τ > 0 such that the following statements are valid:

(1) For any c > c∗
τ , if φ ∈ Cuτ

2
with 0 � φ � uτ

2 , and φ(·, x) = 0 for x outside a bounded interval, then
limt→∞, |x|�ct u(t, x;φ) = 0.

(2) For any 0 < c < c∗
τ and any φ ∈ Cuτ

2
\ {0}, limt→∞, |x|�ct u(t, x;φ) = uτ

2 .
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Proof. From Lemmas 2.1–2.4, we see that for any t > 0, Q t satisfies (A1)–(A5). Then statement (1) is
a consequence of [9, Theorem 2.17(i)]. Since Q 1 is subhomogeneous on Cuτ

2
, by [9, Theorem 2.17(ii)],

we can choose r = rσ to be independent of σ > 0. Let φ and t0 be chosen as in Lemma 2.5. Define

σ := min
(t,x)∈[t0,t0+τ ]×[−r,r]

u(t, x;φ)

2
.

By Lemma 2.5, we know 0 < σ < Q t0+τ [φ](·, x) for x ∈ [−r, r]. Then for any φ ∈ Cuτ
2

\ {0} and any
0 < c < c∗

τ , we use [9, Theorem 2.17(ii)] with v = Q t0+τ [φ] to obtain

lim
t→∞, |x|�ct

Q t
[

Q t0+τ [φ]](θ, x) = uτ
2 , uniformly for θ ∈ [−τ ,0].

This implies that limt→∞, |x|�ct u(t, x;φ) = uτ
2 . �

As a consequence of [9, Theorems 4.3 and 4.4], the following result shows that c∗
τ is the minimal

wave speed for monotone traveling waves of (2.4).

Theorem 2.2. Let τ < +∞ be given, and c∗
τ be as in Theorem 2.1. Then the following statements are valid:

(1) For any 0 < c < c∗
τ , Eq. (2.4) has no traveling wave U (x − ct) connecting uτ

2 to 0.
(2) For any c � c∗

τ , Eq. (2.4) has a traveling wave U (x−ct) connecting uτ
2 to 0 such that U (s) is nonincreasing

in s ∈ R.

In order to compute c∗
τ , we use the linear operators approach developed in [9, Theorem 3.10]. Let

Mt be the solution map of the following linear equation

∂u

∂t
(t, x) = d�u(t, x) + α

τ∫
0

∫
R

F (s, y)u(t − s, x − y)dy ds. (2.16)

Since each mild solution of (2.1) is a lower solution of (2.16), it follows that, by [10, Corollary 5],
Q t[φ] � Mt[φ],∀t > 0, φ ∈ Cuτ

2
. Let μ � 0 and Bμ(t) be defined as [9]. Then Bμ(t) is the solution map

of the following equation

dv(t)

dt
= dμ2 v(t) + α

τ∫
0

Fμ(s)v(t − s)ds (2.17)

satisfying v0 ∈ C̄ , where

Fμ(s) =
∫
R

F (s, y)eμy dy.

Since (2.16) is cooperative and irreducible, it follows that its characteristic equation

λ − dμ2 − α

τ∫
Fμ(s)e−λs ds = 0 (2.18)
0
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admits a real root λτ (μ) which is greater than the real parts of other ones (see [12, Theorem 5.5.1]).
Then eλτ (μ)t is an eigenvalue of Bμ(t), which is greater than the real parts of other ones (see
[6, Lemma 7.4.1]), with a positive eigenfunction. Obviously λτ (0) > 0 since

λτ (0) = α

τ∫
0

Fμ(s)e−λτ (0)s ds > 0.

Define Φτ (μ) = λτ (μ)/μ. Since λτ (μ) � dμ2, we have Φτ (∞) = ∞.
Suppose Mε

t be the solution map of the following equation

∂u

∂t
(t, x) = d�u(t, x) − εu(t, x) + α

τ∫
0

∫
R

F (s, y)u(t − s, x − y)dy ds. (2.19)

Similarly, the properties discussed above also hold for Bε
μ(t), λε

τ and Φε
τ (μ). By [10, Corollary 5], the

comparison principle for (2.19) holds. Let M̂ε
t be restriction of Mε

t to C̄uτ
2

. It is easy to see that M̂ε
t is

the solution semiflow generated by the following functional differential equation

du

dt
= −εu(t) +

τ∫
0

∫
R

F (s, y)u(t − s)dy ds, t > 0, (2.20)

with initial data u0 ∈ C̄uτ
2

. By the continuous dependence on initial data of solutions to (2.20), we

have that ∀ε > 0, t0 > 0, ∃η > 0 such that M̂ε
t [η] � ε

β
for t ∈ [0, t0], which, together with the com-

parison principle for (2.19), implies Mε
t [φ] � Mε

t [η] = M̂ε
t [η] � ε

β
for all φ ∈ Cη when t ∈ [0, t0].

Thus, each mild solution of (2.1) through φ ∈ Cη is an upper solution to (2.19) with t ∈ [0, t0]. Then
comparison principle implies that Mε

t [φ] � Q t[φ] for all φ ∈ Cη when t ∈ [0, t0]. Consequently, by
[9, Theorem 3.10], we obtain

inf
μ>0

Φε
τ (μ) � c∗

τ � inf
μ>0

Φτ (μ).

Letting ε → 0+ , we obtain

c∗
τ = inf

μ>0
Φτ (μ).

Further, by [9, Lemma 3.8], (c∗
τ ,μ∗

τ ) can be determined as the positive solution to the following
system

Pτ (c,μ) = 0,
∂ Pτ

∂μ
(c,μ) = 0, (2.21)

where

Pτ (c,μ) = dμ2 − cμ + α

τ∫
0

Fμ(s)e−cμs ds. (2.22)
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2.2. The case of τ = ∞
We consider the equation

∂u

∂t
(t, x) = d�u(t, x) + α

∫
R+

∫
R

F (s, y)u(t − s, x − y)dy ds − βu2(t, x). (2.23)

A straightforward computation shows that (2.23) admits exactly two spatially homogeneous equilibria
u1 := 0 and u2 := Aα

β
. Linearizing (2.23) at u1 yields

∂u

∂t
(t, x) = d�u(t, x) + α

∫
R+

∫
R

F (s, y)u(t − s, x − y)dy ds. (2.24)

Using the linear semigroup generated by the heat equation (2.2), we further write (2.24) as the fol-
lowing integral equation

u(t, x) =
∫
R

k0(t, x − y)u(0, y)dy

+ α

t∫
0

∫
R

k0(t − s, x − y)

∫
R+

∫
R

F (r, z)u(s − r, y − z)dz dr dy ds

= u0(t, x) + α

t∫
0

∫
R

s∫
0

∫
R

k0(t − s, x − y)F (r, z)u(s − r, y − z)dz dr dy ds, (2.25)

where k0(t, x) is the Green function of (2.2) and

u0(t, x) =
∫
R

k0(t, x − y)u(0, y)dy

+ α

t∫
0

∫
R

∞∫
s

∫
R

k0(t − s, x − y)F (r, z)u(s − r, y − z)dz dr dy ds,

which depends only on the initial data u(t, x) with (t, x) ∈ R− × R. By changing the order of integra-
tion for variables s and r in (2.25), we then obtain

u(t, x) = u0(t, x) + α

t∫
0

∫
R

t∫
r

∫
R

k0(t − s, x − y)F (r, z)u(s − r, y − z)dz ds dy dr. (2.26)

Under the linear transformations(
z
y

)
=

(
1 0
1 −1

)(
z̃
ỹ

)
+

(
0
x

)

and (
r
s

)
=

(
1 0
1 −1

)(
r̃
s̃

)
+

(
0
t

)
,
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(2.26) can be written as

u(t, x) = u0(t, x) + α

t∫
0

∫
R

t∫
r

∫
R

k0(s − r, y − z)F (r, z)u(t − s, x − y)dz ds dy dr. (2.27)

Again, by changing the order of integration for variables s and r, we write (2.27) as the following
integral form

u(t, x) = u0(t, x) +
t∫

0

∫
R

k(s, y)u(t − s, x − y)dy ds, (2.28)

where

k(t, x) = α

t∫
0

∫
R

k0(t − s, x − y)F (s, y)dy ds.

Therefore, we can use the theory of spreading speeds for integral equations developed in [16]. Define

Φ(c, λ) =
∫

R+

∫
R

k(t, x)e−λ(x+ct) dx dt, ∀c � 0, λ � 0.

By [16, Proposition 4.1(1)], we have

Φ(c, λ) = αΦ0(c, λ)Ψ (c, λ),

where

Φ0(c, λ) =
∫

R+

∫
R

k(t, x)e−λ(x+ct) dx dt

and

Ψ (c, λ) =
∫

R+

∫
R

F (t, x)e−λ(x+ct) dx dt.

It follows from [16, Proposition 4.2] that Φ0(c, λ) = ∫
R+ e(dλ2−cλ)t dt . Let λ�(c) = c

d , then Φ(c, λ) < ∞
for λ ∈ (0, λ�(c)), and limλ↗λ�(c) = ∞ for every c � 0.

Define

c∗ = inf
{

c � 0: Φ(c, λ) < 1 for some λ > 0
}
.

By similar arguments as in [20], we have the following two results.

Lemma 2.6. The following statements are valid:

(1) For each c � 0, Φ(c, λ) is a convex function of λ ∈ (0, λ�(c)).
(2) c∗ ∈ (0,∞) and for any c > c∗ , there exists some λ > 0 such that Φ(c, λ) < 1.
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(3) There exists a unique λ∗ ∈ (0, λ�(c∗)) such that c∗ and λ∗ are uniquely determined as the solutions of the
system

Φ(c, λ) = 1,
d

dλ
Φ(c, λ) = 0. (2.29)

Lemma 2.7. The following statements are valid:

(1) For any c > c∗ , there exists some λ > 0 such that P (c, λ) < 0.
(2) There exists a unique λ∗ > 0 such that c∗ and λ∗ are uniquely determined as the solutions of the system

P (c, λ) = 0,
∂ P

∂λ
(c, λ) = 0, (2.30)

where

P (c, λ) = dλ2 − cλ + α

∫
R+

∫
R

F (s, y)eλ(y−cs) dy ds.

Consequently, we have limτ→∞(c∗
τ ,μ∗

τ ) = (c∗, λ∗).

The following result is on the existence and uniqueness of solutions of (2.23).

Lemma 2.8. For any φ ∈ C(R− ×R, [0, u2]), (2.23) has a unique mild solution u(t, x;φ) ∈ C(R+ ×R, [0, u2])
through φ .

Proof. Define H : C(R− × R, [0, u2]) → C(R,R) by

H(φ)(x) = f (φ)(x) + δαφ(0, x),

where δ � 2 is a constant. For any φ ∈ C(R− × R, [0, u2]), we define

|φ|∞ := sup
(θ,x)∈R−×R

∣∣φ(θ, x)
∣∣.

It is easy to verify that H(·) is a nondecreasing map with respect to pointwise ordering and Lipschitz
continuous with L = (3 + δ)α being Lipschitz constant. Thus (2.23) can be rewritten as

∂u

∂t
(t, x) = d�u(t, x) − δαu(t, x) + H(ut)(x), (2.31)

and its associated integral form with u(θ, x) = φ(θ, x), θ � 0, x ∈ R, is

u(t, x) = Tδ(t)φ(0, ·)(x) +
t∫

0

Tδ(t − s)H(us)(x)ds, (2.32)

where Tδ(t) is the solution map of the equation

∂u
(t, x) = d�u(t, x) − δαu(t, x), (2.33)
∂t
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given by

Tδ(t)φ(x) =
∫
R

e−δαt

√
4π ds

e− (x−y)2

4ds φ(y)dy. (2.34)

One can show that Tδ(t) is a positive operator with |Tδ(t)|∞ � e−δαt � 1, ∀t � 0, and is increasing
with respect to φ.

For a given φ ∈ C(R− × R, [0, u2]), let

E = {
v ∈ C(R+ × R− × R,R): 0 � v(t, θ, x) � u2, v(0, θ, x) = φ(θ, x)

}
.

Define S ⊂ E by

S = {
v ∈ E: there is u ∈ C

(
R

2,R
)

such that v(t, θ, x) = u(t + θ, x)
}
.

For simplicity, we assume that each v ∈ S has the form v(t + θ, x). Define dλ : S × S → R by

dλ(u, v) := sup
(t,θ,x)∈R+×R−×R

∣∣u(t + θ, x) − v(t + θ, x)
∣∣e−λt .

Then (S,dλ) is a complete metric space. Now we define an operator on S by

G(v)(t + θ, x) :=
{

Tδ(t + θ)φ(0, ·)(x) + ∫ t+θ

0 Tδ(t + θ − s)H(us)(x)ds, t + θ > 0,

φ(t + θ, x), t + θ � 0.

Hence, from the increasing property of the both operators T (t), t > 0 and H , it follows that

0 � Tδ(t + θ)φ(0, ·)(x) +
t+θ∫
0

Tδ(t + θ − s)H(us)(x)ds

� Tδ(t + θ)u2 +
t+θ∫
0

Tδ(t + θ − s)H(u2)(x)ds

= u2. (2.35)

This implies G(S) ⊂ S . For u, v ∈ S and t + θ > 0,

∣∣G(u)(t + θ, x) − G(v)(t + θ, x)
∣∣

�
t+θ∫
0

∣∣Tδ(t + θ − s)
[

H(us)(x) − H(vs)(x)
]∣∣ds

� L

t+θ∫
0

∣∣Tδ(t + θ − s)
∣∣∞|us − vs|∞ ds

� L

t+θ∫
e−δα(t+θ−s)|us − vs|∞ ds. (2.36)
0
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Since

sup
s�0

|us − vs|∞e−λs = dλ(u, v), (2.37)

it follows that

∣∣G(u)(t + θ, x) − G(v)(t + θ, x)
∣∣e−λt

� L

t+θ∫
0

e−δα(t+θ−s)e−λ(t−s)dλ(u, v)ds

� L
e−λ(t+θ)−δα(t+θ)

λ + δα

[
e(λ+δα)(t+θ) − 1

]
dλ(u, v)

� L

λ + δα
dλ(u, v), (2.38)

which implies

dλ

(
G(u), G(v)

)
� L

λ + δα
dλ(u, v). (2.39)

Choose λ sufficiently large such that L
λ+δα < 1. Then by the contracting mapping theorem, we see

that G has a unique fixed point in S , that is, (2.23) has a unique mild solution u(t, x) in S satisfying
u(θ, x) = φ(θ, x), ∀(θ, x) ∈ (−∞,0] × R. �

We define upper and lower solutions to (2.24) in the same way as in Definition 2.1. Then the
following result is valid.

Lemma 2.9. Assume ū(t, x) and u(t, x) be upper and lower solutions of (2.24), respectively. If ū0 � u0 , then
ū(t, x) � u(t, x), ∀t � 0, x ∈ R.

Proof. Define v(t, x) = ū(t, x)− u(t, x). It then follows that v(t, x) is an upper solution of (2.24). Thus,
we have

v(t, x) � v0(t, x) +
t∫

0

∫
R

k(s, y)v(t − s, x − y)dy ds, (2.40)

where v0(t, x) and k(s, y) are defined as in (2.28). Since 0 � v0(t, x), the comparison principle
[15, Lemma 3.2] implies that v(t, x) � 0. �

The following results show that c∗ is the spreading speed for solutions of (2.23) with initial func-
tions having compact supports.

Theorem 2.3. Let φ ∈ C(R− × R, [0, u2]) and u(t, x;φ) be the solution of (2.23). Then the following state-
ments are valid:

(1) For any c > c∗ , if lim sup|x|→∞ supθ∈(−∞,0] φ(θ, x)e−λ̄(c̄θ−|x|) < +∞ for some c̄ ∈ (c∗, c) and λ̄ > 0 with
P (c̄, λ̄) < 0, then

lim
t→∞, |x|�ct

u(t, x;φ) = 0.
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(2) For any 0 < c < c∗ , if φ �≡ 0, then

lim
t→∞, |x|�ct

u(t, x;φ) = u2.

Proof. We use similar arguments as in the proof [20, Theorem 2.1]. In the case where c > c∗ , let
φ(θ, x) be given as in statement (1). It then follows that there exists a large positive number γ such
that

φ(t, x) � γ eλ̄(c̄t−zx), ∀(t, x) ∈ (−∞,0] × R, z = 1 or −1.

For z = 1 or z = −1, we define ū(t, x) = γ eλ̄(c̄t−zx) . A straightforward computation indicates that
ū(t, x) is an upper solution of the linear equation (2.24). Note that u(t, x;φ) is a lower solution of
the linear equation (2.24). By the comparison principle (see Lemma 2.9), we obtain, with z = x

|x| and
x �= 0,

u(t, x;φ) � ū(t, x) = γ eλ̄(c̄t−|x|), ∀(t, x) ∈ [0,∞) × R,

which implies limt→∞, |x|�ct u(t, x;φ) = 0 since c > c̄.
In the case where 0 < c < c∗ , we define

φ̃(θ, x, τ ) := min
{
φ(θ, x), uτ

2

}
, ∀(θ, x) ∈ [−τ ,0] × R.

Since limτ→∞ c∗
τ = c∗ and φ �≡ 0, there exists τ1 > 0 such that

c∗
τ > c and φ̃ ∈ Cuτ

2
\ {0}, ∀τ � τ1.

Given τ � τ1, let u(t, x; φ̃) be the solution of (2.1) with finite delay τ and u0 = φ̃. Note that u(t, x;φ)

is an upper solution of (2.1) with finite delay τ . By the comparison principle (see Lemma 2.1), it then
follows that

u(t, x;φ) � u(t, x; φ̃), ∀(t, x) ∈ [−τ ,∞) × R,

which, together with Theorem 2.1(2), implies that

u2 � lim sup
t→∞, |x|�ct

u(t, x;φ) � lim inf
t→∞, |x|�ct

u(t, x;φ) � lim inf
t→∞, |x|�ct

u(t, x; φ̃) = uτ
2 , ∀τ > τ1.

Thus, we have limt→∞, |x|�ct u(t, x;φ) = u2 since limτ→∞ uτ
2 = u2. �

Remark 2.1. By similar comparison arguments as in the proof of Theorem 2.3(1), it follows that
Theorem 2.1(1) still holds if we replace the compact support assumption on initial function with
the condition that lim sup|x|→∞ supθ∈[−τ ,0] φ(θ, x)eλ̄|x| < +∞ for some c̄ ∈ (c∗

τ , c) and λ̄ > 0 with
Pτ (c̄, λ̄) < 0.

Theorem 2.4. Let c∗ be the asymptotic speed of spread of (2.23). Then the following statements are valid:

(1) For any c � c∗ , (2.23) has a traveling wave solution U (x − ct) such that U (ξ) is continuous and nonin-
creasing in ξ ∈ R, and U (−∞) = u2 and U (+∞) = 0.

(2) For any 0 < c < c∗ , (2.23) has no traveling wave U (x − ct) connecting u2 and 0.
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Proof. Case 1. For c > c∗ , since limτ→∞ c∗
τ = c∗ , there exists τ0 > 0 such that c > c∗

τ , ∀τ � τ0. By
Theorem 2.2, Eq. (2.1) with τ = n, n � τ0, has a traveling wave Un(x − ct) such that Un(−∞) =
α
β

∫ n
0

∫
R

F (s, y)dy ds and Un(+∞) = 0. Thus, we have

Jn(U )(ξ) := dU ′′(ξ) + cU ′(ξ) + α

n∫
0

∫
R

F (s, y)U (ξ − y + cs)dy ds − βU 2(ξ) = 0. (2.41)

Define

Hn(U )(ξ) := αU (ξ) + α

n∫
0

∫
R

F (s, y)U (ξ − y + cs)dy ds − βU 2(ξ),

then {Hn(U )(ξ)}∞n�τ0
is uniformly bounded for all n � τ0 when U (ξ) is bounded.

By the theory of linear ordinary differential equations, we obtain the general solution of (2.41) as

U (ξ) = k1er1ξ + k2er2ξ + 1

d(r2 − r1)

×
[ ξ∫

−∞
er1(ξ−η)Hn(U )(η)dη +

∞∫
ξ

er2(ξ−η)Hn(U )(η)dη

]
, (2.42)

where k1 and k2 are arbitrary constants, and

r1 = −c − √
c2 + 4dα

2d
< 0, r2 = −c + √

c2 + 4dα

2d
> 0.

Since Un(ξ) satisfies (2.41) and is bounded, it follows that Un(ξ) satisfies (2.42) with k1 = k2 = 0, that
is,

Un(ξ) = 1

d(r2 − r1)

[ ξ∫
−∞

er1(ξ−η)Hn(Un)(η)dη +
∞∫

ξ

er2(ξ−η)Hn(Un)(η)dη

]
. (2.43)

Therefore, we obtain that U ′
n(ξ), U ′′

n (ξ) and U ′′′
n (ξ) are uniformly bounded for n � τ0 from the

straightforward computation. By the spatial translation invariance of (2.1), we may assume that

Un(0) = un
2

2 . Then by Arzela–Ascoli theorem and diagonal procedure, it follows that {(Un(ξ), U ′
n(ξ),

U ′′
n (ξ))} has a convergent subsequence which is convergent uniformly on each compact set. For

simplicity, we use the same notation. Denote the pointwise limit of {Un(ξ)} by U∗(ξ). Then
(Un(ξ), U ′

n(ξ), U ′′
n (ξ)) → (U∗(ξ), U ′∗(ξ), U ′′∗(ξ)) pointwise. Define

J (U )(ξ) := dU ′′(ξ) + cU ′(ξ) +
∫

R+

∫
R

F (s, y)U (ξ − y + cs)dy ds − βU 2(ξ). (2.44)

Let n → ∞, then Jn(Un)(ξ) → J (U∗)(ξ) pointwise, which implies that U∗(ξ) is a solution of
J (U )(ξ) = 0. For each n, Un(ξ) is nonincreasing and

Un(−∞) = α

β

n∫ ∫
F (s, y)dy ds, Un(+∞) = 0,
0 R
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which implies that U∗(ξ) is nonincreasing and bounded, and further U∗(±∞) exist. Since
J (U∗)(ξ) = 0, U∗(±∞) both satisfy the equation with x being variable:

ax + b[1 − x]x = 0. (2.45)

This implies that

U∗(−∞) = u2 >
u2

2
= U∗(0) > U∗(+∞) = 0.

Therefore, for any c > c∗ , U∗(ξ) is a traveling wave solution of (2.23).
For c = c∗ , by the same limiting argument as in [20, Theorem 3.1], we obtain the existence of

monotone traveling wave U (x − c∗t) connecting u2 to 0.
Case 2. The nonexistence of traveling wave is a consequence of the property of the spreading speed

in Theorem 2.3(2), as in the proof of [20, Theorem 3.1]. �
Remark 2.2. If the function F (s, y) in system (1.7) is not symmetric with respect to y, then the
reflection invariance property, as assumed in (A1), does not hold for solution maps Q t , t > 0, and
hence, we cannot directly use the theory developed in [9] to get the spreading speed and traveling
waves in the case of τ < +∞. However, we are able to obtain spreading speeds c∗± in the positive
and negative directions, respectively, and show that c∗± are the minimal wave speeds for monotone
traveling waves in these two directions by extending the theory presented in [17] for order-preserving
maps (with the direction vector �ξ = ±1) to continuous-time semiflows.

3. The immature equation

Consider the following equation:

∂v

∂t
= D�v − γ v + g(ut)(x), (3.1)

where g : Cuτ
2

→ C(R,R) with

g(φ)(x) = αφ(0, x) − α

τ∫
0

∫
R

F (s, y)φ(−s, x − y)dy ds,

where F (s, y) is defined as in (1.7). Here we only consider the case τ = ∞ since the case τ < ∞ is
essentially same. Let v2 = 1−A

γ αu2 and U (x − ct), c � c∗ , be a traveling wave of the mature equation.
Then we have the following result.

Theorem 3.1. Eq. (3.1) has a traveling wave V (x − ct) with V (∞) = 0 and V (−∞) = v2 when u(t, x) =
U (x − ct).

Proof. If u(t, x) = U (x − ct), then g(ut)(x) can be written as the form of G(ξ) with ξ = x − ct and

G(ξ) = αU (ξ) − α

τ∫
0

∫
R

F (s, y)U (ξ − y + cs)dy ds. (3.2)

Thus, the traveling wave equation of (3.1)

D V ′′(ξ) + cV ′(ξ) − γ V (ξ) + G(ξ) = 0 (3.3)
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has a solution V (ξ) on R since G is bounded. By the theory of linear ordinary differential equations,

V (ξ) = k1eλ1ξ + k2eλ2ξ + 1

D(λ2 − λ1)

[ ξ∫
−∞

eλ1(ξ−η)G(η)dη +
∞∫

ξ

eλ2(ξ−η)G(η)dη

]
,

where k1 and k2 are arbitrary constants, and

λ1 = −c − √
c2 + 4Dγ

2D
< 0, λ2 = −c + √

c2 + 4Dγ

2D
> 0.

By direct computation, G(∞) = 0 and G(−∞) = γ v2. Specially, when k1 = k2 = 0, V (ξ) is bounded,
V (∞) = 0 and V (−∞) = v2. �

On the other hand, (3.1) can be solved in terms of u(t, x):

v(t, x) = Tγ (t)ψ(x) +
t∫

0

Tγ (t − s)g(us)(x)ds, (3.4)

where ψ(x) is the initial data and Tγ (t) is the solution map of

∂v

∂t
= D�v − γ v. (3.5)

Let c∗ be the spreading speed of the mature equation and ψ : R → R be nonnegative, bounded and
integrable. Then we have the following result.

Theorem 3.2. Assume that φ ∈ C(R− × R, [0, u2]) \ {0} and has a nonempty compact support. If u(t, x;φ) is
the solution of the mature equation, then v(t, x) in (3.4) has the following property:

(1) ∀c > c∗ , limt→∞, |x|�ct v(t, x;ψ) = 0;
(2) ∀0 < c < c∗ , limt→∞, |x|�ct v(t, x;ψ) = v2 .

Proof.
We first claim that for any fixed (s, y) ∈ R

+ × R, the following statements are valid:

(i) ∀c > c∗ , limt→∞, |x|�ct u(t − s, x − y;φ) = 0 and limt→∞, |x|�ct g(ut−s)(x − y) = 0;
(ii) ∀0 < c < c∗ , limt→∞, |x|�ct u(t − s, x − y;φ) = u2 and limt→∞, |x|�ct g(ut−s)(x − y) = γ v2.

Indeed, for any c > c∗ , when |y| � cs, we have |x − y| � |x| − |y| � |x| − cs. Thus, |x| � ct implies that
|x − y| � c(t − s), and hence, limt→∞, |x|�ct u(t − s, x − y;φ) = 0; When |y| > cs, we take c1 ∈ (c∗, c),
then there exists t0 > s such that

{
(t, x) ∈ R

+ × R: t > t0, |x| � ct
} ⊂ {

(t, x) ∈ R
+ × R: t > t0, |x − y| � c1(t − s)

}
.

This implies that limt→∞, |x|�ct u(t − s, x − y;φ) = 0. By Lebesgue dominated convergence theorem,
limt→∞, |x|�ct g(ut)(x)= 0. Repeating the above process, we then have limt→∞, |x|�ct g(ut−s)(x− y)= 0.
Therefore, statement (i) holds. The statement (ii) can be obtained in a similar way.
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Let M > 0 be such that |ψ |∞ < M, |g|∞ < M . By expression (3.4), it follows that

v(t, x;ψ) =
∫
R

e−γ t

√
4πdt

e
−y2

4dt ψ(x − y)dy +
t∫

0

∫
R

e−γ s

√
4πds

e
−y2

4ds g(ut−s)(x − y)dy ds. (3.6)

Thus, we have

∣∣v(t, x;ψ)
∣∣ � Me−γ t +

∫
R+

∫
R

e−γ s

√
4πds

e
−y2

4ds
∣∣g(ut−s)(x − y)

∣∣dy ds, (3.7)

and

∣∣v(t, x;ψ) − v2
∣∣

� Me−γ t +
t∫

0

∫
R

e−γ s

√
4πds

e
−y2

4ds

∣∣∣∣g(ut−s)(x − y) − γ v2

1 − e−γ t

∣∣∣∣dy ds

� Me−γ t +
∫

R+

∫
R

e−γ s

√
4πds

e
−y2

4ds

∣∣∣∣g(ut−s)(x − y) − γ v2

1 − e−γ t

∣∣∣∣dy ds. (3.8)

Consequently, the claim above and Lebesgue dominated convergence theorem imply that

lim
t→∞, |x|�ct

v(t, x;ψ) = 0, ∀c > c∗, and lim
t→∞, |x|�ct

v(t, x;ψ) = v2, ∀0 < c < c∗.

This completes the proof. �
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