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This paper is devoted to the study of the asymptotic dynamics of
the stochastic damped sine-Gordon equation with homogeneous
Neumann boundary condition. It is shown that for any positive
damping and diffusion coefficients, the equation possesses a
random attractor, and when the damping and diffusion coefficients
are sufficiently large, the random attractor is a one-dimensional
random horizontal curve regardless of the strength of noise. Hence
its dynamics is not chaotic. It is also shown that the equation
has a rotation number provided that the damping and diffusion
coefficients are sufficiently large, which implies that the solutions
tend to oscillate with the same frequency eventually and the so-
called frequency locking is successful.
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1. Introduction

Let (Ω, F ,P) be a probability space, where

Ω = {
ω = (ω1,ω2, . . . ,ωm) ∈ C

(
R,R

m)
: ω(0) = 0

}
,
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the Borel σ -algebra F on Ω is generated by the compact open topology (see [1]), and P is the
corresponding Wiener measure on F . Define (θt)t∈R on Ω via

θtω(·) = ω(· + t) − ω(t), t ∈ R.

Thus, (Ω, F ,P, (θt)t∈R) is an ergodic metric dynamical system.
Consider the following stochastic damped sine-Gordon equation with additive noise:

dut + α du + (−K�u + sin u)dt = f dt +
m∑

j=1

h j dW j in U × R
+ (1.1)

complemented with the homogeneous Neumann boundary condition

∂u

∂n
= 0 on ∂U × R

+, (1.2)

where U ⊂ R
n is a bounded open set with a smooth boundary ∂U , u = u(x, t) is a real function

of x ∈ U and t � 0, α, K > 0 are damping and diffusion coefficients, respectively, f ∈ H1(U ), h j ∈
H2(U ) with

∂h j
∂n = 0 on ∂U , j = 1, . . . ,m, and {W j}m

j=1 are independent two-sided real-valued Wiener
processes on (Ω, F ,P). We identify ω(t) with (W1(t), W2(t), . . . , Wm(t)), i.e.,

ω(t) = (
W1(t), W2(t), . . . , Wm(t)

)
, t ∈ R.

Sine-Gordon equations describe the dynamics of continuous Josephson junctions (see [18]) and
have been widely studied (see [3–5,11,13–15,17–19,25,26,29–31], etc.). Various interesting dynamical
scenarios such as subharmonic bifurcation and chaotic behavior are observed in damped and driven
sine-Gordon equations (see [3,4,19], etc.). Note that interesting dynamics of a dissipative system oc-
curs in its global attractor (if it exists). It is therefore of great importance to study the existence and
the structure/dimension of a global attractor of a damped sine-Gordon equation.

As it is known, under various boundary conditions, a deterministic damped sine-Gordon equation
possesses a finite-dimensional global attractor (see [15,16,27,29–31]). Moreover, some upper bounds
of the dimension of the attractor were obtained in [15,29–31]. In [26,27], the authors proved that
under Neumann boundary condition, when the damping is sufficiently large, the dimension of the
global attractor is one, which justifies the folklore that there is no chaotic dynamics in a strongly
damped sine-Gordon equation.

Recently, the existence of attractors of stochastic damped sine-Gordon equations has been studied
by several authors (see [5,13,14]). For example, for Eq. (1.1) with Dirichlet boundary condition consid-
ered in [13], the author proved the existence of a finite-dimensional attractor in the random sense.
However, the existing works on stochastic damped sine-Gordon equations deal with Dirichlet bound-
ary conditions only. The case of a Neumann boundary condition is of great physical interest. It is
therefore important to investigate both the existence and structure of attractors of stochastic damped
sine-Gordon equations with Neumann boundary conditions. Observe that there is no bounded at-
tracting sets in such case in the original phase space due to the uncontrolled space average of the
solutions, which leads to nontrivial dynamics and also some additional difficulties. Nevertheless, it is
still expected that (1.1)–(1.2) possesses an attractor in the original phase space in proper sense.

The objective of the current paper is to provide a study on the existence and structure of random
attractors (see Definition 2.2 for the definition of random attractor) of stochastic damped sine-Gordon
equations with Neumann boundary conditions, i.e. (1.1)–(1.2). We will do so in terms of the random
dynamical system generated by (1.1)–(1.2) (see Definition 2.1 for the definition of random dynamical
system).
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The following are the main results of this paper:

(1) For any α > 0 and K > 0, (1.1)–(1.2) possesses a random attractor (see Theorem 4.1 and Corol-
lary 4.2).

(2) When K and α are sufficiently large, the random attractor of (1.1)–(1.2) is a one-dimensional
random horizontal curve (and hence is one-dimensional) (see Theorem 5.3 and Corollary 5.4).

(3) When K and α are sufficiently large, the rotation number of (1.1) exists (see Theorem 6.4 and
Corollary 6.5).

The above results make an important contribution to the understanding of the nonlinear dynamics
of stochastic damped sine-Gordon equations with Neumann boundary conditions. Property (1) extends
the existence result of random attractor in the Dirichlet boundary case to the Neumann boundary case
and shows that system (1.1)–(1.2) is dissipative. By property (2), the asymptotic dynamics of (1.1)–(1.2)
with sufficiently large α and K is one-dimensional regardless of the strength of noise and hence is not
chaotic. Observe that ρ ∈ R is called the rotation number of (1.1)–(1.2) (see Definition 6.1 for detail)
if for any solution u(t, x) of (1.1)–(1.2) and any x ∈ U , the limit limt→∞ u(t,x)

t exists almost surely
and

lim
t→∞

u(t, x)

t
= ρ for a.e. ω ∈ Ω.

Property (3) then shows that all the solutions of (1.1)–(1.2) tend to oscillate with the same frequency
eventually almost surely and hence frequency locking is successful in (1.1)–(1.2) provided that α and
K are sufficiently large.

We remark that the results in the current paper also hold for stochastic damped sine-Gordon
equations with periodic boundary conditions.

It should be pointed out that the dynamical behavior of variety of systems of the form (1.1) have
been studied in [22–25] for ordinary differential equations, [26,27] for partial differential equations
and [6,21,28] for stochastic (random) ordinary differential equations. In above literatures, two main
aspects considered are the structure of the attractor and the phenomenon of frequency locking. For
example, in [28], the authors studied a class of nonlinear noisy oscillators. They proved the existence
of a random attractor which is a family of horizontal curves and the existence of a rotation number
which implies the frequency locking.

The rest of the paper is organized as follows. In Section 2, we present some basic concepts and
properties for general random dynamical systems. In Section 3, we provide some basic settings about
(1.1)–(1.2) and show that it generates a random dynamical system in proper function space. We prove
in Section 4 the existence of a unique random attractor of the random dynamical system φ generated
by (1.1)–(1.2) for any α, K > 0. We show in Section 5 that the random attractor of φ is a random
horizontal curve provided that α and K are sufficiently large. In Section 6, we prove the existence of
a rotation number of (1.1)–(1.2) provided that α and K are sufficiently large.

2. General random dynamical systems

In this section, we collect some basic knowledge about general random dynamical systems
(see [1,8] for details). Let (X,‖ · ‖X ) be a separable Hilbert space with Borel σ -algebra B(X) and
(Ω, F ,P, (θt)t∈R) be the ergodic metric dynamical system mentioned in Section 1.

Definition 2.1. A continuous random dynamical system over (Ω, F ,P, (θt)t∈R) is a (B(R+) × F ×
B(X), B(X))-measurable mapping

ϕ : R
+ × Ω × X → X (t,ω, u) �→ ϕ(t,ω, u)

such that the following properties hold:
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(1) ϕ(0,ω, u) = u for all ω ∈ Ω and u ∈ X ;
(2) ϕ(t + s,ω, ·) = ϕ(t, θsω,ϕ(s,ω, ·)) for all s, t � 0 and ω ∈ Ω;
(3) ϕ is continuous in t and u.

For given u ∈ X and E, F ⊂ X , we define

d(u, E) = inf
v∈E

‖u − v‖X

and

dH (E, F ) = sup
u∈E

d(u, F ).

dH (E, F ) is called the Hausdorff semi-distance from E to F .

Definition 2.2.

(1) A set-valued mapping ω �→ D(ω) : Ω → 2X is said to be a random set if the mapping ω �→
d(u, D(ω)) is measurable for any u ∈ X . If D(ω) is also closed (compact) for each ω ∈ Ω , the
mapping ω �→ D(ω) is called a random closed (compact) set. A random set ω �→ D(ω) is said to be
bounded if there exist u0 ∈ X and a random variable R(ω) > 0 such that

D(ω) ⊂ {
u ∈ X: ‖u − u0‖X � R(ω)

}
for all ω ∈ Ω.

(2) A random set ω �→ D(ω) is called tempered provided for P-a.s. ω ∈ Ω ,

lim
t→∞ e−βt sup

{‖b‖X : b ∈ D(θ−tω)
} = 0 for all β > 0.

(3) A random set ω �→ B(ω) is said to be a random absorbing set if for any tempered random set
ω �→ D(ω), there exists t0(ω) such that

ϕ
(
t, θ−tω, D(θ−tω)

) ⊂ B(ω) for all t � t0(ω), ω ∈ Ω.

(4) A random set ω �→ B1(ω) is said to be a random attracting set if for any tempered random set
ω �→ D(ω), we have

lim
t→∞ dH

(
ϕ

(
t, θ−tω, D(θ−tω)

)
, B1(ω)

) = 0 for all ω ∈ Ω.

(5) A random compact set ω �→ A(ω) is said to be a random attractor if it is an random attracting
set and ϕ(t,ω, A(ω)) = A(θtω) for all ω ∈ Ω and t � 0.

Theorem 2.3. (See [8, Theorem 1.8.1].) Let ϕ be a continuous random dynamical system over (Ω, F ,P,

(θt)t∈R). If there is a tempered random compact attracting set ω �→ B1(ω) of ϕ , then ω �→ A(ω) is a ran-
dom attractor of ϕ , where

A(ω) =
⋂
t>0

⋃
τ�t

ϕ
(
τ , θ−τω, B1(θ−τω)

)
, ω ∈ Ω.

Moreover, ω �→ A(ω) is the unique random attractor of φ .
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3. Basic settings

In this section, we give some basic settings about (1.1)–(1.2) and show that it generates a random
dynamical system. Define an unbounded operator

A : D(A) ≡
{

u ∈ H2(U ):
∂u

∂n

∣∣∣∣
∂U

= 0

}
→ L2(U ), u �→ −K�u. (3.1)

Clearly, A is nonnegative definite and self-adjoint. Its spectral set consists of only nonnegative eigen-
values, denoted by λi , satisfying

0 = λ0 < λ1 � λ2 � · · · � λi � · · · (λi → +∞ as i → ∞). (3.2)

It is well known that −A generates an analytic semigroup of bounded linear operators {e−At}t�0 on
L2(U ) (and H1(U )). Let E = H1(U ) × L2(U ), endowed with the usual norm

‖Y ‖H1×L2 = (‖∇u‖2 + ‖u‖2 + ‖v‖2) 1
2 for Y = (u, v)�, (3.3)

where ‖ · ‖ denotes the usual norm in L2(U ) and � stands for the transposition.
The existence of solutions to problem (1.1)–(1.2) follows from [10]. We next transform the problem

(1.1)–(1.2) to a deterministic system with a random parameter, and then show that it generates a
random dynamical system.

Let (Ω, F ,P, (θt)t∈R) be the ergodic metric dynamical system in Section 1. For j ∈ {1,2, . . . ,m},
consider the one-dimensional Ornstein–Uhlenbeck equation

dz j + z j dt = dW j(t).

Its unique stationary solution is given by

z j(θtω j) =
0∫

−∞
es(θtω j)(s)ds = −

0∫
−∞

esω j(s + t)ds + ω j(t), t ∈ R.

Note that the random variable |z j(ω j)| is tempered and the mapping t �→ z j (θtω j) is P-a.s. con-
tinuous (see [2,12]). More precisely, there is a θt -invariant Ω0 ⊂ Ω with P(Ω0) = 1 such that
t �→ z j (θtω j) is continuous for ω ∈ Ω0 and j = 1,2, . . . ,m. Putting z(θtω) = ∑m

j=1 h j z j(θtω j), which
solves dz + z dt = ∑m

j=1 h j dW j .
Now, let v = ut − z(θtω) and take the functional space E into consideration, we obtain the equiv-

alent system of (1.1)–(1.2),

{
u̇ = v + z(θtω),

v̇ = −Au − αv − sin u + f + (1 − α)z(θtω).
(3.4)

Let Y = (u, v)� , C = ( 0 I
−A −α I

)
, F (θtω, Y ) = (z(θtω), − sin u + f + (1 − α)z(θtω))� , problem (3.4) has

the following simple matrix form

Ẏ = C Y + F (θtω, Y ). (3.5)

We will consider (3.4) or (3.5) for ω ∈ Ω0 and write Ω0 as Ω from now on.
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Clearly, C is an unbounded closed operator on E with domain D(C) = D(A) × H1(U ). It is not
difficult to check that the spectral set of C consists of only following points [27]

μ±
i = −α ± √

α2 − 4λi

2
, i = 0,1,2, . . .

and C generates a C0-semigroup of bounded linear operators {eCt}t�0 on E . Furthermore, let
F ω(t, Y ) := F (θtω, Y ), it is easy to see that F ω(·,·) : R

+ × E → E is continuous in t and globally Lips-
chitz continuous in Y for each ω ∈ Ω . By the classical theory concerning the existence and uniqueness
of the solutions, we obtain (see [20,29]).

Theorem 3.1. Consider (3.5). For each ω ∈ Ω and each Y0 ∈ E, there exists a unique function Y (·,ω, Y0) ∈
C([0,+∞); E) such that Y (0,ω, Y0) = Y0 and Y (t,ω, Y0) satisfies the integral equation

Y (t,ω, Y0) = eCt Y0 +
t∫

0

eC(t−s) F
(
θsω, Y (s,ω, Y0)

)
ds. (3.6)

Furthermore, if Y0 ∈ D(C), there exists Y (·,ω, Y0) ∈ C([0,+∞); D(C)) ∩ C1((R+,+∞); E) which satis-
fies (3.6) and Y (t,ω, Y0) is jointly continuous in t, Y0 , and is measurable in ω. Then, Y : R

+ × Ω × E → E
(or R

+ × Ω × D(C) → D(C)) is a continuous random dynamical system.

We now define a mapping φ : R
+ × Ω × E → E (or R

+ × Ω × D(C) → D(C)) by

φ(t,ω,φ0) = Y
(
t,ω, Y0(ω)

) + (
0, z(θtω)

)�
, (3.7)

where φ0 = (u0, u1)
� and Y0(ω) = (u0, u1 − z(ω))� . It is easy to see that φ is a continuous random

dynamical system associated with the problem (1.1)–(1.2) on E (or D(C)). We next show a useful
property of just defined random dynamical systems.

Lemma 3.2. Suppose that p0 = (2π,0)� . The random dynamical system Y defined in (3.6) is p0-translation
invariant in the sense that

Y (t,ω, Y0 + p0) = Y (t,ω, Y0) + p0, t � 0, ω ∈ Ω, Y0 ∈ E.

Proof. Since Cp0 = 0 and F (t,ω, Y ) is p0-periodic in Y , Y (t,ω, Y0) + p0 is a solution of (3.5) with
initial data Y0 + p0. Thus, Y (t,ω, Y0) + p0 = Y (t,ω, Y0 + p0). �

Note that μ+
1 → 0 as α → +∞, which will cause some difficulty. In order to overcome it, we

introduce a new norm which is equivalent to the usual norm ‖ · ‖H1×L2 on E in (3.3). Here, we
only collect some results about the new norm (see [27] for details). Since C has at least two real
eigenvalues 0 and −α with corresponding eigenvectors η0 = (1,0)� and η−1 = (1,−α)� , let E1 =
span{η0}, E−1 = span{η−1} and E11 = E1 + E−1. For any u ∈ L2(U ), define ū = 1

|U |
∫

U u(x)dx, i.e., the

spatial average of u, let L̇2(U ) = {u ∈ L2(U ): ū = 0}, Ḣ1(U ) = H1(U )∩ L̇2(U ) and E22 = Ḣ1(U )× L̇2(U ).
It’s easy to see that E = E11 ⊕ E22 and E1 is invariant under C . We now define two bilinear forms on
E11 and E22 respectively. For Yi = (ui, vi)

� ∈ E11, i = 1,2, let

〈Y1, Y2〉E11 = α2

4
〈u1, u2〉 +

〈
α

2
u1 + v1,

α

2
u2 + v2

〉
, (3.8)
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where 〈·,·〉 denotes the inner product on L2(U ), and for Yi = (ui, vi)
� ∈ E22, i = 1,2, let

〈Y1, Y2〉E22 = 〈
A

1
2 u1, A

1
2 u2

〉 + (
α2

4
− δλ1

)
〈u1, u2〉 +

〈
α

2
u1 + v1,

α

2
u2 + v2

〉
, (3.9)

where A
1
2 = √

K∇ (see (3.1) for the definition of A) and δ ∈ (0,1]. By the Poincaré inequality

∥∥A
1
2 u

∥∥2 � λ1‖u‖2, ∀u ∈ Ḣ1(U ),

(3.9) is then positive definite. Note that for any Y ∈ E , Ȳ = ∫
U Y (x)dx ∈ E11 and Y − Ȳ ∈ E22, thus we

define

〈Y1, Y2〉E = 〈Ȳ1, Ȳ2〉E11 + 〈Y1 − Ȳ1, Y2 − Ȳ2〉E22 for Y1, Y2 ∈ E. (3.10)

Lemma 3.3. (See [27].)

(1) (3.8) and (3.9) define inner products on E11 and E22 , respectively.
(2) (3.10) defines an inner product on E, and the corresponding norm ‖ · ‖E is equivalent to the usual norm

‖ · ‖H1×L2 in (3.3), where

‖Y ‖E =
(

α2

4
‖u‖2 +

∥∥∥∥α

2
u + v

∥∥∥∥
2

+ ∥∥A
1
2 (u − ū)

∥∥2 − δλ1‖u − ū‖2
) 1

2

=
(

α2

4
‖u‖2 +

∥∥∥∥α

2
u + v

∥∥∥∥
2

+ ∥∥A
1
2 u

∥∥2 − δλ1‖u − ū‖2
) 1

2

(3.11)

for Y = (u, v)� ∈ E.
(3) In terms of the inner product 〈·,·〉E , E1 and E11 are orthogonal to E−1 and E22 , respectively.
(4) In terms of the norm ‖ · ‖E , the Lipschitz constant L F of F in (3.5) satisfies

L F � 2

α
. (3.12)

Now let E2 = E−1 ⊕ E22, then E2 is orthogonal to E1 and E = E1 ⊕ E2. Thus, E2 is also invariant
under C . Denote by P and Q (= I − P ) the projections from E into E1 and E2, respectively.

Lemma 3.4.

(1) For any Y ∈ D(C) ∩ E2 , 〈C Y , Y 〉E � −a‖Y ‖2
E , where

a = α

2
−

∣∣∣∣α2 − δλ1

α

∣∣∣∣. (3.13)

(2) ‖eCt Q ‖ � e−at for t � 0.
(3) eCt P Y = P Y for Y ∈ E, t � 0.

Proof. See Lemma 3.3 and Corollary 3.3.1 in [27] for (1) and (2). We now show (3). For Y ∈ D(C)∩ E1,
since d

dt eCt Y = eCt C Y = 0, we have eCt Y = eC0Y = Y . Then, by approximation, eCt Y = Y for u ∈ E1,
t � 0, since D(A) ∩ E1 is dense in E1. Thus, eCt P Y = P Y for Y ∈ E , t � 0. �
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We will need the following lemma and its corollaries.

Lemma 3.5. For any ε > 0, there is a tempered random variable r : Ω �→ R
+ such that

∥∥z(θtω)
∥∥ � eε|t|r(ω) for all t ∈ R, ω ∈ Ω, (3.14)

where r(ω), ω ∈ Ω satisfies

e−ε|t|r(ω) � r(θtω) � eε|t|r(ω), t ∈ R, ω ∈ Ω. (3.15)

Proof. For j ∈ {1,2, . . . ,m}, since |z j(ω j)| is a tempered random variable and the mapping t �→
ln |z j(θtω j)| is P-a.s. continuous, it follows from Proposition 4.3.3 in [1] that for any ε j > 0 there
is a tempered random variable r j(ω j) > 0 such that

1

r j(ω j)
�

∣∣z j(ω j)
∣∣ � r j(ω j),

where r j(ω j) satisfies, for P-a.s. ω ∈ Ω ,

e−ε j |t|r j(ω j) � r j(θtω j) � eε j |t|r j(ω j), t ∈ R. (3.16)

Taking ε1 = ε2 = · · · = εm = ε , then we have

∥∥z(θtω)
∥∥ �

m∑
j=1

∣∣z j(θtω j)
∣∣ · ‖h j‖ �

m∑
j=1

r j(θtω j)‖h j‖ � eε|t|
m∑

j=1

r j(ω j)‖h j‖.

Let r(ω) = ∑m
j=1 r j(ω j)‖h j‖, (3.14) is satisfied and (3.15) is trivial from (3.16). �

Corollary 3.6. For any ε > 0, there is a tempered random variable r′ : Ω �→ R
+ such that

∥∥A
1
2 z(θtω)

∥∥ � eε|t|r′(ω) for all t ∈ R, ω ∈ Ω,

where r′(ω) = ∑m
j=1 r j(ω j)‖A

1
2 h j‖ satisfies

e−ε|t|r′(ω) � r′(θtω) � eε|t|r′(ω), t ∈ R, ω ∈ Ω.

Corollary 3.7. For any ε > 0, there is a tempered random variable r′′ : Ω �→ R
+ such that

∥∥Az(θtω)
∥∥ � eε|t|r′′(ω) for all t ∈ R, ω ∈ Ω,

where r′′(ω) = ∑m
j=1 r j(ω j)‖Ah j‖ satisfies

e−ε|t|r′′(ω) � r′′(θtω) � eε|t|r′′(ω), t ∈ R, ω ∈ Ω.
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4. Existence of random attractor

In this section, we study the existence of a random attractor. Throughout this section we assume
that p0 = 2πη0 = (2π,0)� ∈ E1 and δ ∈ (0,1] is such that a > 0, where a is as in (3.13). We remark
in the end of this section that such δ always exists.

The space D(C) can be endowed with the graph norm,

‖Y ‖Ẽ = ‖Y ‖E + ‖C Y ‖E for Y ∈ D(C).

Since C is a closed operator, D(C) is a Banach space under the graph norm. We denote (D(C),‖ · ‖Ẽ )

by Ẽ and let Ẽ1 = Ẽ ∩ E1, Ẽ2 = Ẽ ∩ E2.
By Lemma 3.2 and the fact that operator C has a zero eigenvalue, we will define a random dy-

namical system Y defined on torus induced from Y . Then by properties of Y restricted on E2, we can
prove the existence of a random attractor of Y. Thus, we can say that Y has a unbounded random
attractor. Now, we define Y.

Let T
1 = E1/p0Z and E = T

1 × E2. For Y0 ∈ E , let Y0 := Y0 (mod p0) = Y0 + p0Z ⊂ E denotes the
equivalence class of Y0, which is an element of E. And the norm on E is denoted by

‖Y0‖E = inf
y∈p0Z

‖Y0 + y‖E .

Note that, by Lemma 3.2, Y (t,ω, Y0 + kp0) = Y (t,ω, Y0) + kp0, ∀k ∈ Z for t � 0, ω ∈ Ω and Y0 ∈ E .
With this, we define Y : R

+ × Ω × E → E by setting

Y(t,ω,Y0) = Y (t,ω, Y0) (mod p0), (4.1)

where Y0 = Y0 (mod p0). It is easy to see that Y : R
+ × Ω × E → E is a random dynamical system.

Similarly, the random dynamical system φ defined in (3.7) also induces a random dynamical sys-
tem � on E. By (3.7) and (4.1), � is defined by

�(t,ω,�0) = Y(t,ω,Y0) + z̃(θtω) (mod p0), (4.2)

where �0 = φ0 (mod p0), z̃(θtω) = (0, z(θtω))� and Y0 = �0 − z̃(ω) (mod p0).
The main result of this section can now be stated as follows.

Theorem 4.1. The random dynamical system Y defined in (4.1) has a unique random attractor ω �→ A0(ω),
where

A0(ω) =
⋂
t>0

⋃
τ�t

Y
(
τ , θ−τω,B1(θ−τω)

)
, ω ∈ Ω,

in which ω �→ B1(ω) is a tempered random compact attracting set for Y.

Corollary 4.2. The induced random dynamical system � defined in (4.2) has a random attractor ω �→ A(ω),
where A(ω) = A0(ω) + z̃(ω) (mod p0) for all ω ∈ Ω .

Proof. It follows from (4.2) and Theorem 4.1. �
To prove Theorem 4.1, we first introduce the concept of random pseudo-balls and prove a lemma

on the existence of a pseudo-tempered random absorbing pseudo-ball.
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Definition 4.3. Let R : Ω → R
+ be a random variable. A random pseudo-ball ω ∈ Ω �→ B(ω) ⊂ E with

random radius ω �→ R(ω) is a set of the form

ω �→ B(ω) = {
b(ω) ∈ E:

∥∥Q b(ω)
∥∥

E � R(ω)
}
.

Furthermore, a random set ω �→ B(ω) ⊂ E is called pseudo-tempered provided ω �→ Q B(ω) is a
tempered random set in E , i.e., for P-a.s. ω ∈ Ω ,

lim
t→∞ e−βt sup

{‖Q b‖E : b ∈ B(θ−tω)
} = 0 for all β > 0.

Notice that any random pseudo-ball ω �→ B(ω) in E has the form ω �→ E1 × Q B(ω), where
ω �→ Q B(ω) is a random ball in E2, which implies the measurability of ω �→ B(ω).

By Definition 4.3, if ω �→ B(ω) is a random pseudo-ball in E , then ω �→ B(ω) (mod p0) is random
bounded set in E. And if ω �→ B(ω) is a pseudo-tempered random set in E , then ω �→ B(ω) (mod p0)

is tempered random set in E.

Lemma 4.4. Let a > 0. Then there exists a tempered random set ω �→ B0(ω) := B0(ω) (mod p0) in E such
that, for any tempered random set ω �→ B(ω) := B(ω) (mod p0) in E, there is a TB(ω) > 0 such that

Y
(
t, θ−tω,B(θ−tω)

) ⊂ B0(ω) for all t � TB(ω), ω ∈ Ω,

where ω �→ B0(ω) is a random pseudo-ball in E with random radius ω �→ R0(ω) and ω �→ B(ω) is any
pseudo-tempered random set in E.

Proof. For ω ∈ Ω , we obtain from (3.6) that

Y
(
t,ω, Y0(ω)

) = eCt Y0(ω) +
t∫

0

eC(t−s) F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds. (4.3)

The projection of (4.3) to E2 is

Q Y
(
t,ω, Y0(ω)

) = eCt Q Y0(ω) +
t∫

0

eC(t−s) Q F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds. (4.4)

By replacing ω by θ−tω, it follows from (4.4) that

Q Y
(
t, θ−tω, Y0(θ−tω)

) = eCt Q Y0(θ−tω) +
t∫

0

eC(t−s) Q F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))
ds,

and it then follows from Lemma 3.4 and Q 2 = Q that

∥∥Q Y
(
t, θ−tω, Y0(θ−tω)

)∥∥
E

� e−at
∥∥Q Y0(θ−tω)

∥∥
E +

t∫
e−a(t−s)

∥∥F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))∥∥
E ds. (4.5)
0
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By (3.11), Lemma 3.5 and Corollary 3.6 with ε = a
2 ,

∥∥F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))∥∥
E

=
(

α2

4

∥∥z(θs−tω)
∥∥2 +

∥∥∥∥
(

1 − α

2

)
z(θs−tω) − sin(Yu) + f

∥∥∥∥
2

+ ∥∥A
1
2 z(θs−tω)

∥∥2

− δλ1
∥∥z(θs−tω) − z(θs−tω)

∥∥2
) 1

2

�
((

α2 − 3α + 3
)∥∥z(θs−tω)

∥∥2 + 3
∥∥sin(Yu)

∥∥2 + 3‖ f ‖2 + ∥∥A
1
2 z(θs−tω)

∥∥2) 1
2

�
((

α2 − 3α + 3
)
ea(t−s)(r(ω)

)2 + ea(t−s)(r′(ω)
)2 + 3|U | + 3‖ f ‖2) 1

2

� a1e
a
2 (t−s)r(ω) + e

a
2 (t−s)r′(ω) + a2,

where Yu satisfies Y (s, θ−tω, Y0(θ−tω)) = (Yu, Y v)� , a1 = √
α2 − 3α + 3, a2 = √

3|U | + 3‖ f ‖2 and
|U | is the Lebesgue measure of U . We find from (4.5) that

∥∥Q Y
(
t, θ−tω, Y0(θ−tω)

)∥∥
E � e−at

∥∥Q Y0(θ−tω)
∥∥

E + 2

a

(
1 − e− a

2 t)(a1r(ω) + r′(ω)
) + a2

a

(
1 − e−at).

Now for ω ∈ Ω , define

R0(ω) = 4

a

(
a1r(ω) + r′(ω)

) + 2a2

a
.

Then, for any pseudo-tempered random set ω �→ B(ω) in E and any Y0(θ−tω) ∈ B(θ−tω), there is a
T B(ω) > 0 such that for t � T B(ω),

∥∥Q Y
(
t, θ−tω, Y0(θ−tω)

)∥∥
E � R0(ω), ω ∈ Ω,

which implies

Y
(
t, θ−tω, B(θ−tω)

) ⊂ B0(ω) for all t � T B(ω), ω ∈ Ω,

where ω �→ B0(ω) is the random pseudo-ball centered at origin with random radius ω �→ R0(ω).
In fact, ω �→ R0(ω) is a tempered random variable since ω �→ r(ω) and ω �→ r′(ω) are tempered
random variables. Then the measurability of random pseudo-tempered ball ω �→ B0(ω) is obtained
from Definition 4.3 and ω �→ B0(ω) is a random pseudo-ball. Hence, ω �→ B0(ω) := B0(ω) (mod p0)

is a tempered random ball in E. It then follows from the definition of Y that

Y
(
t, θ−tω,B(θ−tω)

) ⊂ B0(ω) for all t � TB(ω), ω ∈ Ω,

where TB(ω) = T B(ω) for ω ∈ Ω . This complete the proof. �
We now prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 2.3, it suffices to prove the existence of a random attracting set
which restricted on E2 is tempered and compact, i.e., there exists a random set ω �→ B1(ω) such that
ω �→ Q B1(ω) is tempered and compact in E2 and for any pseudo-tempered random set ω �→ B(ω)

in E ,
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dH
(
Y
(
t, θ−tω, B(θ−tω)

)
, B1(ω)

) → 0 as t → ∞, ω ∈ Ω,

where dH is the Hausdorff semi-distance. Since pseudo-tempered random sets in E are absorbed by
the random absorbing set ω �→ B0(ω), it suffices to prove that

dH
(
Y
(
t, θ−tω, B0(θ−tω)

)
, B1(ω)

) → 0 as t → ∞, ω ∈ Ω. (4.6)

Clearly, if such a ω �→ B1(ω) exists, then ω �→ B1(ω) := B1(ω) (mod p0) is a tempered random com-
pact attracting set for Y. We next show that (4.6) holds.

By the superposition principle, (3.5) with initial data Y0(ω) can be decomposed into

Ẏ1 = C Y1 + F
(
θtω, Y

(
t,ω, Y0(ω)

))
, Y10(ω) = 0 (4.7)

and

Ẏ2 = C Y2, Y20(ω) = Y0(ω), (4.8)

where Y (t,ω, Y0(ω)) is the solution of (3.5) with initial data Y0(ω) ∈ B0(ω). Let Y1(t,ω, Y10(ω))

and Y2(t, Y20(ω)) be solutions of (4.7) and (4.8), respectively. We now give some estimations of
Y1(t,ω, Y10(ω)) and Y2(t, Y20(ω)), which ensure the existence of a random attracting set which re-
stricted on E2 is tempered and compact.

We first estimate Y2(t, Y20(ω)). Clearly, (4.8) is a linear problem. It is easy to see that

Y2
(
t, Y20(ω)

) = eCt Y20(ω),

which implies (with ω being replaced by θ−tω) that

∥∥Q Y2
(
t, Y20(θ−tω)

)∥∥
E �

∥∥eCt Q
∥∥ · ∥∥Q Y20(θ−tω)

∥∥
E � e−at R0(θ−tω) → 0 as t → ∞. (4.9)

For Y1(t,ω, Y10(ω)), we show that it is bounded by a tempered random bounded closed set in Ẽ ,
which then is compact in E since Ẽ is compactly imbedded in E . Note that

Y1
(
t,ω, Y10(ω)

) =
t∫

0

eC(t−s) F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds, (4.10)

it then follows that

∥∥Q Y1
(
t, θ−tω, Y10(θ−tω)

)∥∥
E � 2

a

(
1 − e− a

2 t)(a1r(ω) + r′(ω)
) + a2

a

(
1 − e−at), (4.11)

where a1 = √
α2 − 3α + 3 and a2 = √

3|U | + 3‖ f ‖2 are the same as in the proof of Lemma 4.4,
|U | denotes the Lebbesgue measure of U .

We next estimate C Q Y1(t, θ−tω, Y10(θ−tω)). We find from (4.10) that

C Q Y1
(
t, θ−tω, Y10(θ−tω)

) =
t∫

0

eC(t−s)C Q F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))
ds

=
t∫

eC(t−s)C F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))
ds.
0
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Then,

∥∥C Q Y1
(
t, θ−tω, Y10(θ−tω)

)∥∥
E �

t∫
0

e−a(t−s)
∥∥C F

(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))∥∥
E ds. (4.12)

Obviously,

C F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

)) =
( − sin(Yu) + f + (1 − α)z(θs−tω)

α sin(Yu) − α f − α(1 − α) − Az(θs−tω)

)
,

where Yu satisfies Y (s, θ−tω, Y0(θ−tω)) = (Yu, Y v)� . By (3.11), Lemma 3.5, Corollaries 3.6 and 3.7
with ε = a

2 ,

∥∥C F
(
θs−tω, Y

(
s, θ−tω, Y0(θ−tω)

))∥∥2
E

� 7

4
α2

∥∥sin(Yu)
∥∥2 + 7

4
α2‖ f ‖2 + 7

4
α2(1 − α)2

∥∥z(θs−tω)
∥∥2 + 4

∥∥Az(θs−tω)
∥∥2

+ 3
∥∥A

1
2 sin(Yu)

∥∥2 + 3
∥∥A

1
2 f

∥∥2 + 3(1 − α)2
∥∥A

1
2 z(θs−tω)

∥∥2

� a2
3 + 7

4
α2(1 − α)2ea(t−s)(r(ω)

)2 + 3(1 − α)2ea(t−s)(r′(ω)
)2

+ 4ea(t−s)(r′′(ω)
)2 + 3

∥∥A
1
2 sin(Yu)

∥∥2

�
(

a3 +
√

7

2
α|1 − α|e a

2 (t−s)r(ω) + √
3|1 − α|e a

2 (t−s)r′(ω)

+ 2e
a
2 (t−s)r′′(ω) + √

3
∥∥A

1
2 sin(Yu)

∥∥)2

,

where a3 =
√

7
4 α2|U | + 7

4 α2‖ f ‖2 + 3‖A
1
2 f ‖2. Then, (4.12) implies

∥∥C Q Y1
(
t, θ−tω, Y10(θ−tω)

)∥∥
E

� a3

a

(
1 − e−at) + √

3

t∫
0

e−a(t−s)
∥∥A

1
2 sin(Yu)

∥∥ds

+ 2

a

(√
7

2
α|1 − α|r(ω) + √

3|1 − α|r′(ω) + 2r′′(ω)

)(
1 − e− a

2 t). (4.13)

For the integral on the right-hand side of (4.13), we note that

∥∥A
1
2 sin(Yu)

∥∥ �
∥∥A

1
2 Yu

∥∥ � a4
∥∥Q Y

(
s, θ−tω, Y0(θ−tω)

)∥∥
E ,

where a4 = √
2/(2 − δ). Since
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∥∥Q Y
(
s, θ−tω, Y0(θ−tω)

)∥∥
E

� e−as
∥∥Q Y0(θ−tω)

∥∥
E +

s∫
0

e−a(s−τ )
∥∥F

(
θτ−tω, Y

(
τ , θ−tω, Y0(θ−tω)

))∥∥
E dτ ,

we find that

t∫
0

e−a(t−s)
∥∥A

1
2 sin(Yu)

∥∥ds

� a4te−at
∥∥Q Y0(θ−tω)

∥∥
E + a4

t∫
0

s∫
0

e−a(t−τ )
∥∥F

(
θτ−tω, Y

(
τ , θ−tω, Y0(θ−tω)

))∥∥
E dτ ds

� a4te−at
∥∥Q Y0(θ−tω)

∥∥
E

+ a4

t∫
0

(
2

a

(
a1r(ω) + r′(ω)

)(
e− a

2 (t−s) − e− a
2 t) + a2

a

(
e−a(t−s) − e−at))ds

= a4te−at
∥∥Q Y0(θ−tω)

∥∥
E + 2a4

a

(
a1r(ω) + r′(ω)

)(2

a

(
1 − e− a

2 t) − te− a
2 t

)

+ a2a4

a

(
1

a

(
1 − e−at) − te−at

)
. (4.14)

Combining (4.11), (4.13) and (4.14), there is a T (ω) > 0 such that for all t � T (ω),

∥∥Q Y1
(
t, θ−tω, Y10(θ−tω)

)∥∥
Ẽ = ∥∥Q Y1

(
t, θ−tω, Y10(θ−tω)

)∥∥
E + ∥∥C Q Y1

(
t, θ−tω, Y10(θ−tω)

)∥∥
E

� R1(ω), (4.15)

where R1(ω) = a5r(ω) + a6r′(ω) + 8
a r′′(ω) + a7 is a tempered random variable, in which a5 =

4a1+2
√

7α|1−α|
a + 8

√
3a1a4
a2 , a6 = 4+4

√
3|1−α|
a + 8

√
3a4

a2 and a7 = 2a2+2a3
a + 2

√
3a2a4
a2 .

Now, let ω �→ B1(ω) be the random pseudo-ball in Ẽ centered at origin with random radius
ω �→ R1(ω), then ω �→ B1(ω) is tempered and measurable. By (4.9), (4.15) and

Q Y
(
t, θ−tω,φ0(θ−tω)

) = Q Y1
(
t, θ−tω, Y10(θ−tω)

) + Q Y2
(
t, Y20(θ−tω)

)
,

we have for ω ∈ Ω ,

dH
(
Y
(
t, θ−tω, B0(θ−tω)

)
, B1(ω)

) → 0 as t → ∞.

Then by the compact embedding of Ẽ into E , ω �→ Q B1(ω) is compact in E2, which implies that
ω �→ B1(ω) := B1(ω) (mod p0) is a tempered random compact attracting set for Y. Thus by Theo-
rem 2.3, Y has a unique random attractor ω �→ A0(ω), where

A0(ω) =
⋂
t>0

⋃
τ�t

Y
(
τ , θ−τω,B1(θ−τω)

)
, ω ∈ Ω.

This completes the proof. �
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Remark 4.5.

(1) For any α > 0 and λ1 = K λ̃1 > 0 (see (3.2)), there is a δ ∈ (0,1] such that a > 0 holds, where a is
as in (3.13) and λ̃1 is the smallest positive eigenvalue of −Δ and a constant.

(2) We can say that the random dynamical Y (or φ) has a unique random attractor in the sense that
the induced random dynamical system Y (or �) has a unique random attractor, and we will say
that Y (or φ) has a unique random attractor directly in the sequel. We denote the random attrac-
tor of Y and φ by ω �→ A0(ω) and ω �→ A(ω) respectively. Indeed, ω �→ A0(ω) and ω �→ A(ω)

satisfy

A0(ω) = A0(ω) (mod p0), A(ω) = A(ω) (mod p0), ω ∈ Ω.

(3) For the deterministic damped sine-Gordon equation with homogeneous Neumann boundary con-
dition, the authors proved in [27] that the random attractor is a horizontal curve provided that
α and K are sufficiently large. Similarly, we expect that the random attractor ω �→ A(ω) of φ has
the similar property, i.e., A(ω) is a horizontal curve for each ω ∈ Ω provided that α and K are
sufficiently large. We prove that this is true in next section.

(4) By (2), system (1.1)–(1.2) is dissipative (i.e. it possesses a random attractor). In Section 6, we will
show that (1.1)–(1.2) with sufficiently large α and K also has a rotation number and hence all the
solutions tend to oscillate with the same frequency eventually.

5. One-dimensional random attractor

In this section, we apply the theory established in [7] to show that the random attractor of Y
(or φ) is one-dimensional provided that α and K are sufficiently large. This method has been used by
Chow, Shen and Zhou [6] to systems of coupled noisy oscillators. Throughout this section we assume
that p0 = 2πη0 = (2π,0)� ∈ E1 and a > 4L F (see (3.13) for the definition of a and see (3.12) for the
upper bound of L F ). We remark in the end of this section that this condition can be satisfied provided
that α and K are sufficiently large.

Definition 5.1. Suppose {Φω}ω∈Ω is a family of maps from E1 to E2 and n ∈ N. A family of graphs
ω �→ �(ω) ≡ {(p,Φω(p)): p ∈ E1} is said to be a random np0-periodic horizontal curve if ω �→ �(ω)

is a random set and {Φω}ω∈Ω satisfy the Lipschitz condition

∥∥Φω(p1) − Φω(p2)
∥∥

E � ‖p1 − p2‖E for all p1, p2 ∈ E1, ω ∈ Ω

and the periodic condition

Φω(p + np0) = Φω(p) for all p ∈ E1, ω ∈ Ω.

Clearly, for any ω ∈ Ω , �(ω) is a deterministic np0-periodic horizontal curve. When n = 1, we
simply call it a horizontal curve.

Lemma 5.2. Let a > 4L F . Suppose that ω �→ �(ω) is a random np0-periodic horizontal curve in E.
Then, ω �→ Y (t,ω, �(ω)) is also a random np0-periodic horizontal curve in E for all t > 0. Moreover,
ω �→ Y (t, θ−tω,�(θ−tω)) is a random np0-periodic horizontal curve for all t > 0.

Proof. First, since Y is a random dynamical system and ω �→ �(ω) is a random set in E , ω �→
Y (t,ω, �(ω)) and ω �→ Y (t, θ−tω,�(θ−tω)) are random sets in E for all t > 0. We next show the
Lipschitz condition and periodic condition.

It is sufficient to prove the Lipschitz condition and periodic condition valid for ω �→ �(ω) in D(C)

since D(C) is dense in E . Clearly, for ω ∈ Ω and t > 0,
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Y
(
t,ω, �(ω)

) = {(
P Y

(
t,ω, p + Φω(p)

)
, Q Y

(
t,ω, p + Φω(p)

))
: p ∈ E1 ∩ D(C)

}
.

For p1, p2 ∈ E1 ∩ D(C), p1 �= p2, let Yi(t,ω) = Y (t,ω, pi + Φω(pi)), i = 1,2, p(t,ω) = P (Y1(t,ω) −
Y2(t,ω)) and q(t,ω) = Q (Y1(t,ω) − Y2(t,ω)), where P , Q are defined as in Section 1. We have by
Lemma 3.4

P Yi(t,ω) = eCt P
(

pi + Φω(pi)
) +

t∫
0

eC(t−s) P F
(
θsω, Yi(s,ω)

)
ds

= P
(

pi + Φω(pi)
) +

t∫
0

P F
(
θsω, Yi(s,ω)

)
ds, i = 1,2,

and then, d
dt P Yi(t,ω) = P F (θtω, Yi(t,ω)), i = 1,2, it then follows that

d

dt
p(t,ω) = d

dt
P
(
Y1(t,ω) − Y2(t,ω)

)
= P

(
F
(
θtω, Y1(t,ω)

) − F
(
θtω, Y2(t,ω)

))
. (5.1)

Since p(t,ω) + q(t,ω) = Y1(t,ω) − Y2(t,ω),

d

dt

(
p(t,ω) + q(t,ω)

) = d

dt

(
Y1(t,ω) − Y2(t,ω)

)
= C

(
Y1(t,ω) − Y2(t,ω)

) + F
(
θtω, Y1(t,ω)

) − F
(
θtω, Y2(t,ω)

)
,

then, by the orthogonal decomposition,

d

dt
q(t,ω) = C

(
Y1(t,ω) − Y2(t,ω)

) + Q
(

F
(
θtω, Y1(t,ω)

) − F
(
θtω, Y2(t,ω)

))
= Cq(t,ω) + Q

(
F
(
θtω, Y1(t,ω)

) − F
(
θtω, Y2(t,ω)

))
. (5.2)

We find from (5.1) that

d

dt

∥∥p(t,ω)
∥∥2

E = 2

〈
p(t,ω),

d

dt
p(t,ω)

〉
E

� −2
∥∥p(t,ω)

∥∥
E · ∥∥P

(
F
(
θtω, Y1(t,ω)

) − F
(
θtω, Y2(t,ω)

))∥∥
E

� −2L F
(∥∥p(t,ω)

∥∥2
E + ∥∥p(t,ω)

∥∥
E

∥∥q(t,ω)
∥∥

E

)
.

Similarly, by (5.2) and Lemma 3.4,

d

dt

∥∥q(t,ω)
∥∥2

E � −2a
∥∥q(t,ω)

∥∥2
E + 2L F

(∥∥p(t,ω)
∥∥

E

∥∥q(t,ω)
∥∥

E + ∥∥q(t,ω)
∥∥2

E

)
.

Because a > 4L F , if there is a t0 � 0 such that ‖q(t0,ω)‖E = ‖p(t0,ω)‖E and since ‖p(t,ω)‖E �= 0 for
t � 0, then

d

dt

∣∣∣∣ (∥∥q(t,ω)
∥∥2

E − ∥∥p(t,ω)
∥∥2

E

)
� (8L F − 2a)

∥∥q(t0,ω)
∥∥2

E < 0,

t=t0
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which means that there is a t̄0 > t0 such that for t ∈ (t0, t̄0),

∥∥q(t,ω)
∥∥2

E − ∥∥p(t,ω)
∥∥2

E <
∥∥q(0,ω)

∥∥2
E − ∥∥p(0,ω)

∥∥2
E

= ∥∥Φω(p1) − Φω(p2)
∥∥2

E − ‖p1 − p2‖2
E

� 0,

namely, ‖q(t,ω)‖E < ‖p(t,ω)‖E for t ∈ (t0, t̄0).
If there is another t1 � t̄0 such that ‖q(t1,ω)‖E = ‖p(t1,ω)‖E , then

d

dt

∣∣∣∣
t=t1

(∥∥q(t,ω)
∥∥2

E − ∥∥p(t,ω)
∥∥2

E

)
� (8L F − 2a)

∥∥q(t1,ω)
∥∥2

E < 0,

which means that there is a t̄1 > t1 such that for t ∈ (t1, t̄1), ‖q(t,ω)‖E < ‖p(t,ω)‖E . Continue this
process, we have for all t � 0, ‖q(t,ω)‖E � ‖p(t,ω)‖E , i.e.,

∥∥Q
(
Y1(t,ω) − Y2(t,ω)

)∥∥
E �

∥∥P
(
Y1(t,ω) − Y2(t,ω)

)∥∥
E ,

which shows that ω �→ Y (t,ω, �(ω)) satisfies the Lipschitz condition in Definition 5.1.
We next show the periodic condition. We find from Lemma 3.2 that

Y
(
t,ω, p + Φω(p)

) + np0 = Y
(
t,ω, p + np0 + Φω(p)

)
.

Since Φω(p) = Φω(p + np0), Y (t,ω, p + Φω(p)) + np0 = Y (t,ω, p + np0 + Φω(p + np0)). It follows
that

Q Y
(
t,ω, p + Φω(p)

) = Q Y
(
t,ω, p + np0 + Φω(p + np0)

)
.

Consequently, ω �→ Y (t,ω, �(ω)) is a random np0-periodic horizontal curve for all t > 0.
Moreover, for any fixed ω ∈ Ω and t > 0, ω̄ = θ−tω ∈ Ω is fixed. Then, Y (t, ω̄, �(ω̄)) is a determin-

istic np0-periodic horizontal curve, which yields the assertion. �
Choose γ ∈ (0, a

2 ) such that

2

α

(
1

γ
+ 1

a − 2γ

)
< 1, (5.3)

where 2
α is the upper bound of the Lipschitz constant of F (see (3.12)). We remark in the end of this

section that such a γ exists provided that α and K are sufficiently large. We next show the main
result in this section.

Theorem 5.3. Assume that a > 4L F and that there is a γ ∈ (0, a
2 ) such that (5.3) holds. Then the random

attractor ω �→ A0(ω) of the random dynamical system Y is a random horizontal curve.

Proof. By the equivalent relation between φ and Y , we mainly focus on Eq. (3.5), which can be
viewed as a deterministic system with a random parameter ω ∈ Ω . We write it here as (3.5)ω for
some fixed ω ∈ Ω .
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Observe that the linear part of (3.5)ω , i.e.

Ẏ = C Y (5.4)

has a one-dimensional center space Ec = span{(1,0)} = E1 and a one co-dimensional stable space
Es = E2. We first show that (3.5)ω has a one-dimensional invariant manifold, denoted by W (ω), and
will show later that W (ω) exponentially attracts all the solutions of (3.5)ω .

Let F ω(t, Y ) = F (θtω, Y ), ω ∈ Ω . For fixed ω ∈ Ω , consider the following integral equation

Ỹ (t) = eCtξ +
t∫

0

eC(t−s) P F ω
(
s, Ỹ (s)

)
ds +

t∫
−∞

eC(t−s) Q F ω
(
s, Ỹ (s)

)
ds, t � 0, (5.5)

where ξ = P Ỹ (0) ∈ E1. For g : (−∞,0] → E such that supt�0 ‖eγ t g(t)‖E < ∞, define

(Lg)(t) =
t∫

0

eC(t−s) P g(s)ds +
t∫

−∞
eC(t−s) Q g(s)ds, t � 0.

It is easy to see that

sup
t�0

∥∥eγ t(Lg)(t)
∥∥

E �
(

1

γ
+ 1

a − γ

)
sup
t�0

∥∥eγ t g(t)
∥∥

E �
(

1

γ
+ 1

a − 2γ

)
sup
t�0

∥∥eγ t g(t)
∥∥

E ,

which means that ‖L‖ � 1
γ + 1

a−2γ . Then, Theorem 3.3 in [7] shows that for any ξ ∈ E1, Eq. (5.5) has

a unique solution Ỹ ω(t, ξ) satisfying supt�0 ‖eγ t Ỹ ω(t, ξ)‖E < ∞. Let

h(ω, ξ) = Q Ỹ ω(0, ξ) =
0∫

−∞
e−C s Q F ω

(
s, Ỹ ω(s, ξ)

)
ds, ω ∈ Ω.

Let

W (ω) = {
ξ + h(ω, ξ): ξ ∈ E1

}
, ω ∈ Ω.

For any ε ∈ (0, γ ) in Lemma 3.5 and Corollary 3.6, we have

∥∥h(θ−tω,ξ)
∥∥

E � 1

a − ε

(
a1r(ω) + r′(ω)

)
eεt + a2

a
, t � 0. (5.6)

Observe that

Ỹ ω(t, ξ) = eCtξ +
t∫

0

eC(t−s) P F ω
(
s, Ỹ ω(s, ξ)

)
ds +

t∫
−∞

eC(t−s) Q F ω
(
s, Ỹ (s,ω, ξ)

)
ds

= eCt(ξ + h(ω, ξ)
) +

t∫
eC(t−s) F ω

(
s, Ỹ ω(s, ξ)

)
ds,
0
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i.e., Ỹ ω(t, ξ) is the solution of (3.5) with initial data ξ + h(ω, ξ) for t � 0. Thus, for Y0(ω) =
ξ + h(ω, ξ) ∈ W (ω), there is a negative continuation of Y (t,ω, Y0(ω)), i.e.,

Y
(
t,ω, Y0(ω)

) = Ỹ ω(t, ξ), t � 0. (5.7)

Moreover, for t � 0, we obtain from (3.6) and (5.7) that

Y
(
t,ω, Y0(ω)

)

= eCt(ξ + h(ω, ξ)
) +

t∫
0

eC(t−s) F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds

= eCtξ +
t∫

0

eC(t−s) F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds +

0∫
−∞

eC(t−s) Q F ω
(
s, Ỹ ω(s, ξ)

)
ds

= eCtξ +
t∫

0

eC(t−s) F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds +

0∫
−∞

eC(t−s) Q F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds

= eCtξ +
t∫

0

eC(t−s) P F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds +

t∫
−∞

eC(t−s) Q F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds

= eCt

(
ξ +

t∫
0

e−C s P F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds

)
+

0∫
−∞

e−C s Q F
(
θt+sω, Y

(
t + s,ω, Y0(ω)

))
ds.

Then by the uniqueness of solution of (5.5) for fixed ω ∈ Ω , we have

h

(
θtω, eCt

(
ξ +

t∫
0

e−C s P F
(
θsω, Y

(
s,ω, Y0(ω)

))
ds

))

=
0∫

−∞
e−C s Q F

(
θt+sω, Y

(
t + s,ω, Y0(ω)

))
ds,

and then for t � 0,

Y
(
t,ω, W (ω)

) = W (θtω). (5.8)

By (5.7) and (5.8), W (ω) is an invariant manifold of (3.5)ω .
Next, we show that W (ω) attracts the solutions of (3.5)ω , more precisely, for the given ω ∈ Ω ,

we prove the existence of a stable foliation {W s(ω, Y0): Y0 ∈ W (ω)} of the invariant manifold W (ω)

of (3.5)ω . Consider the following integral equation

Ŷ (t) = eCtη +
t∫

eC(t−s) Q
(

F ω
(
s, Ŷ (s) + Y ω

(
s, ξ + h(ω, ξ)

))

0
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− F ω
(
s, Y ω

(
s, ξ + h(ω, ξ)

)))
ds

+
t∫

∞
eC(t−s) P

(
F ω

(
s, Ŷ (s) + Y ω

(
s, ξ + h(ω, ξ)

))

− F ω
(
s, Y ω

(
s, ξ + h(ω, ξ)

)))
ds, t � 0, (5.9)

where ξ + h(ω, ξ) ∈ W (ω), η = Q Ŷ (0) ∈ E2 and Y ω(t, ξ + h(ω, ξ)) := Y (t,ω, ξ + h(ω, ξ)), t � 0 is the
solution of (3.5) with initial data ξ + h(ω, ξ) for fixed ω ∈ Ω . Theorem 3.4 in [7] shows that for any
ξ ∈ E1 and η ∈ E2, Eq. (5.9) has a unique solution Ŷ ω(t, ξ, η) satisfying supt�0 ‖eγ t Ŷ ω(t, ξ, η)‖E < ∞
and for any ξ ∈ E1, η1, η2 ∈ E2,

sup
t�0

eγ t
∥∥Ŷ ω(t, ξ,η1) − Ŷ ω(t, ξ,η2)

∥∥
E � M‖η1 − η2‖E , (5.10)

where M = 1
1− 2

α ( 1
γ + 1

a−2γ )
. Let

ĥ(ω, ξ,η) = ξ + P Ŷ ω(0, ξ,η)

= ξ +
0∫

∞
e−C s P

(
F ω

(
s, Ŷ ω(s, ξ,η) + Y ω

(
s, ξ + h(ω, ξ)

))

− F ω
(
s, Y ω

(
s, ξ + h(ω, ξ)

)))
ds.

Then, W s(ω, ξ + h(ω, ξ)) = {η + h(ω, ξ) + ĥ(ω, ξ,η): η ∈ E2} is the stable foliation of W (ω) at
ξ + h(ω, ξ).

Observe that

Ŷ ω(t, ξ,η) + Y ω
(
t, ξ + h(ω, ξ)

) − Y ω
(
t, ξ + h(ω, ξ)

)
= Ŷ ω(t, ξ,η)

= eCt(η + h(ω, ξ) + ĥ(ω, ξ,η) − ξ − h(ω, ξ)
)

+
t∫

0

eC(t−s)(F ω
(
s, Ŷ ω(s, ξ,η) + Y ω

(
s, ξ + h(ω, ξ)

))

− F ω
(
s, Y ω

(
s, ξ + h(ω, ξ)

)))
ds (5.11)

and

Y ω
(
t, η + h(ω, ξ) + ĥ(ω, ξ,η)

) − Y ω
(
t, ξ + h(ω, ξ)

)
= eCt(η + h(ω, ξ) + ĥ(ω, ξ,η) − ξ − h(ω, ξ)

)

+
t∫

0

eC(t−s)(F ω
(
s, Y ω

(
s, η + h(ω, ξ) + ĥ(ω, ξ,η)

))

− F ω
(
s, Y ω

(
s, ξ + h(ω, ξ)

)))
ds. (5.12)
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Comparing (5.11) with (5.12), we find that

Ŷ ω(t, ξ,η) = Y ω
(
t, η + h(ω, ξ) + ĥ(ω, ξ,η)

) − Y ω
(
t, ξ + h(ω, ξ)

)
, t � 0. (5.13)

In addition, if η = 0, then by the uniqueness of solution of (5.9), Ŷ ω(t, ξ,0) ≡ 0 for t � 0, which
associates with (5.10) and (5.13) show that

sup
t�0

eγ t
∥∥Y ω

(
t, η + h(ω, ξ) + ĥ(ω, ξ,η)

) − Y ω
(
t, ξ + h(ω, ξ)

)∥∥
E � M‖η‖E (5.14)

for any ξ ∈ E1 and η ∈ E2.
We now claim that ω �→ W (ω) is the random attractor of Y . Let ω �→ B(ω) be any pseudo-

tempered random set in E . For any ω �→ Y0(ω) ∈ ω �→ B(ω), there is ω �→ ξ(ω) ∈ E1 such that

Y0(θ−tω) ∈ W s
(
θ−tω,ξ(θ−tω) + h

(
θ−tω,ξ(θ−tω)

))
.

Let η(θ−tω) = Q Y0(θ−tω) − h(θ−tω,ξ(θ−tω)). By (5.6), it is easy to see that

sup
Y0(θ−tω)∈B(θ−tω)

∥∥η(θ−tω)
∥∥ � sup

Y0(θ−tω)∈B(θ−tω)

∥∥Q Y0(θ−tω)
∥∥ + 1

a − ε

(
a1r(ω) + r′(ω)

)
eεt + a2

a
.

It then follows from (5.14) and the fact that ω �→ Q B(ω) is tempered that

sup
Y0(θ−tω)∈B(θ−tω)

∥∥Y
(
t, θ−tω, Y0(θ−tω)

) − Y
(
t, θ−tω,ξ(θ−tω) + h

(
θ−tω,ξ(θ−tω)

))∥∥
E

� Me−γ t sup
Y0(θ−tω)∈B(θ−tω)

∥∥η(θ−tω)
∥∥

E

� Me−γ t sup
Y0(θ−tω)∈B(θ−tω)

∥∥Q Y0(θ−tω)
∥∥ + M

a − ε

(
a1r(ω) + r′(ω)

)
e(ε−γ )t + a2M

a
e−γ t

→ 0 as t → ∞,

which associates with (5.8) lead to

dH
(
Y
(
t, θ−tω, B(θ−tω)

)
, W (ω)

) → 0 as t → ∞.

Therefore, A0(ω) = W (ω) for ω ∈ Ω . Next, we show that ω �→ A0(ω) is a random horizontal curve. In
fact, for some random horizontal curve ω �→ �(ω) in E , for example, �(ω) ≡ {(p,Φω(p)): Φω(p) = c,
p ∈ E1}, ω ∈ Ω , where c ∈ E2 is constant, it must be contained in some pseudo-tempered random set,
for example ω �→ B2‖c‖E (ω), where B2‖c‖E (ω) is a pseudo-ball with radius 2‖c‖E . Then, for ω ∈ Ω ,

dH
(
Y
(
t, θ−tω,�(θ−tω)

)
, A0(ω)

) → 0 as t → ∞,

which means that limt→∞ Y (t, θ−tω,�(θ−tω)) ⊂ A0(ω). Since A0(ω) is one-dimensional, we have for
ω ∈ Ω ,

A0(ω) = lim
t→∞ Y

(
t, θ−tω,�(θ−tω)

)
.

It then follows from Lemma 5.2 that ω �→ A0(ω) is a random horizontal curve. �
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Corollary 5.4. Assume that a > 4L F and that there is a γ ∈ (0, a
2 ) such that (5.3) holds. Then the random

attractor ω �→ A(ω) of the random dynamical system φ is a random horizontal curve.

Proof. It follows from Corollary 4.2, Remark 4.5 and Theorem 5.3. �
Remark 5.5. At the beginning of this section, we assume that a > 4L F . Since a = α

2 − |α2 − δλ1
α | and

L F � 2
α , we can take α, λ1 satisfying α

2 − |α2 − δλ1
α | > 8

α , where λ1 is the smallest positive eigenvalue
of A and its value is determined by the diffusion coefficient K . On the other hand, we need some
γ ∈ (0, a

2 ) such that (5.3) holds. Note that

min
γ ∈(0, a

2 )

(
1

γ
+ 1

a − 2γ

)
=

(
1

γ
+ 1

a − 2γ

)∣∣∣∣
γ = (2−√

2)a
2

=
√

2

(3
√

2 − 4)a
,

which implies that there exist α, λ1 satisfying

α

2
−

∣∣∣∣α2 − δλ1

α

∣∣∣∣ >
2
√

2

(3
√

2 − 4)α
>

8

α
. (5.15)

Indeed, let c = 2
√

2
3
√

2−4
, then for any α >

√
2c and λ1 > c, there is a δ > 0 satisfying

c

λ1
< δ < min

{
α2 − c

λ1
,1

}

such that (5.15) holds.

6. Rotation number

In this section, we study the phenomenon of frequency locking, i.e., the existence of a rotation
number of the stochastic damped sine-Gordon equation (1.1)–(1.2), which characterizes the speed that
the solution of (1.1)–(1.2) moves around the one-dimensional random attractor.

Definition 6.1. The stochastic damped sine-Gordon equation (1.1) with boundary condition (1.2) is
said to have a rotation number ρ ∈ R if, for P-a.e. ω ∈ Ω and each φ0 = (u0, u1)

� ∈ E , the limit
limt→∞ Pφ(t,ω,φ0)

t exists and

lim
t→∞

Pφ(t,ω,φ0)

t
= ρη0,

where η0 = (1,0)� is the basis of E1.

We remark that the rotation number of (1.1)–(1.2) (if exists) is unique. In fact, assume that ρ1 and
ρ2 are rotation numbers of (1.1)–(1.2). Then there is ω ∈ Ω such that for any φ0 ∈ E ,

ρ1η0 = lim
t→∞

Pφ(t,ω,φ0)

t
= ρ2η0.

Therefore, ρ1 = ρ2 and then the rotation number of (1.1)–(1.2) (if exists) is unique.
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From (3.7), we have

Pφ(t,ω,φ0)

t
= P Y (t,ω, Y0(ω))

t
+ P (0, z(θtω))�

t
, (6.1)

where φ0 = (u0, u1)
� and Y0(ω) = (u0, u1 − z(ω))� . By Lemma 2.1 in [12], it is easy to prove that

limt→∞ P (0,z(θtω))�
t = (0,0)� . Thus, it sufficient to prove the existence of the rotation number of the

random system (3.5).
By the random dynamical system Y defined in (4.1), we define the corresponding skew-product

semiflow �t : Ω × E → Ω × E for t � 0 by setting

�t(ω,Y0) = (
θtω,Y(t,ω,Y0)

)
.

Obviously, (Ω × E, F × B, (�t)t�0) is a measurable dynamical system, where B = B(E) is the Borel
σ -algebra of E.

Lemma 6.2. There is a measure μ on Ω × E such that (Ω × E, F × B, μ, (�t)t�0) becomes an ergodic
metric dynamical system.

Proof. Let PrΩ(E) be the set of all random probability measures on E and PrP(Ω × E) be the set of all
probability measures on Ω × E with marginal P. We know from Propositions 3.3 and 3.6 in [9] that
PrΩ(E) and PrP(Ω × E) are isomorphism. Moreover, both PrΩ(E) and PrP(Ω × E) are convex, and the
convex structure is preserved by this isomorphism.

Let Γ = {ω �→ μω ∈ PrΩ(E): P-a.s. μω(A0(ω)) = 1, ω �→ μω is invariant for Y}. Clearly, Γ is con-
vex. Since ω �→ A0(ω) is the random attractor of Y, we obtain from Corollary 6.13 in [9] that Γ �= ∅.
Let ω �→ μω be an extremal point of Γ . Then, by the isomorphism between PrΩ(E) and PrP(Ω × E)

and Lemma 6.19 in [9], the corresponding measure μ on Ω × E of ω �→ μω is (�t)t�0-invariant and
ergodic. Thus, (Ω × E, F × B, μ, (�t)t�0) is an ergodic metric dynamical system. �

We next show a simple lemma which will be used. For any pi = (si,0)� ∈ E1, i = 1,2, we define

p1 � p2 if s1 � s2.

Then we have

Lemma 6.3. Suppose that a > 4L F . Let � be any deterministic np0-periodic horizontal curve (� satisfies the
Lipschitz and periodic condition in Definition 5.1). For any Y1, Y2 ∈ � with P Y1 � P Y2 , there holds

P Y (t,ω, Y1) � P Y (t,ω, Y2) for t > 0, ω ∈ Ω. (6.2)

Proof. Clearly, if P Y1 = P Y2, then (6.2) holds. We now prove that (6.2) holds for P Y1 < P Y2. If not,
then by the continuity of Y with respect to t , there is a t0 > 0 such that P Y (t0,ω, Y1) = P Y (t0,ω, Y2),
which implies that Y (t0,ω, Y1) = Y (t0,ω, Y2) since Y (t0,ω, Y1) and Y (t0,ω, Y2) belong to the same
deterministic np0-periodic horizontal curve Y (t0,ω, �), which leads to a contradiction. The lemma is
thus proved. �

We now show the main result in this section.

Theorem 6.4. Assume that a > 4L F . Then the rotation number of (3.5) exists.
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Proof. Note that

P Y (t,ω, Y0)

t
= P Y0

t
+ 1

t

t∫
0

P F
(
θsω, Y (s,ω, Y0)

)
ds.

Since F (θsω, Y (s,ω, Y0) + kp0) = F (θsω, Y (s,ω, Y0)), ∀k ∈ Z, we can identify F (θsω,Y(s,ω,Y0)) with
F (θsω, Y (s,ω, Y0)). Precisely, define h : E → E , Y �→ {Y }, where E is the collection of all singleton
sets of E , i.e. E = {{Y }: Y ∈ E} (see Remark 6.6 for more details of the space E ). Clearly, h is a
homeomorphism from E to E . Then,

F
(
θsω, Y (s,ω, Y0)

) = h−1(F
(
θsω,Y(s,ω,Y0)

))
.

Thus,

P Y (t,ω, Y0)

t
= P Y0

t
+ 1

t

t∫
0

Ph−1(F
(
θsω,Y(s,ω,Y0)

))
ds

= P Y0

t
+ 1

t

t∫
0

F
(
�s(ω,Y0)

)
ds, (6.3)

where F = P ◦ h−1 ◦ F ∈ L1(Ω × E, F × B, μ). Let t → ∞ in (6.3), limt→∞ P Y0
t = (0,0)� and by

Lemma 5.2 and Ergodic Theorems in [1], there exist a constant ρ ∈ R such that

lim
t→∞

1

t

t∫
0

F
(
�s(ω,Y0)

)
ds = ρη0,

which means

lim
t→∞

P Y (t,ω, Y0)

t
= ρη0

for μ-a.e. (ω, Y0) ∈ Ω × E . Thus, there is Ω∗ ⊂ Ω with P(Ω∗) = 1 such that for any ω ∈ Ω∗ , there is
Y ∗

0 (ω) ∈ E such that

lim
t→∞

P Y (t,ω, Y ∗
0 (ω))

t
= ρη0.

By Lemma 3.2, we have that for any n ∈ N and ω ∈ Ω∗ ,

lim
t→∞

P Y (t,ω, Y ∗
0 (ω) ± np0)

t
= lim

t→∞
P Y (t,ω, Y ∗

0 (ω)) ± np0

t
= ρη0. (6.4)

Now for any ω ∈ Ω∗ and any Y0 ∈ E , there is n0(ω) ∈ N such that

P Y ∗
0 (ω) − n0(ω)p0 � P Y0 � P Y ∗

0 (ω) + n0(ω)p0
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and there is a n0(ω)p0-periodic horizontal curve l0(ω) such that Y ∗
0 (ω) − n0(ω)p0, Y0, Y ∗

0 (ω) +
n0(ω)p0 ∈ l0(ω). Then by Lemma 6.3, we have

P Y
(
t,ω, Y ∗

0 (ω) − n0(ω)p0
)
� P Y (t,ω, Y0) � P Y

(
t,ω, Y ∗

0 (ω) + n0(ω)p0
)
,

which together with (6.4) implies that for any ω ∈ Ω∗ and any Y0 ∈ E ,

lim
t→∞

P Y (t,ω, Y0)

t
= ρη0.

Consequently, for any a.e. ω ∈ Ω and any Y0 ∈ E ,

lim
t→∞

P Y (t,ω, Y0)

t
= ρη0.

The theorem is thus proved. �
Corollary 6.5. Assume that a > 4L F . Then the rotation number of the stochastic damped sine-Gordon equa-
tion (1.1) with the boundary condition (1.2) exists.

Proof. It follows from (6.1) and Theorem 6.4. �
Remark 6.6. We first note that the space E = {{Y }: Y ∈ E} in the proof of Theorem 6.4 is a linear
space according to the linear structure defined by

α{X} + β{Y } = {αX + βY }, for α,β ∈ R, {X}, {Y } ∈ E .

Also, for {X}, {Y } ∈ E , we define

〈{X}, {Y }〉E = 〈X, Y 〉E . (6.5)

It is easy to verify that the functional 〈·,·〉E : E × E → R defined by (6.5) is bilinear, symmetric and
positive, thus defining the scalar product in E over R. Moreover, the completeness of E is from the
completeness of E . Hence, E is a Hilbert space.

Remark 6.7. In the proof of Theorem 6.4, we used an ergodic invariant measure μ of (Ω ×
E, F × B, μ, (�t)t�0). It should be pointed out that the measure μ on Ω × E that makes
(Ω × E, F × B, μ, (�t)t�0) becomes an ergodic metric dynamical system may not be unique, be-
cause the convex set Γ in the proof of Lemma 6.2 may have more than one extremal points. However,
as mentioned above, the rotation number in Theorem 6.4 and Corollary 6.5 are independent of μ and
are unique.
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