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1. Introduction

Let (M", g) be a compact Riemannian manifold with boundary dM and dimension n > 3. In 1992,

- 4 .

J. Escobar addressed the question of finding a scalar-flat conformal metric g = un-2 g which has 9M as
a constant mean curvature hypersurface. This problem was studied in [2,9,16-18,27,28]. In analytical
terms, it corresponds to the existence of a positive solution to the equations

Agu — cpRgu =0, inM,

u n .
a——dn/cgu—i-Kuﬁ:O, on oM, (1)
n
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for some constant K, where ¢, = 4”,1;_21) and d, = % Here, Ay is the Laplace-Beltrami operator,
Rg is the scalar curvature, kg is the mean curvature of dM and 7 is the inward unit normal vector
to OM.

Escobar’s question was motivated by the classical Yamabe problem, which consists of finding a
conformal metric of constant scalar curvature on a given closed Riemannian manifold. This was com-
pletely solved after the works of H. Yamabe [35], N. Trudinger [34], T. Aubin [4] and R. Schoen [30].
(See [22] and [32] for nice surveys on the issue.) Conformal metrics of constant scalar curvature and
zero boundary mean curvature on the boundary were studied in [7,15] (see also [3] and [20]).

The solutions to Egs. (1.1) are the critical points of the functional

Sy 1dulg + cnRgu?dvg + [y, dnkgu® dog

Q) =

)

201-1) n—2
([ym lul n=2" dog)n=T

where dvg and dog denote the volume forms of M and dM, respectively. In order to prove the
existence of these solutions, Escobar introduced the conformally invariant Sobolev quotient

Q(M, M) =inf{Q (u); u e C'(M), u#0o0ndM}.

In this work we are interested in the question of whether the full set of solutions to (1.1) is
compact. A necessary condition is that M is not conformally equivalent to the standard ball B". We
point out that if Egs. (1.1) have a solution u > 0 with K positive (resp. zero and negative), then
Q (M, dM) has to be positive (resp. zero and negative). If K < 0, the solution to Egs. (1.1) is unique.
If K=0, Egs. (1.1) become linear and the solutions are unique up to a multiplication by a positive
constant. Hence, the only interesting case is the one when K > 0.

The problem of compactness of solutions to Egs. (1.1) was studied by V. Felli and M. Ould Ahme-
dou in the conformally flat case with umbilic boundary [18] and in the three-dimensional case with
umbilic boundary [19]. In [1], the author proved compactness for dimensions n > 7 under a generic
condition. Other compactness results for similar equations were obtained by Z. Djadli, A. Malchiodi
and M. Ould Ahmedou in [11,12], by Z. Han and Y. Li in [20] and by M. Ould Ahmedou in [29].

In the case of manifolds without boundary, the question of compactness of the full set of solutions
to the Yamabe equation was first raised by R. Schoen in a topics course at Stanford University in 1988.
A necessary condition is that the manifold M" is not conformally equivalent to the sphere S™. This
problem was studied in [13,14,23-26,31,33] and was completely solved in a series of three papers:
[6,8] and [21]. In [6], S. Brendle discovered the first smooth counterexamples for dimensions n > 52
(see [5] for nonsmooth examples). In [21], M. Khuri, F. Marques and R. Schoen proved compactness
for dimensions 3 < n < 24. Finally, in [8], Brendle and Marques extended the counterexamples of [6]
to the remaining dimensions 25 <n < 51.

It is expected that, as in the case of manifolds without boundary, there should be a critical di-
mension ng such that compactness in the case of manifolds with boundary holds for n < ng and
fails for n > ng. In this work we partially answer this question by showing that compactness fails for
dimensions n > 25. More precisely we prove:

Main Theorem. Let n > 25. Then there exist a smooth Riemannian metric g on B" and a sequence of positive
smooth functions {v,}52 ; with the following properties:

(i) gis not conformally flat;
(ii) @B™ is umbilic with respect to the induced metric by g;
(iii) for all v, v, is a solution to Egs. (1.1) with a constant K > 0 and M = B";
(iv) Q(vy) < Q(B™,3B) forall v;
(V) supypn vy — 00 as v — oo.

In order to prove the Main Theorem, we follow the program adopted in [6] and [8]. In Section 2,
we show that the problem can be reduced to finding critical points of a certain function Fg (£, €),
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where £ is a vector in R"~! and € is a positive real number. In Section 3, we show that the func-
tion Fg(&,€) can be approximated by an auxiliary function F(&, €). In Section 4, we prove that the
function F(&,€) has a strict local minimum point. The cases n > 53 and 25 < n < 52 are handled
separately in Sections 4.1 and 4.2 respectively. Finally, in Section 5, we use a perturbation argument
to construct critical points of the function (&, €) and prove the non-compactness theorem.

Notation. Throughout this work we will make use of the index notation for tensors. We will adopt the

summation convention whenever confusion is not possible and use indices 1 <1i,i, j,k,I,m,p,q,r <

n—1and 1<a,b,c,d<n. We also define constants ¢, = 4(”,1;_21) and d, = "32.

We will denote by Ag the Laplace-Beltrami operator. The volume forms of M and aM will be
denoted by dvg and doyg, respectively. By n we will denote the inward unit normal vector to dM. The

scalar curvature will be denoted by Rg, the second fundamental form of dM by 7y and the mean
1

curvature, ——tr(my), by Kg.
By R we will denote the half-space {x = (x1,...,x;) € R"; x; > 0}. If x € R} we set x =
(*1,...,x-1,0) € IR, = R"™ 1. For any xp € R we set B (xo) = {x € R; |x —xo| <r}. The n-

dimensional sphere of radius r in R™! will be denoted by St and o, will denote the area of the
n-dimensional unit sphere S7.

2. Lyapunov-Schmidt reduction

Given a pair (£,€) e R™1 x (0, o) we set

€
(€ +x)2 + X —&|?

n—2
2
Ue,e)(X) =( ) , forxeR.

Observe that u ¢) satisfies

Aue.e) =0, inR7Y,
0 s n (2.1)
Eu(g,e) +(n—2)u(§’€) =0, ondR,
and
2(n—1) Q(Bn aB) n—1
n—2 __ ’
/ Ug e = <7n — ) . (2.2)
IR

Let us define

n —
€ )2 €2 —x2—|x—¢?

¢(s,e,n>(x)=((€+xn)z+|;_g|2 (€+x)2 +|x— €2

and

p ) 2 (% — &)

Peen= ((e +x0)? +R—EP) (€ x0)? +R—EP

for xeR’}_ and k=1,...,n— 1. Observe that
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2

beem®- (€ +x0? + 17— €P) = ——— Lu o)
(&.,€,m) n n—20ge GO
2 2 g
X) - ((e +xp)" + X — = —1u X),
Be,eby () - (( W)+ X — &%) n—295 X310
for k=1,...,n—1, and that ||¢(g,€,a)||Lz(n71) OR1) is independent of (¢, &) € R™! x (0, c0), for any
a=1,...,n. '
We also set

zz{weanT"z(Ri)mLZ(n"ff) (9R™) N HL (R™); /ldw|2<oo},

R

Z(E,G)Z{WEE; /d)@,é,a)W:O,a:l,...,n}
oR"

and |wlx = (fR’lr |dw|2)% for w € X. Observe that ug ¢y € X .¢) for each (¢, €) e R*! x (0, 00). By
Sobolev’s inequality, there exists C = C(n) > 0 such that
n-2 n—2

om \ 7 2m=1) \ =1 2
/IWI"—2 + |w| =2 <C/|dW| (23)
R n R

R

for all we X.

In what follows in this section we are going to find, for each pair (£, €) e R"~! x (0, 00), a function
V(e € X which is an approximate weak solution to a Yamabe-type problem (1.1) on R’.. Then we
will show that v ¢) is in fact a classical solution to this problem whenever (£, €) is a critical point
of a certain energy function defined on R"~! x (0, c0).

Notation. In this section we suppose that g is a Riemannian metric on R expressed as g =exp(h),
where h is a trace-free symmetric two-tensor satisfying h(x) = 0 for any |x| > 1.

Let B" = B'}/Z(O, ..., 0, —%) C R" be the ball with radius % and center (0,...,0, —%). Let z1,..., 2,

be the coordinates of B" taken with center (0, ...,0, —%). The properties of the conformal equivalence
between B" and R"} U {oco} that we are going to use are established in the next lemma.

Lemma 2.1. For each pair (¢, €) € R™ 1 x (0, 00), the expression

€x1—&1,..., %1 —&n—1, X+ €)
X — &2 4+ (xn + €)?

Ceo(x) = +(0,...,0,—1)

defines a conformal equivalence
Cee) R}y — B"\{(0,...,0,-1)}
_4_
that satisfies C&Ae)‘SB" = u(”gi)& where 8pn is the Euclidean metric on B" and § is the Euclidean metric on R} .
For any smooth function f on R"_, we have

_n+2

Apn fl(g’e) = u(éﬁ Af (2.4)
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and
3 . N _n3f
%U(gqg) — (n — Z)U(qu) = Ll(g’e)2 E’ (2.5)
where ti¢ ¢y = (fu(’;e)) o Cé}e). Moreover,
_ € _4 0 R
moCee="T"Sleoz U = Flee Peen (2.6)
and
€ 41 0 1 _
Zx o Cge) = mu@f)a—skwg,e) = Eu@,e) bk, k=1,...,n—1. (2.7)

Proof. These are direct computations. The assertions (2.4) and (2.5) follow from the following prop-

erties of the conformal operators Ly = Ay — cpRg and Bg = % — dnkg:

i
n-2g

We will also need the following estimate for functions in H!(B™).

Lemma 2.2. There exists 6 = 6 (n) > 0 such that

2
4
/|dw|2—2/w2—29<f|dw|2+(n—2)/w2>+§(/ w) >0
Bn aBn B" aBn aBn

(fu™')=u" “ilgf and B %g(fu—l):u—n"fzggf, 0 (2.8)

for any w € H'(B") such that w Ly2(58ny {21, ..., zn}. Here, we are following the notations of Lemma 2.1.

Proof. First we fix 0 w € H!(B") such that w Ly2(5gny {1, 21, ..., zn}. Since

2
inf{ Jpn ldV|

such that y € H' (B"), w¢00n83”andeLz(33n)l} 2

Jopn V2
and this infimum is realized only by the functions z1, ..., z;, we see that
/|dw|2—2/ w? > 0.
B" dB"
Hence,

[|dw| 2wz </|dw| +n-2) [ w?) 29)

aBn 9B

holds for any 6 > 0 satisfying

1 JpnldwP =2 [y w
2 [pnldw]2+ M —=2) [pnw

0<O(w) =

and the equality is realized by 6 = 6(w).
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We claim that there exists 6y > 0 such that 8(w) > 6y for any w € H!(B") satisfying w Li29pm)
{1,2z1,...,2y}. Suppose by contradiction this is not true. Thus we can choose a sequence {w]}]:1 C

H'(B") such that wj L25pn {121, ..., 2} and 6(wj) — 0 as j — oo. Hence
fldw1| —Z/W _29(w1)</|dwj +(n—2)/ >
3B"
holds and we can assume that [, [dw;|*> =1 for any j. Thus, [,z w 7 < § for all j and we can

suppose that w; — wo in H(B™) for some wyq. Since H!(B") is compactly embedded in L2(3B"), we
know that wo Lj2(ypn) {1,21, ..., zp}. Let us first assume that wo # 0. We set

5:/|dw0|2—2[w5>0.
Bn aARN

Since iminfi_ oo fpn [AW1? > [pa [dwo|? and limi_ o [, pn w? = [,pn W2, we can assume that
B )
|dw]| 2 ) for all j.
3Bn

On the other hand,

N ™

é{/|dlw;|2+(n—2>/w§}<
n
Bn

aBn
since [, ldwjl? =1 and [, w? < % Hence,

20(W])(/|dwjl +(n—2)/ )

aB"

fldwjl /5 </|dw,|+(n—2)f )

B" aB" daB"

which implies that 26(w;) > é for all j and contradicts the fact that 6(w;) — 0.
Thus we must have wg = 0, which implies that faB" w? — 0 as j — oo. Then, if we set w; =

2 _1 ~ ~ . 1 ~
(faB" wj) z2wj, we have w; — wq in H'(B"), for some wq. Moreover,

0= lim |dw]| /|dw0|

]aoo

and

aB" aB"
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From this we conclude that wo = const # 0, which contradicts the fact that wo L2 4pn 1. This proves
that there exists 6y > 0 such that 6(w) > 6 for any w € H'(B") satisfying w Li2pmy {1.21, ..., Zn}.
In particular, (2.9) holds, with 6 = 6, for any w € H!(B") satisfying w Li2pmy {121, ..., Zn}

Now, let w € H(B") satisfy w Li29gm {21, ..., zn}. We write w = wq +b where b is a constant
and w1 Lj2¢pn) 1. Then we have

o [ ool [ [ ) 2 [ )

aB" dB" aB"
=/|dw1|2—2/w1 290</|dw1|2+(n—2)f )
B daB" aB"
4 2
—2(1+(n—2)90)/b2+9—</b)
aBn 0 aB"
4
> (——2—2(n—2)90>/b2.
o
aB"

Choosing 6p smaller if necessary, we can suppose that % —2—2(n—2)6y > 0 and the result fol-
lows. O

The proofs of the next four propositions are similar to Propositions 1, 4, 5 and 6 in [6]. Hence, we
will just sketch some proofs, pointing out the necessary modifications, and omit others.

Proposition 2.3. If |h(x)| + |0h(x)| + |8%h(x)| < o < 1 forany x € 7, then there exists C = C(n) > 0 such
that

Aglie,e) — cnRgle ol 1y @) + ||danu(E,e)||L2(n;1> ORT) < Ca

for all pairs (&, €) e R x (0, 00).
Proposition 2.4. There exists 0 < g = ag(n) < 1 such that, whenever |h(x)| + [dh(x)| + |32h(x)| < «

for all x e ]R” , the following holds: given any pair (&, €) € R"~! x (0, oo) and functions f € Ltz (R") and
fe L (8R ) there exists a unique w € X ¢) such that

/((dw,dl//)g-‘rcnRgWI//)—‘r /(dn/(gwx//—nu ww /fw+ / fv (2.10)

RY ORY aR™
forall € X ¢). Moreover, if we set Gz ¢)(f, f) = w, there exists C = C(n) > 0 such that

[Ge.e(f, f)”; C||f|| +C||f|| 20-1)

(&™) ORY)’
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Sketch of the proof. Proceeding as in Proposition 2 in [6] and using Lemmas 2.1 and 2.2, we can
prove that there exists & = 6(n) > 0 such that

2 = 2 _4 22\

n—. n—.
/ldw| —n/u@’e)w 229|w|2—5< / u@’e)w)
R". IR aR"

for all w € X¢ ¢) and any pair (§,¢) € R™1 x (0, 00). As in Corollary 3 in [6], we can show that there
exists 0 < og = arp(n) < 1 such that, whenever |h(x)| + |3h(x)| 4+ |8%h(x)| < o for all x € R%, we have

2 0 1
/(|dw|§ +cnRgw?) + / (dnicgw? —nuf? w?) > §||w||22 - 5A(w)2 (211)
RY aR"
for all w € X¢ ¢) and any pair (£, €) € R™1 x (0, c0). Here,
A(w) = /(AgU(g’e) —cnRgue e))w + / (—danU(g,g) + ZUW)W.

R oR",

In order to prove the existence part, we define the functional

2 - 1
T(w)= /(|dw|§ +cnRgw? —2fw) + / (dnicgw? —nué’éw2 —2fw)+ 5A(w)2
R IR

for w € X¢¢) and use the estimate (2.11) to find a minimizer wq for T over all functions in X ).
The uniqueness part also uses (2.11). O

Now, the following proposition is an application of the contraction principle using Proposition 2.4.
Proposition 2.5. Let g be the constant obtained in Proposition 2.4. There is a constant o1 = o1 (n), 0 < o1 <

g, with the following property: if |h(x)| + [0h(x)| + [02h(x)| < oy for all x € R", given any pair (£,€) €
R™1 x (0, 00) there exists a unique v ¢y € X such that v(s ¢y — U.e) € Z¢.¢) and

2
/(W@,e» d¥)g + cnRgVig )W) + / (dnkgvie. oy — (M =2) V()| T2V ¥) =0
R oRY

for all y € X ¢). Moreover, there exists C = C(n) > 0 such that

(2.12)

R"

Vi) —Ugells <CllAgue.e — CnRgu(g,e)HLn%( .

Clldnkou — .
)+ ldnkg (z?,e)lILzmn UWRD

In particular, v ¢ ¢) #Z 0.

Observe that v ¢) cannot be identically zero because of (2.12) and Proposition 2.3 with o = oy
small.
Given a pair (£, €) e R™! x (0, 00) we define the energy function
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fg(é,6)=/(Idv<e,e>|§+fnRgVé,e>)+ / dn"gvé,e)

R" aR"
(n —2)>2 e n—2 20-1)
— ﬁ |V(g’5)| n-2  — m u(;’si . (213)
ORT. oR"

Proposition 2.6. Suppose that |h(x)| + |dh(x)| + |02h(x)| < o1 for all x € R, where « is the constant
obtained in Proposition 2.5. Choosing a1 smaller if necessary, the function Fg is continuously differentiable
and, if (&, €) is a critical point of Fyg, then Ve is a positive smooth solution of

AgVz ey —CnRgviE e =0, inR%,
0 2
ax, V6D T dnkgV g o)+ (= 2)V (7

(214)
)= 0, ondRL.

In the proof of Proposition 2.6 we use the following removable singularities theorem, which is a
slight modification of Proposition 2.7 in [22]:

Lemma 2.7. Let (M", g) be a Riemannian manifold with boundary dM. Let x € dM be a boundary point and
U C M an open set containing x. Let u be a weak solution to

Agu+¢u=0, inU\{x},

d
£+¢u=o, onUNOM\ {x},

where ¢ € LZ ) and ¥ e L1 N aM). Suppose that u € L) N LP (U N dM) for some q > L and
p> Z:; Then u is a weak solution to

Agu+¢u=0, inl,

0
—u+1ﬁu=0, onUUNoM.
an

Sketch of the proof of Proposition 2.6. Given a pair (£, €) € R™™! x (0, 00), by the definition of V(e
there exist bg(§,€) e R, a=1,...,n, such that

2
f(<dv<s,e)» d¥)g +cnRgVz.e V) + f (dnkgvie.e) ¥ — (= 2)|V(ee) |2V e W)
R IR

:Zba(g,e)- / D eV (2.15)
a=1 OR"

for any ¥ € X. Following the same steps of Proposition 6 in [6] we can prove that by(&,€) =0 for
a=1,...,n and also that Ve =0on oR'}.. In particular, Eq. (2.15) can be written as

/((dv(ggg),dwg+cnRgv@,g)1p)+/(dnxgv(ggg)w—(n—z)v("éjzé)l//):0
R AR

for any y € X. By a result of Cherrier in [10], v £ ¢ is smooth.
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The fact that VEe >0 in RY} is just a consequence of the maximum principle, as follows. We set
4

g=um2g, where ii(x) = (1+ |x|2)2%”. Observe that u satisfies Al +n(n — Z)ﬁ% =0 in R’ and we
h

- _n42 ~_n42 ~ ~ ~
CnRg=—u"m2Au—u n2(Ag — Au — cpRgll)

>nn—2)— ca*%{m”a%}\ + [dh|[1| + (|9*h| + [ah[?)|adl}.

Using the facts that h(x) = 0 for |x| > 1 and |h| + |dh| + |3%h| < Ca; we can assume that Rz > 0, by
choosing o7 small.
Let S", be a hemisphere of S} 2 We will use the well-known conformal equivalence between

ST \ {xo} and R’ realized by the stereographic projection, where xo € 3S".. Under this equivalence,

the standard metric on S", is written on R’} as ﬁﬁﬁ, where § is the Euclidean metric on R’.. We set
V= ﬁflv(gﬁg). By the properties (2.8) of the operators Lg = Ag —cyRg and By = % — dpkg, we have
- ~_nt2 -
Lg(v) =u"n-2 Lgv(g’é) =0, inS,,
and
By (¥ )77 =i 2By 2)(i g ) ™2 =0, onas"
g(v)+(n_ )V =u gV(E’g) +(n— )(u V(E’g)) =0, on 4

To establish the last two equations, we used Lemma 2.7.

Since Rz > 0, it follows from the maximum principle in '} and the Hopf Lemma that if v > 0 on
9S" then we have either vV > 0 or v =0 in S",.. The latter contradicts the last assertion of Proposi-
tion 2.5. Hence, V > 0 on 9S implies that ¥ > 0 in S%. Since we have proved that vz ;) > 0 on 3R],
we conclude that vg -y >0 in R}, O
3. An estimate for the energy of a bubble

In this section we will show that the energy function F; can be approximated by a certain auxil-
iary function.

We fix a multi-linear form W :R" x R" x R" x R" — R satisfying the algebraic properties of the
Weyl tensor. We set

n
|W|2 = Z (Wacba + Wadbc)2
a,b,c,d=1

and assume that |[W|? > 0. Recall that throughout this article we work with indices 1 <i, j, k,1<n—1
and 1<a,b,c,d<n and set X = (x1,...,X;—1,0) € IR}, whenever x = (x1,...,X;-1,%;) € R. For
x e R} we set

Hij(X) = Hij(®) = Wi’ and  Hpp(x) =0

and define Hyp(x) = f(1X|%)Hgp (x), where

d
f(s)= Zajsj. (3.1)
=0
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The integer 0 < d < % and the coefficients ag, ...,aq € R will be chosen later. Observe that H is

symmetric, trace-free, independent of the coordinate x, and satisfies
x"Hap (%) = X Hip(x) = 0 = 8gHap (x) = 3jHjp (x), foranyx e R .

We define a Riemannian metric g =exp(h) on R, where h is a trace-free symmetric two-tensor
on R} satisfying

o

{ hab(x) = 324 f (A 721%1%)Hap (x),  for ||
1.

<
hap (x) =0, for |x| >

Here, 1 <1, A < p <1 and we suppose that hy,(x) =0 for any x € R, and 9,ha(x) =0 for any
x € JR™. Observe that hgp(x) = O (1(x + |x])24+2). We also assume that |h| + |dh| + [3%h| < oy where
a1 is the constant obtained in Proposition 2.5. The second fundamental form of 8RR’ satisfies

1
mj =1} = 5 (&in.j+ &jn.i = &ijn) =0-

Using Proposition 2.5, for each pair (&,¢€) € R"! x (0,00) we choose V(e to be the unique
element of X' such that v ¢) — U ) € Zg,e) and

2
/(<dv<s,e>»dl0>g+CnRgV(s,e>W) —=2) / Vo2 Ve =0

R IR"

for all ¥ € X o).
We define 2 ={(&,€) e R" ! x (0,00); |&| <1, % < € < 2}. Similarly to Proposition 7 and Corol-
lary 8 of [6] and Proposition 5 and Corollary 6 of [8] we have the estimates

n—2

A\ 2
||Ang(g,€) — CnRgu(%‘,é)” 2n : < C//L)»2d+2 + C(;) ,

L2 (RY,

| Aguie.e) — cnRglie.e) + wa® f (A2 1%1%) Hijdidjue o |

2n_
Ln+2 (R%)
2, 4d+4 A7
< CpPrta +C<;> (3.2)

and

n—2
A 2
Ve — Ue.e) ||L &) + Ve — Uk, IIL%( <Cpat? 4 C(;) (3.3)

=2 (RY, aR")

for any pair (§,€) € A82.

In order to refine the estimate (3.3), using Proposition 2.4 with hg, =0 we choose the function
W(,e) to be the unique element of X ¢) satisfying

2 —
/ ([dw.e). dyr) — / MU o Weo¥ =— / a4 f (R 721X12) Hijdidjue.e (34)

R IR R

for all ¥y € X ¢). Observe that, since xiHij (x) =0 for any x € R"}, we have w ) =0.
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Proposition 3.1. The function w ¢ ¢) is smooth and satisfies, for any (§, €) € 182,

‘Bkw(g,e)(xﬂ < CAnZ;Z;L(A + |x|)2d+4_k_", forallxeR™, k=0,1,2,
and
Ve.o —Ugo = Weol 2 @ T Veeo —teo —weeol 20-n o)
n—2
n Qd+2)n A\ 2
<cprm () (3.5)

Proof. First observe that there exist real numbers bq(§, €), 1 <a <n, such that w ¢ satisfies

/(dW(g,e),dl//)— / nu(”g W(ge)l//

RM R
/ )Lde( |X| )Huala]u(g e)‘//‘f‘zba(s €) / Pac.e)V (3.6)
R a=1 oR"

for all ¢ € X. Hence, it follows from standard elliptic theory that w ¢) is smooth.
Now we are going to prove the pointwise estimates. Observe that

25 (0721 Hig0didjuc. e @, o, < CuaZ2, (3.7)
RY

Then we apply Proposition 2.4 with hgy, =0 and use the estimates (2.3) and (3.7) to conclude that

w 2 + ||lw 2n— <C'|\w Cur2d+2,
[ @’E)”Lﬁ(m) [ (S'E)“L%(am) Weeolls <Cu

Moreover, we can use Eq. (3.6) with ¥ = ¢ ¢,q) to conclude that

n

> Ibaté, )] < Cuatt2.
a=0

Hence,

| AW .0 (0] = a2 f (A2[R12) Hij 0801 e.0 00| < pd "2 (1 + )7,

for all x e R, and

a 2d+2—
B*W(g o) + nu W(g o= "

‘ Y ba(&. €)pac.o) ()| < A2 (A + [x])
a=1

for all x € 3R

Claim. sup,cgn (h + X)) "7 (Wi (0] < Cpua2442,
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We fix xg e R} and set r = %(A + |xo]). Then we see that

Ui 6)(x) cr=!, forallx e B/ (xo),

a n
e o) + nu(s LWEo®| < Cua2r?™27n - forall x € B} (xo) N ORY,

and
122 2d+2-n +
|AWe o)) <Cur 2 r , forallx e B/ (xp).

It follows from standard interior estimates that

n+2
r 2 |W($ 5)()(0)’ C”W(E 6)” 272 +Crz2 ||AW(E-5)||L°°(B,,+(XO))

(B} (x0))

2
2 n—2
+Cr2 EoWEo

0Xn Lo (B (x0)NIR™)

<CM)&2d+2+CM/)\. 2d+2+ =5 +C/,L)\.2T2d+2__

since we are assummg that d < 2. This proves the claim.
Since SUPxeR! |x| o |w(§,5)(x)| < oo, for all x=(x1,...,X—1,%,) € R, we have
1 2—n I 2—n
w X)=——— X— + X — AwW d
&6 ®) m_a%ﬂfﬁ yl X — yI" ") Awe o) (y) dy
R}
S - / (b= Y2+ R — Y2 = wie o (1) dy,
(n—2)on—2 0Yn
OR™
where X = (X1, ...,X1—1, —Xn). Now we use a bootstrap argument to prove the pointwise estimates. It

follows from the last two inequalities that

sup (A + |x|)ﬁ |We.e) )]

n
xeRL

0
< Csup (A + |X|)ﬁ+2|AW(.§,e)(X)| +C sup (A+ IXI)ﬂH‘KW(PE,e)(X)
n

xeRT x€dR!,

for all 0 < B <n — 2. Since

INZEBIIIES ‘“%(14— |X|)2d+27n

, forallxeR,
and

)2d+271‘l

’—w@ (0| <nufs E)(x)|w(gf,€)(x)| + uAz (A + 1x] , forallx e R,
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we see that

sup (A + |X|)'B|W(g_5)(x)| <Chr sup (A + |x|)’3_1 |We.o) )] + Curptad+t3—3

xeRT xR,
for all 0 < B <n —4 — 2d. Integrating we obtain

sup (A + |x|)n72d74|w(g,e)(x)| < CMA¥.

n
xeRL

The derivative estimates follow from elliptic theory and the estimate (3.5) is analogous to Corollary 10
of [6] and Corollary 8 of [8]. O

In the next proposition we estimate the energy Fg.

Proposition 3.2. Let F; be the function defined by the formula (2.13). For any pair (§, €) € A§2 we have the
estimate

1 C
Fe6.6) =5 / hizhﬂf’fu@,e)aju(s.e)Jrz" / (@rhij)*us
B} (0) B} (0)

—/Mmf(rz|5<|2)Hi13i31“(s,e>w<s,e>
]Rn
"

20-1)  (@dd+d(n-1) 2da2 [ A E A\"?
gCM n=2" ) n—2 +CM)\. + (;) +C<;> .

Proof. It follows from the definition of v ¢) that
/{<dv<é,e>s d(ve.e) — Uee))y +nRgVie.o (Ve —Uee)}
R}

2
-n-2) / Vo) | ™2 V(g,e)(Vig,e) — U,e) =0. (3.8)
oRT.

We set

0= /{(du@,e): d(V(.) — o))y + anRelie.o (Vo) — U.e)]
1

- /hijaiaju@,e)(‘f(s,s) —Uge) —(—=2) / U2 (Ve — Ue)- (3.9)
R R

Summing (3.8) and (3.9), we obtain
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5 5 (n—2)? 20-1) n—2 =D
QZ/{|dv(é,e)|g+CnRgv($,e)}_/{ n_ _|V(Ee)| n— — (55

R" ORY
n— 201 ( n—2)% 20-b
—/ - | ol ™+ U
oR™.
Z(n 1)
(n—Z)/ ~ Vol ™2 )ueo Vo +200— 2)/ ¢o
GR" E)Rn
—/{|du<é,e>I§+CnRgué,e>+hi13iaju<é,e>(v<§,e> —UEe)} (3.10)
B

We set

B = /{|du(5,€)|§ — |du(§75)|2 + CnRgué‘e) +hijoidjue.e)(Vie,e) — ll(g,e))}

KL

2(n—-1)

2 =2
and observe that fm [due 6)|> =0 —2) faRi ui,) - Hence,

n—2 2m-1) 2D
Fg(é,f)—B:m/ |V(§€)| -z _u@e) }
BR”

(”—2)/ V.o 72 —Ug, e))u@ oVeo +0
(’HR”

n—1
_0 (A (4d+n4_)(2n—1)M2(nn_—21) n (%) ) +o (311)

where in the last inequality we used the estimate

2m-1) 2-1) 1)
‘/ VeE.el™2 2—“@6))”(5@"(5@——/ Vol =2 —udy )
HR" SR”

n—1
20-1)  (4d+4)(n—-1) A
<C,LL n—2 A\ n—2 +C(—> s
P

which is similar to Proposition 12 in [6] and Proposition 10 in [8]. On the other hand,

1 c L,
‘B_i / hih i e, djte.c) + - / (3”“’1)2”%5,@_/“#”(* 21%[%) Hijdidjtte.o W c.c)
B (0) B} (0) R".

n—2

n-=2 -2
<CM2(Hn71))\’(4L‘IJ;47)(n 1 CMAZd.;.z(l)O‘) : +C<%>n ) (312)
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Here, we are omitting the details of the last inequality, but we should mention that we are us-
ing the facts that 9jh;;(x) =0, for [x| < p, and Z’};} hj; =0 and the identity u ¢)d;idju,e) —

iy dille.0)djUe.e) = — iz ldu.e) 3.
Next we are going to estimate o using its definition (Eq. (3.9)). Integrating by parts and using the
second equation of (2.1), we obtain

lel < [|—Agu@,s>(v<s,e> —U.e) + Rl e)(Viz.o) — U.e) — hijdidjlie.e) (Vig.e) — Uee))|

RY
X ”AgU(g,e) CnRgU(g,e) +h11818]u(5,e)||”%(m) ”V(g,e) u(s’€)||LﬂzTn2(R1)
d a2 (2\T 1\’
< Cp3ab+6 4 cpua® +2<;) + c(;> . (3.13)

Here, we used the estimates (3.2) and (3.3) in the last inequality.
The result now follows from (3.11), (3.12) and (3.13). O

4. Finding a critical point of an auxiliary function

Let us follow the notations of the last section. We define

1 (- - C _ _
F($,€)=E/HilHjlaiu(g,e)aju(g,e) - Zn/(alHij)zué,E)+/Hijaiaju(§,e)z(§,e)
R R R

where z¢ ¢) is the unique element of X ) that satisfies

_2_ _
/(dZ(g’e),dlﬂ)— / nu(”g;)z(g,e)w:—/Hija,-aju(g,e)xp (41)

RY R RY

for any ¥ € X ¢). The function z ) is obtained in Proposition 2.4 with hg, = 0.

In this section we will show that the function F(&, €) has a critical point, which is a strict local
minimum. Recall that throughout this article we use indices 1 <1i,1i, j,k,Il,m,p,q,r<n—1.

Since Hgp(—x) = Hgp(x) for any x € R, the function F(,¢€) satisfies F(&,€) = F(—¢, ¢€) for all
(&,€) e R 1 x (0, 00). In particular,

9 2
—F(0,¢) = F(0,e)=0, foralle >O0. (4.2)
0&p 0€9&)p
Proposition 4.1. We have
20q_pr™t?2

f O Hij)?(0)xPx1 =

sn-2

- D+ D)nL3) (Wipjt + Wigip) Wigji + Wigjq)

A3 £+ 82 () £(2) + 4t (7))

N o*n,zr””
n—1Dm+Dn+3)

Am+3)F () + 42 £ () () +2r* £ ().

(Wikj1 + Wiljl<)25pq
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Proof. Analogous to Proposition 15 in [8]. O
Corollary 4.2. We have

On-2r

)2 2\2 2 N (2 402
m( ikjl + Wi {(+ 1) f (r*)" +4r° £ (r*) f/(r°) + 2r* £/ (r*) 7).

f @ Hi*x) =

sn=2
As a consequence we can prove the next result.

Proposition 4.3. We have

o0
Cn - On—2 2 n 2\2 2 £(12 £/ (42 4 ¢7(.2\2
F0,6) = —————— Wi + Wy rym+1Df(r 4re f(r r 2r= f(r
( ) 4(n—l)(n+l)( ikjl + 1ljk) // {( + )f( ) + f( )f( )+ f( )}
00
" 2((e +02+12)* " drdt.
Proof. It follows from symmetry arguments that zg¢) =0 and

/Huﬁﬂaiu(o,e)aju(o,e)(X)

sn—2

2)26n2 S12\2 i jsD Gyl oM
et ! () Wi W7 =0
sn 2

Hence, we have

F(0 e)——c—” @ HiN?*(xu?
€)=y 1 1ij (X)u((),e)(x)

Bl

_%[// (@ Hip)* (0ufy ¢) (%) doy (x) dr dxy.

00 sfrl—Z

The result now follows from Corollary 4.2. O

We write
2d o000
FO,0=~fn Y 0 /f P2 (¢ + 02 1 12)P " drt,
q=0
where
Cp-Op-2
Bn= A(Wikjl + Wiljk)za

An—-DHn+1)
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and define the coefficients ag € R by the formula
2d
D st =@+ 1)f(5)> +4sf(5) f'(s) + 25> f(5)°. (43)
q=0

Here, d is the integer in the formula (3.1). Changing variables t' =t/e and ' =r/e¢ we obtain

r2q-+n

2d xR
_ 2q+4
FO.0 =~ ) e /[ arrraye
= 00

and, changing variables ' =r/(1 +1t),

2q +n

_ 2q+4
F(O 6)— /311 Zaq /(]+t)n 5— 2q /(]+r2)n 2

Now, we have

/ dt = !
A+6"5-20" n-6-2q
0

and

r2a+n Tn—142j
/a a2 & [fl ~5-2j /a+ﬂw2

j=0

where we used the fact that

o oo
/ s%ds  2m—a—3 s¥t2 s
¢!

= , for 3 <2m. 4.4
Fm axl ) Arepm TOTOS 48
0
Hence, we can write
F(0,¢)=— I 4.5
©,6) =y ./a+ﬂw2 (45)
where
2d q .
n—1+2j
I a+2 46
(5) = Z 6 Zq[Un—S—Zj}s (46)

We will now turn our attention to the second order derivatives of the function F (&, €).
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Proposition 4.4. We have

82 £o0 B 2(n — 2)20',1,2 Wit W) (W W
0&p0&g ( 76)__(n_])(n_+_1)(n_+_3)( ipjt T Witip) Wigji + Wiijq)

0000 611—2 . , /
| e I )+ ) ar
00

(n - 2) On—-2
2D+ 1)(n+3)

n—2
/ / o R 4 7 dre
00

(Wikji + Wigjt)*8pq

(=270,
4n—1)2%n+1)

/f ((€ +xp)? r2)n 1 n+4f/(T2)2drdt‘

Proof. As in Proposition 21 in [6] we can prove the identity

(Wikji + Wijk)*8pg

2 n—2

9 Py N I = _
mF(O,E)—(n 2) J ((€+Xn)2+|)_(|2)” le(X)qu(x)
+

(n—2)° €2 o\ 2P
R / ((€ 4 xp)2 + |x|?)" (9Hij(x))"xPx
(n—2)° en—? 0. (x1)2
8n—1) J ((€+xn)?+ X1 (aiHij (%)) 8pg-
RY

Then the assertion follows from a computation similar to Proposition 20 in [8]. O

Let us define constants fq, for ¢=0,...,2d — 1, by the following expression:
2d—1
D Best=2F(s)f'(s) +5f' ().
q=0

Proposition 4.5. We have

n+4 2\ £/ (2 2 ¢r(.2\2
f/ ((6+xn)2+r2)”r @S () /(%) +rf ()7 drde

n+2
/ (] T2)” T,

1831

(4.7)

(4.8)
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where
2d—1 .
JTETED AG  y LEE R
a n—-6-2q |1ln—-5-2j[
q=0 j=0
Proof.

oo o0 61172 ) / /
/ / s R ) s (2)?)drdt
00

2d—1 n—2.n+4+2q
Z Bq / / € T drdt
((€ + %)% +12)"

2d—1 20t F+4+2q ird

= radt
Z Pac // (1 +x)2 +12)"
2d—1 < rh+4+2q

2q+4
_Zﬁ /(1+r)" =)

Now we observe that

1
dt =
/ I+0H"520  n-6-2q
0

and apply the formula (4.4) to see that

00 n+4+2q B ﬁn+3+21 / n+2 5
1+ rz)” 1 ily_5_2j 1+ rz)” "

j=0

4.1. The casen > 53
In this case we choose d =1 in Eq. (3.1). Then the coefficients g in Eq. (4.3) are given by
ag = (n—i—l)a%, a1 =2(n+ 3)apay, = (n+7)a%.

Thus, derivating I(s) in the expression (4.6) we obtain

2 q :

o (q+2)aq n=1+2j| g+1

I(s)_qzon—G—Zq:Hn—5—zj}s
_ 2wm—1) oS-+ 5 - Dethn+3) g
T (n—6)(n—5) (n—8)(n—>5)(n—7) (n—10)(n —5)(n —7)(n —9)
=2(n+n12(:—1){1 o 3043 o 2043047 agg}

n-8m—-7) n—10)(n—-7)(n—9)
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Now we choose a; = —1 and define the polynomial p, by
(o) = a2 3(n+3)ag 2M+3)(n+7)
Pnido "n—-6 M-8m-7 m-10)Mn—-7)n—-9)
Hence,
2+ -1)
I'y = ?Pn(ao)-

The discriminant of p, is then given by

o (n +3)? { 8 —7)(n—8)%(n+7) }
discrim(p,) =

n—720—-82|" m+3)n—6)(n—9)(n—10)
. (n+3)? q(n)
T m=-72—-82m+3)(n—6)(n—9)(n—10)’

where
qn) =9(m+3)(n—6)(n—9)(n — 10) — 8(n — 7)(n — 8)*(n + 7).
Observe that
q'(n) = 4n> — 210n? + 2082n — 5624
and

q’(n) = 6(2n* — 70n + 347).

Since the roots Z%£v2124 of ¢” are less than 53, we see that g”(n) > 0 for n > 53. Since q(53) =
105696 and q'(53) = 110340, we conclude that discrim(p,) > 0 for n > 53. Hence, if we set

do

_ (n+3)(n—6) {3+ 9_ 8(n—7(n—8)>2*(n+7) }
T 2(n—7)(n—28) Mn+3)n—6)(n—9m—10)J’

then s =1 is critical point of I(s). According to Proposition A.1 in Appendix A, I”(1) <0 for n > 53.
Now we will handle J(s), as defined in Proposition 4.5. We have

(n + 3)Bos? (n+3)(n+5)p1s°

T =" em—5 " a_8m-_50-7
where
Bo=2apa; and Bi=3al.
Hence,
J(s) = (n+3)a; { 2a0s?  3(n+5)a;s }
n->5 n-6 m-8m-7)
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If we set ag and a; as above we have

— —8)2
J)y= n+3 .{6—(n+3)\/9— 8(n—7)(n—8)2(n+7) ]

According to Proposition A.2 in Appendix A, J(1) <0 for n > 53.
From Egs. (4.2), (4.5), (4.7) and (4.8) and the above results we can conclude the following:

Proposition 4.6. Suppose thatn > 53. If we set a; = —1 and

ao

ENGEIUEON PO 8(n—7)(n—8)2(n+7)
_Z(n—7)(n—8)= + _(n+3)(n—6)(n—9)(n—10)}’

then I'(1) =0, I"(1) < 0 and J(1) < 0. In particular, the function F (£, €) has a strict local minimum at the
point (0, 1).

4.2. The case 25 <n <52

In this case we choose d =4 in Eq. (3.1). The coefficients ¢ in Eq. (4.3) are then given by

op = (n+ 1)ap,

o1 =2(n+ 3)apay,

o =2(n + 5)apaz + (n+ 7)a?,

a3 =2n+11)ajay + 2(n+ 7)apas,

o4 =2n+15)a1a3 + (n+ 17)03 +2(n+9)apay,
a5 =2(n+23)azaz + 2(n+ 19)ajaa,

o= (n+ 31)a§ + 2(n+ 29)azay,

a7 =2+ 39)asay,

ag = (n+49)a3.

Thus, derivating I(s) in the expression (4.6) we obtain

8 q )

(q+2)aq n—1+2j 1

I'(s) = a+1,
) Zn—6—2q 1_[n—5—2j s

q=0 j=0

Now we choose a; = —3/5, ay = 1/8, a3 = —1/125, ag = 10~* and define the polynomial r; by
rn(aog) = I'(1). Hence,

2(n—1 1 2 L n—142j
rn(ao)zw.ag+[zyq(n) a+ Uﬁ—sfzf']'“"

n—6)(n—>5) e n—6—2q]=0
8 q .
q+2 n—142j
8q(n )
2 q()n—6—2q. n—5-—2j
q=2 j=0
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where
6 n+5 n+9
)/1(”)2—5(”"‘3)’ yz(n):T, y3(n )——ﬁ(n—iﬁ) )/4(11):%,
52(n):9(n2—:7), Mnh_w, 54(n):w,

Direct computations show that discrim(r,;) > 0 for 25 <n < 52.
If we choose

4 q )
_ (n—=6)(n-5) q+2 n—1+2j _
—m'{‘L;yq(")n—6—2qﬂ)n—5—2j+ dlscrlm(rn)]

then s =1 is critical point of I(s). For 25 < n < 52, direct computations show that I”(1) is of the form
—eq — ey./e3, where eq, ey, e3 are positive rational numbers.
The function J(s), defined in Proposition 4.5, is written as

ﬁqsq” I n4+3+2j
J®) = Z “6-2q9 l—[n—S 2j

j:
where
Bo = 2apay, B1 =4apay + 30%, B2 = 6agas + 10a;az, B3 =8apay + 14aja3 + 861%,
Ba=18aras +22aza3,  fs =28axas + 1503, o =38asas, 7 =24d;.

For 25 <n < 52, direct computations show that J(1) is of the form —e; — ey./e3, where ey, ey, e3 are
positive rational numbers. From Egs. (4.2), (4.5), (4.7) and (4.8) and the above results we can conclude
the following:

Proposition 4.7. Suppose that 25 <n < 52.Ifa; = —3/5,a; = 1/8,a3 = —1/125, a4 = 10~% and

4o = TR 1_[ — ~ + /discrim(ry)

4 q .

m—-6)(n—-5) +2 n—1+2
= e — )
n—6—2qj:0n 5-2j

g=1

then I'(1) =0, I”(1) < 0 and J(1) < 0. In particular, the function F (&, €) has a strict local minimum at the
point (0, 1).

5. Proof of the Main Theorem

In this section we will make use of the two-tensor H, defined on R}, the polynomial f and the
open set £2 c R"1 x (0, 0o), which were defined in Section 3. As in Sections 4.1 and 4.2, we fix d =1
ifn>53and d =4 if 25 <n <52. We set D;(0) ={x € dR"; |x| <Tr}.

The basic ingredient in the proof of the Main Theorem is the following result:
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Proposition 5.1. Assume that n > 25. Let g be a smooth Riemannian metric on R", expressed as g = exp(h),
where h is a symmetric trace-free two-tensor on R”, satisfying the following properties:

hap () = uA? f (A2 |%]) Hap (x),  for |x] < p,

hab(x):Os fOr |X|>13 (51)
hnp(x) =0, forx e R", :
Onhap(x) =0, for x € 9R™,

wherea,b=1,...,n. We also assume that

|h(x)| + [ah(x)| + [0?h(x)| < < oq, forallxeR™,

where o is the constant obtained in Proposition 2.5.

Ifo and pu=2A0~44=6 p2=1 gre syfficiently small, then there exists a positive smooth function v satisfying
AgVv — cRgv =0, inRY,
a n_ n (5.2)
—V —dpkgv+(M—2)vri-2 =0, ondR,
0Xn
and
20-1) B™ 0B n-1
/ vz <<7Q( )> . (5.3)
n—2
OR"
Moreover, there exists c = c(n) > 0 such that
sup v = cr 7 (54)
D;.(0)

Proof. It follows from the fact that
2
M+ D> +45f($) f'(5) +25° f'()* = = D f(5)* +2(f ) + 5f'(5))
and Proposition 4.3 that F(0, 1) < 0. According to Propositions 4.6 and 4.7, we can choose the coeffi-

cients agp, ..., aq in the formula (3.1) such that the point (0, 1) is a strict local minimum of F. Hence,
we can find an open set £2’ C £2 such that (0, 1) € £2’ and

F(0,1) < inf F(&,€)<0.
(&,6)€d82’

Observe that gz se)(AX) = P U.e)(X) and Wig se)(AX) = ,LL)»ZHZ*%.Z(;G)(X) for all x e R". Here,
W) and z ¢) are the functions defined by the formulas (3.4) and (4.1) respectively. Thus, it follows
from Proposition 3.2 that

n-2
n— 4d+4)(n— A\ 2 A n-2
|Fer he) — 2R G, o) < Cpu 17 2 T 4 cpuat? (;) - C(;>

for all (&, €) € £2. Hence,
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|2 A M E (Mg he) — F(s, e)!

2 4d+4

SCum2am2 +Cu

2-n
,OT + Clufz)hn74d76p27n

for all (£,€) € 2. If u=2A"~44=6p2-1 is sufficiently small then we have

Fg(0,0) < inf  Fg(r&, re) <O.
(E,€)ed2’

Thus we conclude that there exists a point (£, €) € £2’ such that
Fg(AE,0€6) = inf Fy(AE, re) <O.
(&,e)ef2’

By Proposition 2.6, the function v = VO£ obtained in Proposition 2.5 is a positive smooth solution
to Egs. (5.2). Hence, by the definition of 7, (see the formula (2.13)) and the formula (2.2), we have

n—2 - n—2[Q(B"9B)\"! _
v = o =207 + FO\E, 2E).
n—1 n—1 n—2

R

This implies the inequality (5.3).
In order to prove the inequality (5.4), observe that

lv—unz;el 20-n <|lv—u || 2(1-1) < Ca
£2O0 55 (0, 0)) CESLE S SO
by Propositions 2.3 and 2.5. Hence,
|DA(O)|2(H o SUD vVl 2w-1 Z—Ca+ugz el 20-0 .
L n=2 (D;(0)) ’ L n=2 (D;(0))

Now, the inequality (5.4) follows from choosing « sufficiently small. O

Now the Main Theorem follows from the next theorem, using the conformal equivalence between
B"\ {(0,...,0,—1)} and R} (see Lemma 2.1), the properties (2.8) and Lemma 2.7.

Theorem 5.2. Assume that n > 25. Then there exists a smooth Riemannian metric g on R}, with the following
properties:

a) gab(X) = dap for |x| = 1/2;

b) g is not conformally flat;

c) dRY is totally geodesic with respect to the induced metric by g;

(d) there exists a sequence of positive smooth functions {v,}$2 ; satisfying

(
(
(

AgVy —caRgvy =0, inRY,

d
8xn

n 55
—dnkgVy + (M —2)vy 2 =0, on aR", (5:3)

forall v,
/ et (Q(B",am)“
v, < ——— )
n-—2
IR

forall v, and supp, (g, vy — 00 as v — oo.
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Proof. Let x : R — R be a smooth cutoff function such that x(t) =1 for t <1 and x(t) =0 for t > 2.
We define the trace-free symmetric two-tensor h on R, by

o
hay(¥) =Y x (4N1x — xn1)27N £ (2N % — xn 1) Hap (x — xn)
N=Ng
where xy = (%, 0,...,0) € 0R. Observe that h is smooth and satisfies hg;(x) =0 for x € R%. and

dnhgp(x) =0 for x € dRT}.. If N is sufficiently large, then hgp(x) =0 for |x| > % and |h(x)| + [0h(x)| +
|02h(x)| < « for x € R%, with « sufficiently small as in Proposition 5.1. Then we define the metric
g(x) =exp(h(x)) for x e R and the result follows from Proposition 5.1. O
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Appendix A

In this section we establish some results used in Section 4.1. The notations here are the same of
that section. In particular, we fix a; = —1 and

dg =

(n+3)(n—6) {3+ 9_ 8(n—7)(n—8)2(n+7) }
2(n—7)(n—8) n+3)(n—6)(n—9)(n—10) |’

Proposition A.1. We have I (1) < 0 forn > 53.

Proof. If 25 < n < 69, direct computations show that I”(1) is of the form —e; — e;./e3, where
e, ez, e3 are positive rational numbers. We are going to prove that I”(1) < 0 for n > 70. We write

(n+3)(n—6) {3 g_ 8PaM }

Gpgp=——"""—
2(n—=T7)y(n—8) pa(n)

where pa(n) = —7)(n —8)%2(n+7), pg(n) = (n + 3)(n — 6)(n — 9)(n — 10) and define

qr(n)=pam) —ppm) and qun)=app(n) —pa),

__ 31439
where o = 35255

Claim. q; (n) > 0 forn > 9 and qy (n) > 0 forn > 70.

In order to prove the claim, first observe that the forth order terms of q; cancel out and we
have q;(n) = 6n% — 114n% + 712n — 1516 Hence, q}(n) =36n — 228 > 0 for n > 7, q;(9) =32 and
q;,(9) = 118. Thus, g (n) > 0 for n >

Now we observe that

2639 , 1154290 ; 1207877 , 282161 218809

n n- — n
qum = 28800 14400 + 9600 400 160

Hence. qij(m = 15831 — 1532 > 0 for n > 70, qu(70) = 234, gi,(70) = 8507 and gf;(70) =

2800 Thus, gy (n) > 0 for n > 70, proving the claim.
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We assume that n > 70. In particular, we conclude from the claim that o > pa@ 1, which

ps(n)
implies
2(n+3)(n—6) (n+3)(n—
401_7)01_8) > ag > 7( e B+ V9 —8x).
Now we use this estimate in
vy 2 20t De =1 [ ag 6(n + 3)ao 6(n+3)(n+7)
M= -5 {n—6_(n—8)(n—7) (n—lO)(n—7)(n—9)}

to see that

n—51"(1) 4n+33n—6) 33+9—8a)n+3)%n—6)
2+ Hn—1)  (—72n—-872 (n—7)2(n—8)2
6(n+3)(n+7)
n—10)(n—7)(n—9)"

This can be written as

2n+3)(n+DH(n -1y ®)

Fy < n—82(m—10)(n—5)(n—7)2(M—9)’

where
ym)=—54+3v9-8u)(n+3)(n—6)(n—-—100(n—-9)+6(n+7)(n—7)(n — 8)2.
In order to complete our proof, we will show that y (n) < 0 under our assumption on the dimension.

Observe that y (n) = —35n% 4 28In3 — 12092 4 21162 _ 8205, Hence "' (n) = —%n+ 142 <0 for
n>70, y(70) = —118392, y/(70) = — 4433 and y"(70) = — 138472 Now the result follows. O

Proposition A.2. We have (1) < 0 forn > 53.

Proof. Let us assume that n > 53. We want to show that (n + 3),/9 — 858"(51';) — 6 > 0, where we are

using the polynomials pa and pg as in the proof of Proposition A.1. We set again qu(n) = apg(n) —
pa(n) and choose o = 2947

Claim. gy (n) > 0.

In order to prove the claim, first observe that

775 nd 27341 w4 814983n2 551 233n+ 2063213
6272 3136 6272 784 1568

qu(n) =

Hence, qjj(n) = £22n — 32022 > 0 for n > 53, qu(53) = 1587, q;(53) = 2282 and q[}(53) =

1568
21823% Thus, qy(n) > 0 for n > 53, proving the claim.

The claim implies that (n +3),/9 — 8;;‘(51”)) > (n+ 3)+/9 — 8, which reduces the problem to prove
that

(n+3)v/9 — 8a — 6> 0. (A1)
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36
(n+3)2

On the other hand, the fact that o = %{9 — 381 implies %{9 —

5 } > «, which is equivalent to the
inequality (A.1). O
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