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1. Introduction

Heterogeneity of the environment has a profound effect on the complexity of ecosystems [31,49].
This problem can be illustrated by the following reaction–diffusion system describing the interaction
of two species:
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⎧⎪⎨
⎪⎩

∂ H(X, T )

∂T
= D1�H + F (H)H + M(H)P ,

∂ P (X, T )

∂T
= D2�P + G(P )P + N(P )H,

(1.1)

where H(X, T ) and P (X, T ) are the densities of two species at position X and time T respectively;
D1 and D2 are the diffusion coefficients, F and G represent the per capita growth rate of two species,
M and N describe the interaction functionals between species. The ecosystem is called competitive
(cooperative) when M and N are all negative (positive); the ecosystem is called a predator–prey
system when one function of M and N is positive and the other is negative. More precisely, the
function H is the prey density and P is the one for predator when M � 0 and N � 0. In the last
three decades, effect of heterogeneity of the environment on some competition and predator–prey
models have been studied, and many important phenomena have been observed in [3–5,10,12–14,20,
24,34]. In a survey [19], some results on diffusive predator–prey models in spatially heterogeneous
environment were reviewed.

In most works for predator–prey models, the prey is assumed to grow at a logistic pattern. But
in recent years it was recognized that the prey species may have a growth rate of Allee effect, as
a result of mate limitation, cooperative defense, cooperative feeding, and environmental conditioning
[29,50]. The biological invasion dynamics of reaction–diffusion models or integrodifference models
with Allee effect has been considered in [28,32,46,55,56], and the spatiotemporal pattern formation
of reaction–diffusion predator–prey models has been studied in [38,43,44]. The rich dynamics of the
predator–prey ODE system with strong Allee effect in prey growth was completely classified in [53],
and the dynamics of reaction–diffusion predator–prey system with strong Allee effect in prey growth
was considered in [52] (see also [54] for the effect of the time delay). A distinctive character of
dynamics of the predator–prey system with strong Allee effect in prey growth is the overexploita-
tion phenomenon [1,51,53]. That is, for any given initial prey population, both of the prey and the
predator population will become extinct if the initial predator population is large enough. For the
corresponding reaction–diffusion system, this is also proved to be true (see Theorem 2.4 in [52]). This
is distinctive for the system with Allee effect as it does not occur in the similar system with logistic
prey growth.

In a predator–prey interaction, a protection zone can be established for the prey species to avoid
the extinction of the prey [22,23]. In spatial predator–prey models, the protection zone for one species
means that the protected species can live in, enter and exit the protection zone freely but the other
species can only live outside of the protection zone. A reaction–diffusion predator–prey model with
a protection zone for the prey was first considered in [18] (see also [17]), while diffusive competition
systems with a protection zone were also studied in [16,21]. More recently the effect of cross-diffusion
has also been considered in [39,57]. A survey on this subject can be found in [15].

From the result in [52], for a reaction–diffusion predator–prey system with strong Allee effect
in prey growth, both prey and predator populations are destined for extinction due to the overex-
ploitation if the initial predator population is sufficiently large. Would a protection zone for the prey
save the two species from the extinction? This is one of the questions which we will answer. In this
paper we modify the model in [52] to include a protection zone for the prey, following the setup
in [18]. In the model, u(x, t) and v(x, t) are the density functions of the prey and predator species at
location x and time t respectively; the habitat for prey is Ω , a bounded domain in R

n (n � 1) with
smooth boundary ∂Ω; the prey protection zone Ω0 is a subdomain of Ω whose boundary ∂Ω0 is also
smooth, hence the effective living space for the predator is Ω∗ = Ω/Ω0. Hence u and v are functions
in form

u : Ω × [0, T ) → [0,∞), v : Ω∗ × [0, T ) → [0,∞).

We propose the following system of equations of u and v:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u + u(1 − u)

(
u

b
− 1

)
− m(x)uv

a + u
, x ∈ Ω, t > 0,

∂v

∂t
= d2�v − dv + c(x)uv

a + u
, x ∈ Ω∗, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

∂v

∂n
= 0, x ∈ ∂Ω∗, t > 0,

u(x,0) = u0(x) � 0, x ∈ Ω,

v(x,0) = v0(x) � 0, x ∈ Ω∗.

(1.2)

Here the model has been simplified with a non-dimensionalization process as in [52]. The spatial
movement of the two species is described by the passive diffusion, and d1 and d2 are the diffu-
sion coefficients of prey and predator respectively; a no-flux boundary condition is assumed for both
species, so predator and prey species live in a closed ecosystem; the boundary of the protection
zone does not affect the dispersal of prey, but it works as a barrier to block the predator from
entering Ω0. For the nonlinear growth and interaction in the model (1.2), the growth of the prey
population is of a strong Allee effect type, and a Holling type II predator functional response is as-
sumed for the predation; a is the saturation parameter, b is the threshold value for the strong Allee
effect so that 0 < b < 1, and d is the mortality coefficient of the predator; the parameters a, b, d,
d1, d2 are all assumed to be positive constants. The function m(x) measures the loss of prey popu-
lation due to the predation, and m(x) = 0 for x ∈ Ω0 as the prey has a predation-free growth in the
protection zone Ω0. Hence effectively in the protection zone Ω0, the prey density function u(x, t)
satisfies

∂u

∂t
= d1�u + u(1 − u)

(
u

b
− 1

)
, x ∈ Ω0, t > 0.

While in the free zone Ω∗ , the prey density function u(x, t) satisfies

∂u

∂t
= d1�u + u(1 − u)

(
u

b
− 1

)
− m(x)uv

a + u
, x ∈ Ω∗, t > 0.

The function c(x) = h(x) · m(x) for x ∈ Ω∗ , where 0 < h(x) � 1 is the conversion rate from the prey
loss to the predator gain. Thus we assume that m(x) � c(x) > 0 for x ∈ Ω∗ .

In Subsection 2.1, we prove the global existence of the solutions to (1.2) and some simple dy-
namical properties. In Subsection 2.2, we consider the stability of the trivial and semi-trivial steady
state solutions, and we show that the dynamics is exactly bistable for a certain parameter range. The
question of overexploitation or not is answered in Subsection 2.3. We prove that when the prey Allee
effect threshold value b is small (0 < b < 1/2) and the protection zone Ω0 is large (so the principal
eigenvalue of −� on Ω0 under Dirichlet boundary condition is small), then the overexploitation can-
not happen. That is, the prey population will persist, at least inside the protection zone Ω0, if the
initial prey population is large enough. This demonstrates the effectiveness of the protection zone,
even if the growth of the prey species is of Allee effect type. And it also shows that the protection
zone needs to be set large enough. On the other hand, we show that when b is large (1/2 < b < 1)
or the protection zone Ω0 is small, then the overexploitation still occurs (just like the case proved
in [52], for which the protection zone Ω0 is empty). In Section 3, we prove the nonexistence and exis-
tence of positive steady state solutions of (1.2) for different parameter ranges. In Section 4, we discuss
more about the biological meaning of the model, compare it with previous models with protection
zone, and also give some open questions about the model.

In this paper, the eigenvalues of linear Schrödinger type operators with various boundary condi-
tions, domains and potential functions will play an important role in our analysis. Following [20] we
denote by λD

1 (φ, O ) and λN
1 (φ, O ) the principal eigenvalue of −� + φ over the bounded domain O ,



JID:YJDEQ AID:7303 /FLA [m1G; v 1.113; Prn:24/09/2013; 12:47] P.4 (1-22)

4 R. Cui et al. / J. Differential Equations ••• (••••) •••–•••
with Dirichlet and Neumann boundary conditions respectively. We usually omit O in the notation if
the region O = Ω . If the potential function φ = 0, we simply denote them by λD

1 (O ) and λN
1 (O ). We

recall some well-known properties of λD
1 (φ, O ) and λN

1 (φ, O ):

(a) λD
1 (φ, O ) > λN

1 (φ, O );

(b) λB
1 (φ1, O ) > λB

1 (φ2, O ) if φ1 � φ2 and φ1 �≡ φ2, for B = D, N;

(c) λD
1 (φ, O 1) � λD

1 (φ, O 2) if O 1 ⊂ O 2.

For the simplicity of the notations, we denote

f (u) = u(1 − u)

(
u

b
− 1

)
, p(u) = u

a + u
. (1.3)

It is easy to see that

p′(u) = a

(a + u)2
, p′′(u) = − 2a

(a + u)3
.

Thus the equations in (1.2) can be rewritten by

⎧⎪⎨
⎪⎩

∂u

∂t
= d1�u + f (u) − m(x)p(u)v, x ∈ Ω, t > 0,

∂v

∂t
= d2�v − dv + c(x)p(u)v, x ∈ Ω∗, t > 0.

(1.4)

2. Dynamical behavior

2.1. Global existence and boundedness

In this subsection, we prove the global existence of solutions to the dynamical equation (1.2) and
establish some a priori bounds of the solutions. For the convenience of notation, we write

m∗ = max
x∈Ω∗

m(x), m∗ = min
x∈Ω∗

m(x),

c∗ = max
x∈Ω∗

c(x), c∗ = min
x∈Ω∗

c(x). (2.1)

The following global existence result extends Theorem 2.1 in [52], in which the special case of
m(x) = c(x) = constant and Ω∗ = Ω was proved.

Theorem 2.1. Suppose that the parameters d,a,d1,d2 > 0, 0 < b < 1, Ω ⊂ R
n is bounded domain with

smooth boundary, and Ω∗ is a subdomain of Ω with smooth boundary. Assume that m(x) and c(x) satisfy

m, c ∈ C(Ω∗), and m(x) � c(x) > 0, for x ∈ Ω∗. (2.2)

(a) If u0(x) � 0 for x ∈ Ω , v0(x) � 0 for x ∈ Ω∗ , then (1.2) has a unique solution (u(x, t), v(x, t)) such that
u(x, t) > 0 for (x, t) ∈ Ω × (0,∞), and v(x, t) > 0 for (x, t) ∈ Ω∗ × (0,∞);

(b) If u0(x) � b and (u0, v0) �≡ (b,0), then limt→∞ u(x, t) = 0 uniformly for x ∈ Ω and limt→∞ v(x, t) = 0
uniformly for x ∈ Ω∗;
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(c) If d > d# ≡ c∗
a+1 , then (u(x, t), v(x, t)) tends to (uS (x),0) uniformly as t → ∞, where uS(x) is a non-

negative solution of

d1�u + u(1 − u)
(
b−1u − 1

) = 0, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω; (2.3)

(d) For any solution (u(x, t), v(x, t)) of (1.2),

lim sup
t→∞

u(x, t) � 1, lim sup
t→∞

∫
Ω∗

v(x, t)dx �
(

1 + (1 − b)2

4db

)
|Ω|.

Moreover, for any d2∗ > 0, there exists a positive constant C > 0 independent of u0 , v0 , d1 but only
depends on d2∗ , such that for all d2 � d2∗ ,

lim sup
t→∞

v(x, t) � C,

for any x ∈ Ω∗ .

Proof. (i) The local existence of the solution to (1.2) follows from standard theory. To consider the
global existence, we observe that u(x, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
� d1�u + u(1 − u)

(
u

b
− 1

)
, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

then from comparison principle of the parabolic equations, it is easy to verify that u(x, t) � u(t),
where u(t) is the (spatial homogeneous) solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= d1�u + u(1 − u)

(
u

b
− 1

)
, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u∗, x ∈ Ω,

(2.4)

where u∗ = supx∈Ω u(x,0). This implies that limt→∞ sup u(x, t) � 1, and for any ε > 0, there exists
T0 > 0 such that u(x, t) � 1 + ε for (x, t) ∈ Ω × [T0,∞). Hence when t > T0, v(x, t) satisfies

⎧⎪⎨
⎪⎩

∂v

∂t
� d2�v − dv + c∗(1 + ε)

1 + a + ε
v, x ∈ Ω∗, t > T0,

∂v

∂n
= 0, x ∈ ∂Ω∗, t > T0,

then v(x, t) � v∗ exp[(−d + c∗(1+ε)
1+a+ε )t] for (x, t) ∈ Ω∗ × [T0,∞), where v∗ = supx∈Ω∗ v(x, T0). Moreover

by the strong maximum principle, we see that u(x, t) > 0 for (x, t) ∈ Ω × (0,∞) and v(x, t) > 0 for
(x, t) ∈ Ω∗ × (0,∞). This proves the global existence of the solution to (1.2) and part (a). The proof of
parts (b) and (c) are similar to the proof of Theorem 2.1 in [52], thus it is omitted here.
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(ii) Now we prove part (d). Let U (t) = ∫
Ω

u(x, t)dx, V (t) = ∫
Ω∗ v(x, t)dx. Then

dU

dt
=

∫
Ω

ut dx =
∫
Ω

d1�u dx +
∫
Ω

[
u(1 − u)

(
u

b
− 1

)
− m(x)

uv

a + u

]
dx, (2.5)

dV

dt
=

∫
Ω∗

vt dx =
∫
Ω∗

vt dx =
∫
Ω∗

d2�v dx − dV +
∫
Ω∗

c(x)
uv

a + u
dx. (2.6)

Adding (2.5) and (2.6) and using the Neumann boundary condition, we obtain that

(U + V )t = −dV +
∫
Ω

u(1 − u)

(
u

b
− 1

)
dx +

∫
Ω∗

[
c(x) − m(x)

] uv

a + u
dx

= −d(U + V ) + dU +
∫
Ω

u(1 − u)

(
u

b
− 1

)
dx +

∫
Ω∗

[
c(x) − m(x)

] uv

a + u
dx

� −d(U + V ) + dU +
∫
Ω

u(1 − u)

(
u

b
− 1

)
dx

� −d(U + V ) +
(

d + (1 − b)2

4b

)
U .

By using limt→∞ sup u(x, t) � 1 proved above, we have limt→∞ sup U (t) � |Ω|. Thus for a small ε > 0,
there exists T1 > 0 such that

(U + V )t � −d(U + V ) +
(

d + (1 − b)2

4b

)
(1 + ε)|Ω|, t > T1. (2.7)

An integration of (2.7) leads to, for t > T2 > T1, that

∫
Ω∗

v(x, t)dx = V (t) < (U + V )(t) �
(

1 + (1 − b)2

4bd

)
(1 + ε)|Ω| + ε, t > T2, (2.8)

which implies that lim supt→∞
∫
Ω∗ v(x, t)dx � (1 + (1−b)2

4bd )|Ω|.
From (2.8), we know that any solution v(x, t) satisfies an L1 a priori estimate K1 = (1 + (1−b)2

4bd )|Ω|
for large t > 0, which only depends on b, d and |Ω|. Furthermore we can use the L1 bound to
obtain an L∞ bound K2 for large t > 0 from Theorem 3.1 in [6], where K2 depends on K1 and v0.
By the same proof of Lemma 4.7 in [6] (and also use the notation in that proof), when d2 > d2∗ ,
we can choose ε so that 2d2∗ < (2 − d + m∗

a+1 )ε < 2d2, then C1 depends on a, m∗ , d, Ω and d2∗ .
Therefore the L∞ bound B∗ only depends on C1 and K1. Therefore there exists C > 0 such that
lim supt→∞ v(x, t) � C with C independent of u0, v0, d1, d2 but only on a lower bound of d2. �

Part (b) of Theorem 2.1 ensures the local asymptotical stability of the trivial steady state solution
(u, v) = (0,0) for any parameter values (which can also be proved through linear stability analysis,
see Subsection 2.2), and this is a character of predator–prey system with strong Allee effect in the
prey growth. Part (c) shows that if the mortality rate of the predator is too large, then the predator is
destined to extinct while the fate of the prey population depends on the initial prey population, see
Subsection 2.2 for a clearer description when the domain Ω is convex.
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2.2. Stability of semi-trivial steady state solutions

The steady state solutions of (1.2) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1�u = u(1 − u)

(
u

b
− 1

)
− m(x)uv

a + u
, x ∈ Ω,

−d2�v = −dv + c(x)uv

a + u
, x ∈ Ω∗,

∂u

∂n
= 0, x ∈ ∂Ω,

∂v

∂n
= 0, x ∈ ∂Ω∗.

(2.9)

The steady state equation (2.9) has three non-negative constant solutions: the trivial solution (0,0);
two semi-trivial solutions (1,0) and (b,0). On the other hand, (2.9) may have non-constant semi-
trivial solutions in form (uS (x),0), where uS (x) is a positive non-constant solution of (2.3). The
existence of such uS (x) has been discussed in Subsection 3.2 of [52]. The local stability of these
trivial and semi-trivial solutions can be determined through linear stability as follows.

Proposition 2.2. Suppose that the parameters d,a,d1,d2 > 0, 0 < b < 1, and m(x) and c(x) satisfy (2.2).
Then

(a) (0,0) is locally asymptotically stable;
(b) (b,0) is unstable;
(c) (1,0) is locally asymptotically stable when d > d∗ and it is unstable for d � d∗ , where

d∗ = −d2λ
N
1

(
− c(x)

(a + 1)d2
,Ω∗

)
> 0; (2.10)

(d) A non-constant solution (uS (x),0) is unstable if the domain Ω is convex.

Proof. The proof of parts (a) and (b) is basically the same as the one in the proof of Theorem 3.1
in [52], so we omit them. For part (c), the linearized problem of (2.9) at (1,0) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1�h +
(

1 − 1

b

)
h − m(x)

a + 1
k + μh = 0, x ∈ Ω,

d2�k +
(

c(x)

a + 1
− d

)
k + μk = 0, x ∈ Ω∗,

∂h

∂n
= 0, x ∈ ∂Ω,

∂k

∂n
= 0, x ∈ ∂Ω∗,

which has a sequence of real eigenvalues μ1 < μ2 < · · · < μn � · · · → ∞ as μ1 is determined by the
equation of k only. The solution (1,0) is stable when μ1 > 0, that is

d

d2
+ λN

1

(
− c(x)

(a + 1)d2
,Ω∗

)
= λN

1

(
d

d2
− c(x)

(a + 1)d2
,Ω∗

)
> 0.

For part (d), we recall the well-known results in [7,36] that if Ω is convex, and uS (x) is a non-
constant solution of (2.3), then it is an unstable solution of (2.3), hence (uS (x),0) is also an unstable
solution of (2.9). �
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We observe that d∗ defined in (2.10) satisfies

d∗ = −d2λ
N
1

(
− c(x)

(a + 1)d2
,Ω∗

)
� −d2λ

N
1

(
− c∗

(a + 1)d2
,Ω∗

)
= c∗

a + 1
= d�,

which is the threshold value for d in Theorem 2.1 part (c). We shall show in Section 3 that d∗ is in-
deed a bifurcation point where non-constant positive solutions of (2.9) bifurcate from the semi-trivial
solutions. For d > d� , a sharper result on the asymptotical dynamical behavior of (1.2) can be obtained
now by using Theorem 2.1 part (c), Proposition 2.2 part (c), and some results in monotone dynamical
systems and asymptotically autonomous dynamical systems.

Corollary 2.3. Suppose that the parameters a,d1,d2 > 0, 0 < b < 1, d > d� , and m(x) and c(x) satisfy (2.2).
In addition, assume that the domain Ω is convex, then there exists a C1 injectively immersed manifold of
codimension-one M = {(u0, v0)} in the space of non-negative initial conditions, which separates the basins of
attraction of the two locally asymptotically stable steady state solutions (0,0) and (1,0). That is, if a solution
orbit starts from an initial value (u0, v0) not on the codimension-one manifold M, then it tends to either
(0,0) or (1,0) as t → ∞; and if a solution orbit starts from M, then it approaches (b,0) or a non-constant
semi-trivial solution (uS (x),0) of (2.3).

Proof. From Theorem 2.1 part (c), any solution orbit with non-negative initial condition converges to
a steady state solution as t → ∞. This implies that v(x, t) → 0 uniformly for x ∈ Ω as t → ∞. Hence
we can follow the same setup and approach in [26] to show that the semiflow generated by the v
equation in (1.2) is asymptotically autonomous [37] with the limit autonomous semiflow

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= d1�u + u(1 − u)

(
u

b
− 1

)
, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x) � 0, x ∈ Ω.

(2.11)

Since Ω is convex, then the results in [7,36] implies that the only stable steady state solutions
of (2.11) are u = 0 and u = 1. Now by applying the saddle-point behavior result in [25], we obtain
the desired result of the existence of a separatrix manifold M . �
2.3. Overexploitation

The overexploitation phenomenon occurs often in a system with Allee effect, as shown in, for
example, [51,52]. It can be described as, for any given initial prey population, a large enough initial
predator population will always lead to the extinction of both species. In [52], it was shown that
this is true for (1.2) without a protection zone. Here we consider this phenomenon for (1.2) with
a nonempty protection zone Ω0.

For that purpose, we first recall the following result about the auxiliary scalar equation with
a Dirichlet boundary condition on Ω0:

{
d1�u + u(1 − u)

(
b−1u − 1

) = 0, x ∈ Ω0,

u = 0, x ∈ ∂Ω0.
(2.12)

Proposition 2.4. Suppose that d1 > 0 and 0 < b < 1, and Ω0 is a bounded domain with a smooth boundary
of Rn for n � 1.

(a) If 1/2 � b < 1, then for any d1 > 0, the only non-negative solution of (2.12) is u = 0.
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(b) If 0 < b < 1/2, then the only non-negative solution of (2.12) is u = 0 if d1 >
(1−b)2

4bλD
1 (Ω0)

, where λD
1 (Ω0) is

the principal eigenvalue of −� in H1
0(Ω0), and there exists a constant D0 = D0(Ω0) > 0 such that for

0 < d1 < D0 , (2.12) has at least two positive solutions. Moreover, for 0 < d1 < D0 , (2.12) has a maximal
solution Ũ (x) such that for any solution u(x) of (2.12), Ũ (x) > u(x) for x ∈ Ω0 .

(c) If 0 < b < 1/2, and Ω0 is a ball of Rn for n � 1, then there exists D0 > 0 such that (2.12) has exactly
two positive solutions for 0 < d1 < D0 , has exactly one positive solution for d1 = D0 , and has no positive
solution for d1 > D0 .

We omit the proof of Proposition 2.4, as all conclusions have been proved previously. Part (a) was
proved in [11]; the existence result in part (b) can be proved via variational methods, see [33] for
a more general result, [58, Lemma 3.3] for a similar problem and the existence of a maximal solution,
and the nonexistence result in part (b) can be inferred from [41, Lemma 6.17]; and finally the exact
multiplicity result for the ball domain in part (c) can be found in [40, Theorem 1.1]. Moreover, for the
one-dimensional domain Ω = (0, L), it was estimated in [27] that

(3 − b)L2

48b
< D0 <

(1 + b)L2

2bπ2
. (2.13)

From Proposition 2.4, we immediately have the following negative answer to the question of over-
exploitation if (2.12) has positive solutions.

Theorem 2.5. Suppose that the parameters d,a,d2 > 0, 0 < b < 1/2 are fixed, and m(x) and c(x) satisfy (2.2).
If the subdomain Ω0 and d1 satisfy 0 < d1 < D0(Ω0), which is defined in Proposition 2.4, and we define

u1(x) =
{

Ũ (x), x ∈ Ω0,

0, x ∈ Ω∗,

where Ũ (x) is the maximal positive solution of (2.12), then for any initial predator population v0(x) � 0, when
the initial prey population u0(x) � u1(x), we have u(x, t) � u1(x) for all t > 0 and x ∈ Ω .

Proof. We assume that u0(x) � u1(x) for x ∈ Ω . Let w(x, t) be the solution of the Dirichlet boundary
value problem

⎧⎪⎪⎨
⎪⎪⎩

∂ w

∂t
= d1�w + w(1 − w)

(
w

b
− 1

)
, x ∈ Ω0, t > 0,

w(x, t) = 0, x ∈ ∂Ω0, t > 0,

w(x,0) = u0(x) � 0, x ∈ Ω0.

(2.14)

Then w(x, t) exists globally for all t > 0. Since u0(x) � Ũ (x) for x ∈ Ω0, then Ũ (x) is a subsolution
of (2.14) thus w(x, t) � Ũ (x) for all t > 0. On the other hand, u(x, t) satisfies the equation in (2.14),
u(x, t) > 0 for x ∈ ∂Ω0, and u(x,0) = u0(x). Thus u(x, t) is a supersolution of (2.14). Therefore u(x, t) �
w(x, t) � Ũ (x) for all t > 0 and x ∈ Ω0, and consequently u(x, t) � u1(x) for all t > 0 and x ∈ Ω . �

The key of Theorem 2.5 is the existence of a positive steady state solution to the Dirichlet boundary
value problem (2.14), which serves as a “road block” in the path of extinction of preys, since the
preys can survive in the protection zone Ω0. In this case, no matter how large the initial predator
population is, the prey population will not be wiped out. Here we only consider the case when Ω0 is
in the interior of Ω . When Ω0 is allowed to share boundary with Ω , then it is possible that the size
of the critical Ω0 can be smaller. Indeed for the n = 1 case, if a positive solution u(x) exists for the
Dirichlet boundary value problem
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d1u′′ + u(1 − u)
(
b−1u − 1

) = 0, x ∈ (0, L), u(0) = u(L) = 0, (2.15)

then u(x) is symmetric with respect to x = L/2, and u(x) is also a positive solution of the mixed
boundary value problem

d1u′′ + u(1 − u)
(
b−1u − 1

) = 0, x ∈ (0, L/2), u(0) = u′(L/2) = 0. (2.16)

Then a boundary protection zone Ω0 = (0, L/2) for Ω = (−L1, L/2) (where L1 > L/2) is equally effi-
cient as an interior protection zone with length L. How this can be extended to higher dimensional
space is not clear.

On the other hand, if there is no positive steady state solutions to the Dirichlet boundary value
problem (2.14), such a road block does not exist, and the prey population becomes extinct if there is
a large initial predator population. The proof of this fact is more involved than the case when there is
no protection zone (see [52]). First we prove the following elliptic estimate which will be used later.

Lemma 2.6. Suppose that β , A are positive constants, Ω is a bounded smooth domain in R
n (n � 1), and Ω1 is

a smooth subdomain of Ω such that Ω1 is contained in the interior of Ω . Then for any ε > 0, there exist β0 > 0
and K > 0 such that when β > β0 , the unique positive solution u(x) of the modified Helmholtz’s equation

⎧⎪⎨
⎪⎩

�u − β2u = 0, x ∈ Ω/Ω1,
∂u

∂n
= 0, x ∈ ∂Ω,

u = A, x ∈ ∂Ω1,

(2.17)

satisfies

0 < u(x) < ε, x ∈ Ω/Ω1, and d(x, ∂Ω1) � Kβ−1,

0 < u(x) < (A + ε)e−βd(x,∂Ω1), x ∈ Ω/Ω1, and d(x, ∂Ω1) < Kβ−1, (2.18)

where d(x, ∂Ω1) is the distance from x to ∂Ω1 .

Proof. The existence of a solution u(x) of (2.17) for any β > 0 is well known by using the upper–lower
solution method with the lower solution u = 0 and the upper solution u = A. The solution u(x) is
unique and satisfies 0 < u(x) < A for x ∈ Ω/Ω1 from the maximum principle.

We follow the method in [9] to prove the estimates in (2.18). Define w(x) = A − u(x), then w(x)
satisfies ⎧⎪⎨

⎪⎩
�w + β2(A − w) = 0, x ∈ Ω/Ω1,
∂ w

∂n
= 0, x ∈ ∂Ω,

w = 0, x ∈ ∂Ω1.

(2.19)

Fix ε > 0, then by using the same proof as in the Step 1 of the proof of [9, Lemma 2], one can
show that there exist K > 0 and β1 > 0 such that, for β > β1, we have w(x) � A − ε for x sat-
isfying d(x, ∂Ω) � Kβ−1 and d(x, ∂Ω1) � Kβ−1. Let Ω2,β = {x ∈ Ω/Ω1: d(x, ∂Ω) � Kβ−1}. Then
minx∈Ω2,β

w(x) is achieved for x0 satisfying d(x0, ∂Ω) = Kβ−1. Hence w(x) � A − ε also holds for

x ∈ Ω2,β , and consequently w(x) � A − ε for all x satisfying d(x, ∂Ω1) � Kβ−1. This proves that
0 < u(x) < ε for x ∈ Ω/Ω1 and d(x, ∂Ω1) � Kβ−1.

For x ∈ Ω/Ω1 and d(x, ∂Ω1) � Kβ−1, since the boundary of Ω1 is smooth, then the blowing up
argument in the proof of [9, Lemma 2] can be used to show that maxx∈Ω3,β

|w(x)−z(βd(x, ∂Ω1))| → 0

as β → ∞ where Ω3,β = {x ∈ Ω/Ω1: d(x, ∂Ω1) � Kβ−1} and z(s) is the unique positive solution of
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z′′ + A − z = 0, z(0) = 0, lim
s→∞ z(s) = A. (2.20)

It is easy to see that z(s) = A − Ae−s . This implies that maxx∈Ω3,β
|u(x)− Ae−βd(x,∂Ω1)| → 0 as β → ∞.

In particular, for ε > 0, one can obtain the second estimate in (2.18) for β > β2 for some β2 > 0.
Choosing β0 = max{β1, β2}, we obtain the estimates in (2.18). �

Now we prove that the overexploitation phenomenon still exists when the Dirichlet boundary
value problem (2.12) has no positive solutions.

Theorem 2.7. Suppose that the parameters d,a,d2 > 0 and m(x), c(x) satisfy (2.2); the parameters b and d1
satisfy either (i) 1/2 < b < 1 and d1 > 0, or (ii) 0 < b < 1/2 and d1 > D0(Ω0) where D0(Ω0) is defined as
in Proposition 2.4. In addition, we assume that Ω0 is a smooth subdomain of Ω such that Ω0 is contained in
the interior of Ω , and Ω is also smooth. Then for a given initial value of the prey population u0(x) � 0, there
exists a constant v∗

0 which depends on parameters and u0(x), such that when the initial predator population
v0(x) � v∗

0 , then the corresponding solution (u(x, t), v(x, t)) of (1.2) converges to (0,0) uniformly for x ∈ Ω

as t → ∞.

Proof. We prove the theorem in several steps.

Step 1. Fix ε > 0. For any u0 � 0, v0 � v∗
0 > 0 and any T2 > 0, there exists T1 > 0 such that

u(x, t) � 1 + ε, (x, t) ∈ Ω × [T1,∞), v(x, t) � v∗
0e−d(T1+T2), (x, t) ∈ Ω0 × [0, T1 + T2].

From Theorem 2.1 part (d), for a fixed ε > 0, there exists T1 > 0 such that u(x, t) � 1 + ε for t > T1
and x ∈ Ω . Let v1(x, t) be the solution to

⎧⎪⎨
⎪⎩

vt = d2�v − dv, x ∈ Ω∗, t > 0,
∂v

∂n
= 0, x ∈ ∂Ω∗, t > 0,

v(x,0) = v0(x), x ∈ Ω∗.

Then v1(x, t) is a lower solution of the equation of v in (1.1), so v(x, t) � v1(x, t) for any t > 0 from
the comparison principle. Moreover, if v0(x) � v∗

0, then v(x, t) � v∗
0e−d(T1+T2) when 0 � t � T1 + T2

for some large T2 > 0 (T2 will be chosen later).

Since b−1(1 − u)(u − b) � (1−b)2

4b ≡ M1 for all u � 0, and m(x)
a+u(x,t) � m∗

a+1+ε for t > T1, then u(x, t)
satisfies that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut � d1�u +
[

M1 − m∗
a + 1 + ε

v∗
0e−d(T1+T2)

]
u, x ∈ Ω∗, T1 < t < T1 + T2,

ut � d1�u + u(1 − u)
(
b−1u − 1

)
, x ∈ Ω0, T1 < t < T1 + T2,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, T1) � 1 + ε, x ∈ Ω.

In the following we choose v∗
0 so that

d1β
2 ≡ m∗

a + 1 + ε
v∗

0e−d(T1+T2) − M1 > 0. (2.21)
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Step 2. We estimate the decay of u(x, t) in Ω∗ for t ∈ [T1, T1 + T2]. More precisely we prove that for
the ε > 0 fixed in Step 1, there exists T3 > 0 such that

u(x, t) � max
{
ε, (1 + 2ε)e−βd(x,∂Ω0)

}
, (x, t) ∈ Ω∗ × [T1 + T3, T1 + T2], (2.22)

where β is given by (2.21).
Let u2(x, t) be the solution to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt = d1�w − d1β
2 w, x ∈ Ω∗, t > T1,

∂ w

∂n
= 0, x ∈ ∂Ω, t > T1,

w(x, t) = 1 + ε, x ∈ ∂Ω0, t > T1,

w(x, T1) = u(x, T1), x ∈ Ω∗.

(2.23)

Then u(x, t) is a lower solution of (2.23) for t ∈ [T1, T1 + T2], and we have u(x, t) � u2(x, t) for
t ∈ [T1, T1 + T2] and x ∈ Ω∗ . For the linear parabolic equation (2.23), there is a unique steady state
solution u3(x) which is globally asymptotically stable. Thus u2(x, t) → u3(x) uniformly for x ∈ Ω∗ as
t → ∞. In particular there exists 0 < T3 < T2 such that when T1 + T3 � t � T1 + T2, for any x ∈ Ω∗ ,
u2(x, t) � (1 + ε)u3(x). Therefore by using the result in Lemma 2.6, for T1 + T3 � t � T1 + T2 and
x ∈ Ω∗ , we have

u(x, t) � u2(x, t) � 2u3(x) � max
{
ε, (1 + 2ε)e−βd(x,∂Ω0)

}
. (2.24)

We note that T3 depends on the choice of β . Indeed let μ1 be the principal eigenvalue of

⎧⎪⎨
⎪⎩

d1�φ − d1β
2φ = μφ, x ∈ Ω∗,

∂φ

∂n
= 0, x ∈ ∂Ω,

φ(x) = 0, x ∈ ∂Ω0.

(2.25)

Then μ1 < −d1β
2, and u2(x, t) � u3(x)+ eμ1t C � u3(x)+ e−d1β2t C for a bounded C > 0. Hence T3 can

be chosen that T3 = O (d1β
−2).

Step 3. We estimate the decay of u(x, t) in a neighborhood of Ω0 for t ∈ [T1 + T3, T1 + T2]. More
precisely we prove that there exist T4 > 0, δ > 0 and β > 0, such that

u(x, t) <
b

2
, (x, t) ∈ Ωδ × [T1 + T3 + T4, T1 + T2], (2.26)

where Ωδ = {x ∈ Ω: d(x,Ω0) < δ}.
For δ > 0, it is easy to see that Ωδ ⊃ Ω0 and limδ→0 Ωδ = Ω0. Let u4(x, t) be the solution to

⎧⎨
⎩

wt = d1�w + b−1 w(1 − w)(w − b), x ∈ Ωδ, t > T1 + T3,

w(x, t) = η, x ∈ ∂Ωδ, t > T1 + T3,

w(x, T1 + T3) = u(x, T1 + T3), x ∈ Ωδ,

(2.27)

where

η = η(δ,β, ε) = max
{
ε, (1 + 2ε)e−βδ

}
> 0.
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Then from the comparison principle and result in Step 2, u(x, t) � u4(x, t) for t ∈ [T1 + T3, T1 + T2]
and x ∈ Ωδ . From the assumptions and Proposition 2.4, (2.12) has no positive steady state solutions
for Ω0, then when δ is sufficiently small, the steady state problem (2.12) with domain Ωδ has no
positive steady state solutions. We choose such a small δ0 > 0. On the other hand, when ε → 0 and
β → ∞, η(δ0, β, ε) → 0. Thus for sufficiently small η > 0, by the implicit function theorem, the only
steady state solution of (2.27) is the one near u = 0 (for η = 0) which we denote by u5(η, x), and
0 < u5(η, x) < η. We choose a β0 > 0 and an ε0 so that the only steady state solution of (2.27) is
u5(x) = u5(η(δ0, β0, ε0), x) and η(δ0, β0, ε0) < b/4. It is well known that the system (2.27) is a gradi-
ent system, thus u4(x, t) must converge to the unique positive steady state solution u5(x) as t → ∞.
In particular there exists T4 > 0 such that u4(x, t) < 2u5(x) < 2η < b/2 for t ∈ [T1 + T3 + T4, T1 + T2].
We note that T4 only depends on d1, b, δ and η, so T4 can be determined by the choice of δ0, β0
and ε0. Now we have shown that for x ∈ Ωδ and t ∈ [T1 + T3 + T4, T1 + T2],

u(x, t) � u4(x, t) < 2u5(x) < 2η <
b

2
.

Step 4. There exists a β∗ > 0 such that for β = β∗ , the times T3 and T4 can be chosen as above, and
T2 = 2(T3 + T4) so that

u(x, t) � b

2
, (x, t) ∈ Ω × [T1 + T3 + T4, T1 + T2]. (2.28)

Let β0 and ε0 be chosen as in Step 3. Define

β1 = ln(4 + 4ε0) − ln(b)

δ0
,

where δ0 and ε0 are defined as in Step 3. Then when β > β1, from the result in Step 2, we have

u(x, t) < max
{
ε0, (1 + 2ε0)e−βd(x,∂Ω0)

}
< max

{
ε0, (1 + 2ε0)e−βδ0

}
<

b

2
, (x, t) ∈ Ω/Ωδ0 × [T1 + T3, T1 + T2]. (2.29)

We define β∗ = max{β0, β1}. Then T3 can be selected as in Step 2 and T3 only depends on β∗ .
Similarly T4 can be selected as in Step 3 and T4 only depends on η(δ0, β∗). We define T2 = 2(T3 +T4),
then from (2.26) and (2.29), we obtain the estimate in (2.28).

Step 5. Now we prove that for any given initial prey population u0(x) � 0, there exists v∗
0 > 0 such

that when v0(x) � v∗
0, (u(x, t), v(x, t)) starting from (u0, v0) tends to (0,0) as t → ∞.

We define

v∗
0 = (a + 1 + ε0)(d1β

2∗ + M1)ed(T1+T2)

m∗
, (2.30)

where β∗ and T2 are defined as in Step 4. Then as shown above, we have u(x, T1 + T2) � b/2 for
x ∈ Ω , and from Theorem 2.1 part (b), (u(x, t), v(x, t)) → (0,0) as t → ∞. �
3. Non-constant positive steady state solutions

In this section we consider the existence and nonexistence of non-constant positive steady state
solutions of (1.2), which satisfy (2.9).
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3.1. Nonexistence of non-constant positive solutions

First we show the nonexistence of non-constant solutions when the diffusion coefficients d1 and d2
are large. Note that such kind of estimates hold for much general systems, but our proof provides
a specific bound for the diffusion coefficients.

Theorem 3.1. Suppose that a,d > 0, 0 < b < 1, and c(x), m(x) satisfy (2.2), then there exists a D∗ defined by

D∗ = max

{
A

λN
1 (Ω)

,
B

λN
1 (Ω∗)

}
, (3.1)

where

A = 2(b + 1)

b
+ (2m∗ + c∗)(1 − b)2|Ω|

8abd|Ω∗| + m∗
2a|Ω| ,

B = c∗(1 − b)2|Ω|
8abd|Ω∗| + m∗

2a|Ω| + c∗

a + 1
− d, (3.2)

such that if min{d1,d2} > D∗ , then the only non-negative solutions to (2.9) are (0,0), (1,0) and (b,0).

Proof. Let (u, v) be a non-negative solution of (2.9), and denote u = |Ω|−1
∫
Ω

u(x)dx, v =
|Ω∗|−1

∫
Ω∗ v(x)dx. From the proof of Theorem 2.1, we know that

u(x) � 1, x ∈ Ω, and v � (1 − b)2|Ω|
4bd|Ω∗| .

Multiplying the equation of u in (2.9) by u − u, integrating over Ω and applying standard inequal-
ities, we get

d1

∫
Ω

∣∣∇(u − u)
∣∣2

dx =
∫
Ω

(u − u)

(
−u3

b
+ b + 1

b
u2 − u

)
dx −

∫
Ω

m(x)uv(u − u)

a + u
dx

≡ I1 + I2.

Estimating each Ii for i = 1,2, we get

I1 =
∫
Ω

(u − u)

(
−u3

b
− u3

b
+ b + 1

b
u2 − b + 1

b
u2 + u − u

)
dx

= −
∫
Ω

(u − u)2
(

u2 − uu + u2

b

)
dx + b + 1

b

∫
Ω

(u − u)2(u + u)dx −
∫
Ω

(u − u)2 dx

� 2(b + 1)

b

∫
Ω

(u − u)2 dx,

and
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I2 � −
∫
Ω∗

m∗uv(u − u)

a + u
dx −

∫
Ω∗

m∗v(u − u)2

a + u
dx � −

∫
Ω∗

m∗uv(u − u)

a + u
dx

=
∫
Ω∗

m∗u(u − u)

(a + u)(a + u)

[
v(u − u) + (v − v)(a + u)

]
dx

� m∗(1 − b)2|Ω|
4abd|Ω∗|

∫
Ω

(u − u)2 dx + m∗
a|Ω|

∫
Ω

|v − v||u − u|dx

� m∗(1 − b)2|Ω|
4abd|Ω∗|

∫
Ω

(u − u)2 dx + m∗
2a|Ω|

( ∫
Ω

(u − u)2 dx +
∫
Ω∗

|v − v|2 dx

)
.

Combining the estimates in I1 and I2 we have

d1

∫
Ω

∣∣∇(u − u)
∣∣2

dx

�
[

2(b + 1)

b
+ m∗(1 − b)2|Ω|

4abd|Ω∗| + m∗
2a|Ω|

]∫
Ω

(u − u)2 dx + m∗
2a|Ω|

∫
Ω∗

|v − v|2 dx.

Similarly we multiply the equation of v in (2.9) by v − v , integrating over Ω∗ , we have

d2

∫
Ω∗

∣∣∇(v − v)
∣∣2

dx = −
∫
Ω∗

dv(v − v)dx +
∫
Ω∗

c(x)uv(v − v)

a + u
dx

≡ J1 + J2.

Estimating each J i for i = 1,2, we get

J1 = −
∫
Ω∗

d(v − v)2 dx,

and

J2 �
∫
Ω∗

c∗u

a + u
(v − v)2 dx +

∫
Ω∗

c∗uv(v − v)

a + u
dx

�
∫
Ω∗

c∗

a + 1
(v − v)2 dx +

∫
Ω∗

ac∗v(v − v)(u − u)

(a + u)(a + u)
dx

�
∫
Ω∗

c∗

a + 1
(v − v)2 dx + c∗(1 − b)2|Ω|

4abd|Ω∗|
∫
Ω∗

|v − v||u − u|dx

�
∫
Ω

c∗

a + 1
(v − v)2 dx + c∗(1 − b)2|Ω|

8abd|Ω∗|
( ∫

Ω

|u − u|2 dx +
∫
Ω

|v − v|2 dx

)
.

∗ ∗ ∗
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Thus,

d2

∫
Ω∗

∣∣∇(v − v)
∣∣2

dx

�
∫
Ω∗

(
c∗

a + 1
− d

)
(v − v)2 dx + c∗(1 − b)2|Ω|

8abd|Ω∗|
( ∫

Ω∗

|u − u|2 dx +
∫
Ω∗

|v − v|2 dx

)
.

From the calculations above and the Poincaré inequality, we obtain that

d1

∫
Ω

∣∣∇(u − u)2
∣∣dx + d2

∫
Ω∗

∣∣∇(v − v)2
∣∣dx

� A

λN
1 (Ω)

(∫
Ω

∣∣∇(u − u)2
∣∣dx

)
+ B

λN
1 (Ω∗)

( ∫
Ω∗

∣∣∇(v − v)2
∣∣dx

)
,

where A and B are as defined in (3.2). This shows that if min{d1,d2} > D∗ (defined as in (3.1)), then

∇(u − u) = ∇(v − v) = 0,

i.e. u ≡ u, v ≡ v . �
We remark that when d is large, the constant B can be negative. In that case, there is no positive

steady state solutions for any d1,d2 > 0. But this indeed can be obtained from Theorem 2.1 part (c).

3.2. Bifurcation from semi-trivial solutions

In this subsection we prove the existence of non-constant steady state solutions of (1.2) using bi-
furcation theory. We fix a,d1,d2 > 0 and 0 < b < 1, and take d as the bifurcation parameter. From the
strong maximum principle, any non-negative solution (u, v) of (2.9) is either the trivial one (0,0),
or a semi-trivial solution in form (uS ,0), or a positive one. We will apply the local bifurcation the-
orem of Crandall and Rabinowitz [8] in order to obtain a branch of positive solutions of (2.9) which
bifurcates from the line of semi-trivial solutions:

Γu1 = {
(d,1,0): 0 < d < ∞}

, Γu2 = {
(d,b,0): 0 < d < ∞}

.

We now set up the abstract framework for our bifurcation analysis. For p > N , we define

X1 =
{

u ∈ W 2,p(Ω):
∂u

∂n
= 0 on ∂Ω

}
, Y1 = Lp(Ω),

and

X2 =
{

v ∈ W 2,p(Ω∗):
∂v

∂n
= 0 on ∂Ω∗

}
, Y2 = Lp(Ω∗).

We have the following result about the bifurcations from the line of semi-trivial solutions Γu1

and Γu2 .
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Theorem 3.2. Suppose that a,d1,d2 > 0, 0 < b < 1, and c(x), m(x) satisfy (2.2). Then

(i) d > 0 is a bifurcation point for the positive solutions of (2.9) from the semi-trivial branch Γu1 if and only

if d = d∗ = −d2λ
N
1 (− c(x)

(a+1)d2
,Ω∗). Moreover all positive solutions of (2.9) near (d∗,1,0) ∈R× X1 × X2

can be parameterized as

Γ1 = {(
d∗(s),1 + u1(s), v1(s)

)
: s ∈ [0, δ)

}
(3.3)

for some δ > 0, (d∗(s), u1(s), v1(s)) is a smooth function with respect to s and satisfies d∗(0) = d∗ ,
u1(0) = v1(0) = 0, u′

1(0) < 0, v ′
1(0) > 0, and d∗′(0) < 0, hence the local bifurcation at (d∗,1,0) is

backward.
(ii) d > 0 is a bifurcation point for the positive solutions of (2.9) from the semi-trivial branch Γu2 if and only

if d = d∗ = −d2λ
N
1 (− b

(a+b)d2
c(x),Ω∗) and (1 − b)/d1 �= λN

i (Ω) for i = 1,2, . . . . Moreover all positive
solutions of (2.9) near (d∗,b,0) ∈R× X1 × X2 can be parameterized as

Γ2 = {(
d∗(s),b + u2(s), v2(s)

)
: s ∈ [0, δ)

}
(3.4)

for some δ > 0, (d∗(s), u2(s), v2(s)) is a smooth function with respect to s and satisfies d∗(0) = d∗ ,
u2(0) = v2(0) = 0, and v ′

2(0) > 0.
(iii) Let S = {(d, u, v): d > 0, u > 0, v > 0, and (d, u, v) is a solution of (2.9)}. Then for i = 1,2, Γi belongs

a connected component Si of S. Then for S1 , either the projection of S1 to the d-axis Projd S1 ⊃ (0,d∗),
or S1 contains another (d̃, uS ,0) and uS is a positive solution of (2.3); for S2 , either the projection of S2
to the d-axis Projd S2 ⊃ (0,d∗), or S2 contains another (d̃, uS ,0) and uS is a positive solution of (2.3).

Proof. (i) We define a mapping F : R× X1 × X2 → Y1 × Y2 by

F (d, u, v) =
(

d1�u + f (u) − m(x)p(u)v
d2�v − dv + c(x)p(u)v

)
,

where f (u) and p(u) are defined in (1.3). The Fréchet derivatives of F at (d, u, v) are given by

F(u,v)(d, u, v)[φ,ψ] =
(

d1�φ + f ′(u)φ − m(x)p′(u)vφ − m(x)p(u)ψ

d2�ψ − dψ + c(x)p(u)ψ + c(x)p′(u)vφ

)
,

Fd(d, u, v) = (0,−v), Fd(u,v)(d, u, v)[φ,ψ] = (0,−ψ),

F(u,v)(u,v)(d, u, v)[φ,ψ]2 =
(

f ′′(u)φ2 − m(x)p′′(u)φ2 − 2m(x)p′(u)φψ

2c(x)p′(u)φψ + c(x)p′′(u)vφ2

)
.

By letting (u, v) = (1,0), we find that (d,1,0) is a degenerate solution of (2.9) if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d1�φ + b − 1

b
φ − m(x)

a + 1
ψ = 0, x ∈ Ω,

d2�ψ − dψ + c(x)

a + 1
ψ = 0, x ∈ Ω∗,

∂φ

∂n
= 0, x ∈ ∂Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω∗,

(3.5)

has a nontrivial solution (φ,ψ). The second equation of (3.5) has a solution ψ > 0 only when d = d∗ =
−d2λ

N
1 (− c(x)

(a+1)d2
,Ω∗), hence d = d∗ is the only possible bifurcation point along Γu1 where positive

solutions of (2.9) bifurcate.
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At (d, u, v) = (d∗,1,0), the kernel Ker F(u,v)(d∗,1,0) = span{(ϕ11,ϕ12)}, where (ϕ11,ϕ12) (with
ϕ12 > 0) satisfies (3.5) with d = d∗ . The uniqueness (up to a constant scale) of (ϕ11,ϕ12) follows from
the fact that d∗ is a principal eigenvalue. Since ϕ12 > 0, then

ϕ11 =
(

−d1� + 1 − b

b

)−1[
− m(x)

a + 1
ϕ12

]
< 0.

Here we understand that m(x) = 0 in Ω0. The range of F(u,v)(d∗,1,0) is given by

Range F(u,v)

(
d∗,1,0

) =
{
( f , g) ∈ Y1 × Y2:

∫
Ω∗

gϕ12 dx = 0

}
,

which is of codimension-one, and

Fd(u,v)

(
d∗,1,0

)[
(ϕ11,ϕ12)

] = (0,−ϕ12) /∈ Range F(u,v)

(
d∗,1,0

)
,

since
∫
Ω∗ ϕ2

12 dx > 0. Consequently we can apply the local bifurcation theorem in [8] to F at (d∗,1,0),
and we obtain that the set of positive solutions to (2.9) near (d∗,1,0) is a smooth curve

Γ1 = {(
d∗(s),1 + u1(s), v1(s)

)
: s ∈ [0, δ)

}
,

such that d∗(0) = d∗ , u1(s) = sϕ11 + o(|s|), v1(s) = sϕ12 + o(|s|). Moreover, d∗′(0) can be calculated as
in [20]:

d∗′
(0) = −〈l1, F(u,v)(u,v)(d∗,1,0)[ϕ11,ϕ12]2〉

2〈l1, Fd(u,v)(d∗,1,0)[ϕ11,ϕ12]〉 = a
∫
Ω∗ c(x)ϕ11ϕ

2
12 dx

(a + 1)2
∫
Ω∗ ϕ2

12 dx
< 0,

where l1 is the linear functional on Y1 × Y2 defined by 〈l1, [ f , g]〉 = ∫
Ω∗ gϕ12 dx. Therefore the bifur-

cation at (d∗,1,0) is backward so that the positive solution exists for d∗ − ε < d < d∗ .
(ii) The proof of this part is similar to the one in part (i), so we only point out the difference. The

linearized equation of F at (d,b,0) is

F(u,v)(d,b,0)[φ,ψ] =
(

d1�φ + (1 − b)φ − bm(x)
a+b ψ

d2�ψ − dψ + bc(x)
a+b ψ

)
.

Hence F(u,v)(d,b,0)[φ,ψ] = (0,0) has a solution with ψ > 0 if and only if d = d∗ =
−d2λ

N
1 (− bc(x)

(a+b)d2
,Ω∗). Similarly we have Ker F(u,v)(d∗,b,0) = span{(ϕ21,ϕ22)}, where ϕ22 > 0 and

ϕ21 = (−d1� − (1 − b)
)−1

[
−bm(x)

a + b
ϕ22

]
.

Here (−d1� − (1 − b))−1 exists since (1 − b)/d1 �= λN
i (Ω) for i = 1,2, . . . , and ϕ21 is not necessarily

positive. The arguments for the range and the transversality condition are similar to part (i). Then the
set of positive solutions to (2.9) near (d∗,b,0) is a smooth curve

Γ2 = {(
d∗(s),b + u2(s), v2(s)

)
: s ∈ [0, δ)

}
,

such that d∗(0) = d∗ , u2(s) = sϕ21 + o(|s|), v2(s) = sϕ22 + o(|s|), and
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d∗′(0) = −〈l2, F(u,v)(u,v)(d∗,b,0)[ϕ21,ϕ22]2〉
2〈l2, Fd(u,v)(d∗,b,0)[ϕ21,ϕ22]〉 = a

∫
Ω∗ c(x)ϕ21ϕ

2
22 dx

(a + b)2
∫
Ω∗ ϕ2

22 dx
,

where l2 is the linear functional on Y1 ×Y2 defined by 〈l2, [ f , g]〉 = ∫
Ω∗ gϕ22 dx. One cannot determine

the sign of d∗′(0) as ϕ21 is sign-changing.
(iii) The existence of the connected components S1 and S2 follows from the global bifurcation

theorem in [47] or [45], and it is known that i = 1,2, Si is either unbounded, or it connects to
another (d, ui,0) (where u1 = 1 and u2 = b), or Si connects to another point on the boundary of S .
From Theorem 2.1, Si must be bounded in S , hence the first alternative cannot happen. From part (i)
and part (ii), d = d∗ is the only bifurcation point for positive solutions to (2.9) on Γu1 , and d = d∗
is the only bifurcation point for positive solutions to (2.9) on Γu2 , hence the second option cannot
happen either. Therefore Si must contain another point (d̃, ũ, ṽ) on the boundary of S . If d̃ > 0,
then there exists x ∈ Ω such that ũ(x) = 0, or there exists x ∈ Ω∗ such that ṽ(x) = 0, which implies
that ũ ≡ 0 or ṽ ≡ 0 respectively. Hence (ũ, ṽ) is a trivial solution or a semi-trivial solution. From
Subsection 2.2, (ũ, ṽ) must be either (0,0) or (uS ,0). If (ũ, ṽ) = (0,0), then (d̃,0,0) is a bifurcation
point, but that is impossible since (0,0) is always locally asymptotically stable from Proposition 2.2.
Thus when d̃ > 0, Si contains another (d̃, uS ,0). When d̃ = 0, Projd S2 ⊃ (0, d̂i), where d̂1 = d∗ or
d̂2 = d∗ . This completes the proof. �

In Theorem 3.2, the bifurcation direction of Γ2 at (d∗,b,0) cannot be determined as the sign of ϕ21
cannot be determined. One can compare this to the case that Ω = Ω∗ , and m(x), c(x) are constants,
that is the case considered in [52]. In that case, the bifurcating solutions from (d∗,b,0) and (d∗,1,0)

are indeed constant steady state solutions, and hence the bifurcation at (d∗,b,0) is backward. Also
in that case S1 is indeed identical to S2 since the solution branch from (d∗,b,0) connects to the
one from (d∗,1,0). This is not known in the more general case for (1.2) with a protection zone, and
nonhomogeneous m(x), c(x).

4. Discussions

In this paper we propose a reaction–diffusion predator–prey model with a protection zone for the
prey, and the prey growth is of a strong Allee effect type. It is shown that the protection zone will
affect the overexploitation dynamics: when the protection zone is large and the Allee threshold b is
small, then the protection zone is effective and the prey population will persist. The concept of a large
protection zone is related to the minimal patch size in the classical ecological studies by Skellam [48].
In the large Allee threshold b case, the prey population is destined to extinction (and so is the preda-
tor population), no matter how large the protection zone is. But in the small Allee threshold b case,
such a critical size of the protection zone exists: above this size the population can survive, and below
this size the population becomes extinct. Note that here the survival is always conditional because of
Allee effect, so the initial prey population needs to be large for the survival. On the other hand, here
the critical size of the protection zone cannot be exactly calculated through a linearized eigenvalue
problem as in [48]. It is instead determined by a nonlinear eigenvalue problem at a saddle-node bifur-
cation point. However we showed in Subsection 2.3, this critical size is proportional to λD

1 (Ω0) (the
principal eigenvalue of Laplacian operator on the protection zone Ω0 with zero boundary condition)
which is the same as the one in the classical case [48].

The eigenvalue λD
1 (Ω0) also appears in the model of Du and Shi [18]. In the model of [18], both

predator and prey species have logistic growth, hence the trivial steady state solution (0,0) is never
a locally stable one. It was shown in [18], when the protection zone is large, and the predator growth
rate is high, a positive steady state solution is globally asymptotically stable. This steady state can be
characterized by prey being positive only in the protection zone, almost zero outside of the protection
zone; and the predator can also survive outside of the protection zone thanks to a logistic growth so
they have alternative food source. This scenario is still possible for our model, but such a positive
steady state solution is not globally stable, as the trivial solution (0,0) is always locally stable in our
model. We prove that the prey population will persist when the initial prey population is large and
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the protection zone is large, but it is not clear whether the predator will survive in this case or not.
It is an interesting question that under what conditions, the predator population will also persist.

When the protection zone is shown to be effective, it remains a question how to set up the best
protection zone to minimize the cost and maximize the benefit. Here we have shown that if the
protection zone Ω0 is set up in the interior, then we should minimize λD

1 (Ω0). It is known that the
eigenvalue λD

1 (O ) is monotonely decreasing in the sense that if O 1 ⊂ O 2, then λD
1 (O 1) � λD

1 (O 2).
Hence one can increase the size (area) of the protection zone to decrease the eigenvalue. For a given
area (or mathematically the Lebesgue measure of Ω0), it is known that a circular domain Ω0 will
have the smallest eigenvalue λD

1 (Ω0) [42]. Hence a recommendation for the people setting up the
protection zone is to have a circular region with as large as possible area as the protection zone.
In Subsection 2.3, we show that in the one-dimensional case, a half-size protection zone near the
boundary is as effective as a full-size protection zone in the center. This in general is also true for
higher dimensional cases. Hence one should take the protection zone near the boundary and use
some natural fence to enclose a protection zone, if such a natural fence is relevant to the problem.
Some more discussion of similar eigenvalue problems can also be found in [2,30,35].
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