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Abstract

We study the existence and branching patterns of wave trains in a two-dimensional lattice with linear and
nonlinear coupling between nearest particles and a nonlinear substrate potential. The wave train equation
of the corresponding discrete nonlinear equation is formulated as an advanced-delay differential equation
which is reduced by a Lyapunov–Schmidt reduction to a finite-dimensional bifurcation equation with certain
symmetries and an inherited Hamiltonian structure. By means of invariant theory and singularity theory, we
obtain the small amplitude solutions in the Hamiltonian system near equilibria in non-resonance and p : q
resonance, respectively. We show the impact of the direction θ of propagation and obtain the existence and
branching patterns of wave trains in a one-dimensional lattice by investigating the existence of traveling
waves of the original two-dimensional lattice in the direction θ of propagation satisfying tan θ is rational.
© 2014 Elsevier Inc. All rights reserved.

MSC: 34K15; 34K20

Keywords: Wave train; Bifurcation; Resonance; Singularity theory

1. Introduction

Lattice differential equations (LDEs) are infinite systems of ordinary differential equa-
tions (ODEs) indexed by points on a spatial lattice. Models involving LDEs can be found in
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many scientific disciplines, including physical applications [31], chemical reaction theory [28],
biology [5], material science [6], image processing and pattern recognition [10]. Apart from these
modeling considerations, LDEs also arise when one studies numerical methods to solve partial
differential equations and analyzes the effects of the employed spatial discretization [13].

Motivated by [19,33], in this paper we consider a two-dimensional planar model where rigid
molecules rotate in the plane of a square lattice. At site (n,m) the angle of rotation is un,m, and
each molecule interacts linearly with its first nearest neighbors and with a nonlinear substrate
potential. Namely, we consider the following infinite system of ODEs

ün,m = (�u)n,m − f (un,m), (n,m) ∈ Z
2 (1.1)

on the two-dimensional integer lattice Z
2, where � denotes the discrete Laplacian defined as

(�u)n,m = un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m,

and function f ∈ C1(R,R) is odd.
Since traveling waves provide a convenient starting point in the analysis of LDEs, they have

attracted considerable interest during the past two decades. Early papers on the subject by Chi,
Bell and Hassard [8] and by Keener [27] were followed by many others which developed the
basic theory; see, for example, [9,21,25,30,34,35]. The analogous partial differential equation
(PDE) of the 2D lattice (1.1) is

utt = �u − f (u) (1.2)

for u = u(t, x) and x = (x1, x2) ∈R
2, where � denotes the usual Laplacian �u = ux1x1 + ux2x2 .

One expects that traveling wave solutions will play an important role in understanding the dy-
namics of (1.1). However, we soon will see that the structure of such solutions for the lattice
system (1.1) is richer and much more complex than for the PDE (1.2). The study of traveling
wave solutions ϕ(x − vt) of (1.2) leads to the second order ODE

(
1 − v2)ϕ′′ = f (ϕ) (1.3)

for ϕ: R → R, with appropriate boundary conditions. On the other hand, for lattice equations
such as (1.1), one typically instead obtains a differential-difference equation.

As a result of the symmetry imposed by the lattice Z
2, the existence and speed of a traveling

wave of (1.1) will generally depend on the direction eiθ of motion, with a special role for those
directions for which the slope tan θ is rational. Let θ ∈ R be given; consider a solution of (1.1)
of the form

un,m(t) = x(n cos θ + m sin θ − vt) (1.4)

for some v ∈ R and x: R → R. We may consider solutions of the form (1.4) as traveling waves
on the lattice Z

2, in the direction eiθ . Substitution of (1.4) into (1.1), we find that the profile x

must satisfy the following scalar functional differential equation of mixed type (MFDE)

v2x′′(s) = x(s + cos θ) + x(s − cos θ) + x(s + sin θ)

+ x(s − sin θ) − 4x(s) − f
(
x(s)

)
(1.5)
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with s = n cos θ + m sin θ − vt . In particular, if the slope tan θ is rational, then (1.5) can be re-
garded as the profile equations of traveling waves of some 1D LDEs. More precisely, if tan θ = j

l

with (j, l) ∈ Z
2 and l �= 0, then (1.5) leads to the equation(

j2 + l2)v2y′′(s) = [
y(s + j) + y(s − j) − 2y(s)

]
+ [

y(s + l) + y(s − l) − 2y(s)
] − f

(
y(s)

)
, (1.6)

under the change of variables y(s) = x( s√
j2+l2

). It is easy to see that the solutions to (1.6) can

be viewed as the profile of the traveling wave of the following equation:(
j2 + l2)ün = (un+j + un−j − 2un) + (un+l + un−l − 2un) − f (un). (1.7)

Obviously, (1.7) is an example of 1D LDEs with the j th and lth nearest neighbor connections.
But for every irrational value of tan θ , one cannot expect this kind of reduction. In addition, if
v = 0, then (1.5) is in fact a functional-difference equation (not a differential-difference equa-
tion):

0 = x(s + cos θ) + x(s − cos θ) + x(s + sin θ) + x(s − sin θ) − 4x(s) − f
(
x(s)

)
. (1.8)

In this case, the solution is defined on the set S ⊂R given by

S = {
s = n cos θ + m sin θ, (n,m) ∈ Z

2}.
Obviously, the set S is either a discrete subset or a countable dense subset of R, depending on
whether the quantity tan θ is rational or irrational. Such functional-difference equations were
studied in [2–4,15]. Thus, in this paper, we only consider the case where v �= 0.

Although x is real-valued, the relevant state space associated with (1.5) is necessarily infinite
dimensional. The linearization of (1.5) around a wave profile x will in general be ill-posed [22],
which prevents the use of the semigroup techniques developed for retarded differential equa-
tions [11]. Usually, variation methods and topological methods are effective ways to investigate
the existence of traveling waves in the lattice systems. For instance, variation methods are used in
[1,17,29,32] for 1D discrete Fermi–Pasta–Ulam (FPU) type lattice equations, while topological
methods are applied in [26] to 1D damped discrete Frenkel–Kontorova (FK) lattice equations. In
particular, Fec̆kan and Rothos [15] studied the existence of uniform sliding states and periodic
traveling wave solutions for 2D discrete models by using topological and variational methods.
Cahn, Mallet-Paret and Van Vleck [7] investigated the phenomenon of propagation failure in a
2D discrete model with bistable nonlinearities by using some of the general machinery of dy-
namical systems, such as the Mel’nikov method. Hoffman and Mallet-Paret [23] studied pinning
phenomena for a 2D discrete model with bistable nonlinearities and tan θ being rational by con-
structing certain monotone solutions for the traveling wave equation.

In this paper, we are especially interested in wave train solutions to (1.1). Such solutions can
be written in the form (1.4) for some periodic function x and some wave speed v. Some exis-
tence results for wave trains can be found in [14,16,19], where, among others, wave trains of
small amplitude and long wave length are found by means of a center manifold reduction (see,
for example, [25]). Generally, particular types of solutions of a differential equation, such as a
fixed point, relative equilibrium, or a periodic orbit can be found by determining the zeros of an
appropriate map and applying the Lyapunov–Schmidt procedure (for more details about the ap-
plications of Lyapunov–Schmidt procedure to functional differential equations, we refer to [20]).
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The Lyapunov–Schmidt procedure leads to a reduced bifurcation equation which inherits the
symmetries of the map. In particular, since we are looking for periodic solution, the map has
a natural symmetry group S

1 representing phase shifts along the periodic solution, as well as
the Hamiltonian structure that is presented in the original problem. Following the ideas set out in
[18,19], in this paper, we employ a Lyapunov–Schmidt reduction to obtain a finite-dimensional
bifurcation equation with certain symmetries and an inherited Hamiltonian structure. A central
aim of this paper is to show how the Hamiltonian structure manifests itself in the reduced bifur-
cation equation. Thus, one soon sees that the structure of 2D lattice (1.1) is richer and much more
complex than the 1D FPU lattice [19]. Moreover, note that traveling waves of the 2D lattice (1.1)
with tan θ being rational can be reduced to those of the 1D lattice (1.7). Then our analysis can be
applied to many kinds of 1D lattices.

It is natural to study the impact of the direction θ on the existence and branching patterns
of wave trains in (1.5). In this paper, we give an implicit relation between the wave speed v, the
direction θ , the profile period T (or equivalently, the wave profile frequency ω = 2π

T
) and the first

derivative γ of the nonlinearity f at 0. This implicit relation, also plotted graphically in Figs. 1–3,
can be used to determine the existence of wave trains of (1.1). For each fixed direction θ∗, there
is always a positive parameter ω∗ and a nonzero v∗ in order to guaranteed the existence of wave
trains. Thus, the 2D lattice (1.1) may have monochromatic wave trains or bichromatic wave trains
with the wave speed v, the direction θ of propagation and the wave profile frequency ω in some
sufficiently small neighborhoods of θ∗, ω∗, and v∗, respectively. Therefore, the direction θ of
propagation does not change the existence but does make an important influence on the traveling
wave speed v and the profile frequency ω of monochromatic wave trains and bichromatic wave
trains of the 2D lattice (1.1).

The rest of this paper is organized as follows. In Section 2, we firstly show how to apply
the Lyapunov–Schmidt reduction to obtain a finite-dimensional bifurcation equation. Section 3
is devoted to the existence of the monochromatic wave trains in the 2D lattice (1.1). In Section 4
we distinguish two cases to investigate the existence of the bichromatic wave trains: In the case
where p > 1, we employ invariant theory [19] to show that at some branching points, a generic
nonlinearity selects exactly two-parameter families of mixed-mode wave trains; In the case where
p = 1, we use singularity theory [18] to solve the reduced equations and determine solutions of
small amplitude. In Section 5, the results represented in Sections 3 and 4 are then applied to the
1D lattice (1.6). Finally in Section 6, we consider the existence of some special wave trains and
some open problems.

2. Lyapunov–Schmidt reduction

Wave train solutions to the equations of motion (1.1) take the form

un,m(t) = x(n cos θ + m sin θ − vt), (2.1)

where x is a Sobolev differentiable function with period T > 0. The above wave train Ansatz
(2.1) in system (1.1) leads to MFDE (1.5). Let ω = 2π/T and x(s) = y(ωt), then MFDE (1.5)
can be rewritten as

(vω)2y′′(s) = y(s + ω cos θ) + y(s − ω cos θ) + y(s + ω sin θ) + y(s − ω sin θ)

− 4y(s) − f
(
y(s)

)
, (2.2)
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which can be viewed as an operator equation on a space of 2π -periodic functions. Throughout
this section, we assume that function f has a Taylor expansion at 0 of the form

f (x) = γ x + α

3!x
3 + β

5!x
5 + · · · ,

and γ �= 0.
Denote by Xl := {x ∈ W

l,2
loc (R,R) | x(s + 2π) = x(s)} the Hilbert space of l times Sobolev

differentiable functions. Thus, Eq. (2.2) can be viewed as an operator equation on the space Xl

and one may search for u = (u1, u2) ∈ Xl × Xl−1 which are zeros of the map F : Xl × Xl−1 ×
R

3 → Xl−1 × Xl−2 defined by

F1(u, θ,ω, v)(s) = −vωu′
1(s) + u2,

F2(u, θ,ω, v)(s) = −vωu′
2(s) + u1(s + ω cos θ) + u1(s − ω cos θ)

+ u1(s + ω sin θ) + u1(s − ω sin θ) − 4u1(s) − f
(
u1(s)

)
. (2.3)

In order to describe the geometric properties of operator F , the actions of the time shift oper-
ator Rα ∈ S

1 and the reversability operator κ ∈ Z2 on Xl−1 × Xl−2 are given as follows

(Rαu)(s) = u(s + α), (κu)(t) = (−u1(−s), u2(−s)
)
.

Then we have the following properties.

Proposition 2.1.

(i) The operator F is reversible S
1-equivariant. Namely,

F ◦ Rα = Rα ◦ F, F ◦ κ = −κ ◦ F.

(ii) F is Hamiltonian with respect to the weak symplectic form

Ω : Xl−1 × Xl−2 × Xl × Xl−1 →R

defined by

Ω
(
(u1, u2), (v1, v2)

) = 1

2π

2π∫
0

u2(s)v1(s) − v2(s)u1(s)ds,

and the Hamiltonian function H̃ : Xl × Xl−1 → R defined by

H̃ (u, θ,ω, v) = 1

2π

2π∫
0

−vωu1(s)
du2(s)

ds
− 1

2
u2

2(s)

+ (
u1(s + ω cos θ) + u1(s + ω sin θ)

)
u1(s) − 2u2(s) − f̃

(
u1(s)

)
ds,
1
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where f̃ (x) = ∫ x

0 f (s)ds. Namely, Ω(F(u, θ,ω, v), ·) = duH̃ (u, θ,ω, v). Furthermore,

H̃ is invariant under both Rα and κ .

The proof of Proposition 2.1 is exactly similar to that in [19] and hence is omitted.
We shall try to solve F(u, θ,ω, v) = 0 for u ∈ Xl × Xl−1 and parameters (θ,ω, v) ∈R

3.
First of all, it is easy to see that, for every fixed parameter-value (θ∗,ω∗, v∗) ∈ R3, F(u, θ∗,
ω∗, v∗) = 0 always has a trivial solution u = 0. Namely, F(0, θ∗,ω∗, v∗) = 0 for all values
of the parameters (θ∗,ω∗, v∗). If we want to prove the uniqueness of these solutions by the
implicit function theorem, we need to compute the derivative of F with respect to u evaluated at
(0, θ∗,ω∗, v∗), which is given by

(Lu)1(s) = −v∗ω∗u′
1(s) + u2(s),

(Lu)2(s) = −v∗ω∗u′
2(s) + u1

(
s + ω∗ cos θ∗) + u1

(
s − ω∗ cos θ∗)

+ u1
(
s + ω∗ sin θ∗) + u1

(
s − ω∗ sin θ∗) − (4 + γ )u1(s).

In fact, the function space Xl × Xl−1 is the direct sum over k ∈ Z �=0 of the finite-dimensional
subspaces

spanC
{
s 	→ (

eiks,0
)
, s 	→ (

0, eiks
)}

k∈Z�=0
.

It is easy to check that these subspaces are invariant for L.

Proposition 2.2. The kernel of L, denoted by K, is given by

K := spanC
{
s 	→ (

eiks, ikv∗ω∗eiks
) ∣∣ k ∈ Z �=0 and v∗2 = g

(
θ∗,ω∗, k

)}
,

where

g(θ,ω, k) = 4 + γ − 2 cos(kω sin θ) − 2 cos(kω cos θ)

(kω)2
.

Moreover, K is invariant under the action of Rα and κ .

Proof. With respect to a basis {s 	→ (eiks,0), s 	→ (0, eiks)} for these subspaces, the matrix rep-
resentation of the derivative L is

A =
[ −a 1

b −a

]
,

where a = kω∗iv∗ and b = 2 cos(kω∗ cos θ∗) + 2 cos(kω∗ sin θ∗) − (4 + γ ). Obviously,

trace(A) = −2a, det(A) = a2 − b.

From this moment on, we shall assume that v∗ �= 0 and k �= 0, that is, a �= 0. Then the above
eigenvalues can only be zero when det(A) = 0, which implies that the two eigenvalues are dif-
ferent and the kernel of the above matrix can be at most one-dimensional. It’s easy to check
that if
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v∗2 = g
(
θ∗,ω∗, k

)
, (2.4)

then s 	→ (eiks, kω∗iv∗eiks) is indeed in the kernel. The invariance of K under the action of Rα

and κ is obvious. �
Remark 2.1. The nonzero eigenvalues of L are bounded away from zero when v∗ �= 0. In addi-
tion, K is finite-dimensional and the variables {zk}, where k satisfies Eq. (2.4), act as coordinates
on it. Furthermore, (u1, u2) ∈ K is real-valued if and only if zk = z̄−k , then the actions of Rα and
κ are given by

Rα · zk = eikαzk, κ · zk = −z−k.

Our purpose is to find nontrivial solutions to nonlinear functional equation F(u, θ,ω, v) = 0
with u close to 0 in Xl × Xl−1 and (θ,ω, v) close to (θ∗,ω∗, v∗) in R3. We shall below apply
the Lyapunov–Schmidt reduction to obtain finite-dimensional bifurcation equations.

To begin with, define an inner product on (Xl−1 × Xl−2) by

〈u,v〉 = 1

2π

2π∫
0

u(s)vT (s)ds for u,v ∈ Xl−1 × Xl−2,

then the adjoint operator L∗ of L with respect to the inner product is given by

(
L∗u

)
1(s) = v∗ω∗u′

1(s) + u2
(
s + ω∗ cos θ∗) + u2

(
s − ω∗ cos θ∗)

+ u2
(
s + ω∗ sin θ∗) + u2

(
s − ω∗ sin θ∗) − (4 + γ )u2(s),(

L∗u
)

2(s) = v∗ω∗u′
2(s) + u1(s).

In fact, one can check that

〈u,Lv〉 = 〈
L∗u,v

〉
by integration by parts and a substitution of variables.

It follows that the kernel K∗ and formal image M∗ of L∗ are given by

K∗ := spanC
{
s 	→ (

kω∗iv∗eiks,−eiks
) ∣∣ k ∈ Z �=0 and v∗2 = g

(
θ∗,ω∗, k

)} ∩ (
Xl−1 × Xl−2)

and

M∗ := spanC
{
s 	→ (

eijs,0
)
, s 	→ (

0, eijs
)
, s 	→ (

kω∗iv∗eiks, eiks
) ∣∣ k, j ∈ Z �=0

and v∗2 = g
(
θ∗,ω∗, k

)
, v∗2 �= g

(
θ∗,ω∗, j

)} ∩ (
Xl × Xl−1).
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We can also define

M := imL
= spanC

{
s 	→ (

eijs,0
)
, s 	→ (

0, eijs
)
, s 	→ (

eiks,−kωiv∗eiks
) ∣∣ k, j ∈ Z �=0

and v∗2 = g
(
θ∗,ω∗, k

)
, v∗2 �= g

(
θ∗,ω∗, j

)} ∩ (
Xl−1 × Xl−2).

Lemma 2.1. Both K∗ and M are S
1 ⊕Z2-invariant subspaces of Xl−1 × Xl−2. Furthermore,

Xl−1 × Xl−2 =K∗ ⊕M,

Xl × Xl−1 =K ⊕M∗. (2.5)

Remark 2.2. In fact, K and K∗ are symplectic spaces, M and M∗ are weak symplectic spaces.
Furthermore, K ⊥Ω M and K∗ ⊥Ω M∗.

Lemma 2.2. The operator L : Xl × Xl−1 → Xl−1 × Xl−2 is Fredholm with index zero. L |M∗ :
M∗ → M is invertible and has a bounded inverse.

We now perform a Lyapunov–Schmidt reduction as follows. At first, let P and I − P denote
the projection operators from Xl−1 × Xl−2 onto M and K∗, respectively. Obviously, P and
I − P are S

1 ⊕ Z2-equivariant. Thus, F(u, θ,ω, v) = 0 is equivalent to the following sys-
tem:

PF(u, θ,ω, v) = 0,

(I − P)F(u, θ,ω, v) = 0. (2.6)

For each u ∈ Xl × Xl−1, there is a unique decomposition such that u = ξ + η, where ξ ∈ K and
η ∈M∗. Thus, the first equation of (2.6) can be rewritten as

G(ξ,η, θ,ω, v) ≡ PF(ξ + η, θ,ω, v) = 0.

Notice that G(0,0, θ∗,ω∗, v∗) = PF(0, θ∗,ω∗, v∗) = 0 and DξG(0,0, θ∗,ω∗, v∗) = L. Apply-
ing the implicit function theorem, we obtain a continuously differentiable S

1 ⊕ Z2-equivariant
map W : U → M∗ such that W(0, θ∗,ω∗, v∗) = 0 and

PF
(
ξ + W(ξ, θ,ω, v), θ,ω, v

) ≡ 0, (2.7)

where U is an open neighborhood of (0, θ∗,ω∗, v∗). Substituting η = W(ξ, θ,ω, v) into the
second equation of (2.6) gives

B(ξ, θ,ω, v) ≡ (I − P)F
(
ξ + W(ξ, θ,ω, v), θ, v

) = 0. (2.8)

Thus, we reduce the original bifurcation problem to the problem of finding zeros of the map
B : K × R

3 → K∗. We refer to B as the bifurcation map of system (2.2). It follows from the
reversible S

1-equivariance of F and the S
1 ⊕ Z2-equivariance of W that the bifurcation map B

is also reversible S
1-equivariant. Furthermore,
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B
(
0, θ∗,ω∗, v∗) = 0, Bξ

(
0, θ∗,ω∗, v∗) = 0.

Therefore, we have the following results.

Theorem 2.1. There exists a S
1 ⊕ Z2-invariant neighborhood U of (0, θ∗,ω∗, v∗) ∈ K × R

3

such that each solution to B(ξ, θ,ω, v) = 0 in U one-to-one corresponds to some solution to
F(u, θ,ω, v) = 0 defined in (2.3).

The following lemma shows that B is a Hamiltonian vector field on K with respect to the
Hamiltonian function

h(ξ, θ,ω, v) := H̃
(
ξ + W(ξ, θ,ω, v), θ,ω, v

)
.

Lemma 2.3. The bifurcation map B(·, θ,ω, v) : K → K∗ is the Hamiltonian vector field of
h(·, θ,ω, v), that is, Ω|K×K∗(B(ξ, θ,ω, v), ·) = dξ h(ξ, θ,ω, v). Furthermore, h is invariant un-
der both Rα and κ .

3. Families of monochromatic wave trains

In this section we study the existence of nonresonant Lyapunov families of monochromatic
wave trains in the 2D lattice (1.1). This is the case where there is a unique pair of values
k = ±k∗ ∈ Z �=0 which exactly satisfies the nonlinear dispersion relation (2.4) with (θ,ω, v) =
(θ∗,ω∗, v∗), v∗ �= 0 and ω∗ > 0. Then K and K∗ are both two-dimensional, and for every ξ ∈K,
there exists (zk∗ , z−k∗) ∈ C

2 such that

ξ = zk∗
(
eik∗s , k∗ω∗iv∗eik∗s) + z−k∗

(
e−ik∗s ,−k∗ω∗iv∗e−ik∗s). (3.1)

Therefore, (zk∗ , z−k∗) can be regarded as the coordinate of ξ in K.

Theorem 3.1 (Monochromatic wave trains). Let k∗ ∈ Z>0, θ∗, ω∗ > 0, and v∗ �= 0 be such
that v∗2 = g(θ∗,ω∗, k∗) and v∗2 �= g(θ∗,ω∗, k) for all k ∈ Z>0 not equal to k∗. Then for every
sufficiently small ε > 0, the 2D lattice (1.1) has solutions of the form

un,m(t) = ε cos
(
nk∗ω∗ cos θ∗ + mk∗ω∗ sin θ∗ − k∗v(ε)ω∗t + φ0

) +O
(
ε2).

Here, φ0 is arbitrary. The function ε → v(ε), which is analytic and unique, satisfies v(ε) → v∗
as ε → 0.

Proof. It follows from the S1 ⊕Z2-invariance of h that it is a smooth function of (θ,ω, v) and the
invariant a = zk∗z−k∗ . Thus the reduced bifurcation equations dzh(zk∗ , z−k∗ , θ,ω, v) = 0 imply
zk∗ ∂h

∂a
= z−k∗ ∂h

∂a
= 0. So it is true that ∂h

∂a
= 0 except when zk∗ = z−k∗ = 0.

In what follows, we shall Taylor expand h near (zk∗ , z−k∗ , θ∗,ω∗, v∗) = (0,0, θ∗,ω∗, v∗). For
convenience, we write

(
u1(s), u2(s)

) =
∑

k∈Z
zk

(
eiks, kω∗iv∗eiks

) + yk

(
kω∗iv∗eiks, eiks

)
, (3.2)
�=0
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where (u1, u2) ∈ Xl ×Xl−1 =K⊕M∗. Note that the variables zk∗ and z−k∗ are used to describe
the elements of K while the others describe the elements of M∗. Recall that for real-valued
solutions, zk = z̄−k and yk = ȳ−k . So a and ∂h

∂a
are both real. Then from the definition of H̃ , one

can obtain the quadratic part of H̃

H̃2(u1, u2, θ,ω, v)

= 1

2π

2π∫
0

−vωu1(s)
du2(s)

ds
− 1

2
u2

2(s)

+ (
u1(s + ω cos θ) + u1(s + ω sin θ)

)
u1(s) −

(
2 + 1

2
γ

)
u2

1(s)ds

=
∑

k∈Z>0

[
2k2ω∗ωv∗v − (

kω∗v∗)2 + 2 cos(kω cos θ) + 2 cos(kω sin θ) − 4 − γ
]
zkz−k

+
∑

k∈Z>0

[
kω∗iv∗ − kωiv + k3ω∗2ωiv∗2v

− kω∗iv∗(2 cos(kω cos θ) + 2 cos(kω sin θ) − 4 − γ
)]

(z−kyk − zky−k)

+
∑

k∈Z>0

[−2k2ω∗ωv∗v − 1

+ (
kω∗v∗)2(2 cos(kω cos θ) + 2 cos(kω sin θ) − 4 − γ

)]
yky−k. (3.3)

Then, H̃ (u1, u2, θ,ω, v) = H̃2(u1, u2, θ,ω, v) + O(‖(u1, u2)‖3), uniform in (θ,ω, v). In addi-
tion, remember that h is obtained from H̃ by viewing in H̃ the dependent variables zk(k �= ±k∗)
and yk as functions of the independent variables zk∗ , z−k∗ , θ , ω, v for K ×R

3. These functions
are defined by PF((u1, u2)(zk∗ , z−k∗ , θ,ω, v), θ,ω, v) = 0. Differentiation of this identity reads
that zk(k �= ±k∗) and yk can all be rewritten as O(‖(zk∗ , z−k∗ , θ∗ − θ,ω∗ −ω,v∗ − v)‖2). Thus,
we have

h
(
zk∗ , z−k∗ , θ∗,ω∗, v

) = 2
(
kω∗)2

v∗(v − v∗)zkz−k

+O
(∥∥(zk∗ , z−k∗)

∥∥3) +O
(∥∥(

zk∗ , z−k∗ , v∗ − v
)∥∥4)

.

Therefore, we obtain that ∂2h
∂v∂a

|a=0,v=v∗ �= 0. Then it follows from the implicit function the-

orem that for every small positive value of a = ε2

4 , we could find a v = v(ε) such that
dch( ε

2 eiφ0, θ∗,ω∗, v(ε)) = 0, where φ0 is arbitrary. Note that for any (u1, u2) ∈ K, we could
write it in the form (3.1). Thus, the proof of the theorem is complete. �
4. Bichromatic wave trains

In this section, we shall study another kind of wave trains called bichromatic wave trains.
In this case, we choose parameter values (θ∗,ω∗, v∗) with ω∗ > 0 and v∗ �= 0 which lie on
the intersection of exactly two of the dispersion surfaces {(θ,ω, v) | v2 = g(θ,ω, k), k ∈ Z>0}.
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Fig. 1. The dispersion curves v2(θ) = g(θ,4, k) for k = 2,3,4,6,8, where γ = −0.5.

Fig. 2. The dispersion curves v2(ω) = g( π
6 ,ω, k) for k = 1,2,3,4, where γ = −0.01.

These dispersion surfaces become curves if either ω∗ or θ∗ is fixed; See, for example, Figs. 1–3,
where we can clearly see several transversal intersection points.

Throughout this section, we always assume that

(H1) There exist two distinct positive integers k∗
1 , k∗

2 , and parameters (θ∗,ω∗, v∗) with ω∗ > 0
and v∗ �= 0 such that v∗2 = g(θ∗,ω∗, k∗

1) and v∗2 = g(θ∗,ω∗, k∗
2) but v∗2 �= g(θ∗,ω∗, k)

for all k ∈ Z>0 not equal to k∗
1 , k∗

2 ;

Then the kernels K and K∗ are both 4-dimensional, and the reduced bifurcation equation dξh

may have more complicated form.
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Fig. 3. The dispersion curves Γ 01
k

with k = 1,2,3,4, and γ = −0.01.

Denote gcd(k∗
1 , k∗

2) be the greatest common divisor of k∗
1 and k∗

2 , and define

p = k∗
1

gcd(k∗
1 , k∗

2)
and q = k∗

2

gcd(k∗
1 , k∗

2)
.

Similarly to the monochromatic wave trains, the invariance of h under the action of the time shift
operator Rα implies that h must be a smooth function of θ , v and the invariants

a := zk∗
1
z−k∗

1
, b := zk∗

2
z−k∗

2
, c := i

(
z
q

−k∗
1
z
p

k∗
2
− z

q

k∗
1
z
p

−k∗
2

)
, d := (

z
q

−k∗
1
z
p

k∗
2
+ z

q

k∗
1
z
p

−k∗
2

)
.

It is easy to see that a, b, c, d are all real when zk∗
1

= z̄−k∗
1

and zk∗
2

= z̄−k∗
2
, i.e., (u, v) is real-

valued. In addition, the invariants have the following relation

c2 + d2 = aqbp, (4.1)

and κ acts on them as follows

κ : a 	→ a, κ : b 	→ b, κ : c 	→ (−1)p+q+1c, κ : d 	→ (−1)p+qd.

Thus, the invariance of h under the action of κ and relation (4.1) imply that h is actually either
a smooth function of a, b, c, θ , ω, v if p + q is odd, or a smooth function of a, b, d , θ , ω, v if
p + q is even. Denote

C =
{

c, p + q is odd;
d, p + q is even.

Then h can be considered as a function of a, b, C, θ , ω, v. Before proceeding to state our main
results, we give a theorem on the generic non-degeneracy conditions which is needed later on.
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Theorem 4.1. Under assumption (H1), function h(a, b,C, θ,ω, v) has the following properties:

(i) The rank of the matrix

[
∂2h
∂θ∂a

∂2h
∂ω∂a

∂2h
∂v∂a

∂2h
∂θ∂b

∂2h
∂ω∂b

∂2h
∂v∂b

]
(a,b,C,θ,ω,v)=(0,0,0,θ∗,ω∗,v∗)

(4.2)

is 2 if and only if the surfaces v2 = g(θ,ω, k∗
1) and v2 = g(θ,ω, k∗

2) intersect transversely
at (θ∗,ω∗, v∗).

(ii) ∂h
∂d

(0,0,0, θ∗, v∗) is a function of (γ,α,β, · · · , δ). In fact, the function is of the form
∂h
∂d

(0,0,0, θ∗, v∗) = g(γ,α,β, · · ·) + λδ, where λ is a nonzero constant and g is some
smooth function.

Proof. (i) At first, we expand (u1, u2) ∈ Xl ×Xl−1 =K⊕M∗ as same as in formula (3.2). Then
the variables {zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
} are used to describe the elements of K while the others de-

scribe the elements of M∗. Our purpose is to calculate a Taylor expansion for the reduced Hamil-
tonian function h for (zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
, θ,ω, v) close to (0,0,0,0, θ∗,ω∗, v∗). Similarly,

zk(k �= ±k∗
1 ,±k∗

2) and yk are all rewritten as O(‖(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
, θ∗−θ,ω∗−ω,v∗−v)‖2).

Then one obtains from (3.3) that

h(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
, θ,ω, v)

= [
2k∗2

1 ω∗ωv∗v − (
k∗

1ω∗v∗)2 + 2 cos
(
k∗

1ω cos θ
) + 2 cos

(
k∗

1ω sin θ
) − 4 − γ

]
zk∗

1
z−k∗

1

+ [
2k∗2

2 ω∗ωv∗v − (
k∗

2ω∗v∗)2 + 2 cos
(
k∗

2ω cos θ
) + 2 cos

(
k∗

2ω sin θ
) − 4 − γ

]
zk∗

2
z−k∗

2

+O
(∥∥(zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
)
∥∥3)

.

It is easy to check that the determinant of the matrix (4.2) is nonzero exactly when the normal
vectors of surfaces v2 = g(θ,ω, k∗

1) and v2 = g(θ,ω, k∗
2) at (θ∗,ω∗, v∗) are not colinear.

(ii) In fact, it suffices to prove the theorem under the assumption that f (x) = γ x +
δ

(p+q−1)!x
p+q−1, where p+q is even. Firstly, equating all inner products of F(u1, u2, θ

∗,ω∗, v∗)
with basis vectors for M to zero yields

yk = 0, k �= ±k∗
1 , ±k∗

2 ,[(
kω∗v∗)2 + 2 cos

(
kω∗ cos θ∗) + 2 cos

(
kω∗ sin θ∗) − 4 − γ

]
zk = δDk, k �= ±k∗

1 , ±k∗
2 ,[

1 − (
kω∗v∗)4]

yk = −kω∗v∗iδDk, k = ±k∗
1 , ±k∗

2 ,

where

Dk := 1

2π(p + q − 1)!
2π∫

e−kisu
(p+q−1)

1 (s)ds
0
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= 1

(p + q − 1)!
∑

n∈Zp+q−1∑p+q−1
j=1 nj =k

p+q−1∏
j=1

(
znj

+ njω
∗iv∗ynj

)
.

Then it is easy to see that Dk = O(‖(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
)‖p+q−1), hence for k �= ±k∗

1 , ±k∗
2 ,

zk = O(‖(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
)‖p+q−1) and for all k, yk = O(‖(zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
)‖p+q−1). In

order to compute the derivative of h with respect to d , we should firstly compute the reduced
function h:

h
(
zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
, θ∗,ω∗, v∗)

=
∑

k∈Z>0

[(
kω∗v∗)2 + (

2 cos
(
kω∗ cos θ∗) + 2 cos

(
kω∗ sin θ∗) − 4 − γ

)]
zkz−k

+
∑

k∈Z>0

[(
kω∗v∗)3i − kω∗iv∗(2 cos

(
kω∗ cos θ∗)

+ 2 cos
(
kω∗ sin θ∗) − 4 − γ

)]
(z−kyk − zky−k)

+
∑

k∈Z>0

[−2
(
kω∗v∗)2 − 1 + (

kω∗v∗)2(2 cos
(
kω∗ cos θ∗)

+ 2 cos
(
kω∗ sin θ∗) − 4 − γ

)]
yky−k

+ δ

(p + q)!
∑

n∈Zp+q∑p+q
j=1 nj =0

p+q∏
j=1

(
znj

+ njω
∗iv∗ynj

)

= δ

(p + q)!
∑

n∈{±k∗
1 ,±k∗

2 }p+q∑p+q
j=1 nj =0

p+q∏
j=1

znj
+O

(∥∥(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
)
∥∥2(p+q−1))

= r(a, b) + δ

p!q!d +O
(∥∥(zk∗

1
, z−k∗

1
, zk∗

2
, z−k∗

2
)
∥∥2(p+q−1))

,

where the function r(a, b) appears only when p+q is even. Therefore, ∂h
∂d

(0,0,0, θ∗,ω∗, v∗) �=0.
This concludes the proof. �

We know from Fig. 1 that p ≥ 1, so we distinguish two cases: p > 1 and p = 1.

4.1. Case: p > 1

Theorem 4.2 (Bichromatic wave trains). In addition to condition (H1), assume that

(H2) p > 1;
(H3) When p + q is odd, assume that ∂h (0,0,0, θ∗,ω∗, v∗) �= 0;
∂C
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(H4) det

[
∂2h
∂θ∂a

∂2h
∂v∂a

∂2h
∂θ∂b

∂2h
∂v∂b

]
(a,b,C,θ,ω,v)=(0,0,0,θ∗,ω∗,v∗)

�= 0.

Then for generic values of the parameters γ,α,β, · · ·, there exists a sufficiently small constant
ε0 > 0, such that for any 0 < ε1, ε2 < ε0, the 2D lattice (1.1) has solutions of the form

un,m(t) = ε1 cos
(
nk∗

1ω∗ cos θ±(ε) + mk∗
1ω∗ sin θ±(ε) − k∗

1ω∗v±(ε)t + pφ0
)

+ ε2 cos
(
nk∗

2ω∗ cos θ±(ε) + mk∗
2ω∗ sin θ±(ε) − k∗

2ω∗v±(ε)t + qφ0 + σ±
)

+O
(‖ε‖2). (4.3)

Here, ε = (ε1, ε2), φ0 is arbitrary and σ+ = π
2p

, σ− = − π
2p

if p + q is odd, whereas σ+ = 0,
σ− = −π

p
if p +q is even. The functions v±(ε) and θ±(ε), which are analytic and unique, satisfy

θ±(ε) → θ∗ and v±(ε) → v∗ as ε → 0.

Proof. We first consider the case where p + q is even. The analysis is similar in the odd case.
Recall that zk∗

1
= z̄−k∗

1
, zk∗

2
= z̄−k∗

2
, then the restriction equations

dzh(zk∗
1
, z−k∗

1
, zk∗

2
, z−k∗

2
, θ,ω, v) = 0

read

⎧⎪⎨
⎪⎩

zk∗
1

∂h

∂a
+ q

∂h

∂C
z̄
q−1
k∗

1
z
p

k∗
2
= 0,

zk∗
2

∂h

∂b
+ p

∂h

∂C
z
q

k∗
1
z̄
p−1
k∗

2
= 0.

(4.4)

Observe that the solution set of (4.4) does not change if we multiply the first equation by z̄k∗
1

and
the second by z̄k∗

2
. Thus, we have

⎧⎪⎨
⎪⎩

|zk∗
1
|2 ∂h

∂a
+ q

∂h

∂C
z̄
q

k∗
1
z
p

k∗
2
= 0,

|zk∗
2
|2 ∂h

∂b
+ p

∂h

∂C
z
q

k∗
1
z̄
p

k∗
2
= 0.

(4.5)

Clearly, it is a trivial solution when zk∗
1

= zk∗
2

= 0. Nevertheless, if zk∗
1

= 0 and zk∗
2

�= 0, sys-

tem (4.5) leads to ∂h
∂b

(0, b,0, θ,ω, v) = 0. Due to the nondegenerate dependence of ( ∂h
∂a

, ∂h
∂b

) on
the parameters (θ, v) at the point (θ∗,ω∗, v∗), we could obtain a unique solution θ(b,ω∗, v) or
v(b, θ,ω∗). Similarly, if zk∗

1
�= 0 and zk∗

2
= 0, we could obtain a unique solution θ(a,ω∗, v) or

v(a, θ,ω∗). The results actually belong to the monochromatic wave trains.
As a matter of fact, we are more interested in the case where zk∗

1
zk∗

2
�= 0. Note that |zk∗

1
|2 ∂h

∂a
,

|zk∗
2
|2 ∂h

∂b
and ∂h

∂C
are real and ∂h

∂C
�= 0, then it is true that

Im
(
z̄
q
∗z

p
∗
) = 0.
k1 k2
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Thus, C = ±2|zk∗
1
|q |zk∗

2
|p . Due to the fact that p,q ≥ 2, dividing the first equation of (4.5) by

|zk∗
1
|2 and the second by |zk∗

2
|2, respectively, we obtain that

⎧⎪⎨
⎪⎩

∂h

∂a
± ∂h

∂C
|zk∗

1
|q−2|zk∗

2
|p = 0,

∂h

∂b
± ∂h

∂C
|zk∗

1
|q |zk∗

2
|p−2 = 0.

(4.6)

According to the nondegenerate assumption, for every sufficiently small positive value of a = ε2
1
4

and b = ε2
2
4 , where ε1, ε2 > 0, we could find unique functions θ±(ε) and v±(ε) such that (4.6)

holds. This, together with Im(z̄
q

k∗
1
z
p

k∗
2
) = 0, implies that

zk∗
1
= ε1

2
eipφ0, zk∗

2
= ε2

2
ei(qφ0+σ±),

where φ0 ∈ R is arbitrary, and σ+ = 0, σ− = π
p

.
In the case where p + q is odd, the analysis is completely similar, except that it turns out that

(zk∗
1
, zk∗

2
) are solutions to Re(z̄q

k∗
1
z
p

k∗
2
) = 0. Therefore, the solutions are given by a similar formula,

with σ+ = π
2p

, σ− = − π
2p

. Thus the proof of the theorem is complete. �
Similarly, we have the following result.

Theorem 4.3 (Bichromatic wave trains). In addition to conditions (H1)–(H3), assume that

(H4′) det

[
∂2h

∂ω∂a
∂2h
∂v∂a

∂2h
∂ω∂b

∂2h
∂v∂b

]
(a,b,C,θ,ω,v)=(0,0,0,θ∗,ω∗,v∗)

�= 0.

Then for generic values of the parameters γ,α,β, · · ·, there exists a sufficiently small constant
ε0 > 0, such that for any 0 < ε1, ε2 < ε0, the 2D lattice (1.1) has solutions of the form

un,m(t) = ε1 cos
(
nk∗

1ω±(ε) cos θ∗ + mk∗
1ω±(ε) sin θ∗ − k∗

1ω±(ε)v±(ε)t + pφ0
)

+ ε2 cos
(
nk∗

2ω±(ε) cos θ∗ + mk∗
2ω±(ε) sin θ∗ − k∗

2ω±(ε)v±(ε)t + qφ0 + σ±
)

+O
(‖ε‖2). (4.7)

Here, ε = (ε1, ε2), φ0 is arbitrary and σ+ = π
2p

, σ− = − π
2p

if p + q is odd, whereas σ+ = 0,
σ− = −π

p
if p+q is even. The functions v±(ε) and ω±(ε), which are analytic and unique, satisfy

ω±(ε) → ω∗ and v±(ε) → v∗ as ε → 0.

4.2. Case: p = 1

In the case where p = 1, we divide our analysis into three subcases: q = 2, q = 3, and q ≥ 4.
Firstly, by applying S

1 action, we assume that zk∗
1

= x1 > 0, where x1 ∈ R. Dividing by x1 in
(4.4), shows that the remaining periodic solutions may be found by solving
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∂h

∂a
+ q

∂h

∂C
x

q−2
1 zk∗

2
= 0, (4.8)

zk∗
2

∂h

∂b
+ ∂h

∂C
x

q

1 = 0. (4.9)

Separating the real and imaginary parts of Eq. (4.8) gives ∂h
∂C

Im(zk∗
2
) = 0. It follows from Theo-

rem 4.1 that

∂h

∂d

(
0,0,0, θ∗,ω∗, v∗) �= 0.

If q is even, then we make the genericity assumption:

(H5) ∂h
∂c

(0,0,0, θ∗,ω∗, v∗) �= 0.

Thus, we have ∂h
∂C

(0,0,0, θ∗,ω∗, v∗) �= 0 and hence

Im(zk∗
2
) = 0.

Namely, zk∗
2

can be replaced by a real number x2. It follows that (4.8) and (4.9) can be rewritten as

∂h

∂a
+ q

∂h

∂C
x

q−2
1 x2 = 0, (4.10)

x2
∂h

∂b
+ ∂h

∂C
x

q

1 = 0. (4.11)

Since ∂2h
∂a∂v

(0,0,0, θ∗,ω∗, v∗) �= 0, we use the implicit function theorem to solve Eq. (4.10)
for v and then substitute this solution for v into (4.11). Thus finding the desired families of
periodic solutions reduces to solving (4.11), where h is the function of x2

1 , x2
2 , x

q

1 x2, θ , ω, v and

v = v(x2
1 , x2

2 , x
q−2
1 x2, θ,ω). Furthermore, (4.11) can be rewritten uniquely as

g(x1, x2, θ,ω) ≡ r
(
x2

1 , x2
2 , θ,ω

)
x2 + s

(
x2

1 , x2
2 , θ,ω

)
x

q−2
1 = 0, (4.12)

where s(0,0, θ,ω) = 0.
Next, we find solutions to (4.12) by using singularity theory to determine all small ampli-

tude solutions. For this purpose, we consider the following Taylor expansions for r and s at
(0,0, θ∗,ω∗):

r(u,w, θ,ω) = a1u + b1w + · · · , s(u,w, θ,ω) = a2u + b2w + · · · ,

where the lowest coefficients of r and s with respect to u, w are given as follows:
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a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(− ∂2h
∂a∂v

(0,0,0, θ∗,ω∗, v∗))−1

∣∣∣∣∣
∂2h

∂a2
∂2h
∂a∂v

∂2h
∂b∂a

∂2h
∂b∂v

∣∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

, q ≥ 3,

(− ∂2h
∂a∂v

(0,0,0, θ∗,ω∗, v∗))−1

×
[∣∣∣∣∣

∂2h

∂a2
∂2h
∂a∂v

∂2h
∂b∂a

∂2h
∂b∂v

∣∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

+ 2( ∂2h
∂C∂v

· ∂h
∂C

)|(0,0,0,θ∗,ω∗,v∗)

]
, q = 2.

b1 = −
(

∂2h

∂a∂v

(
0,0,0, θ∗,ω∗, v∗))−1

∣∣∣∣∣
∂2h
∂a∂b

∂2h
∂a∂v

∂2h

∂b2
∂2h
∂b∂v

∣∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

,

a2 = −
(

∂2h

∂a∂v

(
0,0,0, θ∗,ω∗, v∗))−1

∣∣∣∣∣
∂2h

∂a2
∂2h
∂a∂v

∂2h
∂C∂a

∂2h
∂C∂v

∣∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

,

b2 = −
(

∂2h

∂a∂v

(
0,0,0, θ∗,ω∗, v∗))−1

×
[∣∣∣∣∣

∂2h
∂a∂b

∂2h
∂a∂v

∂2h
∂C∂b

∂2h
∂C∂v

∣∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

+ q

(
∂2h

∂b∂v
· ∂h

∂C

) ∣∣∣∣
(0,0,0,θ∗,ω∗,v∗)

]
.

Thus, in view of Theorems 18.1–18.3 in [18], we have the following results.

Lemma 4.1.

(i) When q ≥ 4. If a1, b1, a2, b2 and a1b2 − 3b1a2 are nonzero. Then the bifurcation function
g is equivalent to the normal form

x2
1x2 + εx3

2 + λx2 + x
q

1 = 0, (4.13)

where ε = ±1.
(ii) When q = 3. If b1 and α = (2b3

2 − 9a1b1b2 + 27b2
1a2) are nonzero. Then g is equivalent to

the normal form

x3
1 + mx2

1x2 + x3
2 + λx2 = 0, (4.14)

where

m = 3sgn(α)
3a1b1 − b2

2

α2/3

is a modal parameter.
(iii) When q = 2. If a2, b2 are nonzero, then g is equivalent to the normal form

εx2
1 + x2

2 + λx2 = 0, (4.15)

where ε = ±1.
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The following theorem follows immediately from the normal forms of the previous lemma.

Theorem 4.4. Assume that q ≥ 4 and a1, b1, a2, b2, a1b2 − 3b1a2 are all nonzero.

(i) Suppose ε = 1. Then (4.13) with λ < 0 has three distinct zeros when x1 varies in some suffi-
ciently small right neighborhood of 0. That is, system (1.1) may have three distinct branches
of periodic solutions of the form (4.3) or (4.7) as (θ,ω, v) vary in some sufficiently small
neighborhood of (θ∗,ω∗, v∗). When λ ≥ 0, (4.13) has only one zero. That is, system (1.1)
may have only one branch of periodic solution of the form (4.3) or (4.7) as (θ,ω, v) vary in
some sufficiently small neighborhood of (θ∗,ω∗, v∗).

(ii) Suppose ε = −1. Then (4.13) with λ < 0 has only one zero when x1 varies in some suffi-
ciently small right neighborhood of 0. Thus, system (1.1) may have one branch of periodic
solutions of the form (4.3) or (4.7) as (θ,ω, v) vary in some sufficiently small neighborhood
of (θ∗,ω∗, v∗). When λ ≥ 0, (4.13) has three distinct zeros. Thus, system (1.1) may have
three distinct branches of periodic solutions of the form (4.3) or (4.7) as (θ,ω, v) vary in
some sufficiently small neighborhood of (θ∗,ω∗, v∗).

In the case where q = 3, the bifurcation pictures are essentially the same as in the case where
q ≥ 4. Thus the results are similar and hence are omitted.

Theorem 4.5. Assume that q = 2 and a2, b2 are nonzero.

(i) Suppose ε = 1. Then (4.15) with λ �= 0 has two zeros when x1 varies in some sufficiently
small right neighborhood of 0. This means that system (1.1) may have two branches of
periodic solutions of the form (4.3) as (θ,ω, v) vary in a sufficiently small neighborhood of
(θ∗,ω∗, v∗). When λ = 0, (4.15) has only zero solution. This means that system (1.1) may
have no solution of the form (4.3) or (4.7) as (θ,ω, v) are equal to some critical values.

(ii) Suppose ε = −1. Then Eq. (4.15) has two distinct zeros when x1 varies in a sufficiently
small right neighborhood of 0. Thus, system (1.1) may have two distinct branches of periodic
solutions of the form (4.3) or (4.7) as (θ,ω, v) vary in a sufficiently small neighborhood of
(θ∗,ω∗, v∗).

Remark 4.1. Notice that x1 > 0, x2 ∈ R, then we have ε1 = x1 and ε2 = |x2| in (4.3) and (4.7).
Furthermore, σ = σ+ if x2 > 0 and σ = σ− if x2 < 0.

5. Application to 1D LDEs

We see that for each fixed θ∗, there are a positive parameter ω∗ and a nonzero parameter v∗
such that the point (θ∗,ω∗, v∗) lies on some dispersion surface Ωk , where

Ωk = {
(θ,ω, v) | v2 = g(θ,ω, k)

}
, k ∈ Z>0 (5.1)

This, together with Theorems 3.1 and 4.2–4.5, implies that the direction θ of propagation doesn’t
change the existence but does have impact on the traveling wave speed v and the profile period T

of monochromatic wave trains and bichromatic wave trains of the 2D lattice (1.1). Nevertheless,
as we stated before, we have the following observation.
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Lemma 5.1. The profile system (1.5) with tan θ being rational can be regarded as the profile
equations (1.6) of traveling waves of the 1D lattice (1.7).

For example, the case where tan θ = 0 is associated with the following 1D LDE with the
nearest neighbor connections:

ün = un+1 + un−1 − 2un − f (un); (5.2)

The case where tan θ = 1 is associated with the following 1D LDE with the nearest neighbor
connections:

ün = un+1 + un−1 − 2un − 1

2
f (un); (5.3)

The case where tan θ = 2 is associated to the following 1D LDEs with the nearest and second
nearest neighbor connections:

5ün = (un+1 + un−1 − 2un) + (un+2 + un−2 − 2un) − f (un). (5.4)

The equation v2 = g(θ,ω, k) with θ satisfying that tan θ = j
l

with (j, l) ∈ Z
2 and l �= 0 can

be rewritten as

(kωv)2 = γ + 4 sin2
(

jkω

2
√

j2 + l2

)
+ 4 sin2

(
lkω

2
√

j2 + l2

)
.

In view of the proof of Theorem 3.1, we have the following result.

Corollary 5.1. Let k∗ ∈ Z>0 and v∗ �= 0, ω∗ > 0 be such that

(
k∗ω∗v

)2 = γ + 4 sin2
(

jk∗ω∗

2
√

j2 + l2

)
+ 4 sin2

(
lk∗ω∗

2
√

j2 + l2

)

and

(
kω∗v

)2 �= γ + 4 sin2
(

jkω∗

2
√

j2 + l2

)
+ 4 sin2

(
lkω∗

2
√

j2 + l2

)

for all k ∈ Z>0 not equal to k∗. Then for every sufficiently small ε > 0, the 1D lattice (1.7) has
wave train solutions of the form

un(t) = ε cos

(
ω∗ nk∗ − k∗v(ε)t√

j2 + l2
+ φ0

)
+O

(
ε2).

Here, φ0 is arbitrary. The function ε → v(ε), which is analytic and unique, satisfies v(ε) → v∗
as ε → 0.
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In view of Corollary 5.1, (5.2), (5.3), and (5.4) may have wave train of the forms

un(t) = ε cos
(
ω∗nk∗ − ω∗k∗v(ε)t + φ0

) +O
(
ε2),

un(t) = ε cos

(
ω∗ nk∗ − k∗v(ε)t√

2
+ φ0

)
+O

(
ε2),

un(t) = ε cos

(
ω∗ nk∗ − k∗v(ε)t√

5
+ φ0

)
+O

(
ε2),

respectively.
In view of Theorems 4.2–4.5, one can also obtain the results of bichromatic wave trains of the

1D lattice (1.7). In this case, θ is fixed and satisfies tan θ = l
j

. Thus, the bifurcated equation h is
a function of (a, b,C,ω, v). One can choose parameter values (ω∗, v∗) with v∗ �= 0 and ω∗ > 0,
which lie on the intersection of exactly two of the curves Γ

lj
k , k ∈ Z>0, where

Γ
lj
k =

{
(ω, v) | (kωv)2 = γ + 4 sin2

(
jkω

2
√

j2 + l2

)
+ 4 sin2

(
lkω

2
√

j2 + l2

)}
.

These dispersion curves Γ 01
k with k = 1,2,3,4, and γ = −0.01 have been shown in Fig. 3, where

we can clearly see several transversal intersection points. In view of Theorem 4.3, we have the
following result.

Corollary 5.2. Assume that there exist k∗
1 and k∗

2 with k∗
1 < k∗

2 such that curve Γ
lj

k∗
1

transversally

intersects Γ
lj

k∗
2

at the point (ω∗, v∗) with v∗ �= 0 and ω∗ > 0. Then under conditions (H2) and

(H3), the 1D lattice (1.7) has solutions of the form

un(t) = ε1 cos

(
ω±(ε)

nk∗
1 − k∗

1v±(ε)t√
j2 + l2

+ pφ0

)

+ ε2 cos

(
ω±(ε)

nk∗
2 − k∗

2v±(ε)t)√
j2 + l2

+ qφ0 + σ±
)

+O
(‖ε‖2). (5.5)

Here, σ±, ω±(ε), and v±(ε) are defined similarly to Theorem 4.3.

In the case where p = 1, one can also obtain the similar results to Theorems 4.4 and 4.5.
Therefore, only the traveling wave speed v and the profile period T of wave trains of 2D lattice
(1.1) can be changed by the direction θ of propagation.

6. Conclusions

In this paper we have applied Lyapunov–Schmidt reductions for the operator equation F = 0
from MFDE (2.2). These reductions allow us to analyze the existence and branching patterns of
wave train solutions in the 2D lattice (1.1). In particular, we show that zero, one, two or three
two-parameter families of mixed-mode wave trains exist in the 2D lattice (1.1). On the other
hand, all the wave trains of small amplitude are determined by the means of singularity theory.
In addition, it is shown that 1D lattice (1.7) can be viewed as a special case of 2D lattice (1.1) and
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the results of 2D lattice can be directly applied to the associated 1D lattice under some suitable
conditions. The methods here, which look for periodic orbits by applying the Lyapunov–Schmidt
procedure directly on loop spaces, have many technical advantages over other methods. In this
paper the mapping F is a Hamiltonian vector field, which implies that we also show how the
Hamiltonian structure manifests itself in the reduced bifurcation equation, as in [18]. We would
like to emphasize that there are many other Hamiltonian lattice dynamical systems to which the
methods of this paper could in principle, be applied. It would be very interesting to extend the
analysis to Hamiltonian systems with fewer (or more) symmetry properties.

Following these methods, one can study another wave train solutions satisfying

x

(
s + T

2

)
= −x(s)

for some T > 0. Obviously, x(s + T ) = x(s). This implies that the periodic profile function is
anti-phased. The periodic functions space can be defined as Y l := {x ∈ W

l,2
loc (R,R) | x(s + π) =

−x(s)}. In fact, Y l is a subspace of Xl . And the function space Y l × Y l−1 is the direct sum over
k ∈ Z of the finite-dimensional subspaces

spanC
{
s 	→ (

ei(2k−1)s ,0
)
, s 	→ (

0, ei(2k−1)s
)}

k∈Z.

Using similar arguments, we have the following results.

Theorem 6.1 (Monochromatic wave trains). Let k∗ ∈ Z �=0, θ∗, ω∗ > 0, and v∗ �= 0 be such that

(
θ∗,ω∗, v∗) ∈ Ω2k∗−1 and

(
θ∗,ω∗, v∗) /∈ Ωk for all k ∈ Z>0 \ {

2k∗ − 1
}
. (6.1)

Then for every sufficiently small ε > 0, the 2D lattice (1.1) has solutions of the form

un,m(t) = ε cos
((

2k∗ − 1
)
ω∗(n cos θ∗ + m sin θ∗ − v(ε)t

) + φ0
) +O

(
ε2).

Here, φ0 is arbitrary. The function ε 	→ v(ε), which is analytic and unique, satisfies
limε↓0 v(ε) = v∗.

Theorem 6.2 (Bichromatic wave trains). Let k∗
1 and k∗

2 with k∗
1 < k∗

2 be such that surface Ω2k∗
1−1

transversally intersects Ω2k∗
2−1 at the point (θ∗,ω∗, v∗) with v∗ �= 0 and ω∗ > 0. Furthermore,

suppose that (θ∗,ω∗, v∗) /∈ Ωk for all k ∈ Z>0 \ {2k∗
1 − 1,2k∗

2 − 1}. Then under assumption
(H4) or (H4′), for generic values of the parameters γ,α,β, · · ·, there exists a sufficiently small
constant ε0 > 0 such that for all 0 < ε1, ε2 < ε0, the 2D lattice (1.1) has solutions of the form

un,m(t) = ε1 cos
((

2k∗
1 − 1

)
ω(n cos θ + m sin θ − vt) + pφ0

)
+ ε2 cos

((
2k∗

2 − 1
)
ω(n cos θ + m sin θ − vt) + qφ0 + σ±

) +O
(‖ε‖2), (6.2)

where ε = (ε1, ε2), φ0 ∈ R is arbitrary, σ+ = 0, σ− = π
p

, and

p = 2k∗
1 − 1

gcd(2k∗ − 1,2k∗ − 1)
> 1, q = 2k∗

2 − 1

gcd(2k∗ − 1,2k∗ − 1)
1 2 1 2
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and

(θ,ω, v) =
{

(θ±(ε),ω∗, v±(ε)) in the case where (H4) holds,

(θ∗,ω±(ε), v±(ε)) in the case where (H4′) holds.

The functions θ±, ω±, v± are analytic and satisfy θ±(ε) → θ∗, ω±(ε) → ω∗, and v±(ε) → v∗
as ε → 0.

The discussion about the case where p = 1 is similar to that in Section 4.2. Moreover, we
see that the direction θ of propagation doesn’t change the existence but does have impact on the
traveling wave speed v and the profile period T of monochromatic wave trains and bichromatic
wave trains with periodic profile function being anti-phased.

Suppose further that the odd function f is 2π -periodic, i.e.,

f (−x) = −f (x) and f (x + 2π) = f (x) for all x ∈R. (6.3)

Then (1.5) may have a solution x satisfying

x

(
s + T

2

)
= −x(s) + 2π. (6.4)

In fact, f (π − x) = −f (π + x). Hence f (π) = 0 and x(s) = π is a trivial/constant solution of
(1.5) satisfying (6.4). We split x(s) as follows x(s) = π + y(s) with

y

(
s + T

2

)
= −y(s).

Thus, under certain conditions, we similarly obtain the wave train solutions satisfying (6.4).
There are a few questions that are worthy of further investigation. Wave train solutions dis-

cussed in this paper take the form (2.1). Such solutions can also be written in the equivalent
form

un,m(t) = ϕ(ωt − kn cos θ − km sin θ) (6.5)

for some 2π -periodic function ϕ. Here ω stands for the temporal frequency of the wave train
while k denotes the spatial wave number. In general, these solutions will persist as the wave
number k is varied, giving rise to a one-parameter family of wave train solutions to (1.1) that we
will write in the form

un,m(t) = ϕ
(
ωnl(k)t − kn cos θ − km sin θ; k)

The function ωnl is referred to as the nonlinear dispersion relation similar to (2.4). Let us con-
sider two nearby wave numbers k− and k+. There may be solutions to (1.1) that are periodic in
time when viewed in an appropriate co-moving coordinate frame and that connect the wave
train ϕ(ωnl(k−)t − k−n cos θ − k−m sin θ; k−) at n cos θ + m sin θ ≈ −∞ to the wave train
ϕ(ωnl(k+)t − k+n cos θ − k+m sin θ; k+) at n cos θ + m sin θ ≈ ∞. The existence of modulated
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waves that satisfy these properties has already been established for some PDEs and lattice equa-
tions with continuous diffusion. For example, Doelman, Sandstede, Scheel, and Schneider [12]
employed a spatial-dynamical approach and a center manifold result to investigate the dynam-
ics of weakly-modulated nonlinear wave trains in reaction-diffusion systems and the complex
Ginzburg–Landau equation. In [24] modulated wave solutions were constructed using a global
center manifold analysis for mixed parabolic-lattice systems on the real line. Therefore, our
further interest in the 2D lattice (1.1) is the existence and stability of modulated waves trains.
Moreover, the existing existence results on modulated waves trains focus only on the connection
between two monochromatic wave trains. It would be more interesting to investigate wave solu-
tions connecting a monochromatic wave train to a bichromatic wave train, a bichromatic wave
train to a monochromatic wave train, and even a bichromatic wave train to another bichromatic
wave train.
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