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Abstract
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1. Introduction

The one-dimensional motion of a compressible viscous and heat-conducting gas in the half-
space R := (0, 0o0) can be formulated by the compressible Navier—Stokes equations

pr+ (pu)y = 0,
(pu); + (pu? + P)y = (pity)x, (1.1)
(0E); + (ouE +uP)y = (k0x + puuity)y,

where t > 0 and x € R stand for the time variable and the spatial variable, respectively, and the
primary dependent variables are the density p, the velocity u and the temperature 6. The specific
total energy £ = e + %u2 with e being the specific internal energy. It is known from thermo-
dynamics that only two of the thermodynamic variables p, 8, P (pressure), e and s (specific
entropy) are independent. We focus on the ideal polytropic gas, which is expressed in normal-
ized units by the following constitutive relations

P=RpH, e=c,0, s=c,In(p'770), (1.2)

where R > 0 is the gas constant, y > 1 the adiabatic exponent and ¢, = R/(y — 1) the specific
heat at constant volume. Positive constants @ and « are the viscosity and the heat conductivity,
respectively.

The system (1.1)—(1.2) is supplemented with the initial condition

(p7M19)|I:0:(p01 uo, 90)7 (]3)

which is assumed to satisfy the far-field condition
1im (oo, uo, 60)(X) = (o, 4, 6, (1.4)
where p4 > 0, uy4 and 64 > 0 are constants. For boundary conditions, we take
(u,0)(,0) = (u_,6-), (1.5)

where u_ and 6_ > 0 are constants. The initial data (1.3) is assumed to satisfy certain compati-
bility conditions as usual.

The boundary condition u(¢,0) = u_ < 0 means that the fluid blows out from the bound-
ary, and hence the initial boundary value problem (1.1)—(1.5) with u_ < 0 is called the outflow
problem. The problem (1.1)—(1.5) with u_ = 0 is called the impermeable wall problem, which
has been studied in [6,7,20,21,31] and so on. According to the theory of well-posedness for
initial boundary value problem, one has to impose one extra boundary condition p(#,0) = p_
on {x = 0} for the case when u_ > 0. This case is called the inflow problem and has been in-
vestigated by Matsumura et al. [4,6,9,22,27.28]. We refer to Matsumura [19] for a complete
classification about the large-time behaviors of solutions to initial boundary value problems of
the isentropic compressible Navier—Stokes equations in the half-space R .

The main purpose of this article is to study the large-time behavior of solutions to the out-
flow problem (1.1)—(1.5). The nonlinear stability of the stationary solution, the rarefaction wave
and their composition has been addressed in [15,26] under small initial perturbation. For large
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perturbation case, Qin [26] proved that the non-degenerate stationary solution is asymptotically
stable under the technical assumption that the adiabatic exponent y is close to 1. Recently, Wan
et al. [30] establish the asymptotic stability of the non-degenerate stationary solution with large
initial perturbation and general adiabatic exponent y . In this article we are going to study the case
when the corresponding time-asymptotic state is a rarefaction wave or its superposition with a
non-degenerate stationary solution under large initial perturbation.

We first investigate the large-time behavior of solutions toward the rarefaction wave for the
outflow problem or the impermeable wall problem (1.1)—(1.5). To this end, we assume that pos-
itive constants p4, u+ and 04 satisfy

1

©_/00)7 py
_ -3
U_=uy + f v RypL V0,77 dz <uy, (1.6)
P+

so that (o4, uy,604+) € R3(p—,u_,0_) for

p—=(0-/01)7Tpy. (L.7)

Here R3(p—,u_, 6_) is the 3-rarefaction wave curve through (p_, u_, 6_) given by

p>p_, pTO=p""0_,
P
R3y(p_,u_,0_):= ,u,0 — -3
3(p ) (o ) u:u_—i-/ /R)/,Ol Yo7 ds
p—

We assume further that
u_ ++/Ryb_=>0. (1.8)

Then as time ¢ goes to infinity, the solution of the problem (1.1)—(1.5) is expected to converge
to the 3-rarefaction wave (,oR, uk, QR)(t, x) connecting (p—,u—_,60_) and (p4, uy,64), which is
the unique entropy solution of the Riemann problem for the corresponding hyperbolic system of
(1.1)—(1.2) (i.e. the compressible Euler system)

or + (pu)x =0,
(pu); + (pu* + P), =0, (1.9)
(0E): + (puE +uP)y =0

for (¢, x) € Ry x R with initial data

(p—,u_,0_) forx <0,

(o, u, )0, ) = { (p4,uy,604) forx>0. (1.10)

Note that (o, u®,6%)(1,x) = (o, u_,6_) for each (z, x) € [0, 00) x (—00, 0] due to (1.8).
We construct a smooth approximation (5, it, 8) of (o, u®, %) for deriving the stability of
the rarefaction wave. As in [9], we consider the Cauchy problem for the Burgers equation
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wy +wwy, =0 for (f,x) e Ry x R,
X+
1.11
w(0, x) = w_ + Wk, /zqe_zdz for x e R, (11D
0

where w := w4 — w_, g > 16 is some fixed constant, x4 := max{x, 0} is the positive part of x,
and the constant k, satisfies

o0
kq/zqe_zdzz 1.
0
The smoothed rarefaction wave (p, i, §) connecting (po_,u_,60_) and (py,u,,6y) is defined
by

2305, @,0)(t,x) = w(l +1,x),
B, x) = pl 6y,

p(t,x) (1.12)
_ 1—y y=3
w(t,x) =us + Ryp, "0z 7 dz,

Pt

where p_ is given by (1.7) and w(¢, x) is the unique solution of (1.11) with wy = A3(p+, u+, 04).
Now we state our stability result of the rarefaction wave (pR, u® 08y (t, x) to the outflow
problem or the impermeable wall problem with large initial perturbation.

Theorem 1. Assume that (p+, u+, 0+) and the initial data (po, ug, 6o) satisfy (1.6), (1.8) and
Jinf {oo(x), 60()} >0, (po =, uo — i, 60 = 0) € H' (Ry). (1.13)
N

Then there exists a positive constant €1 such that if u_ <0 and the boundary strength § :=
|(uy —u_, 04 —0_)| < ey, the initial boundary value problem (1.1)—(1.5) admits a unique solu-
tion (p, u, 0) satisfying

(p—p,u—1i,0—0) e C(0,00); H (Ry)),

_ (1.14)
px — pr € L*(0, 00 LA(Ry)),  (uy — i, O — 6) € L*(0, 00; H' (Ry)).
Furthermore, the solution (p, u, 0) converges to the rarefaction wave (pR, ul oR ) uniformly as
time tends to infinity:

lim sup |(p—pR,u—u® 6 -0, x)|=0. (1.15)

=00 eR,

Remark 1.1. For the Cauchy problem to the compressible Navier—Stokes equations (1.1)—(1.2)
with generic adiabatic exponent y in the whole space R, we can employ the methodology de-
veloped in this paper to obtain the time-asymptotic stability of the rarefaction waves under large
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initial perturbation, which extends the corresponding stability results in [14,25] for the case with
small initial perturbation or the case when y is close to 1. We refer to a recent work [11] for the
stability of superposition of viscous contact wave and rarefaction waves to the Cauchy problem
for the compressible Navier—Stokes equations in Lagrangian coordinate.

Next we intend to study the time-asymptotic stability of the superposition of a non-degenerate
stationary solution and a 3-rarefaction wave. For this purpose, we let (5, i7, §) be the stationary
solution of (1.1)—(1.5) connecting (u—,6_) and (o, U, ), namely (o, i, 6) depends solely
on the variable x and satisfies

(pin)" =0,
(pii* + P) = pii”, (1.16)
(PUE + i P) = k0" + p(ii')
for x e R4 and

(@6, 0)(0) = (u—,0-),  lim (5, 0)(x) = (o>t O). (1.17)

where P := Rp6 and E = c,0 + %ﬁz. A stationary solution (p, i1,0) is called to be non-
degenerate if for each n € N,

18Y (5 — P i — 6 — O) (x)] < Coe™", (1.18)
where C, c are positive constants and §:=|(um — u_, By, —0_)| is the boundary strength of the
stationary solution. The existence of (non-degenerate) stationary solutions has been shown by

Kawashima et al. [15] and will be restated in section 2.
We assume that

(o4 uy,04) € R3(om, um,0n), RyOu>=—uy >0, (1.19)
so that there exist a 3-rarefaction wave (,oR, ul oR) connecting (0O, U, Op) and (o4, Uy, 64).
It is expected that the large-time behavior of solutions to the outflow problem (1.1)—(1.5) is

determined by the composition (0, i, é) of the stationary solution (p, i, 6) and the 3-rarefaction
wave (pR, uk Ry

(B i1, 6) (1, x) = (B, @, 0)(x) + (0%, u™,6%) (1, x) — (O i Om). (1.20)
In order to derive the stability result, we introduce the smoothed asymptotic state

(laﬂ ﬁv é)(tv-x) = (157 ﬁv é)(-x) + (,5, I’_t7 é)(tvx) - (pn’h uma em)a (121)

where (p, u, ) is the smooth rarefaction wave connecting (o, Um, 0n) and (o4, uy,04). We
define

8= |(Um — g, O — 04)].
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Under the above preparation, we have the following stability result on the superposition
(0, it, ) with large initial perturbation.

Theorem 2. Assume that there exists a non-degenerate stationary solution (p, ii, 0) connecting
(u—,0-) and (pm, um,On). Assume further that (p4+,uy,01) and the initial data (po, uo, 6o)
satisfy (1.19) and

nf {po(x).60(x)) > 0. (po = puo — i by —6) € H' (R). (1.22)
)

Then a positive constant €; exists such that the outflow problem (1.1)—(1.5) with §+68< € has
a unique solution (p, u, 0) satisfying

(p—p.u—1i,0 —0) € C([0,00); H (R)), .
px — Pr € L2(0, 00 LARY)),  (uy — iy, O — By) € L2(0, 00; H'(R,)). '

Furthermore, the solution (p, u, 0) converges to the composition (0, u, é) of the stationary solu-
tion (p, ii, 0) and the rarefaction wave (p®, u®, 0%) uniformly as time tends to infinity:

lim sup |(p — p,u—1it,0 —6)(t,x)| =0. (1.24)

1=00  cR,

To derive the large-time behavior of solutions to the compressible Navier—Stokes equations
(1.1), it suffices to deduce certain uniformly-in-time a priori estimates on the perturbations to-
ward the asymptotic state and the essential step is to obtain the positive lower and upper bounds
on the density p(f, x) and the temperature 6 (¢, x) uniformly in time ¢ and space x. In the case
of small perturbation, one can use the smallness of the a priori H'-norm of the perturbation to
get the uniform bounds of the density p and the temperature 8. Owing to such uniform bounds
and the smallness of the boundary strength 8, one can derive certain uniform a priori energy-
type estimates as shown in [15,26]. In the case that the adiabatic exponent y is close to 1, by
observing that 6 = p?~le~Ds/R for ideal polytropic gases (1.1)—(1.2), one can deduce that
10 — 11| L0, 71xR) can be sufficiently small. Thus the desired energy-type a priori estimates can
be performed as in [25,26] based on the smallness of § and the a priori assumption

1<o0@,x)<2 forall (t,x) €[0,T] x R.

However, these arguments are no longer valid for the case with large initial perturbation and
general adiabatic exponent. We note that, even for the asymptotic stability of constant state
to the Cauchy problem for the system (1.1), the uniform positive lower and upper bounds on
0(t, x) are given only very recently by Li and Liang [18], although the corresponding uniform
bounds on p(#, x) were addressed in [12,13] thirteen years ago. In their work [18], Li-Liang
considered the fixed-domain problems to the compressible Navier—Stokes equations in the La-
grangian coordinate and obtained the uniform positive lower and upper bounds on the temper-
ature 6(¢, x) through a time-asymptotically nonlinear stability analysis. However, the outflow
problem (1.1)—(1.5) will be transformed into a free boundary problem in the Lagrangian coordi-
nate, which makes the treatment of boundary more difficult. To overcome this difficulty, we shall
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make use of a direct energy method to the reformulated problem for the compressible Navier—
Stokes equations (1.1) in the Eulerian coordinate and take account of the dissipative effect of the
boundary terms.

The main point for deriving our main results, the stability of the rarefaction wave and its
superposition with a non-degenerate stationary solution to the initial boundary value problem
(1.1)—(1.5), is to employ the smallness of the boundary strength § to control the possible growth
of the perturbation suitably. Specifically, we first deduce the basic energy estimate with the aid of
the decay properties of the smoothed rarefaction wave and the non-degenerate stationary solution
provided that the boundary strength § multiplied with a certain function of m (the a priori lower
bound of density p), m, (the a priori lower bound of temperature 6) and N (the a priori bound
of the L>(0, T; H' (R,.))-norm of perturbation) is suitably small (see Lemma 3.1 for detailed
statement). Next, to get uniform pointwise bounds of the density p(¢, x), we transform the out-
flow problem (1.1)—(1.5) into a free boundary problem in the Lagrangian coordinate and modify
Jiang’s argument for fixed domains in [12,13]. Especially, we will use a cut-off function with
parameter to localize the free boundary problem, and then we will deduce a local representation
of the specific volume v = 1/p to establish the uniform bounds of v. With such uniform bounds
of the density p in hand, we can derive the H L_norm (in the spatial variable x) estimate of the
perturbation uniformly in the time ¢ in the Eulerian coordinate. And the maximum principle en-
ables us to get the positive lower bound of the temperature (¢, x) locally in time ¢. In view of the
a priori assumption (3.8), we have to obtain the uniform positive lower bound of the temperature
6(t, x), which will be achieved by combining the locally-in-time lower bound of 8(¢, x) and a
well-designed continuation argument.

The layout of this paper is as follows. After stating the notations, we summarize the existence
of the stationary solution and some properties of the smoothed rarefaction wave in Section 2. The
basic energy estimate, the uniform bounds of the density p, the uniform H'-norm estimate and
the locally-in-time lower bound of the temperature 6 will be obtained in subsections 3.1, 3.2, 3.3
and 3.4, respectively. The last part of this manuscript, subsection 3.5, is devoted to showing the
proof of our main results by applying a well-designed continuation argument.

Notations Throughout this paper, LY(R) (1 < g < oo) stands for the usual Lebesgue space on

R4 equipped with the norm |-||z¢ and H k (R4) (k € N) the usual Sobolev space in the L? sense
with norm || - [|x. We introduce || - || = || - || L2(Ry) for simplicity. The space of continuous functions

on the interval / with values in H*(R,.) is denoted by C(I; H K(R4)) or simply by C({; H ky
while the space of L?-functions on I with values in H*(R_) is denoted by L%(I; H*(R,)) or
simply by L>(I; H¥). The Gaussian bracket [x] means the largest integer not greater than x, and
x4 :=max{x, 0} is the positive part of x.
2. Preliminaries
It is well-known (see [2,29] for example) that for each (7, x) e R4 x R,
(0", u®, 6051, x) € Ra(p—,u—,6-), A", u®, 0%, x) =w® (1, x),

where

M(p,u,0):=u++/Ryb
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is the 3-characteristic speed of the system (1.9) and wR (¢, x) is the continuous weak solution of
the Riemann problem on Burgers equation

wk + wRwR =0 for (,x) e Ry x R,
wRO,x)=wy  for £x>0

with wo = A3(p+, us, 6+). Moreover, wX(z, x) takes the form of

w_ forx <w-_t,
wR(t,x) =1 x/t forw_t<x <w4t,
wy forx > wyt.

The main idea in [8] is to approximate wk(z, x) by the solution w(#, x) of the Cauchy problem
(1.11). The following lemma can be deduced by virtue of the method of characteristics (see
[8,23]).

Lemma 2.1. Let w_ < wy. Then the Burgers equation (1.11) has a unique smooth solution
w(t, x) satisfying

1) wyx(@,x)>0, w_ <w(t,x) <wg for (t,x) e Ry x R;
(i) when x <w_t, w(t,x) —w_ = wy(t,x) = Wy, (t,x) =0;
(iii) for each p € [1, 00], there exists a constant Cj, 4 such that

)

1 1
P e R
lwy Ol Lrwy < Cp.gminfw, wre "7}

P [ g g
lwsx ()l Lo Ry < Cp.gminfip, e~ a7y
(iv) 1imy— o0 SUP, g W (t, x) — wR(z, x)| = 0.
Having obtained w(t, x), we can define the smoothed rarefaction wave (5, it, 6) according to

(1.12). Then one can check from a direct calculation that (p, i, ) solves the compressible Euler
system (1.9) and

(p,1,0)(0,1) = (p—,u—,60-), lim (p,a,0)(t,x) = (p4+,uy,04) foreachr>0. (2.1)
X—> 00

In view of (1.12) and Lemma 2.1, we have the following properties for the smoothed rarefaction
wave (p, u, 6).

Lemma 2.2. The smooth approximation (p, it, 0) connecting (o—,u_,0_) and (py, u, 64 ) sat-
isfies

Px=——p0 Oy, Ux= =—f 2 x5 (2.2)
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(i) if x < (u— + VRyO-)(1 + 1), then (p, i1, 0)(t,x) = (p—, u_,6_);
(iii) for each p €[1, 00), there exists a constant C, 4 such that

_ 1 141
| it 8D g, ) < Cpgmin{s, 87 (14077, (2.3)
- _qalg_1
| Bexs e, o) O] 1 g, < Cpg minfs, (1407 a7y (2.4)

where § := |(uy —u—_, 0y — 0_)| is the boundary strength;
(iv) im0 SUp, g, (5, i, 0)(t, x) — (p®, u®, 0%)(1 41, x)| =0.

Next we state the existence and the properties of the stationary solution (5, i, ) satisfying
(1.16) and (1.17), which has been derived in [15]. To this end, we introduce the Mach number at
infinity as

[t |
Mm = k]
Cm

where ¢;,;, := 4/ Ry 6, is the sound speed.

Lemma 2.3 (/16]). Suppose that (u_, 0_) satisfies
(U_,0_) € M™ = |(u, 6) € R2: |(u — 1y, 0 — 6p)| < 50]
for a certain positive constant §.

(i) For the case M,, > 1, there exists a unique smooth solution (p,u, é) to the problem
(1.16)—(1.17) satisfying the decay estimate (1.18).
(ii) For the case M,y = 1, there exists a certain region MO c M™ such that if (u—,0_) € MO,
then there exists a unique smooth solution (p, u, 0) to (1.16)—(1.17) satisfying
B Sn—H B
ne~ _ oo _ - —CX
[05 (0 — Py th — U, 0 — Op) ()] < i Sx)k+1 + Cée foralln e N,

(iii) For the case M,, < 1, there exists a curve ~./\/l_ C M™ such that if (u_,0-) € M™, then
there exists a unique smooth solution (p, i, 0) to the problem (1.16)—(1.17) satisfying (1.18).

Since the stationary solution (p, i, é) and the smoothed rarefaction wave (p, i, ) are well-
defined, one can deduce that (p, i1, 0) satisfies

ﬁt"’ﬁﬁx‘f‘ﬁﬁx:fl,
Py + itity) + Py = piixx + f2, (2.5)
Cvla(ét + ﬁéx) + Piy = Kéxx + [,le)% + /3

for (¢, x) € Ry x R and the condition

(Ib\vﬁ’é)(tvo):(pf’ Lt,’@,), lirgo(la3ﬁvé)(t3x)=(p+1u+99+) fOreaChtZO. (26)
X—>
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Here P := P(p,0) = Rp6 and
F1=iix(p — pm) + x (B — pm) + Pu (il — ) + pr (il — ), 2.7
Fo= plie (i — ) + ity (it — )] + it (5 — ppm)
+(P—P—P)—p (5~ pu)Py, 2.8)
f3= ol (@t — um) + O i — um)] + ¢y (B — pm)it0y
+ i (P — P)+ (P — P)ity — RO(S — pp)ily. (2.9)
3. Stability analysis

This section is devoted to proving our main results: Theorem 1 and Theorem 2. We will
concentrate on the proof of Theorem 2, that is, the stability of the composition of a rarefaction
wave and a non-degenerate stationary solution. The proof of Theorem 1 is similar to and simpler
than that of Theorem 2. We therefore omit it here for brevity.

First we introduce the perturbation (¢, ¥, ¢) toward the superposition wave (9, i, é) as

(@, ¥, D)(t.x) = (p,u,0)(t, x) — (B, 1, 0)(t, x),

where (0, 1, é) is given by (1.21). Then we subtract (2.5)—(2.6) from (1.1)—(1.5) to have the
initial boundary value problem:

¢t+“¢x+,0‘/fx=f1,
(W + up) + (P — P)y = utnr + f2, (3.1)
Cyp (U +udy) + Py = ki0xx +/Mﬂ§ +f3

for (¢, x) € Ry x Ry with the initial and boundary conditions

(@. ¥, D)li=0 = (¢0, Y0. Vo), (¥, )]x=0=(0,0). (3.2

Here the initial condition (¢y, ¥, %) := (0o, ug, 69) — (, u, 0)|,—o satisfies

1im (¢, Y. 90)(x) = (0.0,0), 3.3)
and
fi= —ixp— pev — fi. (34
fr= ity — pp~ bl + p 9P — pYite — 5 p fo. 3.5
f3= KO — P ¢ (clcx + pity) + it
+ 2ty + 2puii ity — RpOilx — copbey — 5~ p f, (3.6)

where f", (i =1,2,3) are defined by (2.7)-(2.9), respectively.
We turn to deduce some desired a priori estimates for the perturbation (¢, ¥, ¥) in the Sobolev
space H I Before doing so, for some non-negative constants N, s, ¢ and m; (i = 1,2) with
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t > s, we introduce the set in which we seek the solution of the initial boundary value problem
(3.1)—(3.2) as follows

X(s,timi,my, N):={(¢, ¥, ) € C[s, 1]; H') : (Y, 02) € L*(5,1: HY), ¢ € L*(s,1; L),
(@, . )OI <N, @+ ), x) =my, (F+0)t,x) =maV (t,x) €[5, 1] x Ry}

The letter C or C; (i € N) will be employed to denote some positive constant which depends
only on infycr, {po(x),B0(x)} and | (¢o, Vo, Do) |l1. The exact value denoted by C or C; may
therefore vary from line to line. For notational simplicity, we introduce A < B if A < CB holds
uniformly for some constant C. The notation A ~ B means that both A < B and B < A. Besides,
we will use the notation (o, 0) = (¢ + p, ¥ + é).

To make the presentation clearly, we divide this section into five parts. The first four parts
concern the a priori estimates for the solution (¢, ¥, %) € X (0, T; m1,mp, N) to the problem
(3.1)—(3.2), where T > 0 and it will be assumed that m; <1 < N (i =1, 2) so that

1@, ¥, DO =N, mi <p@,x) SN, my<0(t,x) SN forall (r,x) € [0, TIxR4. (3.7)

In Subsection 3.5, the last part of this section, we will combine the energy estimates with a
well-designed continuation argument to prove Theorem 2.

3.1. Basic energy estimate
In this part, we will show the following basic energy estimate.

Lemma 3.1. Suppose that the conditions listed in Theorem 2 hold. Then there exists a sufficiently
small €g > 0 such that if

E(my,ma, N)(+8) < e (3.8)

with 2(my, ma, N) :=mf50m;50N50, then

sup /pgdx—i—/ < )(l O)dt—i—//[ i|dxdt (3.9
0<i<T
TR

sup [¢de+/¢g(t 0)dt+f/ xd dr <N, (3.10)

0§t<T
0 Ry
where

~ (D r, ~ (0
E:=ROD| — +§1ﬂ + c,0 P 7) P(z):=z—Inz—-1. (3.11)
0
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Proof. Step 1. After a straightforward calculation, one can derive

. 99, 0 2 9192 >
(pS),+[pu5+w(P—P>—m/n/fx—x - ] a2 ZRq, (3.12)

from which we obtain

fy? o2 d
—/pgdx—u pq)(p)(t 0)+f[ R 92:|dx=Z/qux, (3.13)
R =g,

+

where each term R, on the right-hand side of (3.12) will be defined below. Before defining and
estimating all the terms on the right-hand side of (3.13), we set

U:Z (1571’_"0_)7 U:Z (ﬁaﬁve)’ Um = (pl’rhul’rhgm)a \Ij:: (¢7 W, 29)

First we consider

O [ 6,9,
Rl.:_l: }’
0 0

which is trivially estimated by Sobolev’s inequality as

1 1=
RIS my 2| U W[ S 2 W12 W12 | U || W]

In light of (2.3) and (3.7), we apply Holder’s and Young’s inequalities to deduce

- Lo 3
fIRlldXS MR TN

Ry
(3.14)

A

o 1ol _1 3
my, “N282(1+1)72 || Wy 2

_8
3

< A4+0724m, SNI&I |2

Next we consider the term
v - 5 _
Ry = E(Kexx + lf“'tx) + U Uy,
This term can be controlled by Sobolev’s inequality as
1 1T = -
(Ral S m3 19110l 4+ 10:2] S m3 NI 10l + 104

According to (2.3), (2.4) and (3.7), we infer
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-1 1 1 - = 12
(Raldx S m3 Il ® (10l o + 1021
Ry
(3.15)

N

1. 121 _1
my N |265 (1 41)73
7 =1
S 4076 +my N2 W%,

Let us now consider the term

0o f Dit i 9 f3 + 6 f:
R32=—R ¢Afl +2ll« UxUx —p f3 AAWfZ.
0 0 po
It is not difficult to derive from (2.7)—(2.9) that
((Fr. fou P SNUNT = Ul + UNU = Upl. (3.16)

In view of Lemma 2.2, we deduce that U (¢, 0) = U,, and hence we have that for q>1,

10118 = Unl + 104110 = Ul +10:110

La

X
SNONT = Ul + |17x|f U |, y)dy + |Ux 1Ty
0 L4

’

SN0ullzoe |10 = Unl + x10:1 +10]

which combined with (1.18) implies

S8NU I oo (3.17)

10T = Ul 410010 = Ul +10:01051|

It follows from (3.7), (3.16) and (3.17) with ¢ = 1 that
/ IRaldx < Nmy W £oo8)| Uy |l 1o
Ry

We use (2.3) and Young’s inequality to have

1z 1 1 1 _4 —434 776 2
/|R3|dx§Nm2 S(LA+DT WP I2 ST +1)73 +my S N7 Wxll” (3.18)

Ry

‘We then estimate the term
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~ 0 0
o si o esn(2) ()]

_|R*%_(p 2 5 (2 i p
— pily S| - )+yY "+ ROD| = + i [1— =
Cy o 0 p
1 o) ~ - 19‘ 7] 19 ~
+ 9 |:5 — %] I:Kexx + /1«14;2(] + 5 |:K x@ al + Zlu'{xwx:|
- ~ A1 R 0 0
+ ﬁi I:Kexx + Mui + f3] |:—CD (£> + & <7)i| .
1Y Cy Y 0

To this end, we first obtain from the identity

1 1
b() = f / 619 (1 4 6,02(z — 1))d02d60, (z — 1)°
0 0

that
C+D?@-D?SP@ S+ D@ - DA (3.19)
This last inequality implies

5 0
@ (%) <m2¢* <m2Nigl, @ (5) <my202 <my N, (3.20)

In light of (3.16) and (3.20), we discover
2 1 )
/|R4|dx§N2m;2m;2ZZ/ 05T — Up)| 105 9| dx. (3.21)
R, =0 k=0g,

To estimate the terms on the right-hand side of (3.21), we utilize an idea in Nikkuni—Kawashima
[24], that is, the following Poincaré type inequality

lo(t, )| < 1o, 0] + Vxllg: ] for x € Ry.
Applying this inequality to ¥, we deduce from (1.18) and (3.19) that
~ 2 ~ ~ 1~ ) ~
/ 900 = Un|8y W[ dx < 8¢ (1, 0)> + 81w | < N2my'5p (%) €0 +81:07 (390
Ry
for k=0, 1 and ¢ € N. Plug (3.22) into (3.21) to deduce

3 _2z P 0 2z
/ |Raldx < N*m [ Pmy25p® (5) (t,0) + N2m2my 25| W, || (3.23)
Ry
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We next estimate the term

Rs = wéx[ pz‘}+R¢+Rp<I>< >+Cqu>(9>:|
6 P 6

_| R _(p NN
— pily (L) +yi+RrRéD( )],
Cy 1Y 0

To this end, we introduce

0 0
a:=In(-— and b:=In| = (3.24)
o 1%

In light of (2.2), one can find
Rs=—p0:F({,a,b) (3.25)

with

F(,a,b) = Ryra+ cowrb + Ry RG“20(e% —a — 1)

+y‘ 9 1/, +\/_Cv éé(eb—b—l)

One can easily deduce that (F, dy F, 9, F, 9, F)(0,0,0) = (0, 0, 0, 0) and that the Hessian matrix
of F is

2EGL R cv
Hp(y,a,b) = R Ry RG~20e" 0
Cy 0 «/Rycvé_%éeb

Let Dy (k=1,2,3) be the k x k leading principal minor of Hr(0, 0, 0). Then we have

296710 —y

VRV 5 Rzzyé_lé—y+1
y y—1

9 2 Dy= , D3=cy/yRR*~20
y—1

Apply Sylvester’s criterion (see [5, Theorem 7.2.5]) to deduce that there exists a positive constant
&1 such that if § < &1, then Hr(0,0,0) is positive definite. Then it follows from the Taylor
formula (see [ 1, Theorem VII.5.8]) that
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2
1
F(y,a,b)= Z E(waw +ad, +bdp)1F(0,0,0)
g=0""

1
- /(1 —){(Wdy +ads +bdp)>F (11, ta, th)
0

— (Ydy +ad, + bdp)*F(0,0,0)}dr

IA

%(w, a,b)HF(0,0,0)(¥,a, b)"

1
+ \/R_y_*%é/(l —1) {Ra2 (e — 1) + cyb? (e”’ - 1)}dr.
0

Due to 8, > 0, we derive that if §<e 1, then

Rs < pby [az(elal — 1)+ p2 (e — 1)] . (3.26)
We note that the identity
(z — 1)do,
Inz= | ————
I+61(z—1)
0
implies
Inz* < @'+ DXz - DA (3.27)

Then we apply (3.27) to a and b and use the estimate (3.26) to find
Rs < Nmp>my 0x WP,
which combined with (2.3) yields

/ IRsldx < Nmy2m3> |10l oo W] oo || W]
Ry

. o 1 (3.28)
-3 351 -3 3 3
S Nmi7my 88 (14 0)78 [ W]2]| W2

< (4076 +my 2my 25N w2,

Plug (3.14), (3.15), (3.18), (3.23) and (3.28) into (3.13) to obtain
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d o Vi
E/pgdx—u_pfb(;)(t,O)—}-/[e +92]dx
Ry R

. (3.29)
| ~ 0
S +1)76 +my 2y 2N [57 + 5] [pcb <%) (t,0) + II\I'XIIZ} :

Hence we can find a sufficiently small constant ¢ > 0 such that if
i 2my N (52 4 5] < e, (3.30)
then

d b V2
5 | PEdx —pu- <I><p>(t,0)+/|:9 +92}d

R, Ry
S A+ bmy 2my N (5545 2,

from which we obtain

e G

R 0 R
" - (3.31)

St+myPm 12N16 52 /nqu(t)n dr.

Step 2. We now make some estimates for the last term in (3.31). We first differentiate (3.1); with
respect to x and then multiply the resulting equation by ¢, /p> to find

¢? ug? 2 2 5 ¢x1/fx_ b PuVax
(2p3),+<203) R e R (332

Multiply (3.1)2 by ¢, /p? to have

(d’xw) |:¢t¢+:5xl/f2:| d)xwxx
e — K

o P o p?
_ _pxﬁx¢1/f . ﬁﬂl//z _ ﬁxl/”/fx . ﬁfol . Px¥ iy (3.33)
p? o o 02 o
”xllfx(ﬁ Yy 4 ”x¢x1// IS

f+¢+

X ¢X
—(P—P)x?—i-fz?

In light of (3.32) and (3.33), we have
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2 2 R 2
t X

203 p 2p3 o o

which combined with Cauchy’s inequality implies

2
/ xdx+/¢ (sO)ds—i—//

where each term Q, on the right-hand side of (3.34) will be defined below. First, let us define

5 t
x <1+/pw2dx+2//|Qq|, (3.35)
Ry =10 R,

Ro, 0
Q)= y2 - ROl
and by applying Cauchy’s inequality, we have
t t t
0?2 »2
//|Q1|§6/f ;’2"+f/[w§+6(e)7x]. (3.36)
0 Ry 0 Ry 0 Ry
Then we consider the term
0 w
Q= — 2 PO L G4 ) s s~ RO — i)
A . u Rpo O
_@(pxuﬁpxux)_w _prwx L v pxzd)x’
o o P o o
which can be controlled as
1Qal Sm> @+ 8)We? +m | (U, Ur)||(W, W), (3.37)

In light of (3.22), we have

//|Q2I<N2 —45f ( )(s 0)dv+m13(8+8>f||w ()II* ds. (3.38)

0 Ry

For the term

Q3 :=— lfj)x (Uhxx® + Pxx V) — ‘/J;)ja (—Rﬁxé(f) - ﬁxﬁd"ﬁ)
2;5xw1px + ﬁx‘ﬁwx _ R,5x129¢x’
P o o

it follows that
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_ _ 1 1 _ _
| Qs3] ,Sm1_3 |(UX7 Uxx)| W] Wyl 5’"1_3”\1/”7”\1’)6”7 i(Uxa Uxx)’ [Wyl.

In view of (2.3), (2.4) and (3.7), we apply Holder’s and Young’s inequalities to deduce

t t
_ 1 — — 3
//IQsI,S mﬁ/||\If||2||(Ux,Uxx>||||wx||zds
0

0 Ry
- 1 1
< mf3N%5%[(1+s)‘7+@ 1, ()11 ds (3.39)
—4,,252
S 14+m;"N3é83 ||\IJ (s)||% ds.
For the term
. i5xﬁx¢¢ lsxxwz
Qi=——F—— ,
P )
we have

1Qal S 2P (1Tl + 10| S 21w 11 [100] + 104

which combined with (2.3)—(2.4) and (3.7) yields

1 1
[ 1005 mi [nwnme (10 + 10,02 s
0

0 Ry

N

ml_zN/ W, () (135 (1 +5) " 3ds (3.40)

A

t
1+ my*N252 / W, (5)]12ds.

Finally we consider the term

Qs = —M;x fix — A( Wit p + p f2) — px;/fzfl + w;fl-

Holder’s inequality gives

//IQsI<m /[u%nu(ﬁmfl,fz,ﬁx)n+||w||Loo||f1||Ln]ds. (3.41)

0 Ry
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We deduce from (2.7) that
| fiel S 10N Tx| + 101U = Uil + U1 = Un. (3.42)
Similar to the derivation of (3.17), we have that for g > 1,
10N+ 10010 = Unl 410110 = Unl| || S8 Oslm. (343)
Combining the estimates (3.16), (3.17), (3.42) and (3.43) and utilizing Lemma 2.2, we deduce

|(ces Fis Foo Fro) )| S Jitex )] + 8] T, Teo)(®)]| oo S87 (1 4+5)7 5.

Plug this last estimate into (3.41) and use (3.16)—(3.17) again to have

//IQs|< my f[||w 871 +5)7% +80+5)7 1w ) 219,17 | ds

0 R
" (3.44)

t
S 1+ (m787 +m7 N5 / 1@y ()2 ds.

Plugging (3.31), (3.36), (3.38), (3.39), (3.40) and (3.44) into (3.35), we take € sufficiently small

to find
2 2 2
/qjd)c+/¢(0)ds+/v/‘qj

0 Ry
1+0/R{[¢+ }+m1 ;2N'°[8 /||¢>x(s)|| ds
sl e (B [ (55

0 Ry
which combined with (3.31) gives

2
/¢xd +/¢3(s 0)ds+//9;x

0 R,

p 2
<1+//[1/, 4 0% ]+m1_50 SONSO[S%+S]//9;X_

0 R, 0 R,
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We take €y > 0 small enough and use (3.8) to have

! 2
/ i +/¢3(s 0)ds+f/ X<1+//[¢3+’2—X]. (3.45)
0 Ry

The estimate (3.9) follows by plugging (3.45) into (3.31) and using the condition (3.8) for a
sufficiently small ¢p > 0. Combine (3.9) and (3.45) to deduce (3.10). The proof of the lemma is
completed. O

3.2. Uniform bounds on density

Having obtained the energy estimate (3.9), we can proceed to deduce the positive lower and
upper bounds of the density p(¢, x) uniformly in time ¢ and space x in this subsection. For this
purpose, we transform the outflow problem into the corresponding problem in the Lagrangian
coordinate by introducing the Lagrangian variable

t X

y=—u_f,o(s,0)ds+/,o(t,z)dz. (3.46)

0 0
By the coordinate change (¢, x) — (z, y), the domain [0, T] x R is mapped into

t
Qr:={(t,y):0<t<T,y>Y(@®)} with Y(@#):=—u_ / p(s,0)ds,
0

and the outflow problem (1.1)—(1.5) is transformed into the following initial boundary value
problem

v —uy =0,
= (M)
v Zy
u? KOy  puy (3.47)
<cv9 + —) + (Pu)y = (— + ) fory > Y (1), :
2 ), v/,
(I/l, 9)|y=Y(t) = (M_, 9—)7
(v, u, 0)]1=0 = (vo, 1o, 6o)-

Here v = 1/p stands for the specific volume of the gas and vg = 1/pg. The basic energy esti-
mate (3.9) in Eulerian coordinate can be rewritten as a corresponding estimate in Lagrangian
coordinate as a direct consequence of the transformation (3.46).

Corollary 3.2. Suppose that the conditions listed in Lemma 3.1 hold. Then

sup / Edy —i—/ / |:— + —:| dydr < 1. (3.48)
0<t<T

Y@ 0 Y@
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Note that the function Y (¢) describing the boundary in the Lagrangian coordinate is part of the
unknown, that is, the problem (3.47) is a free boundary problem. To obtain the uniform bounds
of the specific volume v for the free boundary problem (3.47), we introduce the time-dependent
domain ;(t) withi € Z and ¢t € [0, T'] as

Y@, Y®l+2] ifi=[Y®»l+1,

3.49
[i,i +1] else. ( )

Qi(t) = {

Based on the basic energy estimate (3.48), we have the following lemma.

Lemma 3.3. Suppose that the conditions listed in Lemma 3.1 hold. Then there exists a positive
constant Cy, depending solely on infycr, {po(x),00(x)} and ||(¢o, Yo, Yo)ll1, such that for all
pair (s, t) with 0 <s <t <T and integeri > [Y ()] + 1,

;' < f v ydy <Co. Gyl < f 665, y)dy < Co, (3.50)
Qi (1) Q; (1)
and there are points a;(s, t), b; (s, t) € Q; (t) satisfying
Cy' <v(s,ai(s,1) <Co, €yl <0(s,bi(s.1)) < Co. (3.51)

Proof. Let0 <s <7 <T andi >[Y(¢)] + 1. According to the definition of Y (¢) and the sign of
u_,wehave Y(s) <Y (#) and Q;(¢) C [Y(s), 00). In view of (3.48), we get

v 0
[ o(F)ema [ o (5> (5. Ay S 1.
Qi (0 Qi (1)
Apply Jensen’s inequality to the convex function ® to obtain

1
1€2; ()]

v 1 0
Ysdy | + @ /T(S, vy | <c.
/v i 2o ] 35

Qi (1) Qi (1)

Let « and S be the two positive roots of the equation ®(z) = C. Then we have

1
1€2; ()]

/g(s,y)dy<ﬂ, a < ! /2(s,y)dy<ﬂ'
v - Qi ()] 9 -

Qi (1) Qi (1)

o=

These estimates imply (3.50). Finally we employ the mean value theorem to (3.50) to find
ai(s,t),bi(s,t) € Q;(t) satisfying (3.51). The proof of the lemma is completed. O

We deduce a local representation of the solution v for the free boundary problem (3.47) in
the next lemma by modifying Jiang’s argument for fixed domains in [12,13]. To this end, we
introduce the cutoff function ¢, € W1*°(R) with parameter z € R by
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1, y <[z]+4,
o (¥)=1[z]+5—y, [z]+4 <y <[z]+5, (3.52)
0, y>[z]+5.

Lemma 3.4. Let (t,z) € Qr. Then

B (f MA; (l)

forallt €[0,t]and y € I,(t) := (Y (1),00) N ([z] — 1, [z] +4), where

1 o0
B, (t,y) :=vo(y)exp ;/(MO(E)—M(l,E))fpz(S)dE , (3.54)
t [z]+5
AL (1) := exp i/ / (w —P) deds b . (3.55)
" v
0 [z]+4

Proof. We multiply (3.47), by ¢, to get

(e = [ () = P)ec] ol ()~ ). (3.56)

Let (z,y) € [0, t] x I;(7). Since y > Y (s) for each s € [0, 7], we have [0, 7] X [y, 00) C Qr.In
light of the identity ¢,(y) = 1 and (3.47), we integrate (3.56) over [0, t] X [y, 00) to get

o0 t [z]+5
0
/wz@)(u(r £) — ug(§))de = pu1n 22 R[ (5:3) 4 +//<P—uu—y>.
vo(y) v(s,y) v
y 0 0 [z]+4

This implies that for each € [0, 7],

L exp —/% Db (3.57)
v(t, y) i , v(s, y) B (t,y)A;(t)

Multiplying (3.57) by R6O(¢, y)/u and integrating the resulting identity over [0, 7], we have

/G(S y) f 0(s,y)
expq — = — ds
) v(s y) B (s, y)A(s)

We then plug this identity into (3.57) to obtain (3.53) and complete the proof of the lemma. O
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The following lemma is devoted to showing the bounds of the specific volume v(t, z) uni-
formly in the time 7 and the Lagrangian variable z.

Lemma 3.5. Suppose that the conditions listed in Lemma 3.1 hold. Then

Cil<v(r,2)<C1 forall(t,2) € Qr. (3.58)
Proof. Let (7, z) € Q7 be arbitrary but fixed. The proof is divided into three steps.
Step 1. It follows from Cauchy’s inequality and (3.48) that

B (t,y)~1 forall (z,y) € [0, t] x I,(7). (3.59)

Let0<s <t <7t.Foreach 0 <t <rt, there exists y(t') € [[z] +4, [z] + 5] such that

o', y(t') = o, ).

inf
([z]+4,[z]+5)

Apply Cauchy’s inequality to have

w_P<Cu§_R9<C1//y2 Cii; RO

v =~ w0 20 o vo v’

In view of (1.18), (2.3), (3.48), (3.8) and (3.50), we apply Jensen’s inequality for the convex
function 1/x to deduce

t [z]+5
[ ]z
v
s [z]+4
R t [z]+5
<C+CNmy'(§+8)(t—s)— 5f@(z/,y(z/)) f v (¢, y)dydt
s [z]+4
1 (3.60)
R t [z]+5 B
§C+CNm2_1(S+8_)(t—s)—E/G(I’,y(t’)) / vdy | dr’
s [z]+4

t
<C+Cet—s)—C! /e(z/, y(t'))dr'.

N

Since [z] +4 > [Y (¢')] + 2, we derive from (3.49) that Q[;1+4(t") = [[z] + 4, [z] + 5]. We then
apply Holder’s and Cauchy’s inequalities to obtain from (1.18), Lemma 3.3 and (3.48) that
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t y(')

/ / %ya/, £)dedr’

s b[z]+4 ((GR2)

-

éy / ﬁy / /
—(, —(t', dédr
() + L 6)| e
S Qz1+4(t)
oo 2 5 (3.61)
o 9
<my G431 —5)+ / / L £y / ol 6)de| dr’
) Q44

t o0 ﬁz
§C(t—s)+C/ / vfoyz(t’,é)dédt’
s Y()

<C(t-s)+C.

Applying Jensen’s inequality to the convex function e*, we have from (3.51) and (3.61) that

t t

/9(1’,y(z’))dt/=/exp (Ino@, y(t')))dt’

N N

t
1
> (t —s)exp :/lne(l’,y(t’))dt/
N

7 y(")

1 9)/ / / !l /
> (1 —s)ex —(t',8)d +1In0 (", bpyya(t', 1)) | ds
p PR 9 [z]

S |bratt)

t y(@)

1 9)’ / /
>({t—s)exp| —InCy — / / ?(t ,£)dédr

t—s
>t—s C
exp| — .
- C P t—s

S bpgja(t’,t)
This implies

t

/9(:’ @ar < |° fo=r=s=l (3.62)
Y =) —clu—s) ifr—s>1. '

N

Plugging (3.62) into (3.60) and taking €y > 0 small enough, we have for each s € [0, ¢] that
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t [z]+5
/ / [w—P]SC—C*‘(t—s).
v
s [z]+4

According to the definition (3.55), we then obtain

A, (t
0<A,(t)<Ce/C, AZ—E; <Ce 9/C forall0<s<t<rt. (3.63)
z S

Step 2. Plugging (3.59) and (3.63) into (3.53), we infer that for all (¢, y) € [0, t] x I;(7),

t t

/ Az(t) Q(S, y)dS § U(t, y) 5 1 +/9(S, y)e_’%sds, (364)
Az(s)
0 0

In light of the fundamental theorem of calculus, we deduce from (1.18) and (3.50) that for y €
I(t)and0 <s <t <Tt,

1 1
66, =065, bpyra(s. 7))’

< / 072 10,] (5. £)de + / 0721, (s, £)dé

I (1) I:(7)

1 1

2 2
2

I 92
<m 5(5 +8) + (s, £)dE V0 (s, £)dE
2 v92

I:(7) I:(7)

(3.65)

1

2
2

N 12
<Smy G +5) + sup v (s, ) fﬁu,s)ds ,
I;(7) L) v

where we have used bj;142(s, T) € Q714+2(7) C I (). Combine (3.65) with (3.51) and (3.8) to
give

92 92
I=Csupu(s,) [ —5(s,6)dE SO, S1+supv(s,) [ —5(s,6)dE. (3.66)
v v

I I,
0 I;(7) (@ I;(7)

We plug (3.66) into (3.64) to obtain
t 19%
v(t,y)§1+/ sup v(s, -) ﬁ(s,é)dfd&
v

I,
o @ L)

Taking the supremum over () with respect to y, we have
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t

92
sup v(r,-) <1 +/ sup v(s, ) — (s, £)dEds.
L(1) (1) vo
0 Qi(r)

Applying Gronwall’s inequality to (3.67), we can deduce from (3.48) that

sup v(t,-) <C; forallr €0, ],
I (7)

5975

(3.67)

(3.68)

where C; > 0 is some constant independent of 7, T and z. Noting that z € I,(t), we deduce from

(3.68) that v(t, z) < Cy. Since (7, z) € Q7 is arbitrary, we conclude

v(t,z2) <Cy forall (1,z) € Q7.

(3.69)

Step 3. On the other hand, in view of (3.50), (3.59) and (3.63), we integrate (3.53) on I,(t) with

respect to y to find

_ A1)
1< t,y)dy <e t/C€ / s,
va( ydy Se + A.(5)
I (7)

Consequently, we have
t
/ A0 4o > 1 cee,

As) ™
0

Inserting (3.66), (3.69) and (3.70) into (3.64), we have

t t
At A(t 0?2
u(t,y) > / Z()ds—cf () / —Ld&ds
Az (s) A (s) vh?
0 0 L(v)
t/2 t 5
_ A (1) vy
> 1—cCce /€ - f / —2 d&d
~ © e | %
0 t/2 I;(7)
t/2

2

t
o 02
> 1—Ce—f/C—c/e—’T / —’dsds—c/ /
062

0 I (7) t/21.(t)

vV

1—Ce /€ _Ce ¢ — //
v92

1/2 1, (t)
> 1 forall (¢, y) € [Ty, 7] x I,(1),

2
_y
062

where Tp is a positive constant independent of . In particular, the estimate (3.71) implies

(3.70)

(3.71)
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v(t,z) 21 forallt>Ty, z>Y(7). (3.72)
Asin [16,17], we can derive a positive lower bound for v, that is,
v(t,2) > e ¢ for (1,2) € Qr. (3.73)
Finally, we combine (3.73), (3.69) and (3.72) to get (3.58). This completes the proof. O

As a corollary of Lemma 3.5, we obtain the bounds for the density p(#, x) uniformly in time
t and space x.

Corollary 3.6. Suppose that the conditions listed in Lemma 3.1 hold. Then

Cl <p(t,x) <Cy forall (t,x) €[0,T] x Ry, (3.74)
where the positive constant Cy depends solely on infycr, {00(x), 6o(x)} and ||(¢o, Yo, Do) l1.
3.3. Uniform estimates for the perturbation

In this subsection, we will estimate the Hxl-norm of the perturbation (¢, ¥, ¥)(¢, x) uniformly
in time 7. First we can get the following uniform L2-norm estimate.

Lemma 3.7. Suppose that the conditions listed in Lemma 3.1 hold. Then

T
sup 116 0. )OI + / / [0+ 202 +02]dxar <1 (3.75)

0<t<T
0 Ry

Proof. We divide the proof into five steps.

Step 1. First, for each r > 0 and @ > 0, we denote
Q;(t) ={x eRy:0(,x) >al.
Then it follows from (3.9) and (3.74) that

sup /¢>2dx+/ 2dx+/|¢(s0)|ds // wﬂ?
0<t<T
<=t | J

R\ (1) 0 R\, (1)

< C(a) sup /,oé'dx+/ < )(s 0)ds +C(a)//[ :|<C(Cl)
0<t<T
- R

+

(3.76)

Step 2. We now estimate the integral fo fQ, o V5 2 To this end, we multiply (3.1)3 by (9 —2), :=
max{y — 2, 0} and integrate the resulting 1dent1ty over (0, 1) x R4 to obtain
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t t
%/9(19—2)idX+K/ / 193+R//p9¢x(?9—2)+
Ry

0 Qs 0 Ry
(3.77)
——fpo<zs~o—2>+dx+//f3w 2>++u//¢ - 2)s.
0 R, 0 R

To estimate the last term of (3.77), we multiply (3.1), by 24 (¢ — 2)+ and integrate the resulting
identity over (0, #) x R to find

t

/w p(® — 2)+dX+2M//1ﬁ - 2>+—/ / P20y +ud)

0 Ry 0 Q’z(s)
t
/wopo(ﬂo—2)+dx+2R//p9¢x(t9 2)++2R/ / POV Dy (3.78)
0 Ry 0 Q’Z(S)
t t t
+2Rf/¢(ﬁé)x(l9—2)+—2u/ / wwxﬁx+2//f2w(ﬁ—2)+.
0 Ry 0 Q(s) 0 Ry

Combining (3.78) and (3.77), we have from (3.1)3 that

t t
/[%’pw—2>i+w2p<ﬁ—2>+]dx+xf / ﬁ3+uf/w,%<z9—2>+

R 0 @ 0 R
v 2 v (3.79)
6

- / [Fo000 =23 +¥po(0 = 2)4 |dr + 3 7.

R, p=l

where each term J), in the decomposition will be defined below. We now define and estimate all
the terms in the decomposition. We first consider

t

'
Ji ::R[fpewx(ﬁ—2)+ and jz::2R/ / POY V.

0 R4 0 Q)(s)

In light of (3.74) and (3.9), we have
f Yldx + / fdx < / pEdx < 1. (3.80)
Ry Q] (s) Ry

From Cauchy’s inequality and (3.74), we obtain
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t t
e e//xb?(ﬁ—2)++C(e)/f92<ﬁ—2)+

0 Ry 0 Ry
t t
< e/fwf<ﬁ—z>++0(e>//9<ﬂ— 2 (3.81)
0 Ry 0 Ry
t t
< e//¢f(ﬁ—2)++C(e)/sup(19 ~ 13,
0 R, o X+

and

t

|72l < e/ / 193+C(e>/ / v26?

0 Q(s) 0 Q(s)
t t
2 2 2
< 6/ / ﬂx—i-C(e)/ f i (3.82)
0 Q(s) 0 Q)
t t
< 2 2
< e/ g +C(e)/sup(z§‘ - D5
0 0

Q5 (s)
Here we have used the fact that
f<K@®-1

with K =2 + SUpR2 0 provided that © > 2. Let us define

t
g=[ [ [po -2+ v+ 2mpo -2.].

0 Q)(s)

According to (3.5) and (3.6), we use (3.16) and (3.74) to deduce

[(f2 IS G+ [(W, W)Uy, Uy, Uyl (3.83)
with
G = |Upe| + |0 + 1010 = Up| + 1T 1T = Upa| + 1T || . (3.84)
Hence, we have
‘
s 5/ / (G + W, w0l |0r, Or. Ol | [ m3 '@ =22 +97]. (3389)

0 Q)(s)
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It follows from Lemma 2.2 and (3.17) that
1G], <550 +973, (3.86)

from which we get
t

/ f G [mz_l(l? -2 + wz]

0 Q)(s)

1
1

<55 [ A+ 973Nl +my 53 /%pw —1)2 (3.87)
+

%/Hllfxﬂ +m; 53 /sup(z?—l)%r.
Ry

Next we have from (3.7) and Lemma 2.2 that
t
my ! / f (W, W) [Ty, Uy, Ue) | = 2%
0 (s

t
gmglf / (T Uy, Uy [Nz(ﬂ—z)"i+|xpx|2] (3.88)

0 Q)(s)
gm;1N2(S+S)/ [sup(ﬁ 12+ ||\1/x||2].
Ry

Since

(W, w2 < (14 [9)) [0 + |, > < (3.89)

we have

t
//|(\If,wx)||(0x,0x,0”)|w2

0 Q)

/ / NPT, + N2 w)? |<UX,U“)|]+(8+8)/||\II & (3.90)
0 Q)(s)
t

+5N? /||\p I +8m_1N4/p<I>< )(s 0)ds.

0

m|'\’

§1+[S%
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To derive the last inequality in (3.88), we have used (3.22), Young’s inequality and

35k 3
|Us ||‘I’| <II‘I'IILooIIU I lWI3 SEENT(+5) 16w, |7,

Plugging (3.87), (3.88) and (3.90) into (3.85), we deduce from (3.8)—(3.10) that

t

|BI< 1 +fsup(19 - D3

R4

Let us now consider the term

t
7 :=2Rf/w<ﬁé>x(0—2)+,

0 R
which combined with (3.7) and (3.8) yields

t t

|J4|sfsupw—2>+||w||||(ﬁx,éx>||sfsup(ﬂ— 1)2.
o 0 B

For the term

t

Fo= [ [ [wvie'? - Punes v~ 2upwnns].

0 2(s)

we apply Cauchy’s inequality and (3.80) to deduce

|J5|5e//ﬂ$+c<e>//w2w§+f / 4202

0 2,(s) 0 Q)(s) 0 Q5(s)
t t
< e/ [ orcef [vvie] [ vo-i2
0 Q5(s) 0 Q(s) 0 Q(s)
< e //192+C(6)/ / wry? +/sup(19—l)+
0 Q5(s) 0 Q5(s)

We finally consider

t
:/ / c;]mﬂzﬁxx.

0 Q(s)

(3.91)

(3.92)

(3.93)
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In order to estimate 5, we apply Lebesgue’s dominated convergence theorem to find

Jo= < lim / / oo (V2D

Cy v—>07t
0 Ry

= lim // (20000, = pl@)920}]

Cy v—>01
0 Ry
(3.94)
< — % lim f [ 200w,
Cy v—0
0 Ry
< e //02+C(6)//1/f y2
0 Ry
where the approximate scheme ¢, (¢) is defined by
1, Y—2>v,
() =3 —2)/v, 0<—2<v,
0, U —2<0.
Plugging (3.81)—(3.82), (3.91)—(3.94) into (3.79), we get from (3.74) that
t
Jo-22acs [ [ [02+vi0-2.]
Ry 0 Q)
(3.95)
<1+e//02+6(e>ffx/f vy +C<e)/sup(#—1)+
0 Ry 0 Ry
Step 3. We obtain from (3.9) that
13 t t wz
2 2 2 2
[flews [ [ feioadef [ [5:%]
0 Ry 0 305 0 R\Q ()
. (3.96)
< f / [ﬁ§+w§(ﬂ—2)+]+1
0 2(s)

Combining (3.96) and (3.95), and choosing € sufficiently small, we have

t

/(19 2)+dx+f/ 02+ 6] <1+/sup(l9— % + //1,021//3. (3.97)

0 R, 0 0 R,
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Step 4. To estimate the last term of (3.97), we multiply (3.1); by > and then integrate the
resulting identity over (0, #) x R4 to have

/pw4dx+3u//w - /polﬁo

R 0 R R
B B ! (3.98)
t t t
=& [ [vrwdorsr [ [vrupo+ [ [ 1w
0 Ry 0 Ry 0 Ry
From (3.76) and (3.80), we have
t t
2, A 2
//W WX9¢+/ / Yy o0
0R 0 R4\,
’ #1220 (3.99)
t t
< / 11 1 [ 1614+ 191 2 vy | f Il
0 0
We then apply Cauchy’s inequality to derive
t t t
[ [ vwor=e[ [wiiicef [ v
0 Q(s) 0 Ry 0 Q)(s)
(3.100)
//w y? +C(e>/sup<z9—1)+
0 Ry
In view of (3.83), we utilize (3.86), (3.89), (3.22) and the Young’s inequalities to have
t t
3 < 7 17 7 2
HY SN G+ (¥, W) |(Uy, U, Uro)| | ¥
0 R 0R
i " (3.101)

t

< 1+[S%N% +5N fllxp 12 +5m‘1N5/pc1>< )(s 0)ds.
o
0

Plugging (3.99)—(3.101) into (3.98), and taking € sufficiently small, we derive from (3.8)—(3.10)
that

t

/w4dx+f/1/f w2<1+f/w +/sup(z?—1)+ (3.102)

0 Ry 0 Ry 0
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It follows from (3.9) that

/fw <e//9w +C(e)//—<ef/9¢§+C(e). (3.103)
0 Ry

Combination of (3.103) and (3.102) yields

/¢4dx+//(1+w Wi C(E)+E//91/f +fsup(19—1)+. (3.104)

0 Ry 0 Ry
We plug (3.104) into (3.97) and choose € suitable small to find

t

t
/[(ﬁ—2)i+w4]dx+//[ﬁ§+¢§(1+9+w2)]51+/sup(ﬂ—1)2+. (3.105)
0

R
R, 0 R, *

Step 5. It remains to estimate the last term of (3.105). According to the fundamental theorem of
calculus, we have from (3.80) that

r 2

T T
/sup(z?—l)is/ flﬂxl
Ry
0 0 Q@)
T
2
IR E
= )
0 [Qt) @@ (3.106)
2
<e //192+C(6)f/—§
0 Ry 0 Ry
T
< e//ﬂ3+C(e).
0 Ry

Plug (3.106) into (3.105) and choose € > 0 suitable small to obtain (3.75). This completes the
proof of the lemma. O

We obtain the uniform bound of the H; -norm of (¢, ¥, ¥)(¢, x) uniformly in time 7 in the
next lemma.

Lemma 3.8. Suppose that the conditions listed in Lemma 3.1 hold. Then
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T

sup [|(¢, v, )OI+ f [IVB6. 1 + 1 s 9001 | dr = €3, (3.107)

0<t<T
0

where the positive constant Cy depends only on infycgr, {00(x), 0o (x)} and || (¢o, Yo, Po) |1

Proof. First, plugging (3.74) into (3.45), we deduce

2
/@x //9ﬁ§1+//[ﬁ+ﬁf+%}§L (3.108)

0 Ry 0 Ry

where we employed (3.9) and (3.75) in the last inequality.
Next, multiply (3.1); by ¥,/ p to derive

2 P — P),
(w ) [thX + uw ] + = wa + un w = ( ) Yrx — fzw;:x
2 P P

Integrating this last identity over (0, #) x R, we obtain from (3.74) and Cauchy’s inequality that

/x/fdx /w(s0>ds+f/wm

0 R
B (3.109)

51+// [P =P+ £ + iy + 1yl

0 R,

Apply Sobolev’s inequality and (3.75) to obtain

/w (s, 0)ds+//|wx|3< /||wx||||wxx||+/||wxn L

0 R,

< e ffwxﬁae)f A A I IRt
0 Ry
t
< €@ [1+Osup ||wx<s>||3‘}+e//w3x-
<s<t

0 R,

Using (P — f’)x =RO¢x + pOy + gbéx + ¥ 0y), we derive from (3.83), (3.108), (3.75) that
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T

T
[ [lr-p2+iavz]s [ 10600008 + 1 i dorier]

SR, S d, (3.111)

S 1T+ 1101z (o, T1xRy) -

According to (3.83) and (3.84), we have from Lemma 2.2, (3.22), (3.8), (3.9) and (3.108) that

T
/f|(f2,f3>|25 1. (3.112)

0 Ry

We plug (3.110)—(3.112) into (3.109) to get

T
sup ||¢x(t)||2+//lﬁxx51+|I9||L°°([0T|xR+)+ sup_ [l (0113

0<t<T 0<t<T
0 Ry

Then Young’s inequality yields the estimate

sup YOI + / / W2, <1+ 6]l (0.11xR- (3.113)

0<t<T
0 Ry

Next, multiply (3.1)3 by 9, /p and integrate the resulting identity over (0, T') x R to have

T
c 192 2
?v 0§dx+lc.//% 2 ﬁoxdx—i—//[cvm} — ‘/f +R91ﬁx—%j| x s
R, R,

0 Ry 0 R,

which combined with (3.74) implies

/ 2dx+// 2 < 1+// 202 4 Il 4+ 0792 4 1]

0 Ry 0 Ry
T T
N 1+/(1+||1ﬁ||||1ﬂx||)||17x||2+/||¢x||3||1ﬂxx|| (3.114)
0 0
T T
+||9||L°°([0,T]xR+)/f9W§+//f32-

0 R, 0 R,

From (3.113), we have
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/Illﬂxll [Yaxll S sup [l / 1 + ¥ )<1+”9”L°°([0T><R+)

0<t<T

In light of (3.108), (3.113) and (3.75), we then obtain

/ // xxsl ||6||ZOO(U,1]><R+) ( . 15)
0<r<T M ')

Finally, it follows from (3.75) and (3.115) that

160 = 01170 q0.71xm,) S sup_ [P OID O S 1+ 101l (10.71xER, )
0<t<T
from which we have
O(t,x) <1 forall (t,x)€[0,T] x Ry. (3.116)
Combine (3.109), (3.113) and (3.115) to give

sup /[¢x+1ﬂ +z9]dx+f/[0¢x+1/fxx+ﬁ§x]51,

0<t<T
0 Ry

which together with (3.75) yields (3.107). This completes the proof of the lemma. O
3.4. Local lower bound of temperature

In this subsection, we employ the maximum principle to get the lower bound for the temper-
ature, which does depend on the time 7.

Lemma 3.9. Suppose that the conditions listed in Lemma 3.1 hold. Then

infg, 6(s, -)
)_C31nfR+9(s J(E—s)+1

]ilélfe(t forO0<s<t<T, (3.117)
+
where the positive constant C3 depends solely on infycr, {00(x), 6p(x)} and ||(¢o, Yo, Do)ll1.

Proof. It follows from (1.1)3 that 6 satisfies

K P P2 R?
O +uby — —0xy = — a |:M2 _—Mxi| > — =——p92.
Cvp Cup 4pcyp 4pcy

Hence we deduce from (3.74) that

K 2
O +uby — Oxx + C36° > 0.
C

v
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Let © := 6 — 6§ with 0 := —"&s /0>

— Cyinfr, 0(s,)G—s)+1" We observe

®|x=0,oo ZO, ®|t=s ZO,

and

K K
Oxx +C2(0 +0)O =0; +uby —

Cy Cy

O +u®, — Oy + C26% > 0.

Applying the weak maximum principle (see [3, Section 7.1]), we have that ® (¢, x) > 0 for 0 <
s <t <T and x € R. This completes the proof of the lemma. O

3.5. Proof of Theorem 2

This subsection is devoted to proving the stability of the superposition of a rarefaction wave
and a non-degenerate stationary solution, i.e. Theorem 2. To this end, we first give the local
existence of solutions to the problem (3.1)—(3.2) in the following proposition. It can be proved
by the standard iteration method (see [10] for example) and hence we omit the proof for brevity.

Proposition 3.10 (Local existence). Suppose that the conditions in Theorem 2 hold. Let M,
A1 and Ly be some positive constants such that || (¢o, Yo, Do) 1 < M, ¢o(x) + p(x) > A and

Do(x) + é(x) > Ay for all x € Ry. Then there exists a positive constant To = To(A1, A2, M),
depending only on A1, Ay and M, such that the problem (3.1)—(3.2) admits a unique solution

@9 9) € X (0.To: b1, 132,2M).

Next we will give the proof of Theorem 2 in six steps by employing the continuation argument.

Step 1. Let IT and A; (i =1, 2, 3) be some positive constants such that || (¢g, Yo, 9o)|1 < IT and
p0(x) > A1, Oo(x)>rs, 6O(r,x)>r3 forallz,x>0.

Set Ty = 12845 4C§ , where C» is exactly the same constant as in (3.107). Applying Proposi-
tion 3.10, we infer that the problem (3.1)—(3.2) has a unique solution (¢, ¥, 9) € X(0, #1; %M,
%)»2, 2IT) for some positive constant

t1 =min{Ty, To(A1, A2, ID)}.
Let 0 < § < §; with
B (%)\1, %)\2, 21_[) 51 = €9.

Then we can apply Lemmas 3.5, 3.8 and 3.9 with T = #; to obtain that for each ¢ € [0, #1], the
local solution (¢, ¥, ) constructed above satisfies that

A2
O(t,x) > ————=:C4 forallx e Ry, 3.118
( x)_C3k2T1+1 s forallx e Ry ( )
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and

Cl <p(t,x) <Cy forallx eRy,
t
16,9 0O + [ (V58,6 + 10, 2 0)1R ] s =

0

(3.119)

Step 2. If we take (¢, ¥, 9)(#1, -) as the initial data, we can apply Proposition 3.10 and extend
the local solution (¢, ¥, %) to the time interval [0, t; + t»] with

= min{T} — 11, To(Cy ', Ca., C2)}.
Moreover, for all (¢, x) € [t1, 1] + 2] X Ry,
p(t.x)=3C7! 0(t.x)=3Ch 1@, ¥ D1 <2Ca.
Take 0 < § <min{éy, 5>} with
2 (3¢ 1€ 200 ) 8 = .

Then we can employ Lemmas 3.5, 3.8 and 3.9 with T = #; + #, to deduce that the local solution
(¢, ¥, ¥) satisfies (3.118) and (3.119) for each t € [0, t; + £2].

Step 3. We repeat the argument in Step 2, to extend our solution (¢, ¥, ©) to the time interval
[0, 71 + 12 + 13] with

13 =min{T — (11 +12), To(Cy!, Cy, C2))}.

Assume that 0 < § < min{é1, §2}. Continuing, after finitely many steps we construct the unique
solution (¢, ¥, ¥) existing on [0, 71] and satisfying (3.118) and (3.119) for each ¢ € [0, T1].

Step 4. Since 7} > 128).;C§ and

T
sup 1912 + f 192 ()12 < C2,
0<t<T)

T1/2

we can find a £ € [T1/2, T1] such that
19l < Car 191 < §C5 123,
Sobolev’s inequality yields
1 1
0/1IL>* = 0 X \0 = 54A3,
19 ()l < V219 G112 192 () 112 < 32

and so
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0(tg, x) = 01, x) — [0 (tg) [l > 323 forall x € Ry.
We note here that
1@, ¥, (I < Ca,  p(th,x) > Cy' forall x € Ry.

Applying Proposition 3.10 again by taking (¢, ¥, 9)(%, ) as the initial data, we see that the
problem (3.1)~(3.2) admits a unique solution (¢, ¥, ¥) € X (), #; +1]: 3C; ', 123,2C5) with

1} =min{T1, To(C; ", $23, C2)}.
If we take 0 < § < min{é;, 8, 83} with
E(lct ixs,20,)83=¢
=\2%1 » 243 2)093 0

then we can apply Lemmas 3.5, 3.8 and 3.9 with T = ;4 1] to obtain that for each time 7 €
[£). t; + 111, the local solution (¢, ¥, #) satisfies (3.119) and

infg, Q(t(/), 3 A3
0, x) > —— ; > =:Cs; forallx eR,. (3.120)
Csinfgr, 0ty )1 +1 7~ C3a3Th +2

Step 5. Next if we take (¢, ¥, ﬂ)(t(’) + t{, -) as the initial data, we apply Proposition 3.10 and
construct the solution (¢, ¥, ¢) existing on the time interval [0, 7 + 7] + 73] with

ty = min{T} — t{, To(C; ', Cs, C2)}

and satisfying

pt,x)=1ert, o x)=1Cs, 1@, v, H(®)Ih <202

forall (1, x) € [ty + 1], 1)+ 1] + 1] x Ry. Let 0 < § < min{81, 6, 83, 84} with
T(lc—l lc 2c)5 —c
S\ \241 530S, 204 0-

Then we can infer from Lemmas 3.5, 3.8 and 3.9 with T =1} 4t + ¢} that the local solu-
tion (¢, ¥, ¥) satisfies (3.120) and (3.119) for each 7 € [1, 1; + t] + 13]. By assuming 0 < § <
min{d1, &2, 83, 64}, we can repeatedly apply the argument above to extend the local solution to
the time interval [0, t(’) + T1]. Furthermore, we deduce that (3.120) and (3.119) hold for each
t €[ty ty+ T1). In view of ) + T1 > %Tl , we have shown that the problem (3.1)—(3.2) admits a
unique solution (¢, ¥, ¥) on [0, %Tl].

Step 6. We take 0 < § < min{dy, 82, 83, 84}. As in Steps 4 and 5, we can find ¢ € [t} + T1/2, 1)+
T1] such that the problem (3.1)—(3.2) admits a unique solution (¢, ¥, ©) on [0, £ + T1], which
satisfies (3.120) and (3.119) for each ¢ € [#), t; + T1]. Since 15 + T1 >t} + %Tl > 2T}, we have
extended the local solution (¢, v, ¥) to [0, 277]. Repeating the above procedure, we can then
extend the solution (¢, ¥, ¥) step by step to a global one provided that § < min{éy, 62, 83, 84}.
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Choosing €3 = min{dy, 62, 83,84}, we derive that the problem (3.1) has a unique solution
(P, ¥, ) € X(0, o0; Cl_l, min{Cy, Cs}, C3) satisfying (3.119) for each ¢ € [0, 00).

Therefore, we can find constant C¢ depending only on infycr, {00(x), 8o(x)} and || (do, Yo,
Y0) |1 such that

sup 1 DO + [ [l + N 2001 a1 < 2
<r<oo
B 0

from which the large-time behavior (1.24) follows in a standard argument (cf. [23]). This com-
pletes the proof of Theorem 2.
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