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Abstract

This paper deals with the problem of periodic orbit bifurcations for high-dimensional piecewise smooth
systems. Under the assumption that the unperturbed system has a family of periodic orbits which are
transversal to the switch plane, a formula for the first order Melnikov vector function is developed which
can be used to study the number of periodic orbits bifurcated from the periodic orbits. We especially can
use the function to study the number of periodic orbits both in degenerate Hopf bifurcations and in degener-
ate homoclinic bifurcations. Finally, we present two examples to illustrate an application of the theoretical
results.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The last few decades have witnessed a great devotion by researchers to investigate the periodic
orbit bifurcations of an n-dimensional (n > 2) differential system of the form
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X= f(x)+€g(x), (1)
where x = (x1, xp, - - - ,xn)T,Ofe < 1and

+ +
P Al g(x)z{g ®, X120,

fTx), x1 <0, g (x), x1<0,

with f*, g% C* vector functions.

There have been many works focused on the study of limit cycle problem for planar smooth
or piecewise smooth systems. See [1,3-9,11,13,14,16-20] and the references therein. To our
knowledge, among the various methods for dealing with this problem, the averaging method and
the Melnikov method are the most widely used and important ones. In particular, the authors
[9] developed the Melnikov function method to planar piecewise smooth systems, establishing
a formula for the first order Melnikov function which plays a crucial role in the study of limit
cycle bifurcations.

As a natural generalization, the periodic orbit problem for high-dimensional systems, i.e.,
n > 3, is of growing interest recently [2,10,12,15]. The authors [2] presented a theoretical study
on the existence and the number of periodic orbits bifurcated from a family of periodic orbits of
high-dimensional smooth integrable systems. Li et al. [12] established an integral like Melnikov
function for the plane case which provides a tool to study the existence of periodic orbits for a
class of 3-dimensional systems and applied it to a perturbed Volterra system. Llibre et al. [15]
studied the number of periodic orbits for a class of continuous and discontinuous differential
systems by the theory of averaging method.

In this paper, we aim to establish the method of Melnikov function for high-dimensional
piecewise smooth near-integrable systems which can be used to determine the number of periodic
orbits bifurcated from a family of periodic orbits. More precisely, we develop the Melnikov
function theory for n-dimensional (n > 3) near-integrable system (1) and give a formula of the
first order Melnikov vector function. Particularly, we apply this result to perturbations of the
following system

x=Hy(x,y,2),
y=—H(x,y,2), )
7z=0,

where z = (21,22, -+ , Zn—2)T € R""2 and study the periodic orbit bifurcations of two concrete

piecewise smooth systems with the unperturbed system having the form of (2).
2. A general theorem

Now, we consider the n-dimensional (n > 3) piecewise smooth near-integrable system (1)
which has two C*° subsystems

x=fT(x) +egt(x), 3)

and
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X=f"(x) +eg (%). “4)
We make the following basic assumptions for the unperturbed system (1)|¢=¢:

(A1) Suppose that U C R" is an open set with U N {x]; = 0} £ (. System (3)|c=0 ((4)|e=0, resp.)
has n — 1 different C*° first integrals HI.Jr (x) (H;” (x),resp.),i =1,2,---,n—1, such that
foreachx € U™ (x € U™, resp.), the gradients

n

+ + + - - -
DH,",DH),--- ,DH} | (DH; ,DH; ,---,DH, |, tesp.)

are linearly independent, where Ut = {x € U|x; > 0} (U™ = {x € U|x; < 0}, resp.).

(A2) Let HE(x) = (Hli(x), H2jE x),---, H;El (X))T. There exists an open set G C R~ such
that for each i = (h1, ha, -+, hy—1)" € G, the curves L} = {x e UT | H*(x) = h} and
L, ={xeU” | H (x) = H (A(h))} contain no critical point of (1)|c=o and have two
different end points A(h) and B(h) in common satisfying

A(h) = (0,a2(h), -~ ,an(h)" €U, B(h) = (0,ba(h),--- ,by(h)) € U.

The orbit L;f starts from A(h) and ends at B(h), L, starts from B(h) and ends at A(h).
Thus, L, = L7 UL, is a periodic orbit of (1)]e=o for & € G.

(A3) The curves L?f, h € G are not tangent to the switch plane x| = 0 at points A(h) and B(h).
In other words, for each h € G,

O (Hi' Hy's oo Hy" )

JE, x2, -+, xp) = det
8(x27x3» e 7xn)

are not equal to zero at points A (k) and B(h).
For smoothness of A(h) and B(h), we have the following lemma.
Lemma 1. Let assumptions (A1)—(A3) hold. Then A(h), B(h) € C*°(G).

Proof. Taking hg € G, by (A2), (A3), we have H" (A(hg)) = ho and J*(A(hg)) # 0. Thus,
according to the implicit function theorem, the equation

H"(0,x2,-+ ,x,)=h
has a unique solution
(x2, -+, x5) = (F12(h), Fi3(h), -+, F1,(h)) = F(h) eC®

for h near hgo such that HT (0, F(h)) = h and (0, F(ho))T = A(hg). It implies A(h) € C*°(G).
Similarly, B(h) € C°°(G). This completes the proof. O

By assumptions (A1)-(A3), {Lj, h € G} is a family of periodic orbits of system (1)|¢c—o and
each Ly is piecewise smooth, as shown in Fig. 1. Our main goal is to study the number of periodic
orbits bifurcated from {Lj, h € G}. First, we introduce the following definitions.
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Fig. 1. The periodic orbit of (1)|.—q-

Definition 1. Let s = (s, -+, 5,)7 beann x 1 (n > 2) vector. We define 5 to be the (n — 1) x 1
— T . . S1
vector s = (sp, -+, )" satisfying s = 5

Definition 2. Let S be an (n — 1) x n (n > 2) matrix. We define Stobethe (n —1) x (n — 1)
matrix satisfying S = (8, S), where 8 € R" is the first column of S.

By Definition 2, we can write

o (HF HE - HE)

a(x21x31 e ,xn)

DH*(x) = (* DHi(x)), where DHE(x) =

Next, we give a definition of bifurcation function of system (1). Consider the orbit of system
(3) starting from A(h). For sufficiently small € > 0, it has a first intersection point with the
hyperplane x; = 0, denoted by B.(h) = (0, c2(h,€), -, cp(h, e)!. For the orbit of system
(4) starting from B (h), we denote its first intersection point with the hyperplane x; = 0 by
Ac(h) = (0,da(h, €), -+ ,dy(h,e)T. See Fig. 2 for illustration. Note that both B, (h) and A¢(h)
are smooth in € with A, (h)|¢—9 = A(h). Then we can write

H* (Ac(h)) —H (A(h)) = €F (h, €). &)

Here, we call the (n — 1)-dimensional function F (%, €) in (5) a bifurcation function of (1). For
its property, we have

Lemma 2. For each hy € G there exists €g(hg) > 0 such that F(h,e) e C* for0<e <€y, he G
with |h — ho| < €g. In particular, F(h,0) € C* for h € G. Moreover, for a given ho € G, system
(1) has a periodic orbit near Ly, if and only if F(h,€) has a zero in h near hy for sufficiently
small € > 0.
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z,=0

.

Fig. 2. The orbit X-B\g U EA\G of system (1).

Proof. From the above discussions and Lemma 1, the first part is clear. We next prove the second
part. Obviously, for (h, €) near (hg, 0) the orbit of (1) starting from A (k) is closed if and only if
A(h) = Ac(h). Using the mean value theorem and noting the property of H™ on U™ (see (A1)),
we obtain

H" (Ac(h)) —HT (A(h))
= [DHT (A(h) +0(Ac(h) — A()))] (Ac(h) — A(h)), 6 € (0,1).
Clearly,
DH* (A(h) 4+ 6(Ac(h) — A(h))) = DH' (A(h)) + T (h),
where I'¢ (h) is an (n — 1) x n matrix satisfying T'c (h) — 0 as € — 0. Let

0

Ae(h) — A(h) = (A

), A=(dr—ay, - ,dy—ay)'. (6)

By Definition 2, it is straightforward from (6) to show that

(DH (AM) + T (M)(Ac(h) — A() = (DHT (A(h) +Te(®)) A.

Hence, based on the above analysis and (5), we have

€F(h, €)= (DH+(A(h)) + Fe(h)> A.

According to (A3), det DHT(A(h)) = JT(A(h)) # 0. Therefore, by (6), for sufficiently small
€ > 0 and & near hy,
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Fh,e)=0&6A=0& A.(h)=A(h).
This ends the proof. O

Let M(h) = F(h,0). We call M (h) the first order Melnikov vector function of system (1).
Obviously, if there exists iy € G such that M (ho) = 0, and det DM (hg) # 0, then by the implicit
function theorem, we can obtain a zero of F(h,€) in h near hqo for sufficiently small € > 0.
Hence, the property of M (h) plays an important role in the study of periodic orbit bifurcations.
In the following theorem, we give a formula of M (k) for system (1).

Theorem 1. Let system (1) satisfy assumptions (A1)—(A3). Then the first order Melnikov vector
function M (h) has an expression below

M(h):/DH*g*dt—i—DHJF(A) [DH—(A)]_lfDH’g’dt. 7
AB A

Further, if M(ho) = 0 and det DM (ho) # O for some hy € G, then for sufficiently small € > 0
there exists a unique periodic orbit near Ly, for system (1).

Proof. It is direct that
H"(A0) —H"(A) =[H"(A0) —H (A0)] + [H™ (A) —H (Bo)]
+[H™(Be) —HY(B)] + [HT (Be) — HY(4)]
=L+ L+ L3+ Ly. (3)

By (5), we have
D [HT (Ac(h) = HF(A()] = F(h, €) + €D F (h, €).
Hence, it follows from (8) and M (h) = F (h, 0) that

M(h) = D [H" (Ac(h)) —H (A(h)]le=0
= DL, |e=0 + D€L2|€=O + DeL3|e=0 + D€L4|6=0’

(€))

in which by (8)

DcLile—o = D [H* (Ae) —H™ (A0)] le=o
=[DH* (A) — DH™ (A)] Dc Acle=o.
DcLale—o = De [H™ (Ae) — H™ (Be)] le=0
= DH ™ (A)D¢Acle—o — DH™ (B) D¢ Be|c—o. (10)
D¢ L3|e=o = De [H™ (Bo) — HY (Bo) ] le=0
=[DH" (B) — DH"(B)] D¢ Bc|e=0.
DLyle=o = De [HY (Be) —H*Y(A)] |e=0 = DHT (B) D¢ Be|c—o.
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Notice that the first component of both D A, and D, B, equal to 0. We have

DH*(A)D.A. = DH*(A) D, A, |
- (11)
DH*(B)D.B. = DH*(B) D B-.

By assumption (A3) the square matrices DH*(A) and DH*(B) are invertible. Denote their
S T | S g |

inverse matrices by [DHi(A)] and [DHi(B)] respectively. From assumption (A1), we

know that DH™ (x) f *(x) = 0 for each x € U*. Hence,

Ly=H (A)—H (B) = / dH
A

= / DH™ (x)(f~ (x) + g™ (x))dt

—

B Ac
- f DH™ (x) f~ (x)dt + € / DH™ (x)g~ (x)dt

=€ /DH_(X)g_(X)dt—I—O(e) ,
BA

which follows directly

D6L2|€:o=/DH_g_dt. (12)
BA

Similarly, we have

Ly=H"(B))—H"(A) = / dH" =€ / DH*tg%dt + O(e)
AB. AB
and

DEL4|€=0=/DH+g+dt. (13)

AB

By substituting the second equation of (11) and (13) into the last formula in (10), we have

DeBE|€=O=[DH+(B)]_1/DH+g+dt. (14)

AB

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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Then inserting (11), (12) and (14) into the second formula in (10) gives

S T |
DeAcleeo = [DH*(A)] /DH_g_dt

BA

+DH-(B) [DH+(B)]_1/DH+g+dt

AB

Now, combining with (10), (11), (14) and (15), we can get

DeLileeo = (DH*(A) [DH*(A)]_I - E,H) / DH g~ di

BA

+DH-(B) [DH+(B)]_1/DH+g+dt

AB

—1
DeL|c—o = DH-(B) [DH+(B)] /DH+g+dt—/DH+g+dt.
iB iB

Further, substituting (12), (13), (16) and (17) into (9), it follows that

M(h) =DH*(A) [DH—(A)]A DH-(B) [DHJr(B)Tl / DH*g*d1

AB

+ / DH g dt

BA

From (A2), we have
H*(A(h)) =H"(B(h)) =h, H (A(h)) =H (B(h)).
Differentiating both side of the above two equalities with respect to 4 yields
- —————T [ ————T
DHT(A) [[DA(h)]T] — DHT(B) [[DB(h)]T] =1
and

DH-(A) [[DAGM)I| = DE-(B)[(DBMI]| .

15)

(16)

a7)

(18)

19)

(20)

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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From (19), we have

(DB =[DEF B .

Hence, by (20), it follows that

[[DA(h)]T]T [DH*(A)]_I DH—(B) [[DB(h)]T]T

= [DH*(A)]_I DH-(B) [DH+(B)]_1 . @1

Substituting (21) into (19), we obtain

~1 ~1
DH*(A) [DH*(A)] DH-(B) [DH+(B)] —1I
Therefore, (7) follows from (18) and the above equality. O

Remark 1.Ifin (1) fT = f~ = f, g7 =g~ =g and H" = H™ = H such that system (1) is
smooth, then, (7) becomes

M(h):%DH-gdt.
Ly

This is the formula in (2.4) of [2] up to a constant.

Now we apply Theorem 1 to a class of n-dimensional systems having the form

)E: =Hy(x7ysz)+6P(x’y7Z73)’
y=—H(x,y,2) +€0Q(x,y,23), (22)
Z=€R(x,y,z,96),

where z = (z1, 22, - - - ,zn,z)T eR" 2 n>28cDcCR"isavector parameter with D compact
and
HY, x>0 Pt, x>0
H(x,v,2)= -7 P(x,y,2,8) = o=
.. 2) { H™, x<0, (. ) ! P™, x<O,
(23)
o*, x>0, R*, x>0,
X,V,Z,8) = R(x,vy,z,6) =
Q. ) { 0, x<0, (. ) R~, x <O,
with HE, P*, Q% R* = (Ri, Rzi, e Rriz)T C® functions.
It is easy to see that the unperturbed system of (22) has the form of (2) and has H,
21, 22, -+, Zn—2 as its n — 1 first integrals. The first two equations of (2) define a planar

Hamiltonian system

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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x=H,(x,y,2),
A (24)
y=—H(x,y,2),

with Hamiltonian function H (x, y, z) containing n — 2 parameters z;. Now we make two basic
assumptions (H1) and (H2) for system (24) corresponding to (A1)—(A3).

(H1) Foreach h € G; C R" 2 with G, an open set, there is an open interval J; dependent on h
such that

B I =l WIHT (x,y,h) =hy, x >0}
and

BrA*: L ={(e, ))IH(x,y,h) = H™(A*(h, h), B), x <0}
1,
are two curves with same endpoints A*(h1  h) = (0,a(hy, h)), B¥(hy, h) = 0, b(hy, h))
satlsfylng a(hy, h) > b(hy, h) h1 € J;, and not containing a critical point of (24). Thus,
Lh Bh= LJr U L 1s a periodic orblt of (24).

I
(H2) The curve L h is not tangent to y-axis at points A* and B*. In other words, for each

fl S Gl, h] € JA,
HF (A*(hy. h), h) - Hf (B*(h1, h), h) #0.
Further, for system (22), by Theorem 1, we can prove the following theorem.

Theorem 2. Consider system (22) satisfying assumptions (H1) and (H2). Then the first order
Melnikov vector function M (h, §) can be written as

M (h,8) + Ni(h, 8) + N (h) (M (h,8) + Na(h, 8))
M;(h,3)+M;(h,5)
M(h,8) = (25)

-, 8)+M (1, 8)

(Ml(h’8)7 MZ(}%S)’ ) Mn—l(hs(s))T7 ]’l:(hl,]:\l)T,

where

ME(h, 5) = f 0% (x, v, b, 8)dx — PE(x, v, h, 8)dy,
I* .
hy.h

N(h) = H; (A(h)/H; (A(h)),  A(h) = (A*(h1, ), )T,

n—2

Nih,8) =Y [ M) + HE (A M, . 9) ] (26)
k=1

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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n—2

Nath, 8) =Y [ M7, () = H (AU M, (. 9) ]

k=1

M (h, 8) = f HE(x,y, )R (x, y, h, 8)dt,
ii
hyh

M (h,8) = / RE(,y h,&)dt, k=1,2,--- ,n—2.

r+
hy.h
Proof. Let H*(x, V,2) = (HE, 21,20, - ,zn,z)T. ‘We have
+ + + +
Hi(A) H;(A) H;(A) --- H- (A

1
DHE(A) = 1 ) (27)

(n—1)x(n—1)

By assumptions (H2), we know det (DHi(A)) = Hyi(A) # 0. Therefore, the matrix DH~(A)
is reversible and has the inverse

| CHI () HZ(A) Hy (@)
H; (A) H, (A) H, (A) H; (A)
1
R B |
[DH*(A)] = 1 @8
1 (n—1)x(n—1)

Denote gi = (Pi, Qi, Rf, e R,f_z)T. Then,

+ + + + + +

H; Hy H HS - Hzn_2 Pjt
1 0

DHE .gi _ 1 . RljE
+

1 R,

n—2
HEP*+ HFO* + kzl HER

Ry

+
Rn—2

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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By substituting (27), (28) and (29) into (7), we can obtain the desired result (25). O

Denote

y
T,}(x,y,fz,a)=/H;f(x,y,ﬁ)R,fu,y,ﬁ,a)dy,
0

Iéki(x, v, h, 8) = R,?E(x, v, h, 8)dy.

o\!

Now, we give a lemma which provides an effective way to calculate M lik (h,8) and M le+1 (h,$)
in (26).

Lemma 3. Let

WE (h, ) = / TGy, b 8)dx,
==
hy.h

M, (h,8) = / RE(x,y, h,8)dx.

==

hy.h

Then for N(h), M (h, 8) and M, | (h. 8) in (26), we have

AM; (h,$) aM;,(h,d)
M (h,8) = —2E 7 M (h,8) = — L N,
l,k( ) 8h1 1,/(( ) 3h1 ( )
aM;"  (h,d) ~ oM, (h,d)
M (b, 8) = —" M (0 8) = — L N (h).

dahy

Proof. Recall from Lemma 2 of [20] (also see Lemma 2.3 of [18]) that for smooth functions p*
and ¢, it holds

0 (St oy im0 @7 0, 8)dx = pF(x, v, 0)d)
oh

o da ~ ob

= T gNdt+ pT(A* b, 8)— — pT(B*, h, §)—.

/ (P} +aqDdt + pT( Vg P i
H+(x,y,h)y=h,x>0

Particularly, taking ¢ ™ = 7" and p™ = 0 implies
IM (h,8) _
: + +
OM®0) / (TF), di = M}, (8. ).

oh ’
H*(x,y,h)=h;,x>0

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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Let
h=H"(Ah)). (30)

Similar to the above proof, we derive

aMik(h’a) _ afH‘(x,y,fl):fl, x<0 Tk dx ) 8_ﬁ
3/’1] o aﬁ 3/’11

_ ah

H‘(x,y,ft):ft, x<0

_ - . dh
= / HZk(x,y,h)Rk (x,y,h,8)dt- 8—hl

H=(x,y,l)=H=(A(h)), x<0

dh
=M (h,8)  —. €2))
’ oh

Differentiating both side of (30) and H* (A(h)) = h; with respect to &1, we obtain

H; (A(h)) dahn by _ oh H (A(h))
Y . oh - ohy’ Y .

da(hi, h)

1. 32
on (32)

Further,

oh  Hy(A()

on _ A 33
dhy  Hy (A(h)) &3

follows from (H2) and (32). Hence, combing with (31) and (33), we get

My (h,8) H(A(h)

Mgk =5, CHy (A(h)

The other two formulas can be proved similarly. O
For Theorem 2, we have two remarks in order.
Remark 2. If the conditions in Theorem 2 are satisfied andin (23) Hf = H- =H,Pt =P~ =

P, Ot =0~ = Q, R = R~ = R which means that system (22) is smooth, then (25) can be
reduced to

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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n—2
Mio(h,8) + > My k(h,8)
k=1
fi ; Ri(x,y,h,&)dt

M(h,$) = . (34)

$ : Ru_2(x,y, h,8)dt

hy,

=(Mi(h,8), Ma(h,8), -, Mu_1(h,8)",
with
M o(h, 8) = f O(x,y,h,8)dx — P(x,y,h,8)dy
ihl,fl
and

My i (h,8) = y§ H, (x,y,h)Ri(x, y, h,8)d:.

thﬁ

For this case, denote

y
Tk(x,y,fl,a)=/HZk(x,y,ﬁ)Rk(x,y,ﬁ,a)dy,
0

y
Rk<x,y,ﬁ,8>=/Rk<x,y,12,s)dy.
0

Similar to Lemma 3, we have the following lemma which can also be proved by using
Lemma 3.1.2in [1].

Lemma 4. Let the conditions in Remark 2 be satisfied and

My (h,8) = y§ Ti(x,y,h,8)dx, Myi(h,8) = f Ri(x,y,h,8)dx.

th h th h

Then for M x(h, 8) and My41(h, 8) (k > 1) in (34), we have

Mh8) gy = WM ()

My i (h,d) = )
1,k(h,d) oh: ohy

Remark 3. If the conditions in Theorem 2 are satisfied and H (x, y, z) in system (22) is indepen-
dent of z, then the function M (h, §) in Theorem 2 has a formula of the form

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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YJDEQ:8942

H. Tian, M. Han / J. Differential Equations eee (eeee) see—eee 15

M (h,8) + N(h)M; (h,5)
M (h,8) + M5 (h, )
M(h,8) = .
MF  (h,8)+ M, (h9)

In the following section, we will study the periodic orbit bifurcations of two concrete systems
to illustrate an application of Theorems 1 and 2.

3. Applications
First, we present a linear system in 3-dimensional space with the form of (22).

Theorem 3. Consider a 3-dimensional piecewise smooth system

J&:Ay+6(aa'+af'x+a;'y+a;'z),

y=—-Ax+ebf +b/x+by+bjz), x>0,
z':e(c(')"—i-c?'x—i—c;y—i—c;'z),

and (35)
Xx=wy+ela, +a; x+a,y+azz),

)'):—a)x—}—e(bo_ +b1_x+b2_y+b3_z), x <0,

z=¢€(cy +cyx+cy y+e32),

where 0 <€ < 1, A > 0, w > 0. Then the system can have 1 periodic orbit for sufficiently small
€>0.

Proof. It is easy to see that the two unperturbed subsystems have the following first integrals
respectively

A _ w
H+(x,y):§(x2+y2), H (x,y>=5(x2+y2).

Apparently, (0, 0, h2) is a center in the plane z = hy, hy € R. For h1 > 0, let W be the arc

defined by
A 2h
Lyt x= \/; —v(hy) <y <v(h1)

with V(i) = /24 and A* = (0,v(h1)), B* = (0, —v(h1)). Let B*A* be the arc defined by
i}],hz D H™(x,y) = H(0,v(h)) = 2hy, ie.,

. 2h
Myt X=— Tl—yz, —v(hy) <y <v(hy).

It is easy to verify that

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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Hf(A")  a
Ny hy) = 2=~
Hy (A") o

Then, it follows from Remark 3 and the above formula that

_(Mi(hh)\ (M (i ho) 4+ M (b, ho)
M(hl’hZ)—<M2<hl,hz))‘<Mj(hl,hz)sz(hl,hz) ’

where

ME(hy ) = / 0*(x. y. ho)dx — P*(x, y. ha)dy,
I:hil,hz
M5 (hy, o) = / RE(x,y, hy)dt.

==
Lh] hy

In the subsequent analysis, we will study the concrete expressions of Mli and Mzi. Let

oy, h1) =,/ % — y2. Using Green’s formula twice, it follows that

M (hy, o)
= 7§ Qtdx — Ptdy + / Ptdy
A*B*UB* A% B A*
f[ (PF + QNdxdy + / Ptdy
int(A* B*UB" A%) B AY
X
=- ?g /(P;—f— Q7)dx | dy + / Ptdy
Aguprar L0 B A

=—/ P+(x,y,h2>—P+(o,y,h2)+/Q;(x,y,hz)dx dy

A*B*

+ / Ptdy

s
—v(hy)
== [ [Pt - POy + [ 0f Gy s
v(hy)
v(hy)
+ / PO, y, h)dy
—v(hy)

x=¢(y,hy)

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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v(hy) X
= / P+(x,y,h2)+/ 0y (x, y, ha)dx dy
x=9(y,h1)
—v(hy) 0

20

A

=2 + + +h b+ ‘ d
/ (ao +a/x+azny+ zx)x: /21%_))2 y
0

2h b4
=2(ag +a$ha)\| ==+ Thilai +b7).

Similarly,

v(hy) x
Mt == [P v+ [ 05ty
—v(hy) 0

‘X=—w(y,h|)

2}

A

=2 / (aa —i—afx—i—a;hz—l—b;x)‘x:_mdy

0
_ _ 2h T _ _
= —2(ay +4a; hg),/T1 +—hi(ay +by).

T'hus, we obtain
s A A 2 A
My(hy, h2) A (af +b; + ;al_ + abz_) h1+ 2, x <a+ ao_> vV h

i
/2 Ao
+2 —<a;_——a3)\/h1h2.
A w

Now, let

y

Ri(x,y,hz)=/Ri(x,y,h2)dy, M (hy, hy) = / R*dx.
0 Loy
By the similarity of calculating M = we derive

v(h) T x ]
M (hy, ) = f ij(x,y,hz)dx

’ x=(y,h1)
—v(h) LO _
v(h) T x ]
= RY(x,y, ho)dx

/ / > x=¢(y,h1)
—v(h) LO .

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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1

T
= / c0x+ clx +c3h2x)‘ 2dy
\/ -y
0

4hy [2h
—hl(c0 +c;’h)+ ! Tlc;r

and
vh) [ x T
By (hy. hy) = — / /R;oc,y,hz)dx dy

x==¢(y,h1)
—v(hy) LO i
v(h) [ x T
=— R (x,y,hy)dx

/ / (x5, h2) x==¢(y,h1)
—v(hy) LO i

1
=-2 / (cax+§cfx2+c;h2x)‘ T dy
X=—
0

4h1 2hy _
= —hl(c0 +cyhy) — ETS cl.

By Lemma 3 and the fact that N (h1, hy) = =, we derive

3M+(h1,h2)
M;<h1,h2)—T —<0+cih2)+() Vi,
_ IM; (h1, ha)
M2<h1,hz):2T~N(h1,hz>_ (cg +c3h2) — c1¢

Hence,

+ - + - + -

C 4 c c 2 (c c
Myhih)=n [ L+ 2 )42+ 2 ) h+2/2 (L -2 ) V.

A w A w

Let

+ - + -

c c 2 (c c
dy = 343, ds=2 N U
4 n<k+w> TN T e

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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It follows that

Mi(hy, ho) = M(do%+d1 +d2h2),
My(hy, hy) = ds + dyha + dsv/hy.

5 co didy—dods .
By Cramer’s Rule, if dodi—dods < 0 the equations

Mi(hy, hy) = Ma(hy, hy) =0

have a unique solution

didy — dards dods — dds
Vhio=—————>0, hyp=————.
dody — dods dody — dods
Further, we get
d doh —
dey 21 M2) =det<d0+2‘/l'317+ﬁ = hl)
5
d(h1, h2) (h10,h20) N da (h10.h20)
_dods —dpds  da-Mi(hio, hoo)  dods — dads 20
N 2 2h10 - 2 ’

Thus, by Theorem 1, for sufficiently small € > 0, there exists a unique periodic orbit for system

T .o didy—dod
(35) near the orbit Lj p,, if W <0. O

Remark 4. The result of Theorem 3, in the particular case A = w = 1, coincides with Theorem 2
obtained in [15] by using the averaging method.

In the following, we consider a system which has both a center and a homoclinic loop in each
plane z = hy, hy € R for € = 0. Before presenting the main theorem, we give a lemma.

Lemma 5. Let M (h1, ha) and Ma(hy, hy) be C™ functions with respect to (h1, h2) € G C R?
with G an open set satisfying

(i) Mi(h1, ¥ (hy)) =0 for a C* function yr(hy);
(ii) the function My(hy) = My (hy, ¥ (hy)) has a simple zero h1 = hg such that (hyo, ¥ (h10)) €
— —
G, Ma(h19) =0, My (hio) # 0 and St (h1o, v (h10)) # 0.

Then

(M, M.
dey 21 M2) #0.
(h1, h2) | (nyg, v hio))

Proof. First, we obtain from condition (i) by differentiating the equality

Mi(hy, ¥ (h1))=0

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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YJDEQ:8942

20 H. Tian, M. Han / J. Differential Equations eee (eeee) eee—eee

with respect to /1 that

oM, oM,

0 Mi(hy, W(hl))—aT+— v (hy).

Second, condition (ii) gives

o, —i—a—h2 V' (h) #0.

hi=hyo

— oM IM
M/z(hlo) = ( 2 2 )

Finally, we conclude from the above two formulas and (ii) that

det A(My, M>) _ (8M1 M _ oM 8M1>
a(hl’hZ) (h10,¥ (h10)) ahl ah2 8h] ah2 (h10,¥ (h10))
oM, 8M2
=—[ah -(ah whl))]
2 1 (h10,¥ (h10))
#0. O

Theorem 4. Consider a 3-dimensional piecewise smooth system given by

)'c:y+e(a3'+a]+x+a;'y+a;'z),
y=x—1+ebf +bfx+bly+biz), x>0,
Z:e(car+cl+x+cz+y+c;rz),

and
x=y+e(a, +a x+a,y+azz),
y=—x+elby +bx+byy+byz), x<0,
z=¢€(cy +c x+cyy+c32),

where 0 < € < 1. Denote
ag'—ao_zdo, ar+b+=d1, a; +b;, =dy, a;—a;=d3,
c?L+c]_:d4, cg+c?':d5, c;':dG, ¢y =d7, ¢ =ds,

and assume that dz # 0. Then,

(36)

(37

1) for some (¢,dy, dy, ...,ds) near (O, d.zi_zls’ 0,0, ds, "(d%;d-sd”, ds, dg, d7, dg) with dg # 0

and ded7 # dsdg, system (36) has 4 periodic orbits near the cylinder

(=@ —-1% x>0, ze RIU{x*>+y>=1, x <0, z€R};

Q) for some (¢, dy,dy, ..., ds) near (o do.dy. 0, d3, e @tdds g o o) with dydg 2 0,

system (36) has 5 periodic orbits near z-axis.

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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Fig. 3. The homoclinic loop in the plane z = hj.

Proof. It is obvious that H*(x,y) = 4 [y? — (x = D?] and H™(x,y) = 3 (x> + y?) are first
integrals of the corresponding unperturbed subsystems with H(1,0) =0 and H*(0,0) = — %
On each plane z = hy, hy € R, there exist a center (0, 0, #7) and a piecewise smooth homoclinic
loop passing through the saddle (1, 0, i), see Fig. 3 for illustration. For 4| € (— %, 0), let A*B*

be the arc defined by
L0 x=1=/y>=2h, —pn) <y < plh),

with w(h1) = +/1+2h; and A* = (0, u(hy)), B* = (0, —u(hy)). Let W be the arc defined
by Ly, 0 H (x,y)=H™ (0, p(h1) =3 + hy, ie.,

Ali,hzi x=—14+2h —y2, —pu(h) <y < u(h).

Hi (A%)
Hy (A%)

Then, noting N (hy, hy) = =1, we can obtain from Remark 3 that

My = ((Mrh2)\ (MY (hysho) + My (ki ho)
112 Mo (hy, hy) M (hi, ha) 4+ My (1, ha) )
where
MiE(hy, ho) = / 0% (x, y, ha)dx — PE(x, y, hy)dy,
Lhil,hz
M5 (hy, ho) = / RE(x, y, ho)dt.
Ly,
Let

P1(y, h)) =1—/y2 =2h1, ¢o(y, 1) = —/ 142k — y2.

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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Similar to the proof of Theorem 3, it then immediately follows that

w(hy) X
Mrmhhﬁ==l/ P+Unmhﬁ+:/Qj03%hﬁdx dy
x=¢1(y,h1)
—u(hy) 0
V1420
_ + + + +
=2 / (ag +ajx+azhy+b, x)‘le— y2—2h1dy
0

= (af +a; +b3)v/1+2h; +2ai ha/1+ 2h,
Haf + bk [21n (1 1+ 2h1) —In2— ln(—hl)]

and
w(hy) x
M (hy, hy) =— / P’(x,y,hz)—i—/Q;(x,y,hz)dx dy
’ x=¢2(y,h1)
—wu(hy) 0
V12
-2 - taTx+aThy+by ) d
/ (ag +a;x+azhy+ zx)xz_my
0

T
= —2(ag +ay o)/ 1+2h1 + F(ap +by)(1+2h).

Consequently, by (37)

T
Mi(hy, hy) = 2do +d)v/ 1+ 2hy +2d3hoy/1 + 201 + Edz(l +2hy)
+dih [2ln (1 +/1 +2h1) —In2— ln(—hl)] .

This together with d3 # 0 and M; = 0 gives

do  d h
hy=_%0 _ 41 1+—[21n<1+\/1—|-2h)—ln2—ln—h ]]
2T T4 2d3[ Tt 2h, : (=h1)

—%%¢Tiiﬁzwmo. (38)
3

Now, let

y
Riu,»h9=i/Riu;»hyd% M5 (hy, ho) = f R*dx.

0 ft
th«hz

Similar argument as above, we have

Please cite this article in press as: H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional
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uChy) 7 x 7

i = [ ] [ & ya
—wp(hy) LO |

dy
x=¢1(y,h1)

nChy) T x ]

= / /R+(x,y,h2)dx

—u(hy) LO .

V142h
1
+ +.2, +
=2 / (Co X+ Ecl X" +cy h2x> ‘le_ y2—2h1dy
0
1 4
= (cg + 5c1+ + ¢ ha)y/1+2h — 5c]+h“/1 +2h1 + (cf +¢f

+efho)hy [21n(1 1+ 2h1) —In2— ln(—hl)]

d
x=¢1(y,h1) Y

and
why) ™ x T
M; (hy, h :—/ /R*x, , hy)dx d
5 (h1,h2) y (x,y,h2) —trsh) y
—u(hy) LO _
uhy) ™ x 7
=— R (x,y,hy)dx d
/ / > x=¢2(y,h1) Y
—u(hy) LO a
V14+2h
_ I _, _
=-2 / (cox—l—iclx +c; h2x> xz_\/mdy
0

T _ 2 _ 3
:E(CO +C3 hz)(1+2h1)—§cl (1+2h1)2
Furthermore, we obtain from the above and LLemma 3 that

IM (hy, ho)
ohy
= —20]”\/1 +2h1 + (c(")" —i—cT +c§"h2) *

[21n(1~|—\/1+2h1)—ln2—ln(—h1)] (39)

My (hy, ho) =

and

My (hy, ha)
ohy

=n(cy +c3h2) —2c) v/ 1+2h, (40)
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where (40) follows from the fact that N (h1, hy) = 1. Combining with (37), (39) and (40), we can
get

My (hy, hy) = =2ds+/1 4+ 2h + e (d7 4 dsgh2) + (ds + dgh2) *

[21n(1+\/1+2h1)—1n2—1n(—h1)]. (41)

Substituting (38) into (41), yields a function Moy(hy) = Ma(hy, Y (hy)).
Furthermore, easy calculations give for &1 near O

1
420 =1+ = k3 +0 (),
1 3
In(1+ V15 20) =In@) + shi = 23 +0 (8})), (42)
1 3.5 3
e o ().

If || is sufficiently small and & € (—%, 0), we get from (42) that

Mo(hi) =Y cspprhf + [n(=hD)P [ 71 cangah

k>0 k=0
(43)
+in(=hy) | D ewhh ],
k>0
where
wdyde + 4dode + 2d1de — 4d3ds
o= ,
4d;
ci=——[8d3sdys —4mdyd; —4In(2)d3ds + (w dg + In (2) dg) *
3
(4do+2d + 7 dy)]
di dg 4In(2)d1de+2ndyds + wdrde
CHr = — -, cr = .
2 2d3 ’ 4d;
1
4= ~ad [de (4dp+2d1 +mdy)+ (mds+1n(2) dg) 2In(2) di + 7 d>)
3
+8d3dy —4dsds].
Consequently,
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1

—[n(=h)]™ Ma(hy) = —co — In(—hy)

—c2hyIn(—=hy) — c3h

44
cal 44)

In(—=h1)

+ O(h2In(=hy)) = My(hy).

Hence, for —% <« hy <0, Ma(h)) has the same zeros as those of 1\712(h1) which is bounded.
Similar calculation gives for 0 < iy + % <1

1 1 2 1\%/?
1n(1+\/1+2h1)=\/§ h1+§—<h1+§>+§\/§<h1+5>

1\? 4 5 1\%? 1\?
_<h1+§) +§ 2(/’114‘5) +0<<h1+5>>1

1 h)=—-In@)—-2 (A ! 2| h y? O\lh 1y’
n(—h;)=—-In(2) - <1+§)— <1+§) + <1+§) .

By substituting the above into Ms(hy), we can get an expansion of Mo(hy) at hy = —% below

k

_ 1
Mo =Y s (m + 5)2, (45)

k>0
where

7 (dodg —d3d7)

S0 = d';
2
s1 = —i (nzdzdg + 8dode + 8dzdy — 8d3d5) ,
4d;
T 42
s = ——=— (2didg + 3drds), 53 =——— (dods + d1ds — d3d5) ,
3d3 3d3
= ed (2d1dg + 5d»dg) = 8«/§(9dd + 8d1de — 9d3ds)
54 = I5d; 241ds hde), s5= 25, dods 1ds 3ds) .

We are now in a position to investigate the number of periodic orbits of system (36). Let § =
(do.d1, ..., dg).

(1) For 8= (d;—jﬁ 0,0, dy, Tt odsds) g5 e, d, dg) with d3ds # 0, we have

7 (ded7 — dsdg)

(co, c1,¢2,¢3)(80) = (0,0,0,0), c4(dp) =— d

If c4(809) = 0, substituting § = §p into (38) and (41) gives that sy = —Z—Z and dy + dghy =

d; — % =0, ds + dgh = 0 which means M»(h1, o) = 0. For the case c4(89) # 0 (i.e.,
ded7 # dsdg), we can assume c4(8g) < 0. Further,
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a(co, c1, €2, €3)

det
d(dy, dy, da, dy)
4d 2ds wds 0
1 —41n(2)dg—4ndg —21n(2)de—2mds — In(2)wde—ndy —8d;
T (4dy)4 0 —2d, 0 0
0 4 In(2)dg+2ds nd 0
d6371 20
4a3 "

which implies that ¢y, c1, ¢2, c¢3 can be taken as free parameters. Hence, we can choose
appropriate cg, c1, ¢2, c3 satisfying

O<—cpK—C1K—K—cKl,

such that M,(h;) has 4 simple zeros near h; = 0, which together with (38) shows
oM, _

that M (hy, hy) has 4 zeros. Notice that the conditions in Lemma 5 hold since Ty =

2d3/14+2hy £0 for hy € (—%, 0). Then, det 35%1%2)) # 0 at these 4 zeros. Therefore, by
Theorem 1, we get the first conclusion.

(2) For 8 = (do,dl, 0, ds, dids %,dﬁ,o,o) with d3 = 0, we have

8+/2d:ds

(50, S1, 52, 53, 54)(80) = (0,0,0,0,0), s5(80) = 5d;

If s5(80) =0, it is apparent that d1dg = 0 which follows Mo (h1,80) = 0. If 55(89) > 0, then

9(s0, S1, $2, 53, S4)

det
(da, da, ds, d7, dg)
o 0 o0 nx -Zb
3
2 2
nedy 8d3 —8ds 0 m<dy
2 2
=—“9/;;3 3d 0 0 0 24
o 0o &2 0o o
5d¢ 0 0 0 2d
_ 12873d,ds
~135d; ’

which means that sg, s1, s2, 3, s4 can be taken as free parameters. As above, by choosing
suitable sg, s1, $2, §3, S4 satisfying

O<—50<K5 K= K53 K =85 KL 1,

we obtain 5 simple zeros of Mo (hy) near hy = —% which together with (38) shows that

M (hy, hy) has 5 zeros. Similarly, it holds det da(?;{i%z)) # 0 at these 5 zeros. It follows that
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from Theorem 1, the original system (36) can have 5 periodic orbits near z-axis for suffi-
ciently small € > 0.

This completes the proof. O
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