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Abstract

The Itô map gives the solution of a Rough Differential Equation, a generalization of an Ordinary Differ-
ential Equation driven by an irregular path, when existence and uniqueness hold. By studying how a path 
is transformed through the vector field which is integrated, we prove that the Itô map is Hölder or Lips-
chitz continuous with respect to all its parameters. This result unifies and weakens the hypotheses of the 
regularity results already established in the literature.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of rough paths is now a standard tool to deal with stochastic differential equations 
(SDE) driven by continuous processes other than the Brownian motion such as the fractional 
Brownian motion. Even for standard SDE, it has been proved to be a convenient tool for dealing 
with large deviations or for numerical purposes. We refer the reader to [16,22,24,26,39,40,44,45]
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for a presentation of this theory with several points of view. Here, we mainly rely on the notion 
of controlled rough path of M. Gubinelli [22,26].

For a Banach space U, a time horizon T > 0, a regularity indice p ∈ [2, 3) and a control ω
(see Section 4 for a definition), we denote by Cp(U) the space of paths from [0, T ] to U of finite 
p-variation with respect to the control ω. By this, we mean a path x : [0, T ] → U such that with 
|xt − xs | ≤ Cω(s, t)1/p for some constant C.

A rough path x is an extension in the non-commutative tensor space T2(U) := 1 ⊕U ⊕(U ⊗U)

of a path x in Cp(U). This extension x is defined through algebraic and analytic properties. It 
is decomposed as x := 1 + x1 + x2 with x1 := x in U and x2 ∈ U ⊗ U. The increments of x
are defined by xs,t := x−1

s ⊗ xt . It satisfies the multiplicative property xr,t = xr,s ⊗ xs,t for any 
0 ≤ r ≤ s ≤ t ≤ T . The space is equipped with the topology induced by the p-variation distance 
with respect to ω. The space of rough paths of finite p-variations with respect to the control ω is 
denoted by Rp(U). There exists a natural projection from Rp(U) onto Cp(U). Conversely, a path 
may be lifted from Cp(U) to Rp(U) [49], yet this cannot be done canonically.

Given a rough path x ∈ Rp(U) and a vector field f : V → L(U, V) for a Banach space V, a 
controlled differential equation

yt = a +
t∫

0

f (ys)dxs (1)

is well defined provided that f is regular enough. This equation is called a rough differential 
equation (RDE). For a smooth path x, a rough path x could be naturally constructed using the 
iterated integrals of x. In this case, the solution to (1) corresponds to the solution to the ordinary 
differential equation yt = a + ∫ t

0 f (ys) dxs . The theory of rough paths provides us with natural 
extension of controlled differential equations.

When (1) has a unique solution y ∈ Cp(V) for any x ∈ Rp(U) given that the vector field f
belongs to a proper subspace Fi, the map I : (a, x, f ) �→ y from U × Rp(U) × Fi to Cp(V) is 
called the Itô map. The Itô map is actually locally Lipschitz continuous on U ×Rp(U) ×Fi when 
Fi is equipped with the proper topology [24,36,37].

Together with the Itô map I, we could consider for each t ∈ [0, T ] ft (a, x, f ) = et ◦
I(a, x, f ) from U × Rp(U) × Fi to V, where et is the evaluation map et (x) = x(t). The family 
{ft (a, x, f )}t∈[0,T ] is the flow associated to the RDE (1). For ordinary differential equations, the 
flow defines a family of homeomorphisms or diffeomorphisms.

The differentiability properties of the Itô map or the flow are very important in view of appli-
cations. For SDE, Malliavin calculus opens the door to existence of a density and its regularity 
[50,53], large deviation results [32], Monte Carlo methods [25,50], . . . .

In this article, we then consider the differentiability properties, understood as Fréchet differ-
entiability, of the Itô map under minimal regularity conditions on the vector field. Therefore, 
we extend the current results by proving Hölder continuity of the Itô map. This generalizes to 
2 ≤ p < 3 the results of T. Lyons and X. Li [43].

Several strategies have been developed to consider the regularity of the Itô map and flows, 
which we review now. For this, we need to introduce some notations.

� The space of geometric rough paths Gp(U) is roughly described as the limit of the natural 
lift of smooth rough paths through their iterated integrals.
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� For a path x ∈ Rp(U) and a Banach space V, Pp(x, V) is the space of controlled rough 
path (CRP). It contains paths z : [0, T ] → V whose increments are like those of x, that is 
zs,t = z

†
s xs,t + z

�
s,t for proper (z†, z�) (for a formal definition, see Section 5). A CRP z is 

best identified with the pair (z, z†) (see Remark 2 in Section 5).
� For a path x ∈ Rp(U) and h ∈ Cq(U) with 1/p + 1/q > 1 (which means that 1 ≤ q < 2), 

there exists a natural way to construct a rough path x(h) ∈ Rp(�) such that π(x(h)) = π(x) +
h, where π is the natural projection from T2(U) onto U, and x(0) = x. The map h �→ x(h) is 
C ∞-Fréchet from Cq(U) to Rp(U).

� A vector field f : V → L(U, V) is said to be γ -Lipschitz (γ > 0) if it is differentiable up to 
order �γ � with a derivative of order �γ � which is (γ − �γ �)-Hölder continuous (see [24], 
p. 213).

The flow and differentiability properties have already been dealt with in the following articles:

� In [47], T. Lyons and Z. Qian have studied the flow property for solutions to yt = a +∫ t

0 f (ys) dxs + ∫ t

0 g(ys) dhs for a “regular” path h subject to a perturbation for V =R
d .

� In [48], T. Lyons and Z. Qian showed that the Itô map provides a flow of diffeomorphisms 
when the driving rough path is geometric for V =R

d .
� T. Lyons and Z. Qian [46] and more recently Z. Qian and J. Tudor [55] have studied the 

perturbation of the Itô map when the rough path is perturbed by a regular path h and the 
structure of the tangent spaces for finite dimensional Banach space. As these constructions 
hold in tensor spaces, quadratic terms are involved. They lead to rather intricate expressions.

� The properties of flow also arise directly from the constructions from almost flows, in the 
approach from I. Bailleul [3] in possibly infinite dimensional Banach spaces. Firstly, only 
Lipschitz flow were considered, but recently in [5], it was extended to Hölder continuous 
flows.

� In the case 1 ≤ p < 2, T. Lyons and Z. Li proved in [43] (see also [38]) that

x ∈ Cp(U) �→ I(a, x, f ) ∈ Cp(V) is locally C k-Fréchet differentiable

provided that U and V are finite dimensional Banach spaces and f is C k+α+ε , k ≥ 1, α ∈
(p − 1, 1 − ε), ε ∈ (0, 1).

� In the book of P. Friz and N. Victoir [24], it is proved that

(b,h) ∈ U × Cq(U) �→ I(a + b,x(h), f ) ∈ Cp(U)

is locally C k-Fréchet at (a,x) ∈ U × Gp(U)

provided that x ∈ Gp(U), U is finite-dimensional and f is of class C k−1+γ (U, V) with γ > p

and k ≥ 1 (see [24, Theorem 11.6, p. 287]). It is also proved that f : [0, T ] × U → V is a flow 
of C k-diffeomorphisms, and that f and its derivatives are uniformly continuous with respect 
to x ∈ Gp(U) (see [24, Section 11.2, p. 289]). Transposed in the context of CRP in [22], 
the flow a �→ ft (a, x, f ) is locally a diffeomorphism of class C k+1 for a vector field f is 
C k+3-Fréchet.

� In a series of articles [32–35] (see also [20]), Y. Inahama and H. Kawabi have studied various 
aspects of stochastic Taylor developments in ε of solutions to
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yε
t = a +

t∫
0

f (yε
s )ddεxs +

t∫
0

g(yε
s )dhs (2)

around the solutions to zt = a+∫ t

0 g(zs) dhs , when x ∈ Rp(W), h ∈ Cq(U) with 1/p+1/q >

1, f : V → L(W, V), g : V → L(U, V) and dε : Rp(W) → Rp(W) is the dilatation operator 
defined by dεx := 1 + εx1 + ε2x2. Up to the natural injection of x to Rp(W ⊕ U), h to 
Cp(W ⊕ U), f : V → L(W ⊕ U, V) and g : V → L(W ⊕ U, V), (2) is recast as

yε = I(a,dεx(h), f + g).

� Using a Banach space version of the Implicit Functions Theorem, I. Bailleul recently proved 
in [4] that

(z, f ) ∈ Pp(b,U) × C k(U,V) �→ I(a,Pb(z), f ) ∈ Pp(b,V)

is C �k�−2-Fréchet differentiable

provided that b ∈ Gp(B) and k ≥ 3, where Pb(z) lifts z ∈ Pp(b, U) to a geometric rough 
path.

� SDE driven by fractional Brownian motion and Gaussian processes attracted a lot of attention 
[6,7,9–13,15,18,19,28–30,42,51,54]. Since integrability is the key to derive some integration 
by parts formula in Malliavin type calculus, several articles deal with moments estimates for 
solutions to linear equations driven by Gaussian rough paths [8,14,23,27,31,56].

In this article,

� We establish that the Itô map I is locally of class C γ−ε for all the types of perturbations of 
the driving rough path x seen above. We then generalized the results in [4], [22, Sect. 8.4]
or [24] by providing the Hölder regularity, and not only differentiability. At the exception 
of the work of T. Lyons and X.D. Li [43] for the Young case (1 ≤ p < 2), at the best of our 
knowledge, none of the works cited above deal with the Hölder regularity of the derivatives of 
the Itô map. The cited results are proved under stronger regularity conditions than ours on the 
vector field. In [4], the starting point is kept fixed. While in [22,24], only the regularity with 
respect to the starting point and perturbation of the form x(h) of the driver are considered, as 
in [43]. Unlike [24], the chain rule may be applied as our solutions are constructed as CRP.

� By adding more flexibility in the notion of CRP, we define a bilinear continuous integral with 
CRP both as integrand and integrators. This simple trick allows one to focus on the effect of 
a non-linear function applied to a CRP and weaken the regularity assumptions imposed on 
the vector fields in [4,22].

� Following the approach of [1], we provide a version of the so-called Omega lemma for paths 
of finite p-variations with 1 ≤ p < 2 and for CRP (for 2 ≤ p < 3). For a function f of given 
regularity, this lemma states the regularity of the map Of : y �→ {f (yt )}t∈[0,T ] when y is a 
path of finite p-variation or a CRP on [0, T ]. When dealing with continuous paths with the 
sup-norms, where Of has the regularity of f (for functions of class C k , but also Hölder or 
Sobolev). When dealing with paths of finite p-variation, the situation is more cumbersome. 
This explains the losses in the regularity observed in [43].
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� We provide a “genuine rough path” approach which removes the restriction implied by 
smooth rough paths, the restriction to geometric rough paths (which could be dealt other-
wise with (p, p/2)-rough paths [41]) as well as any restriction on the dimensions of the 
Banach spaces U and V. Although we use a CRP, the Duhamel formula shown in [17] could 
serve to prove a similar result for (partial) rough paths and not only CRP.

� We exemplify the difference between the “rough situation” and the smooth one. For ordinary 
differential equation, the spirit of the Omega lemma together with the Implicit Functions 
Theorem is that the regularity of the vector field is transported into the regularity of the 
Itô map. Once the Omega lemma is stated for our spaces of paths, its implication on the 
regularity of the Itô map is immediate.

2. Notations

Througout all the article, we denote by U, V and W Banach spaces.
For two such Banach spaces U and V, we denote by L(U, V) the set of linear continuous

maps from U to V. If A ∈ L(U, V) is invertible, then its inverse A−1 is itself continuous and thus 
belongs to L(V, U).

For a functional F from U to V, we denote by DF its Fréchet derivative, which is a map from 
V to L(V, U), and by DyF its Fréchet derivative in the direction of a variable y in U.

For a function f and some α ∈ (0, 1], we denote by Hα(f ) its α-Hölder semi-norm Hα(f ) :=
supx �=y |f (x) − f (y)|/|x − y|α .

For any α > 0, we denote by C α(U, V) the set of continuous, bounded functions from U to V
with, bounded continuous (Fréchet) derivatives up to order k := �α�, and its derivative of order 
k is (α − k)-Hölder continuous. A function in C α(U, V) is simply said to be of class C α (in this 
article, we restrict ourselves to non-integer values of α).

With the convention that D0f := f , we write for f in C α(U, V),

‖f ‖α := max
j=0,...,k

{‖Dj f ‖∞,Hα−k(D
kf )

}
.

Our result are stated for bounded functions f . For proving existence and uniqueness, this 
boundedness condition may be relaxed by keeping only the boundedness of the derivatives of f
(see e.g., [24,36,37], . . . ). Once existence is proved under this linear growth condition, there is no 
problem in assuming that f itself is bounded since we only use estimates locally. This justifies 
our choice for the sake of simplicity.

3. The Implicit Functions Theorem

Let us consider two Banach spaces P and 
 as well as a functional F from P × 
 to P. Here, 
P plays the role of the spaces of paths, while 
 is the space of parameters of the equation.

We consider first solutions y to the fixed point problem

y = F(y,λ) + b, (λ, b) ∈ 
 × P. (3)

This is an abstract way to consider equations of type yt = a + ∫ t

0 f (ys) dxs + bt , whose parame-
ters are λ = (a, f, x) ∈ 
 and b ∈ P.

To ensure uniqueness of the solutions to (3), we slightly change the problem. We assume that 
P contains a Banach sub-space P�, typically, the paths that start from 0. As P� is stable under 
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addition, we consider the quotient space P∼ := P/P� defined for the equivalence relation x ∼ y

when x − y ∈ P�. This quotient is nothing more than a way to encode the starting point.
We now consider instead of (3) the problem

y∗ = F(y∗ + z,λ) − z + b, b ∈ P�, z ∈ P∼, λ ∈ 
. (4)

There is clearly no problem in restricting b to P�, since otherwise one has to change λ and z
accordingly. Solving (4) implies that (3) is solved for y = y� + z.

For an integer k ≥ 0 and 0 < α ≤ 1, if G(y∗, z, λ) := F(y∗ + z, λ) and F is of class C k+α with 
respect to (y, λ), then G is of class C k+α with respect to (y∗, z, λ)

The reason for considering (4) instead of (3) is that for the cases we consider, G will be strictly 
contractive in y∗, ensuring the existence of the unique solution to (4).

We use the following version of the Implicit Functions Theorem (see e.g. [1, §2.5.7, p. 121]
for a C k-version of the Implicit Functions Theorem.1

Theorem 1 (Implicit Functions Theorem). Let us assume that

i) The map G(y∗, z, λ) := F(y∗ + z, λ) is of class C k+α from X := P� × P∼ × 
 to P� for 
k ≥ 1, 0 < α ≤ 1 with respect to (y∗, z, λ) ∈ X.

ii) For some (ŷ∗, ̂z, ̂λ) ∈ X and any b∗ ∈ P�, the exists a unique solution h∗ in P� to

h∗ = Dy∗G(ŷ∗, ẑ, λ̂)(h∗) + b∗

with ‖h∗‖P ≤ C‖b∗‖P for some constant C ≥ 0. This means that Id − DŷG(·, ̂z, ̂λ) is invert-
ible from P� to P� with a bounded inverse.

Then there exists a neighborhood U of (̂z, ̂λ) ∈ P∼ × 
, a neighborhood V of G(ŷ∗, ̂z, ̂λ), as 
well as a unique map H from V × U to P� which solves

H(b, z, λ) =G(H(b, z, λ), z, λ) + b, ∀(b, z, λ) ∈ V × U.

In other words, I(b, z, λ) := z +H(b, z, λ) is locally the solution in z + P� to I(b, z, λ) = −z +
F(I(b, z, λ), λ) + b.

Remark 1. Actually, we do not use this theorem in this form. We show that DyG(·, z, λ) is 
contractive when restricted to a bounded, closed, convex set C of P� × P∼ × 
, and only on a 
time interval τ which is small enough, in function of the radius of C. The controls we get allow 
us to solve iteratively the equations on abutting time intervals τi and to “stack them up” to get 
the result on any finite time interval (and even globally for suitable vector fields). As for this, 
we have only to re-use with slight adaptations what is already largely been done, we do not treat 
these issues.

1 To extend it to C k+α -Hölder continuous functions, we have just to note that the derivative of (b, z, λ) �→
(H(b, z, λ), z, λ) below, which is given by the inverse function theorem, is the composition of z �→ z−1, which is C ∞, 
G, which is C k−1+α and H which is C k , see [52]).
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4. The Omega lemma for paths of finite p-variation

We consider a time horizon T > 0. A control ω is a non-negative function defined on sub-
intervals [s, t] ⊂ [0, T ] which is super-additive and continuous close to the diagonal {(t, t) | t ∈
[0, T ]}. This means that is ωr,s + ωs,t ≤ ωr,t for 0 ≤ r ≤ s ≤ t ≤ T .

For a path x from [0, T ] to V, we set xs,t := x[s,t] := xt − xs . For some p ≥ 1, a path x of 
finite p-variation controlled by ω satisfies

‖x‖p := sup
[s,t]⊂[0,T ]

s �=t

|xt − xs |
ω

1/p
s,t

.

We denote by Cp(V) the space of such paths, which is a Banach space with the norm

‖x‖•p := |x0| + ‖x‖p.

The space Cp(V) is continuously embedded in the space of continuous functions C(V) with the 
sup-norm ‖ · ‖∞, with

‖x‖∞ ≤ |x0| + ‖x‖pω
1/p

0,T . (5)

For any q ≥ p, Cp(V) is also continuously embedded in Cq(V).
We call a universal constant a constant that depends only on ω0,T and the parameters p, q , κ , 

γ , . . . that will appear later.

Proposition 1 (L.C. Young [57]). Let p, q ≥ 1 such that 1/p + 1/q > 1. There exists a unique 
continuous, bilinear map

Cp(U) × Cq(L(V,U)) → Cp(V)

(x, y) �→
·∫

0

y dx

which satisfies 
∫ 0

0 yr dxr = 0 for any (x, y) and any [s, t] ⊂ [0, T ],
∣∣∣∣

t∫
s

yr dxr − ysxs,t

∣∣∣∣ ≤ K‖y‖q‖x‖pω
1
p

+ 1
q

s,t (6)

for some universal constant K .

For some κ ∈ [0, 1], we set κ := 1 − κ .

Lemma 1. Let g ∈ C γ (V, W). Then for any κ ∈ [0, 1] and γ ∈ [0, 1],
|g(z) − g(y) − g(z′) + g(y′)|

≤ Hγ (g)(|y′ − y|κγ + |z′ − z|κγ )(|z′ − y′|γ κ + |z − y|γ κ) (7)

for all y, z, y′, z′ ∈ V.
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Proof. First,

|g(z) − g(y) − g(z′) + g(y′)| ≤ Hγ (g)(|y′ − y|γ + |z′ − z|γ ).

By inverting the roles of z′ and y in the above equation, we get a similar inequality. Choosing 
κ ∈ [0, 1] and raising the first inequality to power κ and the second one to power κ leads to the 
result. �

We now fix p ≥ 1, κ ∈ (0, 1) and γ ∈ (0, 1]. We set q := p/κγ . We define

C�
p(V) := {y ∈ Cp(V) | y0 = 0} and C�

q(V) := {y ∈ Cq(V) | y0 = 0}.

An immediate consequence of this lemma is that for κ ∈ (0, 1), γ ∈ (0, 1], the map 
Og : y �→ {g(yt )}t∈[0,T ] is γ κ-Hölder continuous from C�

p(V) to C�
p/κγ with Hölder constant 

2γ Hγ (g)ω
γκ/p

0,T when g is γ -Hölder continuous.
We now consider the case of higher differentiability of g.
We now give an alternative proof of the one in [43, Theorems 2.13 and 2.15], which mostly 

differs in the use of the converse of Taylor’s theorem. For CRP in Section 5, the proof of Propo-
sition 5 will be modelled on this one.

We still use the terminology of [1] regarding the Omega lemma. The Omega operator O trans-
forms a function f between two Banach spaces U and V to a function mapping continuous paths 
from [0, T ] to U to continuous paths from [0, T ] to V. The idea is then to study the regularity 
of Of in function of the regularity of f and the one of the paths that are carried by Of . The 
difference with the results in [1] is that we use the p-variation norm instead of the sup-norm. 
This leads to a slight loss of regularity when transforming f to Of .

Proposition 2 (The Omega lemma for paths of finite p-variation). For p ≥ 1, k ≥ 1, γ ∈ (0, 1], 
κ ∈ (0, 1) and f of class C k+γ from V to W := L(U, V), Of (y) := (f (yt ))t∈[0,T ] is of class 
C k+κγ from any ball of radius ρ > 0 of Cp(V) to Cq(W) with q := p/κγ . Besides, DyOf ·
h = (Df (yt ) · ht )t∈[0,T ] ∈ Cq(W) for any y, h ∈ Cp(V). Finally, DO(y) · h ∈ C�

q(W) when h ∈
C�

p(V).

Proof. I) Assume that f ∈ C γ . Thanks to the embedding from Cp/γ (L(U, V)) to Cq(L(U, V)), 
Of maps C�

p(V) to Cq(L(U, V)) with ‖Of (y)‖q ≤ CHγ (f )‖y‖p for all y ∈ C�
p(V).

With Lemma 1, we easily obtain that

‖Of (y) −Of (z)‖•q ≤ Hγ (f )(1 + ω
κγ/p

0,T )‖y − z‖κγ•p (‖y‖κγ
p + ‖z‖κγ

p ).

Then Of is locally κγ -Hölder continuous from Cp(V) to Cq(W).

II) For some Banach space W′, if y ∈ Cq(L(V ⊗ W′, V)) and z ∈ Cp(V) (resp. y ∈ Cq(V), z ∈
Cp(U)), it is straightforward to show with (5) that yz ∈ Cq(L(W′, V)) (resp. y ⊗ z ∈ Cq(V ⊗U)) 
with

‖y · z‖q ≤ (1 + 2ω
1/q

)‖y‖•q‖z‖•q and ‖y · z‖•q ≤ |y0| · |z0| + ‖y · z‖q,
0,T



JID:YJDEQ AID:9110 /FLA [m1+; v1.276; Prn:13/12/2017; 16:06] P.9 (1-19)

L. Coutin, A. Lejay / J. Differential Equations ••• (••••) •••–••• 9
where y · z = (yt zt )t∈[0,t] (resp. y · z = (yt ⊗ zt )t∈[0,T ]) Besides, if z0 = 0, then (yz)0 = 0 (resp. 
(y ⊗ z)0 = 0).

III) Let us assume now that f ∈ C k+γ for some k ≥ 1. With the Taylor development of f up to 
order k,

f (y + z) = f (y) +
k∑

i=1

1

i!Dif (y)z⊗k + R(y, z)

with

R(y, z) =
1∫

0

(1 − s)k−1

(k − 1)! (Dkf (y + sz) − Dkf (y))z⊗k ds.

Since Dif is of class C k−i+γ from V to L(V⊗i , L(U, V)) identified with L(V⊗i ⊗ U, V), then 
y ∈ Cp(V) �→ (Dif (yt ))t∈[0,T ] takes its values in Cq(L(V⊗i ⊗ U, V)).

For y, z(1), . . . , z(i) ∈ Cp(V), write

φi(y) · z(1) ⊗ . . . ⊗ z(i) := (Dif (yt ) · z(1) ⊗ . . . ⊗ z(i))t∈[0,T ].

Since Cp(V) is continuously embedded in Cq(V), II) implies that φi(y) is multi-linear and con-
tinuous from Cp(V)⊗i to Cq(W).

Similarly, for some constant C that depends only on ρ (the radius of the ball such that ‖y‖•p ≤
ρ), p, q and ω0,T ,

‖R(y, z)‖•q
‖z‖k•p

≤ CHγ (Dkf )‖z‖κγ•p .

The converse of the Taylor’s theorem [2] implies that Of is locally of class C k from Cp(V)

to Cq(W). In addition, it is easily shown from I) that since Dkf is locally of class C γ , Of is 
locally of class C k+κγ from Cp(V) to Cq(W). �

Given 0 < κ < 1 with 1 + κγ > p, we then define

F(y, x, f ) :=
∫

Of (y)dx for (y, x, f ) ∈ Cp(V) × Cp(U) × C k+γ (V,W),

as the integral is well defined as a Young integral using our constraint on γ , κ and p. The map 
F is linear and continuous with respect to (z, f ). It is of class C k+κγ with respect to y. When 
1 + γ > p, it is well known that y = F(y, z, f ) has a unique solution (see e.g., [22,24,44]). 
Besides, it is evident that for any a ∈ V,



JID:YJDEQ AID:9110 /FLA [m1+; v1.276; Prn:13/12/2017; 16:06] P.10 (1-19)

10 L. Coutin, A. Lejay / J. Differential Equations ••• (••••) •••–•••
Fig. 1. Schematic representation of the use of the Omega lemma.

yt = bt +
t∫

0

f (ys)dxs, t ∈ [0, T ]

if and only if y�
t = b∗

t +
t∫

0

f (a + y�
s )dxs, t ∈ [0, T ]

when y = a + y�, b = a + b�, b�, y� ∈ C�
p(V), so that C∼

p (V) = Cp(V)/C�
p(V) is identified V

and a = y0.
The Fréchet derivatives of F is the direction of the variable y is

DyF(y, z, f ) · h =
∫

(ODf (y) · h)dz

which is also well defined as a Young integral.
From II), if h ∈ C�

p(V), then Df (y) · h takes its values in C�
p(V). With (6), (5) and I), for 

T is small enough (depending only on ‖f ‖1+γ and ‖x‖p), h �→ ∫
Df (y) · h dx is strictly con-

tractive on C�
p(V). This proves that G(y�, a, x, f ) := F(a + y�, x, f ) satisfies the conditions of 

application of the Implicit Function Theorem 1 (see Remark 1). This is illustrated by Fig. 1.
We then recover and extend the result in [43].

Theorem 2. Fix p ∈ [1, 2), x ∈ Cp(U), a ∈ V and f ∈ C k+γ (V, L(U, V)), κ ∈ (0, 1), γ ∈ (0, 1], 
k ≥ 1, provided that 1 + κγ > p, there exists a unique solution I(a, f, x, b) in Cp(V) to

yt = a +
t∫

0

f (ys)dxs + b0,t , t ∈ [0, T ]. (8)

Besides, I is locally of class C k+κγ from V × C k+γ (V, L(U, V)) × Cp(U) × Cp(V) to Cp(V).

For some t ∈ [0, T ], let et : Cp(V) → V be the evaluation map et (y) = yt . Thanks to (5), et is 
continuous. We then define ft (a) := et ◦ I(a, f, 0) for some vector field f .

Corollary 1. Under the conditions of Theorem 2, ft : V → V is locally a diffeomorphism of class 
C k+κγ for any t ∈ [0, T ].
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Proof. Let us consider the solution to yt,r(a) = a + ∫ t

r
f (ys,r (a)) dxs for 0 ≤ r ≤ t . Using the 

chain rule by combining the Omega lemma (Proposition 2) with the bilinearity of the Young 
integral (Proposition 1),

Dayt,r (a) = Id +
t∫

r

Df (ys,r (a))Days,r (a)dxs

= Id +
t∫

r

Df (ys,r (a))es ◦ DaI(a, f,0)dxs. (9)

Owing to the controls given above — namely (6), the boundedness of Df and Theorem 2 — 
the right-hand side of (9) is bounded when a belongs to a set {|a| ≤ R}. Besides, due to (5), it is 
easily seen that for t − r small enough (in function of f , γ , κ , ωr,t , p and R such that |a| ≤ R), 
one may choose a constant 0 < � < 1 such that

‖Dayt,r (a) − Id‖ ≤ �,

where ‖ · ‖ is the operator norm of L(V, V). It follows that Dayt,r is invertible at the point a. The 
Inverse Mapping Theorem (see e.g., [1, Theorem 2.5.2, p. 116]) and Remark 1 assert that yt,r is 
then locally a C k+κγ -diffeomorphism around any point a ∈ V.

Using the additive property of the integral and the uniqueness of the solution to (8), yt,r (a) =
yt,s(ys,r (a)). Hence, the regularity of a �→ yt,r (a) for a arbitrary times r , t is treated using the 
stability of C k+κγ under composition and the flow property.

To conclude, it remains to remark that ft (a) = yt,0(a). �
5. The Omega lemma for controlled rough paths

Let us fix p, q , r with 2 ≤ p < 3, q > 0 and 0 < r < p. We consider a rough path x ∈ Rp(U)

(see the Introduction for a definition).
A Controlled Rough Path (CRP) is a path y : [0, T ] → V which admits the following decom-

position for any s, t :

ys,t = y†
s x1

s,t + y
�
s,t with y† ∈ Cq(L(U,V)) and ‖y�‖r < +∞. (10)

Notation 1. A CRP y is identified as the pair of paths (y, y†), as y� may be computed from y
and y†.

We write

‖y‖x := ‖y†‖q + ‖y�‖r and ‖y‖•x := |y0| + |y†
0 | + ‖y‖x.

The space of CRP is denoted by Pp,q,r(x, V). This is a Banach space with the norm ‖ · ‖•x.
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Useful inequalities are

‖y†‖∞ ≤ (1 + ω
1/q

0,T )‖y‖•x, (11)

‖y‖p ≤ ‖y†‖∞‖x‖p + ‖y�‖rω
1/r−1/p

0,T

≤ ‖y‖•x(1 + ‖x‖p)(1 + ω
1/q
0,T + ω

1/r−1/q
0,T ) when r ≤ p (12)

and ‖y‖∞ ≤ (1 + ω
1/q
0,T + ω

1/r−1/p
0,T )(1 + ω

1/p
0,T )‖y‖•x(1 + ‖x‖p). (13)

Remark 2. This definition, which involves three indices, is more general than the one in [22], in 
which (p, q, r) = (p, p, p/2), and the seminal article [26], in which (p, q, r) = (p, q, (p−1 +
q−1)−1). The reason of this flexibility will appear with the Omega lemma.

For any s ∈ [0, T ], we extend y†
s as an operator in L(U ⊗ U, U ⊗ V) by y†

s (a ⊗ b) = a ⊗ y
†
s b

for all a, b ∈ U.

Proposition 3. Assume that

θ := min

{
2

p
+ 1

q
,

1

p
+ 1

r

}
> 1.

There exists a continuous linear map y �→ y� on Pp,q,r (x, V) which transforms y to

{y�
s,t }[s,t]⊂[0,T ] with values in U ⊗ V such that

y�
r,s + y

�
s,t + x1

r,s ⊗ ys,t = y
�
r,t , for all 0 ≤ r ≤ s ≤ t ≤ T . (14)

Moreover, for some universal constants K and K ′,

|y�
s,t − y†

s x2
s,t | ≤ K‖y‖x(‖x‖p ∨ ‖x‖2

p)ωθ
s,t (15)

and

‖y�‖p/2 ≤ (|y†
0 | + (ω

1/q
0,T + Kω

θ−2/p
0,T ‖y‖x)

)
(‖x‖p ∨ ‖x‖2

p)

≤ K ′‖y‖•x(‖x‖p ∨ ‖x‖2
p). (16)

Proof. Let us introduce on the linear space W := U ⊕ V ⊕ (U ⊗ V) the (non-commutative) 
operation

(a, b, c) � (a′, b′, c′) = (a + a′, b + b′, c + c′ + a ⊗ b′)

and the norm |(a, b, c)| := max{|a|, |b|, |c|}.
For Y, X, Z ∈ W, it is clear that | · | is Lipschitz continuous and

|Z � Y − Z � X| ≤ (1 + |Z|)|Y − X| and |Y � Z − X � Y | ≤ (1 + |Z|)|Y − X|.
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With �, W is a monoid for which the hypotheses of the Multiplicative Sewing Lemma are ful-
filled [21].

We then define for y ∈ Pp,q,r (x, L(U, V)) the family of operators

φs,t (y) := (x1
s,t , ys,t , y

†
s x2

s,t ), [s, t] ⊂ [0, T ].

Thus,

φr,s(y) � φs,t (y) − φr,t (y) = (0,0, y†
r,sx2

s,t + x1
r,sy

�
s,t − x1

r,s ⊗ y†
r,sx1

s,t ). (17)

The Multiplicative Sewing Lemma [21] on (φs,t (y))[s,t]⊂[0,T ] yields the existence of a family 
{Ys,t }[s,t]⊂[0,T ] taking its values in W with |Ys,t − φs,t (y)| ≤ Cωθ

s,t for any [s, t] ⊂ [0, T ]. We 

define y� as the part in U ⊗ V in the decomposition of Y as Ys,t = (x1
s,t , ys,t , y

�
s,t ). Since Y

satisfies Yr,s � Ys,t = Yr,t , y� satisfies (14). From (17), we easily obtain (15) and (16).
For y, z ∈ Pp,q,r (x, V),

φr,s(y + z) � φs,t (y + z) = φr,s(y) � φs,t (y) + φr,s(z) � φs,t (z).

From this additivity property, the construction of the Multiplicative Sewing Lemma and (16), 
y �→ y� is linear and continuous. �

When y takes its values in L(V, W), y† takes its values in L(U, L(V, W)) � L(U ⊗ V, W).

Proposition 4. Fix (p, q, r) and (p, q ′, r ′) with 2 ≤ r < p < 3. Assume that

θ̂ := min

{
2

p
+ 1

q
,

1

p
+ 1

r

}
> 1 and θ ′ := min

{
2

p
+ 1

q ′ ,
1

p
+ 1

r ′

}
> 1.

There exists a bilinear continuous mapping

Pp,q,r (x,L(W,V)) × Pp,q ′,r ′(x,W) �→ Pp,p∨q ′,p/2(x,V)

(y, z) →
∫

y dz

such that 
(∫

y dz
)†
s
= ysz

†
s ,

∣∣∣∣
t∫

s

yr dzr − yszs,t − y†
s z

�
s,t

∣∣∣∣ ≤ K‖y‖x‖z‖•x(1 + ‖x‖p ∨ ‖x‖2
p)ωθ̂

s,t (18)

and ∥∥∥∥
∫

y dz

∥∥∥∥
x
≤ K ′‖y‖•x‖z‖•x(1 + ‖x‖p ∨ ‖x‖2

p) (19)

for some universal constants K and K ′.
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Proof. We set Ys,t := yszs,t + y
†
s z

�
s,t . Thus, for any r ≤ s ≤ t ,

Yr,s + Ys,t − Yr,t = y�
r,szs,t + y†

r,sz
�
s,t .

The existence of the integrals follows from the Additive Sewing Lemma [21]. Therefore, the 
inequalities (18) and (19) are straightforward. �

From now, let us fix 2 ≤ p < 3, q, r ≥ 1 as well as 0 < γ ≤ 1 and 0 < κ < 1. For two Banach 
spaces V and W and a rough path x ∈ Rp(U), we set

PV := Pp,q,r (x,V), P�V := {y ∈ PV | (y0, y
†
0) = (0,0)},

QW := Pp,
q∨p
κγ

,r∨ p
1+κγ

(x,W) and Q�W := {y ∈ QW | (y0, y
†
0) = (0,0)}.

The spaces P�V and Q�W are Banach sub-spaces of PV and QW.

Proposition 5 (The Omega lemma for CRP). Assume that f ∈ C k+1+γ (V, W). Then Of :=
(f (yt ))t∈[0,T ] is locally of class C k+κγ from PV to QW with Of (y)† = Df (y)y†. Besides,

DOf (y) · z = (Df (y)t · zt )t∈[0,T ] ∈ QW, ∀y, z ∈ PV.

In addition, if z ∈ P�V, then DOf (y)z ∈ Q�W for any y ∈ PV.

Proof. I) Let us prove first that Of maps PV to Pp,
p
γ

,r∨ p
1+γ

(x, W). As the latter space is contin-

uously embedded in QW, this proves that Of maps PV to QW.
Set for 0 ≤ s ≤ t ≤ T ,

Yt := f ◦ yt , Y
†
t := Df (yt )y

†
t

and Y
�
s,t := Df (ys)y

�
s,t +

1∫
0

(Df (ys + θys,t ) − Df (ys))ys,t dθ.

For Y , the decomposition (10) is Ys,t = Y
†
s x1

s,t + Y
�
s,t . Besides,

|Y �
s,t | ≤ ‖Df ‖∞‖y‖xω

1/r
s,t + Hγ (Df )‖y‖1+γ

p ω
(1+γ )/p
s,t ,

|Y †
s,t | ≤ Hγ (Df )|ys,t |γ · ‖y†‖∞ + ‖Df ‖∞ · |y†

s,t |.
We deduce that Y ∈ Pp,q∨ p

γ
,r∨ p

1+γ
(x, W) with

‖Y‖x ≤ C‖f ‖1+γ max{‖y‖x,‖y‖1+γ•x },
for some universal constant C.

II) Setting f (y, z) = yz (resp. f (y, z) = y ⊗ z) for y ∈ PL(W, V) (resp. y ∈ PV) and z ∈ PW
shows that yz ∈ PV (resp. y ⊗ z ∈ PW ⊗ V). Moreover, (yz)

†
t = y

†
t zt + ytz

†
t (resp. (y ⊗ z)

†
t =

y
†
t ⊗ zt + yt ⊗ z

†
t ) for any t ∈ [0, T ].



JID:YJDEQ AID:9110 /FLA [m1+; v1.276; Prn:13/12/2017; 16:06] P.15 (1-19)

L. Coutin, A. Lejay / J. Differential Equations ••• (••••) •••–••• 15
In particular, z0 = 0 and z†
0 = 0 implies that (yz) ∈ P�V (resp. y ⊗ z ∈ P�W ⊗ V) when 

z ∈ P�W.
In addition, it is easily obtained that for the product y · z = yz or y · z = y ⊗ z,

‖yz‖•x ≤ C‖y‖•x‖z‖•x‖x‖p

for some universal constant C.

III) We consider that f ∈ C 1+γ (V, W). Let y, z ∈ PV and set Yt := f (yt ), Zt := f (zt ). Accord-
ing to the definition of Z† and Y †,

Z
†
s,t − Y

†
s,t

= (Df (zt ) − Df (zs) − Df (yt ) + Df (ys))z
†
t + (Df (zs) − Df (ys))z

†
s,t

+ Df (ys)(z
†
s,t − y

†
s,t ) + (Df (yt ) − Df (ys))(z

†
t − y

†
t ).

Applying (7) in Lemma 1, for 0 < κ < 1,

|Z†
s,t − Y

†
s,t | ≤ Hγ (Df )‖z − y‖κγ∞ (‖z‖κγ

p + ‖y‖κγ
p )‖z†‖∞ω

κγ/p
s,t

+ Hγ (Df )‖z − y‖γ∞‖z†‖qω
γ/q
s,t + ‖Df ‖∞‖z† − y†‖γ

q ω
γ/q
s,t

+ Hγ (Df )‖y‖γ
p‖y† − z†‖∞ω

γ/p
s,t .

From this, and (11)–(13),

|Z†
s,t − Y

†
s,t |

ω

κγ
p∨q

s,t

≤ K1Hγ (Df )‖z − y‖κγ•x (‖z‖κγ
x + ‖y‖κγ

x )‖z‖•x(1 + ‖x‖p)1+κγ

+ K2Hγ (Df )‖z − y‖γ•x‖z‖x(1 + ‖x‖p)1+γ

+ K3‖Df ‖∞‖z − y‖γ
x + K4Hγ (Df )(1 + ‖x‖p)γ ‖y‖γ•x‖y − z‖•x (20)

for some universal constants K1, K2, K3 and K4. Besides,

Z
�
s,t − Y

�
s,t = Df (zs)z

�
s,t − Df (ys)y

�
s,t +

1∫
0

(
Df (ys + τys,t ) − Df (ys)

)
(zs,t − ys,t )dτ

+
t∫

0

(
Df (zs + τzs,t ) − Df (zs) − Df (ys + τys,t ) + Df (ys)

)
ys,t dτ.

With Lemma 1 and (11),

|Z�
s,t − Y

�
s,t | ≤ ‖z‖xHγ (Df )‖z − y‖γ∞ω

1/r
s,t

+ ‖Df ‖∞‖z − y‖xω
1/r
s,t + Hγ (Df )‖y‖p‖y − z‖pω

(1+γ )/p
s,t

+ 4κγ Hγ (Df )‖y‖p‖z − y‖κγ∞ (‖z‖κγ
p + ‖y‖κγ

p )ω
(1+κγ )/p
s,t . (21)
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With (11) and (13), we deduce that

|Z�
s,t − Y

�
s,t | ≤ Cω

1+κγ
p

∧ 1
r

s,t ,

for some constant C that depends on ω0,T , ‖x‖p , ‖y‖•x, ‖z‖•x and the parameters γ , κ , p, q
and r .

With (13) applied to ‖y − z‖∞, (21) and (20) could be summarized as

‖Z − Y‖x ≤ K‖f ‖1+γ ‖z − y‖κγ•x ,

where ‖Z − Y‖x refers to the norm in QW and K is a constant which depends on ‖x‖p , ‖z‖•x, 
‖y‖•x, κ , γ , (p, q, r) and ω0,T .

Moreover, |f (y0) − f (z0)| ≤ ‖Df ‖∞|y0 − z0| and

|f (y)
†
0 − f (z)

†
0| ≤ Hγ (Df )|y0 − z0| + ‖Df ‖∞|y†

0 − z
†
0|.

Up to changing K , we get a similar inequality as ‖Z − Y‖x is replaced by ‖Z − Y‖•x.
We have then proved that Of is locally of class C κγ from PV to QW.

IV) For dealing with the general case f ∈ C k+1+γ (V, W), we apply the converse of the Taylor 
theorem as in the proof of Proposition 2, using II), the proof being in all points similar. �

When considering a fixed point for y �→ F(y, z, f ) := ∫
f (y) dz, F should map PV to PV. 

Owing to Propositions 4 and 5, a suitable choice is

q = q ′ = p, r = r ′ = p/2.

From now, we use these values (q ′, r ′) = (p, p/2).
We now state an existence and uniqueness result for solutions of RDE. Its proof may be found, 

up to a straightforward modification for dealing with b �= 0, in [22,26].

Proposition 6. For any f ∈ C k+1+γ (V, L(W, V)) with k ≥ 0, any z ∈ PW and any a ∈ V, b ∈
L(W, V), then there exists a unique CRP y ∈ PV which solves

yt = a +
t∫

0

f (ys)dzs + bz0,t with y
†
t = f (yt )z

†
t + bz

†
t (22)

for any t ∈ [0, T ]. Besides, when |a| + |b| ≤ R, then y belongs to a closed ball of PV whose 
radius depends only on ‖f ‖k+1+γ , ω0,T , p, γ , ‖z‖x and R.

Let us set

Xk,γ := V × L(V,W) × C k+1+γ (V,L(W,V)) × PW.

We then define the Itô map I as the map sending (a, b, f, z) ∈ Xk,γ to (y, y†) given by (22). 
Besides, (22) is equivalent in finding y∗ ∈ P�V which solves
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y∗
t =

t∫
0

f (y∗
s + a + bz0,s)dzs

and then to set yt := y∗
t + a + bz0,t .

The proof of the regularity result is now in all points similar to the one for paths of finite 
p-variation so that we skip it.

Theorem 3. Under the above conditions, the Itô map I : Xk,γ → PV is locally of class C k+κγ

for any κ ∈ (0, 1) with 1 + κγ > p.

For t ∈ [0, T ], let et be the evaluation map et (y, y†) = yt (this choice forces the value y†
t =

f (yt )).
The proof of the next result is in all points similar to the one of Corollary 1.

Corollary 2. Under the hypotheses of Theorem 3, for any t > 0, ft (a) := et ◦ I(a, 0, f, 0) is 
locally a C k+κγ -diffeomorphism from V to V.

Since Pp,p,p/2(x, V) is continuously embedded in Cp(V), we could consider this approach 
for studying the regularity of

yt = a +
t∫

0

f (ys)dzs +
t∫

0

g(ys)dhs + bt , t ≥ 0, (23)

where for a rough path x, z ∈ Pp,p,p/2(x, W), h ∈ Cq(W′), f and g are maps respectively of 
class C k+1+γ from V to L(W, V) and of class C k+δ from V to L(W′, V), provided that

1

p
+ 1

q
> 1, 1 + γ > p and 1 + δ > q for 0 < γ, δ ≤ 1.

The map I(f, g, b, y0, y
†
0) giving the solution to (23) is then of class C k+(1−κ) min{δ,γ }.

Using for z the decomposition z† = 1 and z� = 0, and replacing the vector field f by εf , it is 
easily seen that we may consider the problem

yε
t = a +

t∫
0

f (yε
s )ddεxs +

t∫
0

g(yε
s )dhs for a = (y0, y

†
0) given.

Asymptotic expansions in ε can then be performed as in [5,32–35].
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