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Abstract

In this paper, we are aiming to prove several regularity results for the following stochastic fractional heat
equations with additive noises

dur(x) = AT up(x)dt + g(t, x)dn;, ug=0, te(0,T], xeG,

for a random field u : (t,x) € [0, T] x G — u(t,x) =: us;(x) € R, where AT = —(—A)%,a € (0,2], is
the fractional Laplacian, T € (0, 0o) is arbitrarily fixed, G C R9 is a bounded domain, g : [0, T] x G x
2 — R is a joint measurable coefficient, and n;, t € [0, 00), is either a Brownian motion or a Lévy process
on a given filtered probability space (2, F, P; {Ft};¢[0,7])- To this end, we derive the BMO estimates
and Morrey—Campanato estimates, respectively, for stochastic singular integral operators arising from the
equations concerned. Then, by utilizing the embedding theory between the Campanato space and the Holder
space, we establish the controllability of the norm of the space C 9.6/ Z(D), where 6 >0, D = [0, T] x G.
With all these in hand, we are able to show that the g-th order BMO quasi-norm of the %—order derivative
of the solution u is controlled by the norm of g under the condition that n; is a Lévy process. Finally,
we derive the Schauder estimate for the p-moments of the solution of the above stochastic fractional heat
equations driven by Lévy noise.
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1. Introduction

For a stochastic process {X;,t € [0, T']}, for instance, a solution of a stochastic (ordinary)
differential equation, there are usually two most important aspects worth investigating. One is
its probability density function (PDF) or its probability law, and the other is the estimation of
moments of random variables of the process. However, if a stochastic process depending on
a spatial variable, to be more precise, a random field X; = X (¢, x, ) with x being a spatial
variable, such as a solution to a stochastic partial differential equation, it is hard to study its PDF
or probability law. So one could only get to consider certain estimates of moments for spatially
dependent processes, though this is often very hard. In the present paper, we would like to join
this adventure and we aim to obtain several estimates of solutions to stochastic fractional heat
equations.

Let us start with a brief review of the topic. For parabolic stochastic partial differential
equations (SPDEs), a number of estimates for their solutions have been established. By using
parabolic Littlewood—Paley inequality, Krylov [25] proved that for the solutions of the following
SPDE

du = Audt + gdwy, (1.1)

it holds that for p € [2, 0c0)

p p
E”VM ”L”((O,T)XRd) = C(d’ P)E”g”Lp((O,T)XRd) (12)

where w; is a Wiener process on a given filtered probability space (2, F, F, P) which we fixed
throughout the paper. Moreover, van Neerven et al. [30] made a significant extension of (1.2) to
a class of operators A which admit a bounded H*°-calculus of angle less than 7 /2. Kim [18]
established a BMO estimate for stochastic singular integral operators. And as an application, they
studied (1.1) and obtained the g-th order BMO quasi-norm of the derivative of u is controlled
by ||g|| L. Furthermore, Kim et al. [20] studied the parabolic Littlewood—Paley inequality for a
class of time-dependent pseudo-differential operators of arbitrary order, and applied their result
to high-order SPDEs.
More recently, Yang [32] considered the following equation

du=A%udt+ fdX,, up=0,0<t<T,

with X; being a Lévy process on (€2, F, IF, P), wherein the author obtained a parabolic Triebel—
Lizorkin space estimate for the convolution operator.
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Regarding elliptic and parabolic singular integral operators, we remark that the BMO esti-

mates was already established in [4,13]. Here we would like to consider the following stochastic
singular integral operator

G:gr>(Gg), (Gg):[0,TIxR!xQ—R

defined via the following stochastic integral

t
Gg)(t,x) = / / K(t,s,-)xg(s,-, Z)(x)N(ds, dz)
0 Z

t
=f//1((r,s,x—y)g(s,y,z)dy]\?(ds,dz) (1.3)
0

Z R4

for any integrable and progressively measurable g : [0, T] x RY x Z — R, where N is the com-
pensated martingale measure associated with the Poisson random measure of a Lévy process
with a marked (o -finite) measure space (Z, B(Z), v) on the probability set-up (€2, F, F, P). Our
first objective is to derive appropriate conditions on the random kernel K : 2 x [0, T'] x [0, T'] x
R? — R for the following estimate

q/2
Gelssaoir <N [ | | [ 8.2 0,2
Z LKEq
q/90
q
+ / |g(" %y Z)lLOOO(OT)v(dZ)
VA L’?(Q)
z L7

where g € [2, po A k], k is the conjugate of a positive constant «, the constant N depends on
q and d, see Section 2. As an application of (1.4), we prove that the solution of the following
equation

o0
dut(x):A%ut(x)dt+Z/gk(t,x)z]\7k(dt,dz), up=0,0<r<T,
ke=lgm

satisfies that for ¢ € [2, go]

. q/90
(VP ulsmior.g < Né (Bllgle 19 0,)])
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where the coefficient functions g* : [0, T] x RY x @ — R™ k € N, are progressively measur-
able, and fot me z]\7k (ds,dz) =: Y,k, t € [0, T], k € N, are independent m-dimensional pure jump
Lévy processes associated with the Lévy measure v, B = a/qo and ¢ is defined as in (5.4), see
Section 4 for details. Moreover, we find if we consider the following stochastic fractional heat
equation

o0
duy(x) = A% u,(x)dt + > hhax)dWE, up=0,0<1<T,
k=1

where Wl", k € N, are independent one-dimensional Wiener processes. We have the following
estimate, for any g € (0, p],

o 1/p
[V2 M]IBM@(T,q) <N (]E[” |h]e, ”ZOO(OT)]> ’

under the condition that 4 € L? ([0, T], £3), see Theorem 5.2. Specially, taking o = 2, we obtain
the result of [18, Theorem 3.4].

Due to the difference between Brownian motion and a (non-Gaussian) Lévy process, it is more
difficult to get the BMO estimate for the case with (non-Gaussian) Lévy processes. Following
the idea of [ 18], we obtain the BMO estimate of stochastic singular integral operators. We notice
that there are many places different from those in [18]. First, the assumptions on the kernel are
different from those in [18], see Section 2; Second, the exponent ¢ in [18] does not depend on
the properties of kernel but our case does depend on the properties of kernel. For simplicity, we
only consider an easily illustrative case, see the discussion in Section 4.

Our second objective is to establish the Morrey—Campanato estimates and then, by using
embedding theorem, to obtain the Schauder estimates. For this, let us review some known results.
For the regularity of SPDEs, several important works have been established, see [22,23,26,30,
33]. Similar to the regularity of PDE, the regularity of SPDEs can be divided into two aspects.
One is the L?-theory. Krylov [26] obtained the L”-theory of SPDEs on the whole (spatial) space.
Later, Kim [22,23] established the L”-theory of SPDEs on the bounded (spatial) domain. Using
the Moser’s iteration scheme, Denis et al. [11] also obtained the L?”-theory of SPDEs on the
bounded (spatial) domain. The other aspect is the Schauder estimates. Debussche et al. [9] proved
that the solution of SPDEs is Holder continuous in both time and space variables. Du-Liu [12]
established the C2T-theory for SPDEs on the whole (spatial) space. Using stochastic De Giorgi
iteration technique, Hsu—Wang [14] proved that the solutions of SPDEs are almost surely Holder
continuous in both space and time variables.

The above mentioned results about the regularity of the solutions of SPDEs belongs to the
space LP(L2; C*P([0, T] x G)), where G is a bounded domain in R¢. Now, there is an natu-
ral question, that is, can one get the Holder estimate for the p-moment? In other words, can
we derive the estimate in C%#([0, T] x G; LP(2))? We note that Du-Liu [12] obtained the
C**+_theory for SPDEs in C%#([0, T] x G; L?(S2)), where the Dini continuous is needed for
the stochastic term. The method used in [12] is the Sobolev embedding theorem and the iteration
technique under the condition that the noise term satisfies Dini continuity. In the present paper,
we would like to consider the simple case that the equation with additive noise. We first derive
the Morrey—Campanato estimates for the stochastic convolution operators and then, by utilizing
the embedding theorem between Campanato space and Holder space, we establish the norm of
C?%9/2 As an application, we show that the solutions of parabolic SPDEs driven, respectively,

Please cite this article in press as: G. Lv et al., BMO and Morrey—Campanato estimates for stochastic convolutions
and Schauder estimates for stochastic parabolic equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.08.042




YJDEQ:9516

G. Lv et al. / J. Differential Equations eee (eeee) see—eee 5

by Brownian motion and by a Lévy noise are Holder continuous in the both time and space vari-
ables on the whole space. Our approach is different from those in [11,12,14]. We would like to
point out that by using the Morrey—Campanato estimates and the embedding theorem, the Holder
estimates can be easily derived, and our Morrey—Campanato estimates can be obtained by direct
calculation, thus our method is indeed simpler than the other methods in the above mentioned
references, also see [27, Lemma 4.3] for the case of deterministic parabolic equations. Besides,
we establish the Schauder estimates for the solutions of parabolic SPDEs driven by Lévy noise.

The rest of the paper is organized as follows. In Section 2, we present the main results of BMO
estimates. The proof of the BMO estimates is given in Section 3. Section 4 is concerned with the
Morrey—Campanato estimates. Application of our results are given in Section 5. The paper ends
with a short discussion, showing that one can have a simple proof of the result in Section 2 if the
coefficient g has higher regularity.

Before ending up this section, let us introduce some notations used in our paper. As usual
R4 stands for the Euclidean space of points x = (x1,---,xq), Br(x) :={y € R4 x —y| <r}
and B, := B, (0). R denotes the set {x € R, x > 0}. a A b = min{a, b}, a V b = max{a, b} and
L? := LP(RY). N denotes a positive constant which may be different from line to line even in
the same line.

2. The BMO estimates

Let (2, 7, F,P) be a complete probability space such that F; is a filtration on 2 containing
all P-null subsets of ©2 and I be the predictable o-field by (F;, t > 0). We are given a o -finite
measure space (Z, Z,v) and a Poisson random measure p on [0, 7] x Z with the intensity
Leb ® v, defined on the stochastic basis (€2, F, F,P). The compensated martingale measure of
w is denoted by N(dt,dz) = u(dt,dz) —dtv(dz).

Fix y >0and T € (0, o0], we set

Or:=(0,T) x RY.

For a measurable function 2 on Q x O, we define the g-th order stochastic Bounded Mean
Oscillation (BMO in short) quasi-norm of # on Q x Or as follows

1
[h]%M(O)(T,q) = SZP |Q—|2E/ / |h(t,x) — h(s, y)|{dtdxdsdy,
0]

where the sup is taken over all space—time cylinders

0 = Q.(t0, x0) = (to — ¢’ , 1o + ") X Be(x0) C Or, ¢>0,19>0,x € R,

and |Q| stands for the Lebesgue measure of Q, i.e., the volume measure of the space—time
cylinder Q.(fy, xo). It is remarked that when g = 1, this is equivalent to the classical BMO
semi-norm introduced by John—Nirenberg [16].

Let K(¢,s,x):= K(w,1,s,x) be ameasurable function on 2 x Ry x R} x R4 such that for
eacht e R;, (w,s) — K(w,t,s,-) is a predictable Llloc—valued process.

Firstly, we recall the results of [18]. In [18], the following assumptions are needed.
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Assumption 2.1. There exist a ¥ € [1, co] and a nondecreasing function ¢(¢) : (0, c0) — [0, c0)

such that
(i) forany t > A >0 and ¢ > 0,

t
2
/ ‘ / |K (¢, 7, x)|dx| dr <@t —=A)c7);
Ao xl=c LK/2(Q)
(i) forany t > s > A > 0,

2

A
/ /|K(t,r,x)—K(s,r,x)|dx dr <o((t—5)tAs =1y
0 ¢ LK/2(2)
(iii) for any s > A >0 and € RY,
i 2
/ f|K(S,r,x+h)—K(s,r,x)|dx dr < No(lh|(s — 1)~'/7).
0 ¢ L</2()

Assumption 2.2. Let Gg be defined by

00 t
Gg(t,x) = Z/ / K(t.s,x — y)g*(s, y)dydw?,

k=1( pa

with w, being a Wiener process. We assume that the following holds

T T
E/IIQg(t,-)Ili%dtSNo /Illg(t, i 1750t ,
0 0

LE ()

where « is the conjugate of «.
We note that under the Assumptions 2.1 and 2.2, Kim [18] obtained the BMO estimate of Gg.
As for Gg with N defined by (1.3), due to the fact that the BDG inequality for stochastic
integrals with N (see e.g. [28] and [29]) is very different from the BDG inequality with w;, one
has to use the following Kunita’s first inequality (see, e.g., Page 265 of [1])

' T p/2
E| sup |//H(s,z)]\7(ds,dz)|p <NJE /le(t,Z)|2U(dz)dt
0==T" 5 7 0 Z
T
+E /f|H(t,z)|pv(dz)dt , 2.1
0 Z
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for p > 2. We note that when N(ds,dz) is replaced by dwy, the second term of right hand side of
(2.1) vanishes. Hence, in order to deal with the arising difficult for the Poisson compensated mar-
tingale measure N, we make the following two assumptions, corresponding to Assumptions 2. |
and 2.2 for wy, respectively.

Assumption 2.3. There exist constants gy > 2, ¥ € [1, co] and a nondecreasing function ¢(¢) :
(0, o0) > [0, 00) such that
(1) forany r > A > 0 and ¢ > 0,

13
/‘ / Kt lde] "ar <ot = WeTY;

A x|=c L¥/90 ()

(i) forany t > s > A > 0,

N 40
/ /|K(t,r,x)—K(s,r,x)|dx dr Sfp((l—s)(tAs—A)_l);
0 d LK/{]O(Q)
(iii) forany s > A >0 and h € R?,
N q0
/ /|K(s,r,x+h)—K(s,r,x)|dx dr < No(h|(s —1)~17).
0 LK/90 ()

Assumption 2.4. Similar to Assumption 2.2, suppose that Gg is well-defined via (1.3) and that
the following holds

T

T
]E/IIQg(t, I Fsdt < No // lg(, - 2)1F5 v(d2)dr . (2.2)
0

0 Z LE(Q)

Our first main result is the following

Theorem 2.1. Let Assumptions 2.3 and 2.4 hold. Assume further that the function g satisfies

/ IgCo DT, v@d0)| <00, @ =2 or g (23)
LS(Q2)

where ¢ = qok V )+ (¢ =00 ifk < qo). Then for any q € [2, qo A k], one has

2(K qo
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q/2
Gelmsiop <N | || [ et Do, a2
Z

L¥=4q
q/90
q\
+ /”g("'vz)”LOOO(OT)V(dZ)
Z L7 (Q)
+ / 18C+ 2 D w0, v(d2) , 2.4)
Z L7q

where N = N(No, d, q,qo, ¥, K, @).

Remark 2.1. 1. Comparing our Theorem 2.1 with Theorem 2.4 in [18], it is not hard to find in
Theorem 2.4 of [18] the exponent g does not depend on gg. Actually, the range of exponent g is
(0, po Ak] and in our paper is [2, go A «]. In other words, the range of exponent g depends on the
properties of kernel K. The lower bound of ¢ is due to the fact that the Kunita’s first inequality
holds for g > 2.

2. In our Theorem 2.1 above, we did not formulate the right hand side of (2.4) in a uniform
manner. The reason is that the integral | , V(dz) might be infinite. If we assume that

f (&* A Dv(dz) < Ny and / I8¢ Do, 1+ £ + £ vz < o0,
VA zZ

L¥™ ()

where N is a positive constant, then (2.4) can be replaced by

q/90

_d _40
[Gelamo.q) < / lgC, - DN oo,y (1L + FD72 + f(D)7 7 )v(dz) :
4 L ()

where

2 2
1—l2—1
K*=/szfq, f(z)z%klzzzu.

3. The condition (2.3) coincides with (5.4) in Section 4. Under the condition (2.3), it is easy
to check that

q
/ ”g(»» Z)”LOO(OT)U(dZ) < Q.
Z L*=7(Q)
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3. Proof of our BMO estimates

In this section, we first estimate the expectation of local mean average of Gg and its difference
in terms of the supremum of |g| given a vanishing condition on g. Then we present the proof of
our first main result.

Lemma 3.1. Given g € [2, qpl, 0 <a <b < T. Let Assumption 2.4 hold. Suppose that g vanishes
on (a,b) x (B3.)¢ x Z and (0,a) x R x Z. Then

b q/po

]E//lgg(t,x)lqudtSN(b—a)lBac sup /Ig(, ) *v(d2) ;
(@.b)xBc
a B LR (@)

where N = N (Np).

Proof. The proof is similar to that of Lemma 4.1 in [18], so we give a sketch proof. By Holder’s
inequality and Assumption 2.4,

b

E//|Qg(t,x)|qudt

a B.

q/90

b
<((b- a)(QO*q)/(IO|BC|(q0*Q)/QO E/ / 1Gg(t, x)|%dxdt

a B
T q/90
<N®b - a)(LIO—LI)/fIO|Bc|(QO—Q)/£I0 // lg(, - 2)| quv(dz)dt
0z LF(Q)

Since g vanishes on (a, b) x (B3.)€ and (0, a) X R4, then the above term is equal to or less than
the following

b q/90
N — a)(qo—q)/qO|Bc|(qo—4)/qo / / / lg(, x, 2)|Pv(dz)dxdt
a B Z L’?(Q)
q/90
<N(®—a)|Bs|| sup /Ig(, ,2)|"v(dz)
(a,b)x B3, .
LK ()

The proof of lemma is hence complete. O

Lemma 3.2. Given g € [2,q0 Ak], 0<a <b <T. Let Assumption 2.3 (i) hold. Suppose that g
vanishes on (0, 3b2_“) X Ba. X Z. Then
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b b
Ef///|gg(f’x)—Qg(S,y)lqudtdsdy

a B, a B,

q/2

< N(b—a)*|Be|[p(be )19/ / (.- e (0, v (d2)
VA

Lx—q

+ / ”g(,, Z)"zW(OT)V(dZ) s (31)
Z K

L¥x—4

where by convention 32 :=1and N = N(T, q).

Proof. Let (t,x) € (a,b) x Bo and 0 <r <t.If |y| < c, then (r,x — y) € (0, 247%) x By, and
g(r,x —y,z) =0 for all z € Z. Hence, Assumption 2.3 (i), Holder inequality and Kunita’s first
inequality (2.1) in turn imply the following

q/2

t
E|Gg(r, )| <E / / | / Kt r. )g(r x — v, 2)dyPo(dz)dr

0 Z Rd

t
+E //|/K(t,r,y)g(r,x—y,z)dquv(dz)dr

0 Z Rd

q/2

t
<E / / | / K1 »)g(r.x — y. )dyPo(dz)dr

0 Z |yl=c

t
+E /fl / K(t,r,y)g(r,x —y,2)dy|Tv(dz)dr

0 Z |ylzc
e q/90
< T@=24/Q0)E /‘ / K@,y [ ar
L \0 Iyl=c
q/2
. / 18-~ D0y V()
Z

t
q
w2l [ [ [ ikarma]ar | [1s6 00, v
Z

0 Iyl=c
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q/90

t
| [| [ ikwryayar

0 Iylzc L/40
q/2
X / lgC, - D0y (d2)

z =
q/90

t
q0
N /‘ / K (1,7, y)|dy| dr

0 I|yl=c Lx/90

X / ”g(s *y Z)H%OO(OT)V(dZ)
Z

L*=q
q/2

< Mg | || [ g 2o, )
Z

q
+ / ”g(, K Z)"LOO(OT)U(dZ) 5
VA

which further implies that

b b
E////|gg(f»x)—gg(S,y)I"dxdtdsdy
a B, a B,

b
5N(b—a)IBcHE//|Qg(t,x)|qudt

a B.
q/2

< N(b—a)’|Be|[p(bc™7)]7/® / lgCs - Do 0,V (d2)
Z

K

Lk=q

- / 18C - Do,V (d2)
zZ

The inequality (3.1) is thus derived. The proof is complete. O

Lemma 3.3. Let g € [2,90 AN k], 0 <a < b < T such that 3a > b. Suppose that Assumption 2.3
holds that g vanishes on (#, 3b2_“) X By X Z. Then for Gg defined by (1.3), we have
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b b
E//f/|gg(f’x)—gg(s,y)lqudtdsdy

a B, a B,
q/2

12

L¥—4q

<N(b—a)’|B.*®(a,b, ) /||g(-,-,z)||ioo(0,)v<dz)
7 _k
3.2)

q
+ / ”g(,, Z)"LOO(OT)U(dZ) 5
VA Lﬁ

where N dependson T, q,a,b,c, and
®(a, b, c) =[] + [p((b — a)c ") + [p2"TV7 (b — a)~"/7))1/%0,

Proof. Due to the Fubini’s Theorem, it suffices to show that for all (¢, x) € (a,b) x B, and

(s, y) € (a, b) x B, the following inequality holds
q/2

ElGg(r,x) — Gg(s, T < N®(a,b,c) / lgC, - DI e (oyyv(d2)
z L5

q
+ / ”g(vv Z)”LOO(OT)V(dZ)
Z L7a
Clearly, we have

E|Gg(t,x) —Gg(s, »)|?
N(E|Gg(t, x) —Gg(s, x)|? + E|Gg(s, x) — Gg(s, y)|?)

IA

N+ D).

In what follows, let us estimate /1 and I, respectively.
Estimate of /;. Without loss of generality, we assume that ¢ > s. Then by Lemma 3.1 of [28]

and the inequality (2.1), we get
I = ElGg(t,x) — Gg(s,x)|?

t
=B ‘///K(t’r’x_)’)g(r,y,z)dyl\?(dr,dz)
0

Z R4

—///K(s,r,x —y)g(r,y,z)dyﬁ(dr, dz) !

0 Z Rd
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| /\

’///K(t,r,x—y)g(r,y,z)dy](f(dr,dz)

0 Rd

—///K(t,r,x—y)g(r,y,z)dyﬁ(dr,dz) !

0 Z Rrd

TNE ‘///(K(t’r’x_y)_K(Svr’x—y))g(r,y,z)dyﬁ(dr, dz)|"

0 Z Rd

q/2

< NE //|/K(t,r,x—y)g(r,y,z)dy|2u(dz)dr

SZ]Rd

e[ f

s Z

/ K(tr,x — )g(r, v, 2dy|fv(d2)dr
Rd

q/2

+ NE // |/(1<(z, rox—y)—K(s,r,x — y)g(r, v, 2)dy|*v(dz)dr

0 Z Rd

+ NE // /(K(t, rnx—y)—K(@s,r,x —y)g(, vy, 2)dy|?v(dz)dr
0

Z Rd

=: N1+ Io+ i3 + $I1).

Note that g vanishes on (
A = s then yields that

3“;’, 3[’%“) X By x Z and a > 3“;’. Our Assumption 2.3 (i) with

: q/2
I+ =E //|[K(r,r,y)g(r,x—y,z>dy|2v<dz>dr
s Z Rd
t
+E //I/K(Lr, »g(r,x —y,2)dy|?v(dz)dr
s 7 ]Rd
q/2
/\ / K (t,r, y)|dy\ drfng(, 2 D70, 1(d2)

s |y|=c
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+E /\ / K@ wldy|' /ng(, D o,y v(d)d

s |ylze

q/2
< Nlp((b — a)c™V)4/

/ 18, D1 Z o0,y v (d2)
z L4

4] [ 186 DM 0,702
VA

K

Lx—4q

Similarly, due to g vanishes on (et 3b2 2) x By x Z, we divide (0, s) into two parts (0 3“2_ by
and (3“2_1’, s). Thus we have

s a2
m+ns=5sl| [ / [ K= 3) = KGsurox = gy )y Potdards
B[ [ [1 [k = - K= gty s
e 2
_ " a/2
+E / /I/(K(t,r,x —y) = K(s,r,x — y)g(r,y, 2)dy|*v(dz)dr
0 Z Rd
-
+E / / f(K(r Fx = ) = K (.7, x — y)g(r, v, Dyl v(d2)dr
7 Rd

=: 1131 + Iy + Ii32 + Nao.

Utilizing our Assumption 2.3 (i) again with A = b

q/2
t
I3+ 14 <E / /I/IK(t,r,x—y)g(r,y,z)ldylzv(dZ)dr
5 2
q/2
/ / /|K<s rox = Y)g(r v, DldyPrdz)dr
b 7 R
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t
+E //|/|K<r,r,x—y)g(r,y,z>|dy|qv<dz>dr

3a—b 7 TRd
L2 R

+E / /|/|K(s,r,x—y)g(r,y,z)ldy|qv(dz)dr

3a—b 7 Rd
_a2 R .

q/2

< NlpQ2(b — a)c™7)}4/40 / I8¢, D70,y v(d2)
V4

Lk=q

K

q
+ / g€, D] w0,y (d2)
V4 Lk=4q

On the other hand, our Assumption 2.3 (ii) with A = # gives the following

3a—b

22

2

I3+ Iy < NE f ‘/|K(I,r,x—y)—K(S,r,x—y)|dy dr
0

R4
q/2

x / g€, -, Do o,V (d2)
V4

3a—b

2
q
B[ [ | [1K@rx =y - K-y
0 R4

x / 186, DN w0, V(d2)dr
VA

q/2

=M@ | | [ gt 2o, )
Z L%

K

q
+ / ”g(, y Z)||L°°(Or)v(dz) s
z L<=q

where we have used s — 242 > ¢ — % = b%“ and (t — s)(s — #)_1 < 2 in the above
derivation.
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Estimate of I5. By utilizing the fact that g = 0 on (3“2_ b 3b-a

) X By X Z once more, we

divide (0, s) into two parts (0, 3“2_ by and (3“2_ b ). Direct calculations then show the following

q/2

L, < NE //‘/K(s ryw)(glr,x —w,z) — g,y —w, z))dw| v(dz)dr

Z Rd

+E // /K(s rw) (gl x —w,z) — g,y — w, 2))dw|?v(dz)dr
Z R4

q/2

< NE / /‘/K(s,r, w)(g(r,x—w,z)—g(r,y—w,z))dw|2v(dz)dr

3a—b 7 TRd
a2 R

+ NE / /|/K(s,r, w)(glr,x —w,z) —gr,y —w, 2))dw|?v(dz)dr

# Z Rd
3a—b a2
2

+ NE / /‘/(K(s’r’x_w)_K(s’r’y_w))g(r,wﬂ)dwlzv(dz)dr
0 Z Rd
3a—b

+NE / /|/(K(S’r’x_w)_K(S’Vvy—w))g(”,w,z)dwlqv(dz)dr
0 Z Rd

q/2
s
= VB / /‘/'K(“"r’ w)g(r,x —w, Dldw|*v(dz)dr
3a2—b Z Rd
q/2

+ NE

—

/‘f|K(s,r, w)g(r, y — w, 2)|dw|?v(dz)dr

3a=b 7 R4
2

+ NE / f|/|K(s,r, w)g(r, x —w, z)|dw|?v(dz)dr

3a=b 7 TRd
2

+ NE / f /lK(s r,w)g(r,y —w, z)|[dw|?v(dz)dr

3

oS
>

Z Rd
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3a q/2

/ f(K(s, rx—w)—K(s,r,y—w))gr, w, z)dwlzv(dz)dr

Z Rd

+ NE

O\

311

+ NE / / /(K(s rnx—w)—K(s,r,y —w))g(r, w, z)dw|?v(dz)dr
Z Rd

=: D+ + by,

Similar to /11 + I12, the four terms I31 + - - - + Ip4 is less than or equal to the following

q/2
NIp(2(b — a)c™7)}4/® / I8¢ D70 V(d2)
LI(
q
+ / ”g(v 's Z)llLoc(OT)v(dZ)
Finally utilizing our Assumption 2.3 (iii) with A = b
3a—h
Ihs + s < NE / ‘/|K(s rx —w) — K(s.r.y — w)ldw| dr
R4
q/2
x / g€, - Do 0y v (d2)
3a=b
2
q
+NE / ‘/ 1K (s,r, % —w) — K(s, 7,y — w)|dw| dr
0 R4

fng(, Do,V (d2)

q/2

<N e(b —a)~'/ryt/® / I8¢ D170,y v (d2)

Lx—4

[ 1€ 0y (a0

K

L¥k=q

Combining all above derivations, (3.2) is obtained. This completes the proof. O

17

and Schauder estimates for stochastic parabolic equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.08.042

Please cite this article in press as: G. Lv et al., BMO and Morrey—Campanato estimates for stochastic convolutions




YJDEQ:9516

18 G. Lv et al. / J. Differential Equations eee (eeee) eee—eee

Now, we are ready to prove our first main result. The proof is similar to that of Theorem of
24 in [18].

Proof of Theorem 2.1. Let g € [2, go A «]. It suffices to show that for any
Q = Q.(to, x0) := (to — ¥, 1o + c¥) x Be(x0) C Or, ¢>0,1>0,
we have

éﬂi/‘/@g(t,x) —Gg(s, y)|1dtdxdsdy

0 Q0
q/2
<N [ [ [ gt o, vido
z =
q/90
q
+ /.lg('v'sz)|L000(OT)v(dZ)
VA L7 (Q)
- / 18C. - DN o 0,9V (d2) , (3.3)
z L7q

where N = N(T, q, ¢). Since the operator G is translation invariant with respect to the variable x,
ie.

gg(v ')(l?x +)C()) = gg('v-xo + ')(ta .X),

we may assume, without loss of generality, that xo = 0. We divide the left hand side of (3.3) into
two parts. Indeed, we have

éﬂ*}//@g(t,x) —Gg(s, y)|1dtdxdsdy
0 0

2 1
< SE / Gen(t, 0 drdrdsdy + / / Gea(t, x) — Geals, y)|drdxdsdy
0 0 0
=:Ji + /2,

where

81(t, x,2) := I((t9=2¢V0,1042¢7 ) x Boe x Z (£, X, 2) (£, X, 2), 82:=8 — &1-

Estimate of J;. Since Q C Or, it holds that 7y — ¢¥ > 0 and thus

(to—c”,to+cV) C(tg—2cY) VO, 19+2c7)
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and g vanishes on
[((to —2¢")V 0,10+ 2¢7) x BS, x z] U [(o, (to — 2¢7) v 0) x RY x z].

It follows then from Lemma 3.1 with a = (fo — 2¢¥) v 0 and b = 19 + 2¢? that

q/90
J<N /|g(',-,z)|i°w(07_)v(dz) : (3.4)
VA L7 (Q)

Estimate of J. If ty < 2c¢Y, we apply Lemma 3.2 with a =ty — ¢’ and b =ty + ¢”. In this
case, one can easily check that bc™" <3 and

g =0 on [(0, to +2¢?) x By % Z].

Thus, (3.1) of Lemma 3.2 yields that

q/2
h<N f 18+ D)3 0,y (d2) + / I8¢, DN o 0,9 (A2)
V4 175 zZ

K
Lk—q

(3.5)

On the other hand, if #y > 2¢¥, we apply Lemma 3.3 with a = tg — ¢ and b =ty + ¢?. In this
case, one can easily check that 3a > b and

g =0 on [(to —2cY, 19+ 2¢Y) x By x Z].
Moreover, by using the nondecreasing property of ¢, we have

sup  D(tg— ¥, t9+c”,0)

toeR1,c>0
= s flp@F 1o — e N0 4 g e - )
t0€R4,c>0 a=ip—c¢
b=ty+c”
< OQ.

Hence, (3.2) implies that

q/2

h<N / 18C. - D20y, v(d2) + / 186 D e 0y V(d2)
VA Z

K

Lk=4
(3.6)

K

L¥x—4

Finally, combining (3.4), (3.5) and (3.6), we obtain (3.3). We are done. O
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Remark 3.1. In the present paper, we only consider the simple case. Actually, one can use the
similar method and Kunita’s second inequality (see Page 268 in [1]) to deal with the following
case

t
gé(t,X)=ffK(t,S,x—y)h(s,y)dydW(S)

0 Rd
t
+///K(t,s,x—y)g(s,y,z)dyN(ds,dz),
0 Z Rrd

where W is a Wiener process and N is a Poisson compensated martingale measure, and both are
independent. For more detailed account, the reader is referred to [28].

4. The Morrey—Campanato estimates

We first recall some definitions and review briefly some known results. Set, for X = (¢, x) €
R x R? and ¥ = (s, y) € R x R?, the following

5(X,Y) := max {|x — It —s|%}.
Let Q.(X) be the ball centered in = (¢, x) with radius ¢ > 0, i.e.,
0:X)={Y=(s,y) eRxRY: §(X,Y) <R} =(t — ?, 1 + %) x Be(x).
Fix T € (0, oo] arbitrarily. Denote
Or:=(0,T) x R?.

Let D be a bounded domain in R¢*! and for a point X € D, D(X,r):=DNQ,(X)and d(D) :=
diam D. We first give the definition of Campanato space.

Definition 4.1 (Campanato space). Let p > 1 and @ > 0. The Campanato space .Z7?(D; §) is a
subspace of L?(D) such that

1/p

1
[l wpo(p.s) = sup —_ / lu(Y) —ux ,|’dyY < o0, uelL?(D)
PN xep.apyzp=0 ID(X, p)If g g
P

where | D (X, p)| stands for the Lebesgue measure of D(X, p) and

1
5 &) Zm f M(Y)dY

D(X,p)

For u € £P(D; 38), we define
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» » 1/p
Il zno iy = (Wel oy + g i) -

It is easy to verify that the Campanato space (Z7(D; §), | - | #r.o(p:s)) is a Banach space
and has the following property: if 1 < p <g <00, (6 — p)/p < (0 — p)/q, it then holds that

£9°(D; 8) c £PY(D; §).
Next, let us recall the definition of Holder space.

Definition 4.2 (Holder space). Let 0 < « < 1. A function u belongs to the Holder space C* (D; 8)
if u satisfies the following

W] mn e sup [u(X) —u(Y)]
C(D:d) XeD,d(D)zp>0 (X, Y)¥

Foru € C“(D; 8), we define
”M”CQ(D,S) = Sgp |I/£| + [M]CD‘(D,S)

Definition 4.3. Let D C R?*! be a domain. We call the domain D an A-type if there exists a
constant A > 0 such that VX € D, 0 < p < d(D), it holds that

ID(X, p)| =D N Qp(X)| = A|Qp(X)I.

Recall that given two sets By and B,, the relation B; = B, means that both B; € B; and
B> € Bj hold. We have the following relation of the comparison of the two spaces defined above

Proposition 4.1. Assume that D is an A-type bounded domain. Then, for p>1and 1 <0 <
1+ dL-;-z (Recall that d is the dimension of the space),

2P9(D; §) = CY(D; 8)

with
d+2)©—-1)
==
p

We aim to obtain Campanato estimates under certain assumptions on the kernel K. Noting
that

1/p

/ lu(Y) —ux ,|’dY

D(X,p)

1
sup —
XeD,d(D)=p>0 |D(X, p)|
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1/p
1 1 b4

= sup —_— u@¥)— ——— u(Z)dZ‘ dy

XeD,d(D)=p>0 |D(X, p)| ID(X, p)|

D(X,p) D(X,p)
1/p
1

< sup —— / / lu(Y) —u(Z)|PdZdY ,

XeD.d(D)>p>0 | D(X, p)|1+7

D(X,p) D(X,p)

it is clear that the semi-norm of the Campanato space can be controlled by some Holder estimates.
We also remark that in order to get the Holder estimate, one must have the condition that 6 > 1.

Let us now consider the Campanato space for stochastic processes (or random functions)
defined on the given probability set-up (€2, F, P; {F;}¢[0,77)- For a (jointly measurable) random
function & on Q2 x Or, we define the (random) Campanato quasi-norm of 4 on 2 x Or as follows

1
p — _ _ p
[A] Pr0(Q:8):LP(Q) Slép |Q|1+9E/ / |h(t,x) — h(s, y)|Pdtdxdsdy
)

where the sup is taken over all Q = D N Q.. of the type
Qclto, x0) = (1o — ¢*, 10 +¢?) x Be(x0) C O, ¢> 0,19 > 0.

It is remarked that when 6 = 1, this is equivalent to the classical BMO semi-norm which is
introduced in John—Nirenberg [16]. If the Campanato quasi-norm of % is finite, we then say that
h belongs to the space .Z7-?((Q; 8); LP(Q)).

Note that we have two type spaces L?(Q; .79 (D; 8)) and 279 ((D; 8); LP(2)), the former
space is the totality of all random functions u(w, ¢, x) such that

1
E[u];pﬂw;a) = ESI[J.)p |D|—1+9 / / |h(t, x) — h(s, y)|Pdtdxdsdy < oo
DD

(ie., all £P-?(D; §)-valued LP(S2)-random variables) and the latter space consists of any ran-
dom function u(w, t, x) such that |[u(-, t, x)||Lr() belongs to the space 2P9(D; §), in other
words, the following norm is finite

1 p
[||M||LP(Q)];,,,9(D.5) = SUP|D|—1+9// ’||M||LP(52)(I,X) — llullzr(s, y)| dtdxdsdy < oo.
’ D
D D

Let us explicate a bit more about the two spaces L?(Q; .Z7%(D; 8)) and .£P ((D; 8); L?(RQ)).
If we want to prove u € L?(L; ZP")(D; 8)), that is, to show that

E[u];p,G(D;a) < 00,

a naive idea is to verify if the two operations E and sup, , are interchangeable. Unfortunately,
it is hard to give a sufficient condition to assure the above idea goes through. Another naive
idea is to prove the norm of u in .Z7-%(D; §) could be bounded almost surely, but this is also
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hard to get through. We have to adjust our ideas. We remark that the meaning of the space
2P9((D; 8); LP(R)) is that

we ZP0(D;8); LP(Q), if lullLri@) € £7(D;9).

In other words, the following norm is finite

1
p —
[”“”L/’(Q)]gp,e(D;a) = Slll)p |D|1+0 //
D D

On the other hand, by triangular inequality and Fubini’s theorem, we have

p
lullLr)(t, x) — llullLr@)(s, y)| dtdxdsdy < oo.

p
[”M ”L”(Q)]rgpﬂ (D;5)

1
<stp f / lu(t, ) — uls, Y)IE oy dedrdsdy

//W(f x) —u(s, y)|Pdtdxdsdy.

D D

|D|1+9

Thus, we only need to show that

|D|1+9 //W(f x) —u(s, y)|Pdtdxdsdy < oo.

4.1. The Brownian motion case

Recall that (€2, F, P) is the given complete probability space endowed with {F;};c[0,77, a fil-
tration on €2 containing all P-null subsets of 2. Let W; be a one-dimensional {F;};¢[0,7]-adapted
Wiener process defined on the probability set-up (€2, F, P; {F;}sef0,77)-

Given a deterministic kernel K : R x R? — R, we denote for any no-random (i.e., not ran-
domly dependent) g : R x R? — R the following stochastic convolution

Kg(t,x):= / / K@t —r,y)g(r,x —y)dydW(r). 4.1)

0 Rd
Then we have the following result.

Theorem 4.1. Let D be an A-type bounded domain in R such that D C Or. Suppose that
g€ CPRL xRY), 0 < B < 1, is a non-random function and g(0, 0) = 0. Assume that there exist
positive constants y; (i = 1,2) such that the non-random kernel function satisfies that for any
te(0,T]
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2

s
/ IK(t—r,2) — K(s —r,2)|(1+ |z/P)dz | dr <N —s)", 4.2)
0 \Rd

2

s
/ f |K(s —r,2)ldz | dr < No, (4.3)
0

2

t

/ Kt —r,2)|(1+z1")dz | dr <N —9)7, (4.4)

J
where Ny is a positive constant. Then we have, for p> 1 and < y,
[K&lgrop:sy:Lr@) =N
where N depends on No, B, T,d, p, 0 =1+ dy—_fz and y = min{y, y2, B}.
Proof. Let (zy, xg) € D C Or and
Qc(to, x0) = (to — ¢*, 10 + ) X Be(xp).

Then set C; :=diamD, we have D C QOc, (10, x0). Denote Q := D N Q.(t, x0).
Set ¢ > 5. By the BDG inequality, we have

E//UCg(t,x) — Kg(s, y)|Pdtdxdsdy

= //’/fl((t—r 2)g(r,x —z2)dzd W (r)

0 R4

- / / K(s —r,2)g(r,y —z)dzdW(r) pdtdxdsdy
0 Rd

<2 IE//‘//(K(I—F D)= K(s = r,2)g(x = dzdW ()|’

0 Rd

+2IHE//‘//K(s—r,z)(g(r,x—z)—g(r,y—z))dde(r)‘p
0 0 0Rd

+2°P~ IE//’f/K(t—r g x — 2dzdW ()| drdxdsdy

Qo 0 s Rd
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S

SN//(]'[K(f—r,z)—K(S—r,z)g(r’x_z)leZdr
Q0

0 Rd
P
5 2
+N// /|f|1<<s—r,z)||g<r,x—z)—g(r,y—z>|dz|2dr
0 0 0 R4

P

2

+
=

/

/(11 + I + I)dtdxdsdy.
0

t
/ [|/K(t—r, z)g(r,x—z)dzlzdr
0 R4

N

QQ\

Estimate of /7. By using the Holder continuous of g, i.e.,

B
80, —2) = g(0,0)] = Nmax |73, |x — 2|

B

< N(TZ + |x — xol? + |x0l? + 12/%)
B

< N(TT +cP +1xol? +121P),

and (4.2), we have

N

/|f|1<<r—r,z>—K(s—r,z>||g(r,x—z>|dz|2dr

0 R4

L

Il
=

(S1iS)

S
B
<N /|/|K(t—r,z)—K(s—r,z)I(T7 +cﬂ+|xo|ﬁ+lzlﬂ)dzlzdr
0

R4
P

2

N
<N /|/|K(I—V,Z)—K(s—r,Z)|(1+|Z|ﬁ)dZ|2dr
0 Rd

N

+ PPN f|/|K(t—r,z)—K(s—r,z)dr
0 R4

<N +cPPyr—s)F.

The condition (4.3) and

25

and Schauder estimates for stochastic parabolic equations, J. Differential Equations (2018),
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lg(r,x —2) — g(r,y —2)| < N|x — y|f

imply the following derivation

P
N 2
L=N f |f |K (s — 1, 2)|Ig(r.x —2) — g(r.y — 2)|dz|*dr
0 Rd
p
s 2
v | [1 [ 1Kol = yiaziar
0 Rd
< Nlx—ylfP.
Estimate of I3. By using the property g(0,0) =0 and (4.4), we get
P
t 2
L=N [ |/1<(z —r,2)g(r,x — z)dz|*dr
K ]Rd
r
2

t 2
< | [| [ k@20 41 =0l ol ez ar
s Rd

P

2

- 2
<N /’/|K(r—r,z)|(l+lzlﬁ)dz‘ dr

s R4

(SIS

t
2
+ Nix — y|PP /‘/lK(l—r,z)Idz‘ dr
Ky Rd

SN =53 (1 +1x - yIP).
Noting that (¢, x) € Q. and (s, y) € Q., we have
0<t—s<2c® and [x —y| <|x —xo0l + |y — x0| <2c.

Using the above inequality and the properties of A-type domain, we deduce

//Ildtdxdsdny(l +cPPyerir|0)?;
0 0

/f]zdtdxdsdySNCﬁp|Q|2;
00
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/ / Ldtdxdsdy < N|Q|*c"?P (1 + ¢PP).
00

Combining the estimates of /1, I and I3, we get

E// lu(t, x) —u(s, y)|’dtdxdsdy
00
< N|[QPP(cP? + 1)(cPP + P + c72P).

Since D is a A-type bounded domain and ¢ < diam D, we have

AlQc(to, x0)| = |Q] = [Qc (0, x0)|-

We remark that | Q. (fo, x0)| = Nc?t2 and 0 < B < 1, where N is a positive constant which does
not depend on c¢. Noting that Q C Qc¢,, we have

E//m(t,x)_u(s,y)wdtdxdsdy5N|Q|2+%,
0 0

where y = min{y, y», 8}, which yield that
1 P
(Kglgrop:sy:Lr) = SZP W]E IKg(t,x) —Kg(s, y)|dtdxdsdy
0

SN’

where N depends on 8, No, T,d, p,0 =1+ dy—fz. The proof of Theorem 4.1 is complete. O
Theorem 4.1 shows that Kg(t, x) € £79((Q; 8); LP(R)). Thatis, | KgllLr) € L7 (Q; ).
Applying the result of Proposition 4.1, we have the following result.

Corollary 4.1. Assume all the assumptions in Theorem 4.1 hold, then
Kg(t,x) € CY((D; 8); LP ().

Remark 4.1. 1. It follows from Theorem 4.1 and Corollary 4.1 that Kg (¢, x) € C¥ ((D; 8); LP(2))
and y = min{yy, y2, B} if g € CF(Ry x RY) and g(0, 0) = 0. For special kernel, we can let
y = 8, see Theorem 5.3. That is to say, the regularity of Kg(#, x) depends heavily on the noise
term gd W; in the equation.

2. It is easy to prove that if g € Ck+/3’ﬁ/2(R+ x R4) and V¥g(0,0) = 0, then Kg(r,x) €
C**tv-¥/2(D; §) under the assumptions of Theorem 4.1. Here g € CKtA:-#/2(R. x RY) denotes
that the k-order of g w.r.t. spatial variable belongs to C#, and that g w.r.t. time variable belongs
to CA/2.

3. The regularity w.r.t. time variable can not be improved because of the fact that the regularity
of Brownian motion w.r.t. time variable is C2~.
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4. If the kernel function K is random, the similar result also holds. The constant N in Theo-
rem 4.1 depending on the choice of xo can be removed provided that

E[Ig1% o, | < oo

where pg>1and 1 < p < po. Actually, by using the kernel K € L' (R?), we have

|/K(t—r, 2)g(r,x —)dz| < |lgllL~op)(t —5), a.s..
R4

But we must pay for that there exists a constant pg such that [|| g ||27%o (Or)] < oo and the index
p will have to satisfy 1 < p < po.

5. The method used in Theorem 4.1 is similar to that in [27] for the interior Schauder estimate,
see [27, Lemma 4.3].

In Theorem 4.1, the noise term g depends on the times and spatial variables. A natural question
is: if g does not depend on the time 7, the result of Theorem 4.1 will also hold ? Next, we answer
this question. Due to the proof is exactly similar to that of Theorem 4.1, we omit the proof of the
following result.

Theorem 4.2. Suppose that g € CP(R), 0 < B < 1 and g(0) = 0. Assume further that
(4.2)—(4.4) hold. Let D be a A-type bounded domain in R4+ such that D C O Then we have,
for p>1,

[Kglpre sy Lr@y =N

where N depends on No, 8, T,d, p, 0 =1 + J& and y = min{y1, y2, 8}.

Remark 4.2. By using Proposition 4.1, one can get Kg (¢, x) € CY ((D; 8); L?(2)). In particular,
taking g = constant, we have the regularity of time variable is C >~ and the regularity of spatial
variable is C*°.

4.2. The Lévy noise case

Let (2, F, IF, P) be a complete probability space such that {F;};c[0,7] is a filtration on €2 con-
taining all P-null subsets of €2 and [F be the predictable o -algebra associated with the filtration
{Ft}ier0,7]- We are given a o -finite measure space (Z, Z, v) and a Poisson random measure x on
[0, T'] x Z, defined on the stochastic basis. The compensator of 1 is Leb®v, and the compensated
martingale measure N:=u—LebQv.

In this subsection, we consider the stochastic singular integral operator

t
gg(t,x)z//K(t,s, D xg(s, -, 2)(x)N(dz, ds)
0 Z
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t
= / / / K(t —s,x —y)g(s, y,2)dyN(dz, ds) (4.5)
0 ZRd

for F-predictable processes g : [0, T] x R? x Z x € — R. For simplicity, we assume that the
kernel function is deterministic. We first recall the Kunita’s first inequality.

Proposition 4.2 (Kunita’s first inequality [I, Theorem 4.4.23]). For any p > 2, there exists
N(p) > 0 such that

T p/2
E( sup |1(:)|P <N{E (//IH(I,Z)I2v(dZ)dt
0<t<T .
T
+E //|H(l,z)|pv(dz)dt , (4.6)
0 Z

for

t
I(t):/[H(s,z)N(dz,ds)

0z

with H € P(t, E), where P>(T, E) denotes the set of all equivalence classes of mappings F :
[0, T] x E x Q — R which coincide almost everywhere with respect to p x P and which satisfy
the following conditions (see Page 225 of [1])

(i) F is F-predictable;

(ii) P (/‘OT [ \F(t.x)Pp(dt, dx) < oo) =1,

where p is a measure defined on the space E.
Now we are in the position to show our main result.
Theorem 4.3. Let g1 : Z x Q — R be measurable and fulfill the following

Po/2

/ lg1(2)[*v(dz) + / lg1(2)|P0v(dz) | < o0
Z Z

for some constant py > 2. Suppose that the function g satisfies that

B
8.2, = g5y, 9l = Nmax [ = )2 1x = yI| g1(2), forall z€Z, a5, @7)

and (0,0, z) = 0 uniformly for z € Z almost surely. Assume further that there exist positive
constants y; (i = 1, 2) such that the non-random kernel function satisfies that for any t € (0, T],
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s p
/ fIK(t—r,Z)—K(S—V,Z)|(1+|Z|’3)dz dr<N(@t—s)'F,
0 R4
s P
/ /'K(S_rsz)|dz drEN()s
0 R4
¢ p
B yap
|[K(t —r,2)|(14+1z|°)dz | dr <N(t—s) 2,
s R4

where Ny is a positive constant. Let D be an A-type bounded domain in R4t such that D C Or.
Then we have, for2 < p < pg and < «,

[Ke(t, x)]fpﬁ(p;g) <N,
where =1+ 1 d+2 and y = min{yy, y2, B}.

Proof. Similar to the proof of Theorem 4.1 and using the inequality (4.6) we first have the
following estimates.

E|Gg(t,x) — Gg(s, »I?

—E ‘f[/[((t—r £)a(r, x — £, 2)dE N (dz, dr)

Z R4

/f/K(s—r Eglr,y —&, Z)dSN(dZ dr)

Z Rd

///[K(t—r%‘)—K(s—ré)]g(rx £,2)dEN(dz, dr)

Z R4

///I«s—rs)[g(rx £.2)— gry — £ DIdEN(dz. dr)

Z R4

t
+///K(t—r,g)g(r,x—s,z)dsﬁ(dz,dr)p

s Z Rd
r/2

t
/ / | / K(t —r.£)g(r, x — £ 2)dE[Pv(d2)dr

s Z Rd
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t
//IfK(t—hS)g(r,x—E,Z)dEIPV(dZ)dV

_S Z R4
K p/2
//I/K(S—V,E)[g(hx—&Z)—g(r,y—E,Z)]dSIZV(dZ)dF
0 Z Rd
//I/K(S—r,é)[g(nx—$,Z)—g(r,y—é,z)]dSIPV(dZ)dr
|0 Z R
r/2

//I/[K(t—r,é)—K(S—r,é)]g(r,x—E,Z)dé*lzv(dZ)dr
0z

R4

//|/[K<r—r,s>—K(s—né)]g(r,x—s,z>ds|f’v<dz)dr
0 Z

R4

By using (4.7) and g(0, 0, z) = 0 uniformly for z € Z almost surely, we have that the above
inequality is smaller than or equal to

p/2

5 , 5
Ve || [ [a@?] [1Ka=roiix -l + 1 -] vz
s Z

N

0

N )
el | [ 0@ [ 1K -ron - P vazar
0 Z R4

P
+ne| [ [la@r| [1Ke=roi-yd| vazar
Z R4

R4

t
+nE| [ [le@re| 1K@ ol =l +1x - 81| vidardr
s Z R4

r/2

+ NE /f81(2)2|/|K(f—r,$)—K(S—r,§)|(|x—x0|ﬂ
L 0 Z R4

+ o — 5|ﬁ)ds|2v<dz)dr)”/2}
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+ NE /[Igl(z)l”I/IK(t—r,E)—K(s—r,%‘)l(lx—XOI’g+IXO—€|ﬂ)d§|pv(dz)dr
0 Z R4

(4.8)
Following the proof of Theorem 4.1, we have
0<r—s<2c® and |x —y| <|x —xo|l + |y — x0| < 2c.
Thus (4.8) yields that
E|Gg(t, x) — Gg(s, y)IP
. r/2
2
sva+ e | [ o] [ike-roia+ietas] vaaar
s Z R4
t
Bp P B P
+NA+NE| [ [ la@1| [ 1KGOI0 +1817)dg| viddr
s 7 R4
a . r/2
+ NcP’E / / 817 / K@ §)ldé| v(d2ydr
L 0 Z R4
- _
Bp r P
+NPE| [ [ 1117 [ 1K@ 9)lde| vdz)dr
_0 z Rd -
_ p/2

snva+ee| | [ [a@?] [1Ke-ro - ke -roia+ietas] v
0 Z RA

N

p
N+ E| [ [la@p| [1Ke-re - k6 -rola+ i v
VA R4

0

< N[1 +cI=PPY(enP 4 2P 4 PPy,

Similar to the proof of Theorem 4.1, by using the properties of A-type domain, one can complete
the proof of Theorem 4.3. O

Corollary 4.2. Assume all the assumptions in Theorem 4.3 hold, then

Gg(1,x) € CY((D; 8); L7 (Q)).
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Remark 4.3. In Theorem 4.3, both indices y;, i = 1, 2, depend on the parameter p. On the other
hand, we notice that when p = 2, the two indices y;, i = 1,2 will coincide with those in Theo-
rem 4.1. It then follows from Proposition 4.1 that p > 1 is necessary and hence we can let p = 2.
Moreover, y will reach its biggest value in case p = 2.

5. Applications to parabolic SPDEs
In this section, as applications of Theorems 2.1, 4.1, 4.2 and 4.3, we consider some examples.
5.1. The BMO estimates for stochastic fractional heat equations driven by Lévy noise

We have already obtained the BMO estimate of the following stochastic singular integral
operator

00 t
gg(t,x)=2f//1<(t,s,x—y)gk(s,y)dyzﬁk(dz,ds), (5.1)
k=1 0 Rm Rd

where K (t,s,x) = Vﬂp(t, s,x) and p(t, s, x) is the heat kernel of the equation
ou=A Su.
The fractional derivative of spatial variable is understood in sense of Fourier transform. It is easy
to see that
00 t
> / / / K(t,s,x — y)g" (s, y)dyzNi(dz, ds)
k=10 R ga

is the fundamental solution to the following equation

oo
dur(x) = Afur (0)di +) / g4t 0)zNk(dz,d1), up=0, 0<t<T, (52
k=1gm

where me Nk (t, dz) =: Y,k are independent m-dimensional pure jump Lévy processes with
Lévy measure of v¥. Indeed, one can use the method of [18] (see the proof of Lemma 6.1) to
prove the above result. On the other hand, Kim—Kim [21] considered the general case. We only
recall the results concerned with this paper. In Section 3 of [21], Kim—Kim studied the following
linear equation (see Page 3935 of [21]):

oo m

o0
du = (a(w,)AZu + f)dt + Zh"dwf + Z ng’f -dYH ) u(0) = uo, (5.3)
i=1 k=1 j=1

where h = (h!, h2,...), Wlk is independent one-dimensional Wiener processes and Y,k =
fR,,, ZNk(t,dz). Note that Y,k are independent m-dimensional pure jump Lévy processes with
Lévy measure v¥. Forany ¢, k=1,2, -+, denote
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1
q

g = / 1z|19v%(dz)

m

Fix p € [2, 00) and set ¢k := G2 V Ck, p. Assume that

¢ :=supcx < 00. (5.4)
k>1

Let P be the predictable o-field generated by {F;, t > 0} and 75_be the completion of P with
respect to d P x dt. For nn € R, define HZ(T) =LP(Qx[0,T],P, Hg), that is, ]HIZ(T) is the
set of all P-measurable processes u : Q x [0, T]— H ,’,7 so that

1/p

T
— 1P
Nl () = E/”W(w,t, )||H;df < 00,
0

where H,’,’(Rd) :={u: D"u e LP(RY), n| <n} forn=1,2,.... And when 7 is not an integer,
H ;,’ (R?) is defined by Fourier transform.
For ¢>-valued P-measurable processes g = (g, g2, ---), we write g € ]HI;’,(T, L) if

l/p

T
”g”H;’,(T,Ez) = E/ ||g(6l), t, .)”[I}g(T,Kz)dt
0

l/p

T
= E/|||(1—A)Wzg(w,t,mznzclr < o0.
0

Lastly, we define

”””HZ”‘(T) = ”u”HZJFO‘(T) + ||f||HZ+°‘(T) + ||h”HZ+°‘/2(T,Z2)

m

+ D18 lgpar r g + 18O yyia-ap,
j=1

h 0 = (Elluol”,1) "
where (@)l ysa-erp = (Ellluoll1)
Proposition 5.1 ([21, Theorem 3.6]). Suppose (5.4) holds. Then for any f € HZ(T), h e

H7,+a/2(T, ), g e HZJ’“_“/”(T,EZ)’ 1<j<manduge U[’Z+“_a/p, Eq. (5.3) has a unique
solution u in ?—[7[77+a, and for this solution
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llyggrey < N Toa) (1 ey + Wllgyiarn,
m

+ Mg lggrarang gy + 14Ol o )
j=1

foreveryt <T.

In order to investigate the BMO estimate of the solution, we recall some properties of kernel
p(t,s, x) (see [2,3,5,15] for more details).

e foranyt >0,
lp@ )l gay =1 forall z > 0;

e p(t,x,y)is C* on (0, c0) X R? x R for each ¢ > 0;
o fort>0,x,y€ RY, x # y, the sharp estimate of p(z, x) is

s ! —d/a .
p(tvxsy)NmHl(m?t )7

e fort>0,x,y€ RY, x # v, the estimate of the first order derivative of p(z, x) is

. t _d+2
Vep(t.x. )~ Jx _y'mm{m’t : } 5.5)

The notation f(x) ~ g(x) means that there is a number 0 < C < oo independent of x, i.e. a
constant, such that for every x we have c1 f(x) <g(x) <Cf(x). Similarly, we can define the
meaning of f(x) < g(x). The estimate (5.5) for the first order derivative of p(z, x) was derived
in [2, Lemma 5]. Xie et al. [31] obtained the estimate of the m-th order derivative of p(¢, x) by
induction, see [31, (2.5)]. Before we give the estimates of heat kernel, we must emphasize that we
take the fractional derivative in meaning of Fourier transform. And we denote (—Ad))% =V%.

Proposition 5.2. For any m > 0, we have

n=1%)
_ . t _ d+2(m—n)
07 (IS Y Calx —yI” 2"mm{|x_y|d+a+2(m_n),z B } (5.6)
n=0

where |5 | means the largest integer that is less than 7.
Proof. In order to be easier for readers, we give the outline of the proof. Let us first consider

the fractional derivation B € (0, 1). The results were obtained by Chen—Zhang [6, Theorem 1.1].
That is to say,

(AP, @ISV 4 x —yph~de,

which coincides with the desired result. See (1.10) of [6] for more details.
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Next, we only need to prove that the integer derivative of p also holds. Whenn <m <n + 1,

n € N (N denotes the positive integer), we can use the above inequality with 81 =n and §, =
n + 1. We will prove it by induction.

Following the known results, we easily see that it suffices to show that forx; (j =1,2,...,d)
and m >0
n=1%]
07 p(t, S Y Colaj 72 plH2m=m) g, (420
n=0

where x € R4, x® ¢ RF and p(t, x), p(k) (t, x(k)) are the probability density functions in the
corresponding state spaces. Firstly, notice that when m = 0 and m = 1, the results are known.
Secondly, suppose the result holds for m = 2k, that is

n=k
|8)]§P(l‘, .X)| § Z Cn |-xj |2k—2np(d+2(2k—n)) (t, x(d+2(2k—n))).
n=0

|2
Let g(t,x) = (4m)_%e’% be the Gaussian kernel, and 7(¢, u) be the density function of the
o /2-stable subordinator at time #, which has the following properties for all u > 0,

n(l,u)fNu_l_%, and n(t,u)thu_l_%.

For x € R% \ {0}, by the subordination formula (see [3]), we have

]

P(I,X)=/g(u,x)n(t,u)du.
0

Hence, we get

o0

(d+2(2k—n)) (t, x(d+2(2k7n))) — / (d+2(2k—n)) (u, x(d+2(2k7n)))n(t’ wydu.

p 8

0

Noting that p@+2Zk=m) (¢ x(@d+2Qk=m)y ¢ oo (R@+22k=m)) and by the mean value theorem
(the derivative can be put in the integral by dominate convergence theorem), we obtain

axjp(d+2(2k7n)) (t, x(d+2(2k7n))) — _znxjp(d+2(2k7n)) (t, x(d+2(2k7n))).

Summing the above inequalities, we have

n=k
|0x; 3 p(r,x) < |0y, Z Cp |20 pd+22h=m) (¢ (d+22k=n)))
n=0

1
~

n

< C,; |xj |2k+172np(d+2(2k7n)) (1, x(d+2(2k7n))).

<
Il
=

0

Hence the desired result is obtained. O
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Next, we claim that the kernel V% p(¢, s, x), go > 2, satisfies the Assumption 2.3 with y =«
and Kk = oo.

Lemma 5.1. Let 8 = 5‘—0. The following estimates hold.
(i) Foranyt > A > 0and c > 0,

t
1 [ 198 protas]"ar < 8 (1 = negmt 4 16 - e )

A |x|=c

(ii) Forany t > s > A >0,

N q0
f f \VEp(t,r,x) = VPp(s,r,x)ldx | dr < N[(t —s)(t As— 1)1,
0 d
(iii) For any s > » > 0 and h € R?,
A q0
/ / IVp(s,r,x +h) —VPp(s,r,x)ldx | dr < Ne(lh|(s —2)~1%).
0 d

Proof. Note that 8 = ;—0 < 2. By using Proposition 5.2, we have if ¢ > (t — r)é,

t
/’ / |Vﬁp(t,r,x)|dx)qodr

Ao |x]ze

t
p_t—r
SN/‘ / x| |x|d+oc+2ﬂdx

A |x|=c

t o0
t—r q0
< B pd—1_Lt—T" ‘
_N/\/m ! ez dr
A c

t
= N¢~%@+D /(l —r)fdr
s

< N[(t — A)c™ %90+,

90
dr

When ¢ < (¢t — r)al, we have (r — r)’1 <c ¢
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t
/‘ / |Vﬂp(t,r,x)|dx qodr

Ao |x|=c
t 0
_ t—r
EN/ [ [P - x| IWMH
» t—r)t}t
1 q0
(t—r)o
d+28
+ / x| x e =) dix| | dr
C
t [/ oo
t—r
—1
SN/ /|x|ﬁ'|x|d Wd|x|
x \c
1 q0
(t—r)
4428
+ f IxIB x|t —r)" e dix| | dr
0

t t
< N¢~%@+D /(t —r)%dr + Nc_“/dr
A

A
< N[(r = A1 4 [t — ).

Hence we obtain the first estimate.

When o + ;‘—0 <2, L%/qoj = 0. Using the fact that 8, p = A%?p, Bgo = 1 and Proposi-
tion 5.2, we get

A

q0
/ / |Vﬂp(t, r,X) — Vﬂp(s, r,x)|dx dr
0 d
A q90
< (t —s)00 / / IV pE —r,x)ldx | dr
0 d
wf E-na
<N —5)® / P e 6 — )~
0 0
q0
o
+ f | ! mi%mmﬂ dr
E-ra
Please cite this article in press as: G. Lv et al., BMO and Morrey—Campanato estimates for stochastic convolutions

and Schauder estimates for stochastic parabolic equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.08.042




YJDEQ:9516

G. Lv et al. / J. Differential Equations eee (eeee) see—eee 39

A
<N [ =nnlar
0

< N[t —s)(t As—2)~ 1P,
where £ =601+ (1 —6)s,0 € [0, 1].

Sinceqo22and0§a§2,wehavea+;‘—0<4.When2§a+;‘—0<4,wehave

q0

A
f/IVﬁp(t,r,X)—V%p(s,r,x)ldx dr
0

d

A q0
< (1= g)® / / Ve e —rxldx | dr
0 d
1
A E-na
d+2a+28
sN(r—sV"/ P =) e dx
0 0
1
E—-ra
d42a+26—2
+ / A2 — ) T |
0
i £
a+p..1d—1 —-r
o B e
&)@
q0
o0
at+B—2) 1d—1 §—r
b [ e i | ar

A

< N(t —5)® / & —r)y- 0 1g
0

< N[(t =)t As— 1)1,

where £ =60t + (1 — 0)s, 0 € [0, 1]. Thus we obtain the second estimate.
For the last estimate (iii), noting that 1 + § <2, we have for 1 + 8 <2

A 40
/ /|Vﬁp(s,r,x+h)—Vﬁp(s,r,x)|dx dr
0

d
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q90

\£/|Vl+ﬁp(&13x—F9hﬂdx dr
d

IA

=
O\QJ

=

3

(s—r)a
_ _ d+2+28
" x9N s )T e dix

IA

=
o\y

=

0
40
oo
148 qd-1__S—T
+ / It e g | dr
(s—r)é

< N[h(s — 1)~ 1P,

where 0 € [0, 1]. When 1 + 8 = 2, similar the case (ii), one can get the same estimate. The proof
of Lemma is complete. 0O

It follows from the Proposition 5.1 that VA p(z, s, x) satisfies the Assumption 2.4. By using
Theorem 2.1, we have the following result.

Theorem 5.1. Let gy > 2. Suppose (5.4) with p > qo holds. Then for any g € H;],Jra_a/‘" (T, L),
Eq. (5.2) has a unique solution u in ’HZ—W (n € R), and for this solution

lielygge gy < Nlglggpraeig o

foreveryt <T.
Moreover, we have for q € [2, qo]

A 4/90
(Vo ulsioir.q) = NE (EllIgle o)) s
where B = a/qo and ¢ is defined as in (5.4).

If the Lévy noise is replaced by Brownian motion in the equation (5.2), namely, if we consider
the following

o0
w¢m=Aﬂmnm+§:Mawmwﬁ uy=0,0<t<T, (5.7)
k=1

where Wtk are independent one-dimensional Wiener processes. We have the following consider-
ation. Denote h = (hl, h2, ... ). Similar to Lemma 5.1, one can prove that V%p(t, s, x) fulfills
the Assumption 2.1. On the other hand, from Proposition 5.1, we know that Assumption 2.2
holds for V2 p(t,s, x). Thus, one can show the following result.
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Theorem 5.2. Suppose that h € LP (T, £»), there exists a unique solution u in ’HZ+a (n € R), and
for this solution

lielyggey < N A lgriarz o

for everyt < T. Moreover, we have for any q € (0, p]

o 1/p
(V3 ulamor.g < N (Elllklenop]) -

Remark 5.1. 1. In Lemma 5.1, the second part (ii) is essential. From the proof of Theorem 2.1,
the bound of the BMO norm can be controlled by the function ¢ and some norm of g, where the
bound of the function ¢ depends on the choice of scale of time and space. In second part (ii), we
must prove that the left hand side of (ii) can be controlled by the function of (r —s)(t A s — AL
Only in this form, the left hand side of (ii) can be controlled by a constant.

2. Particularly, taking go = 2, we have Lemma 5.1 holds for \%: p(t,s,x). Hence we have
Theorem 5.2. Noting that if o = 2, Theorem 5.2 becomes [18, Theorem 3.4]. Thus we generalize
the result of [18].

5.2. Application to stochastic equations driven by Brownian motion

In this subsection, we consider the following nonlinear stochastic parabolic equations

du(t,x) = (Au+divB@) +c(t, x)u+ f(t, x))dt + g(t,x)dW(t), t >0, x e R?,

d (5.8)
u(0,x) =ug(x), xeR4.

The existence and uniqueness of (5.8) has been obtained by many authors, see e.g. [7,8] (and
references therein). Under the assumption that the flux function B is continuous with linear
growth, Debussche et al. [10] obtained the following results, see Theorem 2.5 in [9].

Proposition 5.3. There exists ((S~2~, Z, P), W, it) which is a weak martingale solution to (5.8) and
forall p €[2,00) and ug € LP(2; L?),

i€ LP(S; C([0,T]; L?); LY N LP($; L°(0, T; L)) N LP($; L*(0, T; Wh?)).

Kim [22] obtained the Holder estimate of (5.8), where they used Bessel space similar to those
in [26,21,19]. Based on the theory of semigroup, Kuksin et al. [24] obtained the Holder estimate
of (5.8).

Let D be an A-type bounded domain in R”*!. Note that the Schauder estimate in the present
paper is nothing but the interior estimate. It is well known that the solution of the following
deterministic equation

ur(t,x)=Au—+c(t,x)u+ f(t,x)

has the interior Schauder estimate if ¢ and f are Holder continuous. Let v be the solution of the
following stochastic heat equation
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du(t,x)= Audt + g, x)dW(t), t >0, x € R, (5.9
u0,x)=0, xeR '
Set w :=u — v, then w satisfies that
w(t,x) = Aw+divB(u) +c(t,x)u + f(t,x), t>0,x € R, (5.10)
u(0, x) =up(x), xeR4. ’

Borrowing the idea from [9] and using Theorem 3.2 from [9], it is not hard to prove that the
solution w of (5.10) is Holder continuous. That is, there exists a positive constant y such that

Jut, %) = u(s, )|
Elwlcr oy =E sup [u(t,.x)|+E sup : :

t,xeDr (r,x)#(s,y) max{|t — 5|2, |x — y|}¥

where D7 = [0, T] x G and G is a bounded domain in R¢. Note that

E [, - N ts - )
sup |u(t, x) —u(s,y)| <E sup |u(z, x) —u(s, y)|

1 1 ’
(t,x)#(s,y) max{|t — 5|2, |x — y|}V (,x)#(s,y) max{|t — 5|2, |x — y|}¥

we have the solution w of (5.10) belongs to C¥ ((Dr; 8); LP(R2)) for some y > 0.
It is easy to see that the mild solution v of (5.9) takes the following form

t

v(t7-x)ZKg(tvx)://K(tvray)g(rvx_y)dydW(r)v
0 R4

d 7(«r—y)2
where K(t,r;x,y) = (4n(t —r))” 2e 4= _ It is easy to check that the kernel function K
satisfies

/K(t,r;x)dx:l, /|x|’3K(t,r;x)dx§N fort €0, T],

R4 R4

which implies that (4.3) and (4.4) with y» = 1 hold. We recall the following fractional mean
value formula (see (4.4) of [17])

fx+h)=fx)+T7 A+ pr? P x +0n),

where 0 < 8 < 1 and 6 > 0 depends on A satisfying

5 TH14P)
m = .
10 ra+2p)

By using the above fractional mean value formula, we have
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2

/ /|K(r—r,z)—K(s—r,z)|(1+|z|’3)dz dr
d

. 2
=(f—5)%/ /f—K(S r2)do(1 + |z1P)dz | dr
0 o0t3
. 2
) 23
5(t_s)%/ /f e — )t TR (1 4 2Pz | dr
S\ e -0t a0
1 2
<N(t—)3f/($—)d“ /[1+||ﬁ+ + |Z|2+ﬂ]‘4<§—ir>d drdo
’ ’ S T S TP e o)

1 s
5N(r—s)%//(s—r)1/3drd9

00
2
=N(—s)3,

where & = 0t + (1 — 0)s. And thus (4.2) holds with y; = 2/3. Therefore, the assumptions of
Theorems 4.1 and 4.2 hold. It follows from Theorem 4.1 that

v(t,x) € CP((Dr: 8); LP ().
Combining the above results, we have the following

Theorem 5.3. Let Dy be an A-type bounded domain in R4t such that Dy C Or. Suppose
the flux function B is continuous with linear growth, ug € C?(R?) and g € CP R4 x RY) with
£(0,0) = 0 almost surely, 0 < B < 1, then the L?(2)-norm of solution u to (5.8) is Holder
continuous in domain D, where p > 1.

Similarly, we can use Theorem 4.2 to obtain the Schauder estimate of (5.8), where g does not
depend on the time variable.
Next, we consider the following stochastic fractional heat equation

du(t,x) = ASudt + g(t,x)dW(t), t >0, x € R,

5.11
u(0, x) = up(x), x eR4, ( )

where A% ;= —(—A)%. Following the result of [31], the solution u of (5.11) can be written as
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u(t,x) = (G xuo)t, x) + (G x g)(t, x)

t
=/p(t;x,y)uo(y)dy+//p(t,r;x,y)g(r, VdydW (r), (5.12)

Rd 0 Rd

where the kernel function p has the properties as in section 5.1.
By using Proposition 5.2, we can show the following

Lemma 5.2. Let 0 < € < 5. The following estimates hold.

2
N
/ /IVep(t—r,z)—Vep(S—r,z)|(1+|z|’3)dz dr <N(@ —s),
0 d
s 2
/ /|Vep(s—r,z)|dz drSN()’
0 d
¢ 2
f /|Vsp(t—r,z)|(1+|z|ﬁ)dz dr <Nt —s)",
s d
a—2¢

where y = 525,

Proof. For simplicity, we first prove the estimates with 8 = 0 hold. It is not hard to prove
that when B > 0, the index will be improved and the proof is omitted here. Noting that

op= —(—A)% p := V%p and using the fractional mean value formula, and L%J < 1, we have
g 7
2
S
f / |VEp(t —r,2) = Vp(s —r,2)ldz | dr
0 d
K 1 2
<(t-5)% / // V@2 (& — 1, 2)|dzd6 | dr
0 0 R4
, 2
a—e . E—r _ dta/2+e
<(@t—s) ™ f /|Z|(a+2€)/4mm{W,(§—r) o dz | drdf

0 \pa
1 s [ €-na
w2e B dta/2+e
<(—-9)F /f / 2] @294 A1 (& _ )= g
0 0 0
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[e¢]

(@+20) /4y d—1___E—1
b [l el | drds

1
E-—nw

1
a—2e s a+2e
SN(d,a)(t—s)T//(E—r)_TdrdO
0 0
<N, a)(t —5) %",

where £ =0t + (1 —0)s and 6 € (0, 1).
Using Proposition 5.2 again, we have

s 2
/ /Ivep(s—r,z)ldz dr
0 R4
s 2
. S —r _ d+2e
S/ /|z|€mln{W,(s—r) o }dZ dr
0 Rd
K (s—r)é
d+2e
5/ / 2lés = )~ 21
0 0
2
oo
s—r _
/ |Z|€W|Z|d 'diz| | dr
(=&
N
gN(d)/(s—r)—i—‘dr
0
SN(d,oz,e)sl_%x_€ =Ny <00.
Similarly, we get
. 2
[| [ were=roa+ iz | ar

Ky Rd
t
<N, a, € [(z —r)edr
s

<N, a e)t —s) 5.

The proof is complete. O
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Theorem 4.1 implies that the solution u of (5.12) satisfying u € C<tA1-P1/2((D; §); LP(RQ)),
where 81 = min{g, 2y }.

Theorem 5.4. Let D7 be a A-type bounded domain in R*! such that Dy C Or. Suppose
that ug € CP(R?) and g € CA(Ry x R?) with g(0,0) = 0 almost surely, 0 < B < 1, then the
LP(2)-norm of solution u to (5.11) is Hélder continuous in domain D1, where p > 1.

Remark 5.2. Comparing with Theorems 5.3 and 5.4, we find that if we take € = 0, then The-
orem 5.4 with o = 2 becomes Theorem 5.3. Let us compare the index of spatial variable.
Theorem 5.3 shows that the index is 8 and Theorem 5.4 shows that the index is € + min{g, 2y }.
When B <2y, the result of Theorem 5.4 is better than that of Theorem 5.3.

5.3. Application to fractional heat equations driven by Lévy noise

For simplicity, we only consider the following SPDEs

du(t,x):A%u(t,x)dt+/g(t,x,z)1\7(dt,dz), t>0, x eR?,

J (5.13)

u(0,x) =uo(x), xeR?,

where A% = —(—A)%. The well-posedness of (5.13) has been proved in [19]. The solution of
(5.13) can be written as

u(t,x)=(G*uo)(t,x)+ (G *g)t, x)
t
- / p(t: x yuo(y)dy + f f / Pt rix. gy, DdyN(di.dz).  (5.14)
R4 0 Rd Z

Using the properties of g and Lemma 5.2, it is easy to verify that all the assumptions in Theo-
rem 4.3 hold for the kernel function.

Theorem 5.5. Suppose that ug € CP(RY) with B < « and the function g satisfies that

B
|g(t,x,z)—g(s,y,z)|§Cgmax{(t—s)%,|x—y|} gi1(z), forall zeZ, a.s.,

and g(0,0, z) = 0 uniformly for z € Z almost surely, where there exists a constant po > 1 such
that g1(z) satisfies that

Po/2

E /lgl(z)lzv(dz) +/|81(Z)|pov(dz) < 00.
A A

Let D be a A-type bounded domain in R such that D C O. Then the LP (Q2)-norm of solution
u to (5.13) is Holder continuous in domain D, where p > 1.
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6. Further discussion

In this section, we give another proof of Theorem 2.1 under some assumptions on g. Similarly,
one can give another proof of [18, Theorem 2.4] under the same assumptions on g. Firstly, let us
recall the proofs of Theorem 2.1 and [18, Theorem 2.4]. The reason why we divide the interval
(0, s) into two parts (0, 3“2_ by and (3“2_ b s) in proof of Lemma 3.3 is the singularity of K at
time 7. In order to see it clearly, we get back to Section 4 and recall that for any # > A > 0 and
c >0,

t
/‘ f |vﬁp(t,r,x)|dx‘q°drgzv([(t—x)c—“]%“+[(r—,\)c—“]).

Ao x|=c

Note that if we choose ¢ = 0, then the above integral will be infinity. Indeed, direct calculations
show that

' ‘
B @ -1
‘ vV p(t,r,x)|dx‘ dr~N [ (t—r)" 'dr =c0.
A

A Rd

Obviously, the singularity of V# p appears at 7. But p € L' (R?), thus a natural question appears:
when the singularity of p does not appear at ¢, is there another proof? Moreover, it is easy to
see that the derivative of p deduces the singularity of V# p at ¢. In this section, we first give a
similar theorem to Theorem 2.1 under different assumptions. Then as an application, we use the
method of integration by part to deal with the derivative of p and obtain the BMO estimate by
direct calculation.

Theorem 6.1. Assume that the kernel function is a deterministic function and satisfies that for
allt >r >0,

t

//|K(t,r,x)|dxdr <N.

0 R4
Assume further that there exists a positive constant qo > 2 such that
9
2

E /llg(',-,Z)lli’m(@T)v(dz) <00, @=2orq.
Z

Then for any q € (0, qol, one has
q
2

Gelaoira < NE | [ 1560l 0, v
Z
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q
+NE / 18, 0,002 |
Z

where N = N (No,d, q,q0,T).

Proof. It suffices to prove that for each

0 = Q.(ty, x0) :=(to — ¢V, 1o+ ¢¥) X Be(x9) COr, ¢>0,10>0,

we have
1
ZF / / Gg(t. x) — Gg(s. y)|ididxdsdy
0 0
q
2
< NE / 12, D2 v(d) |+ NE / g D wov@a | )
VA VA

where N = N(T, q). Since the operator G is translation invariant with respect to x, we may
assume that xo = 0. Kunita’s first inequality implies that

q/2

t
E|Gg(t, x)|? <E f/I/K(t—r, Yg(r, x — y, 2)dy|*v(dz)dr
0

Z R4

t
+E f/|/K(t—r, g, x —y,z2)dylTv(dz)dr
0

Z Rd

t 2

<E /ng(-,-,znﬁw(@r)v(dz) x/|/1<<r—r, ndy[2dr
Z

0 Rd
t

+E| gt o) x [1 [ K= rondyivar
V4 0 Rd

q
2

<NE / 18 D1 F o000,y v (d2)
zZ

+NE /”g(aa Z)”%W(Or)v(dz)
Z

< Q.
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Thus we have

é f |Gg(t,x) — Gg(s, y)|9dtdxdsdy
o

<—E

Gg(t,x)|dtdx

|
Q/|

< NE{ [lgt 2l 0, vid2)
Z

q
+NE / 18C. - Do,y (d2) |
VA

which implies (6.1) holds. The proof of Theorem 6.1 is complete. O

As an application, for simplicity, let us just consider the following stochastic evolution equa-
tion

du = Audt +/g(t,x,z)1§1(dt,dz) u(0,x) =0. 6.2)
Z

It is easy to check that the solution of (6.2) is

t
u(t,x):///K(t—r,y)g(r,y,z)dde(dr,dz).

0 Z RrRd

It follows the properties of heat kernel that

/|K(t,r,x)|dx =1 forallt >r>0.

Rd

Applying Theorem 6.1, we have

Theorem 6.2. Assumed that there exists a positive constant qo > 2 such that
%

]E / ”g(s y Z)”?OC(OT)V(dZ) < 00, w = 2 or q0.
VA

Then for any q € (0, qol, one has
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q

2

whascor) < NE | [ 8.2 0, v(@)
Z

q
+NE /”g(vvz)”LOO(OT)U(dZ) )
VA

where N = N (Ny,d, q, qo, T). Moreover, if we further assume that
a0
2

E /||ng(~,~,z)||foo(OT)v(dz) <00, @ =2orqo.
z

Then for any q € (0, qol, one has
q
2

Vulsviocr) < NE | [ 19,86 ) o, 1(d2)
Z

+NE / IVegCo D 0,y v(@2) |
VA

where N = N(No,d,q,q0,T) and Vg =V, g(t, -, 2).

Proof. Denote u(t, x) = Gg(t, x). Noting that

t
V,Gg(t,x) = / //k(t —ry)Veglr,x —y, z)dyﬁ(dr, dz).
0

Z Rd

Then similar to the proof of Theorem 6.1, one can get the desired result. O

Remark 6.1. Comparing with the proofs of Theorems 2.1 and 6.1, we find that if we assume
the function g has higher regularity, then the proof of the BMO estimate will be fairly simple.
The proof of Theorem 4.1 will also keep simple if we improve the regularity of g. On the other
hand, if g =0, then u = 0. To conclude, that is to say, the noise does indeed have an effect on the
regularity of the solutions.
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