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Abstract

In this paper we consider the Hénon problem in the unit disc with Dirichlet boundary conditions. We 
study the asymptotic profile of least energy and nodal least energy radial solutions and then deduce the exact 
computation of their Morse index for large values of the exponent p. As a consequence of this computation 
a multiplicity result for positive and nodal solutions is obtained.
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1. Introduction

In this paper we study problem{−�u = |x|α|u|p−1u in B,

u = 0 on ∂B,
(1.1)

where α ≥ 0, p > 1 and B stands for the unit ball of the plane. When α > 0 problem (1.1)
is known as the Hénon problem since it has been introduced by Hénon in [23] in the study of 
stellar clusters in radially symmetric settings, in 1973. For α = 0 problem (1.1) coincides with 
the Lane-Emden problem {−�u = |u|p−1u in B,

u = 0 on ∂B,
(1.2)

and we will see that the connections between (1.1) and (1.2) are deeper. Indeed radial solutions 
to (1.1) can be viewed as radial solutions to (1.2) in a sense which will be clarified in Section 2.

The appeal of the α > 0 case is due to various aspects. First, when the dimension N of the 
space is N ≥ 3, (1.1) admits solutions also in the supercritical range of p, as observed by Ni in 
[26], where another critical exponent has been shown in the radial framework. The second main 
reason of interest is the symmetry breaking phenomenon due to the term |x|α which allows the 
coexistence of radial and nonradial solutions also in the case when they are positive. It is known 
indeed that also solutions which minimize the energy are not radial when α is large enough, see 
[32].

In this paper, carrying on the study of the Hénon problem started in [6], we consider (1.1)
in the unit disc, where it admits solutions for every p > 1 and no critical exponent appears and 
in particular we focus on large values of p, where concentration phenomena take place and 
nonradial positive solutions arise. Indeed it has been shown in [1] and [22], both dealing with 
the Lane Emden problem, that radial solutions behave like a spike. Such kind of concentration 
differs from the one occurring in the higher dimensional case when p approaches the critical 
exponent: firstly because solutions stay bounded, secondly because the concentration of nodal 
solutions follows different paths (and has different limit problems), depending on the nodal zone 
which is focused. In this context then we analyze the asymptotic behavior of solutions to (1.1)
for large values of p, starting from the radial ones, both positive and sign changing. What we 
obtain is that, in the radial setting, the concentration phenomena known for the Lane Emden case 
(α = 0) in the plane extend to solutions to (1.1), strengthening the connections between the two 
problems. In particular the limit of some of the parameters coincide as the effect of the large 
exponent p removes the influence of the term |x|α , even if the concentration takes place at x = 0
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where its effects are usually higher. Nevertheless this term plays a significant role that shows 
in the asymptotic profiles of the solutions, affects their Morse index and produces nonradial 
solutions, also even positive ones.

Let us present which type of solutions we are interested in and the main results.
Since we are in the plane and H 1

0 (B) is compactly embedded in Lp(B) for every p, problem 
(1.1) admits solutions for every value of p > 1 and α ≥ 0. Solutions can be found minimizing 
the Energy functional

E(u) = 1

2

∫
B

|∇u|2 − 1

p + 1

∫
B

|x|α|u|p+1 (1.3)

constraint on the Nehari manifold

N = {v ∈ H 1
0 (B) :

∫
B

|∇v|2 =
∫
B

|x|α|v|p+1}.

The solutions produced in this way are positive in B and are called least energy solutions.
Nodal solutions can be obtained instead minimizing E(u) on the nodal Nehari manifold

Nnod =
{
v ∈ H 1

0 (B) : v+ �= 0,
∫
B

|∇v+|2 = ∫
B

|x|α|v+|p+1,

v− �= 0,
∫
B

|∇v−|2 = ∫
B

|x|α|v−|p+1
}

that has been introduced in [9] and [10]. Here s+ (s−) stands for the positive (negative) part 
of s. Minima on Nnod have the least energy among nodal solutions to (1.1) and are called least 
energy nodal solutions. By a result in [10] they have two nodal regions, which are the connected 
components of the set {x ∈ B : u(x) �= 0}. Moreover in [11] it has been proved that least en-
ergy solutions partially inherit the symmetries of the domain, being foliated Schwarz symmetric, 
namely axially symmetric with respect to an axis passing through the origin and nonincreasing 
in the polar angle from this axis (see also [28]).

Let us recall that the Morse index of a solution u is the maximal dimension of a subspace 
X ⊆ H 1

0 (B) where the quadratic form

Qu(ψ) :=
∫
B

|∇ψ |2 − p|x|α|u|p−1ψ2 dx (1.4)

is negative defined. The least energy and the least energy nodal solutions have Morse index 1
and 2 because they are constrained minima on manifolds of codimension 1 and 2, respectively, 
see [10]. From a different perspective the quadratic form Qu is associated with the linearized 
operator at u

Lu(ψ) := −�ψ − p|x|α|u|p−1ψ

with Dirichlet boundary conditions and the Morse index can be computed counting (with mul-
tiplicity) the negative eigenvalues of Lu in H 1(B), but also some negative singular eigenvalues. 
0
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This equivalence and the characterization of Morse index in terms of the singular eigenvalues of 
Lu is given in details in [6] and will be essential for our aims.

The aforementioned minimization procedure can be done, in principle, in any subspace of 
H 1

0 (B), and particular attention has been devoted to the one of radial functions H 1
0,rad(B). Re-

stricting the energy functional and the (nodal) Nehari manifold to the space H 1
0,rad(B) of radial 

functions, we end with a least-energy positive radial solution or with a least-energy nodal radial 
solution to (1.1) that we denote respectively by u1

p and u2
p highlighting the number of nodal 

domains. Again the radial Morse index of u1
p and u2

p is respectively 1 and 2, where by radial 
Morse index we mean the number of the negative radial eigenvalues of Lu, namely eigenvalues 
which are associated with a radial eigenfunction. But the Morse index of u1

p and u2
p , depending 

on p and on α can be larger, implying that the least energy solutions are not radial. Indeed this 
is the case at least for the nodal solution u2

p since it has been proved in [2] for α = 0 and in [7, 
Theorem 1.1] for α > 0 that m(u2

p) ≥ 4 + [α/2] for every p (here [·] stands for the integer part). 
In [25] instead it has been shown that the Morse index of any radial solution to (1.1) diverges as 
α → ∞ and this implies that least energy solutions are nonradial when α is large enough.

In this paper we analyze problem (1.1) as p → ∞, finding the asymptotic profile of radial 
least-energy solutions u1

p and u2
p and then compute the exact Morse index of these solutions, 

depending on α, for sufficiently large values of the exponent p. Next we will see that the knowl-
edge of the Morse index allows to distinguish between different solutions to (1.1), that can be 
produced by minimizing the energy on the (nodal) Nehari manifold in some other subspace of 
H 1

0 (B).
The paper is organized as follows. Section 2 is devoted to the asymptotics of the radial so-

lutions, which can be deduced without too much effort from the analysis carried out for the 
Lane-Emden problem in [1] (concerning positive solution) and [22] (concerning nodal least en-
ergy solution).

For large values of p problem (1.1) is linked to the weighted Liouville problem{−�U = |x|αeU in R2,∫
R2 |x|αeU dx < ∞ (1.5)

and to the family of its radial solutions described by

Uα;δ(x) = log
2(2 + α)2δ

(δ + |x|2+α)2 , δ > 0. (1.6)

Imposing the condition U(0) = 0 selects uniquely the parameter δ (and so the solution to (1.5)) 
as

δ(α) = 2(2 + α)2. (1.7)

As enlightened in [22], when describing the asymptotic behavior of nodal solutions also a singu-
lar Liouville problem arises. In the present case it is a singular version of problem (1.5), precisely{−�U = |x|αeU − (2 + α)πγ δ0 in R2,∫

R2 |x|αeU dx < ∞ (1.8)

where δ0 denotes the Dirac measure supported at x = 0. A family of radial solutions is given by
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Zα,γ ;δ(x) = log
2
(

(2+α)(2+γ )
2

)2
δ|x| 2+α

2 γ(
δ + |x| (2+α)(2+γ )

2

)2 (1.9)

= U
α+ 2+α

2 γ ;δ(x) + 2 + α

2
γ log |x|, δ > 0

where U
α+ 2+α

2 γ ;δ is a solution to (1.5) as defined in (1.6) with α replaced by α + 2+α
2 γ .

In order to state the results on the asymptotics of the solutions we need some more notations. 
Concerning the minimal energy radial solution u1

p, it is known by ODE arguments that it has 
only one critical point at x = 0. We therefore let

μp =
∣∣∣u1

p(0)

∣∣∣ , ρp = (p μ
p−1
p )−

1
2+α ,

and define the rescaling

ũp(x) = p(u1
p(ρpx) − u1

p(0))

u1
p(0)

as |x| < 1

ρp

.

We shall see that

Theorem 1.1. Let α ≥ 0 be fixed and let u1
p be a least energy radial solution to (1.1) correspond-

ing to α. When p → ∞ we have

μp → √
e, ρp → 0, (1.10)

ũp(x) → Uα,δ(α)(x) = log
4(2 + α)4

(2(2 + α)2 + |x|2+α)2 in C1
loc(R

2). (1.11)

For what concerns the minimal energy nodal radial solution u2
p, we write u2

p(x) = u2
p(r) for 

r = |x|, and denote by rp its unique zero in [0, 1), so that A1,p = [0, rp) and A2,p = (rp, 1) are 
its nodal zones. It is known by ODE argument that it has two critical points in [0, 1): the first one 
is 0 while the second one is σp ∈ A2,p . We therefore have two extremal values

μ1,p =
∣∣∣u2

p(0)

∣∣∣ , μ2,p =
∣∣∣u2

p(σp)

∣∣∣ ,
two scaling parameters

ρ1
p = (p|u2

p(0)|p−1)−
1

2+α , ρ2
p = (p|u2

p(σp)|p−1)−
1

2+α ,

and two rescaled functions

ũ1,p(r) = p(u2
p(ρ1

pr) − u2
p(0))

u2
p(0)

as 0 ≤ r <
1

ρ1
p

,

ũ2,p(r) = p(u2
p(ρ2

pr) − u2
p(σp))

u2
p(σp)

as 0 ≤ r <
1

ρ2
p

.
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The asymptotic behavior of u2
p is described by next Theorem.

Theorem 1.2. Let α ≥ 0 be fixed and let u2
p be a least energy nodal radial solution to (1.1)

corresponding to α. When p → ∞ we have

μ1,p →
√

e

t̄
e

t̄
2(t̄+√

e) ≈ 2.46, μ2,p → e
t̄

2(t̄+√
e) ≈ 1.17, ρi

p → 0 as i = 1,2

(1.12)

where t̄ ≈ 0.7875 is the unique root of the equation 2
√

e log t + t = 0, and

ũ1,p(x) → Uα;δ(α)(x) = log
4(2 + α)4

(2(2 + α)2 + |x|2+α)2 in C1
loc(R

2). (1.13)

Moreover

rp → 0,
rp

ρ1
p

→ ∞,
rp

ρ2
p

→ 0, (1.14)

σp → 0,
σp

ρ2
p

→
(

2

2 + α
�

) 2
2+α

(1.15)

where � is a fixed number, � 
 7.1979. Starting from � we define

γ :=
√

4 + 2�2 − 2 
 8.3740, δ2(α) := γ + 4

γ

(
2 + α

2
�

)2+γ

. (1.16)

Eventually

ũ2,p(x) → Zα,γ ;δ2(α)(x) (1.17)

= log
1
2 (2 + α)2(2 + γ )2δ2(α)|x| 2+α

2 γ(
δ2(α) + |x| (2+α)(2+γ )

2

)2 in C1
loc(R

2 \ {0}).

This Theorem extends already known results for the Lane Emden equation to the Hénon 
problem. Surprisingly the limit values of the maximum and the minimum of the radial solutions 
ui

p are not affected at all by the term |x|α and they are exactly the same of the Lane Emden 
case which have been characterized in [1] and [22]. The dependence on the parameter α appears 
instead in the limit of the two rescaling Uα,δ(α) and Zα,γ :δ2(α).

Section 3 is devoted to the computation of the Morse index of u1
p and u2

p for large values 
of p. By taking advantage of the asymptotic study in Section 2 and on the characterization of the 
Morse index given in [6] we prove the following results:

Theorem 1.3. Let α ≥ 0 be fixed and let u1
p be a least energy radial solution to (1.1) correspond-

ing to α. Then there exists p� = p�(α) > 1 such that for any p > p� we have
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m(u1
p) = 1 + 2

⌈α

2

⌉
(1.18)

Theorem 1.4. Let α ≥ 0 be fixed and let u2
p be a least energy nodal radial solution to (1.1)

corresponding to α. Starting from the number � determined by (1.15) we set

κ =
√

2 + �2

2
= 2 + γ

2
≈ 5.1869. (1.19)

For all α ≥ 0 there exists p�
2 = p�

2(α) > 1 such that for any p > p�
2 we have

m(u2
p) = 2

⌈
2 + α

2
κ

⌉
+ 2

⌈α

2

⌉
(1.20)

when α �= αn = 2( n
κ

− 1), while when α = αn it holds

(2 + α)κ + 2
⌈α

2

⌉
≤ m(u2

p) ≤ (2 + α)κ + 2
⌈α

2

⌉
+ 2 (1.21)

Here �t� = min{k ∈ Z : k ≥ t} stands for the ceiling function.
In the case α = 0, Theorem 1.4 gives back the Morse index of the Lane-Emden problem com-

puted in [13] since 2�κ� +2�0� = 12. The papers [14] and [8] perform an analogous computation 
in dimension N ≥ 3, respectively in the case α = 0 and α > 0.

Formula (1.18) highlights a discontinuity of the solution’s set of the Hénon problem (1.1)
corresponding to the even values of α which is typical of the nonlinear term |x|α and has been 
already observed in several papers among which we can quote [29], [18], [8] as an example. 
In particular, in (1.18), 1 is the amount of the radial Morse index of u1

p while 2 
⌈

α
2

⌉
is the 

contribution of the non radial Morse index, due to the term |x|α , and comes from the asymptotic 
profile in (1.11).

Formula (1.20) instead exhibits two discontinuities, one corresponding to the even values of α
and the other corresponding to the sequence αn such that 2+α

2 κ is an integer. In order to analyze 
them we rewrite the Morse index as

m(u2
p) = 2 + 2

⌈α

2

⌉
+ 2

⌈
2 + α

2
κ − 1

⌉
and we observe that 2 is the radial contribution to the Morse index of u2

p, while 2 
⌈

α
2

⌉
is the (non-

radial) contribution of the rescaling of u2
p in the first nodal zone which has the same limit profile 

as u1
p . The term 2 

⌈ 2+α
2 κ − 1

⌉
is instead the (nonradial) addition coming from the rescaling of 

u2
p in the second nodal domain, and it is the major part of the Morse index. What happens is 

that the behavior in the second nodal zone, where the solution is smaller, has a greater influence 
due to the effect of the singular term in (1.8), and we will see in Section 3 that it gives rise to a 
multiplicity result.

The existence of this sequence αn seems a new phenomenon which is peculiar of dimension 2
since it does not appear in higher dimensions where each nodal region brings the same contribu-
tion (radial and nonradial) to the total Morse index, see [8]. It suggests that the set of solutions to 
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(1.1) changes in correspondence of that values of αn, and indeed the number of distinct nonradial 
solutions that we produce later on in Theorem 1.6 increases by one unit.

Finally in Section 4 we give some existence and multiplicity results, by minimizing the energy 
functional E(u) on some suitable spaces of invariant functions. To this end for any integer n ≥ 1
we denote by R 2π

n
any rotation of angle 2π

n
, centered at the origin, and we let G 2π

n
be the subgroup 

of O(2) generated by R 2π
n

. Next, we denote by H 1
0,n the subspace of H 1

0 (B) given by functions 
which are invariant by the action of G 2π

n
, namely

H 1
0,n := {v ∈ H 1

0 (B) : v(x) = v(g(x)) for any x ∈ B, for any g ∈ G 2π
n

},

and we introduce the n-invariant Nehari manifolds

Nn := {u ∈ H 1
0,n :

∫
B

|∇u|2 =
∫
B

|x|α|u|p+1},

and the nodal n-invariant Nehari manifold

Nn,nod =
{
v ∈ H 1

0,n : v+ �= 0,
∫
B

|∇v+|2 = ∫
B

|x|α|v+|p+1,

v− �= 0,
∫
B

|∇v−|2 = ∫
B

|x|α|v−|p+1
}
.

Since H 1
0,n is compactly embedded in Lp(B) for every p > 1, by standard methods (see, for 

instance, [10] or [11]) it follows that minu∈Nn
E(u) and minu∈Nn,nod E(u) are nonnegative and 

attained at two nontrivial functions, that we denote respectively by u1
p,n and u2

p,n. They are 
weak and also classical solutions to (1.1); u1

p,n is positive in B and is a least energy solution in 
H 1

0,n, while u2
p,n changes sign and is a least energy nodal solution in H 1

0,n. Furthermore their 
n-Morse index, i.e. the number of negative eigenvalues of the linearized operator Lu which have 
corresponding eigenfunction in H 1

0,n, is given by mn(u
1
p,n) = 1 and mn(u

2
p,n) = 2, because they 

are minima on manifolds of codimension 1 and 2, respectively. Comparing the n-Morse index of 
ui

p,n with the n-Morse index of the radial solution ui
p and using a strict monotonicity result in 

the angular variable of [17], we are able to prove

Theorem 1.5. Let α > 0 be fixed. Then, there exists an exponent p� = p�(α) such that problem 
(1.1) admits at least �α

2 � distinct positive nonradial solutions for every p > p�(α).

The exponent p� here is the same of Theorem 1.3 and the nonradial positive solutions we 
found are invariant up to a rotation of an angle 2π/n for n = 1, . . . �α

2 �, respectively. Let us 
remark explicitly that the first one is the least energy solution.

Coming to nodal solutions, we shall prove that

Theorem 1.6. Let α ≥ 0 be fixed. Then, there exists an exponent p∗
2 = p∗

2(α) such that problem 
(1.1) admits at least � 2+α

2 κ − 1� distinct nodal nonradial solutions for every p > p∗
2(α).

Here the number κ is the same of Theorem 1.4 and p∗
2 = max{2, p�

2} for p�
2 as in Theorem 1.4. 

The fact that p∗
2 has to be greater than 2, instead of coincide with p�

2, is technical in order to dis-
tinguish nonradial solutions and we do not believe it is necessary. The nonradial nodal solutions 
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found are invariant up to a rotation of an angle 2π/n for n = 1, . . . � 2+α
2 κ − 1�, respectively. 

Again, the first one is the least energy nodal solution. When α = 0 Theorem 1.6 provides 5 so-
lutions, and gives back a previous multiplicity result in [20] to which these last two results are 
inspired.

Nonradial solutions (both positive and sign-changing) have been produced also in [16,33,24,
3,4] by different methods. [16], [33] rely on a finite dimensional reduction method and construct 
solutions (respectively positive and sign-changing) with n symmetric concentration points placed 
along the vertex of a regular polygon. We mention also [15], dealing with the Lane-Emden prob-
lem. The symmetries of the n-invariant least energy solutions are consistent with theirs, and it is 
reasonable to conjecture that our positive solutions u1

p,n coincide with the ones in [16], supported 
by the fact that we obtain the same number of solutions, but possibly this is not true anymore 
for nodal solutions. Indeed in the Lane-Emden case it is known that the zero set of solutions 
produced in [15] touches the boundary, while [20] showed that this does not happen to the so-
lutions of type u2

p,n, at least when n = 4, 5, and a similar result holds also when α > 0. [24]
and [4], instead, prove a nonradial bifurcation respectively w.r.t. the parameter α, which arises in 
correspondence of even values of α, and w.r.t. the parameter p. Let us stress that the bifurcation 
in [24] allows to produce, for any given p, an infinite number of nonradial solutions arising as α
increases. In a complementary way the multiplicity results stated in Theorems 1.5 and 1.6 yield 
a finite number of solutions arising for any given value of α (imposing that p is large). Some of 
such nodal solutions u2

p,n are nonradial for every value of p > 1. This is certainly the case for 
n = 1 (i.e. the least energy solution), and we conjecture the same holds until n < 2+α

2 β , where 
β ≈ 2, 305 is a fixed number introduced in [3] and related to the computation of the Morse index 
of u2

p when p approaches 1. Indeed the same paper shows that u2
p,n are nonradial also when p is 

close to 1, for that values of n. Conversely for n = ⌈ 2+α
2 β

⌉
, . . .

⌈ 2+α
2 κ − 1

⌉
the curve p �→ u2

p,n

coincides with the one of radial solutions p �→ u2
p for p close to 1, and then it branches off giving 

rise to the continuum of nonradial solutions exhibited in [4].

2. Connections with the Lane-Emden problem and asymptotic profile

In order to study radial solutions to (1.1) we let r = |x| for x ∈ B and we perform the following 
transformation

v(t) =
(

2

2 + α

) 2
p−1

u(r), t = r
2+α

2 , (2.1)

which has been introduced in [12] and used in [18] and [19] in order to study the Hénon problem, 
and transforms radial solutions to (1.1) into solutions of the one dimensional problem{

− (tv′)′ = t |v|p−1v, 0 < t < 1,

v′(0) = 0 , v(1) = 0
(2.2)

Solutions to (2.2) can be seen as radial solutions to (1.2) corresponding to the same exponent p
and the correspondence among radial solutions to (1.2) and radial solutions to (1.1) is one-to-one. 
The condition v′(0) = 0 can be not so evident and indeed it has been proved in [6, Proposition 
4.6] and [7, Lemma 4.3] that any solution to (2.2) that satisfies
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1∫
0

t (v′)2 dt < ∞ (2.3)

is a classical solution and satisfies v′(0) = 0. It is then possible to apply a uniqueness result of 
[27] to have that for any integer m ≥ 1 there exists only a couple of radial solutions to (2.2) that 
are one the opposite of the other and classical solutions (see, for instance, [7, Proposition 4.1]) 
which have exactly m nodal zones, meaning that u1

p and u2
p are unique up to a sign. So we denote 

hereafter by v1
p the unique positive solution to (2.2) and by v2

p any solution to (2.2) with 2 nodal 
zones. These solutions can be found minimizing the energy functional associated with (1.2)

E(w) := 1

2

∫
B

|∇w|2 − 1

p + 1

∫
B

|w|p+1

on the radial Nehari set or on the nodal radial Nehari set, namely

Nrad := {w ∈ H 1
0,rad(B) :

∫
B

|∇w|2 =
∫
B

|w|p+1}

Nrad,nod := {w ∈ H 1
0,rad(B) : w+ �= 0,w− �= 0,w+,w− ∈Nrad}

and they are known as radial least energy and nodal least energy solutions to (1.2).
The asymptotic behavior of the radial least energy solution v1

p has been studied in [1] while the 
case of the radial least energy nodal solutions v2

p has been faced in [22]. Indeed radial solutions 
to (1.2) tend to concentrate in the origin as p goes to ∞ but, differently to what happen in the 
high dimensional case, the extremal values remain bounded when p → ∞ so that the solutions 
behave like a spike and the concentration is different when it takes place in the first nodal domain 
or in the subsequent one.

The limit problem related to the first nodal domain and hence to the positive solution v1
p is the 

Liouville equation {−�V = eV in R2,∫
R2 eV dx < ∞,

(2.4)

whose radial solutions are

Vδ(x) = log
8δ

(δ + |x|2)2 as δ > 0. (2.5)

In particular the unique solution to (2.4) which satisfies the additional conditions V (0) = 0 is the 
one with δ = 8, i.e.

V (x) := log
64(

8 + |x|2)2 . (2.6)

To describe the behavior in the second nodal domain it is also needed a singular Liouville equa-
tion, which is described in details in [22], and we write here in the form
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{−�V = eV − 2πγ δ0 in R2,∫
R2 eV dx < ∞,

(2.7)

where δ0 stands for the Dirac measure centered at x = 0 and γ is a real parameter. The family of 
its radial solutions is given by

Zγ ;δ(x) := log

(
2(2 + γ )2δ|x|γ(

δ + |x|2+γ
)2
)

= Uγ ;δ(x) + γ log |x| as δ > 0, (2.8)

where Uγ ;δ is a radial solution to the weighted Liouville equation (1.5) with α replaced by γ . 
Imposing that, for some fixed � > 0 that we make clear very soon, V (t) = V (|x|) satisfies also

V (�) = 0 and V ′(�) = 0

selects uniquely the parameters γ and δ as

γ = γ (�) =
√

2�2 + 4 − 2 and δ = δ(�) = γ + 4

γ
�2+γ . (2.9)

In the following we shall write Z� = Zγ(�);δ(�) for such function. Notice that the parameter H in 
the notation used in [22] is identified by the relation

−H(�) :=
�∫

0

teZ�dt = 2(2 + γ )δ

�∫
0

(2 + γ )t1+γ(
δ + t2+γ

)2 dt

= 2(2 + γ )�2+γ

δ + �2+γ
=

(2.9)
γ (�)

Before entering the details of the asymptotic behavior, let us spend some words about the 
relation between the limit problems for the Lane-Emden equation, (2.4) and (2.7), and the ones 
for the Hénon equation, (1.5) and (1.8).

Remark 2.1. A slight variation on the transformation (2.1), namely

s = 2

2 + α
r

2+α
2 , V (s) = U(r), (2.10)

maps weak radial solutions to (2.4) (respectively (2.7)) into weak radial solutions to (1.5) (re-
spectively (1.8)). Indeed for any test function φ ∈ C∞

0,rad(R
2) we have

∞∫
0

sV ′ φ′ ds −
∞∫

0

seV φ ds =
(2.10)

2

2 + α

⎡⎣ ∞∫
0

rU ′ ψ ′ dr −
∞∫

0

r1+αeUψ dr

⎤⎦
for ψ(r) = φ(s). So the family of solutions of the weighted Liouville problem (1.5) defined by 
(1.6) and the one of the Liouville problem (2.4) defined by (2.5) are related by
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U
α;
(

2+α
2

)2
δ
(r) = Vδ(s), (2.11)

and in particular the solutions which are null at the origin are Uα;δ(α)(r) = V (s) as defined in 
(1.7) and (2.6), respectively.

Similarly the solutions of singular weighted Liouville problem (1.8) defined by (1.9) and the 
ones of the singular Liouville problem (2.7) defined by (2.8) satisfy

Z
α,γ ;

(
2+α

2

)2+γ
δ
(r) = Zγ ;δ(s). (2.12)

In particular the additional conditions (2.9) for (2.7) correspond to the following additional con-
ditions for (1.8)

U(�α) = 0, U ′(�α) = 0, for �α =
(

2 + α

2
�

) 2
2+α

(2.13)

and select uniquely the parameter γ = γ (�) and δ2(α) = ( 2+α
2

)2+γ
δ(�), where γ (�) and δ(�)

are given by (2.9). It is also worth of noticing that they are the same values of the parameters 
selected in (1.16), and that for this particular choice we have

�α∫
0

r1+αeZα,γ ;δ2(α)dr =
(2.10)

2 + α

2

�∫
0

seZ�(s)ds = 2 + α

2
γ.

Some more notations are needed to describe the asymptotic behavior of the solutions. Con-
cerning the positive least energy radial solution v1

p, its maximum is v1
p(0), so we introduce the 

scaling parameter

εp := (p
(
v1
p(0)

)p−1
)−

1
2 (2.14)

and the rescaled function

ṽp(t) := p(v1
p(εpt) − v1

p(0))

v1
p(0)

for 0 ≤ t <
1

εp

. (2.15)

Extending some previous results in [31], in [1] it has been proved that

Proposition 2.2. Let v1
p > 0 be the radial least energy solution to (1.2) related to the exponent p. 

Then as p → ∞ we have v1
p(0) → √

e, εp → 0 and

ṽp → V in C1
loc[0,∞). (2.16)

For what concerns the least energy nodal radial solution v2
p, we let 0 < t1,p < t2,p = 1 its 

zeros, and t0,p = 0, so that its nodal zones are B1,p = [t0,p, t1,p) and B2,p = (t1,p, t2,p). It has 
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only two critical points, s1,p = 0 ∈ B1,p and s2,p ∈ B2,p , corresponding to two extremal values. 
We define two scaling parameters

εi
p := (p|v2

p(si,p)|p−1)−
1
2 as i = 1,2 (2.17)

and two rescaled functions

ṽi,p(t) :=p(v2
p(εi

pt) − v2
p(si,p))

v2
p(si,p)

for 0 ≤ t <
1

εi
p

. (2.18)

The asymptotic profile of this solution v2
p has been described in the paper [22] where the param-

eters t̄ and � have been characterized. We report here a slight modified statement of their result, 
already appearing in [13].

Proposition 2.3. Let v2
p be a least energy nodal radial nodal solution to (1.2) related to the 

exponent p. Then as p → ∞ we have

|v2
p(0)| →

√
e

t̄
e

t̄
2(t̄+√

e) ≈ 2.46, |v2
p(s2,p)| → e

t̄
2(t̄+√

e) ≈ 1.17, εi
p → 0 as i = 1,2 (2.19)

where t̄ ≈ 0.7875 is the unique root of the equation 2
√

e log t + t = 0, and

ṽ1,p → V in C1
loc[0,∞). (2.20)

Moreover

t1,p → 0,
t1,p

ε1
p

→ ∞,
t1,p

ε2
p

→ 0, (2.21)

s2,p → 0,
s2,p

ε2
p

→ � 
 7.1979, (2.22)

ṽ2,p → Z� in C1
loc(0,∞). (2.23)

Since the solutions to the Lane-Emden equation are linked to the ones of the Hénon equations 
by means of the transformation (2.1), the asymptotic behaviors of the last ones stated by Theo-
rems 1.1 and 1.2 follow easily Propositions 2.2 and 2.3. We report only the proof concerning the 
nodal solution u2

p , because the other one is very similar.

Proof of Theorem 1.2. By means of the transformation (2.1), it is clear that the items related to 
the Lane-Emden solution v2

p and the respective ones for the Hénon problem u2
p are linked by the 

following relations

rp = t
2

2+α

1,p , σp = s
2

2+α

2,p ,

μi,p = ( 2+α
2

) 2
p−1 |v2

p(si,p)|, ρi
p =

(
2

2+α
εi
p

) 2
2+α

,

ũi,p(r) = ṽi,p

(
2

r
2+α

2

)
.

2 + α



JID:YJDEQ AID:10094 /FLA [m1+; v1.304; Prn:20/11/2019; 15:00] P.14 (1-53)

14 A.L. Amadori, F. Gladiali / J. Differential Equations ••• (••••) •••–•••
Since 
( 2+α

2

) 2
p−1 → 1 then limp→∞ μi,p = limp→∞ |v2

p(si,p)|. So the claims concerning μi,p , 
ρi

p , rp , and σp readily follows by the results recalled in Proposition 2.3, in particular the second 
item in (1.15) is implied by (2.22). Eventually (1.13) and (1.17) follow by (2.20) and (2.23), by 
the computations made in Remark 2.1. �
3. The Morse index of u1

p and u2
p

In this section we address to the computation of the Morse index of radial least energy so-
lutions u1

p and u2
p when p goes to ∞. By definition the Morse index of a radial solution up to 

(1.1), that we denote by m(up), is the maximal dimension of a subspace of H 1
0 (B) in which the 

quadratic form Qu is negative defined, or equivalently, is the number, counted with multiplicity, 
of negative eigenvalues in H 1

0 (B) of{−�φ − p|x|α|up|p−1φ = �h(p)φ in B

φ = 0 on ∂B.
(3.1)

Similarly the radial Morse index of up, denoted by mrad(up), is the number of negative eigenval-
ues of (3.1) in H 1

0,rad(B), namely the eigenvalues of (3.1) associated with a radial eigenfunction. 
It is known by [7, Theorem 1.3] that the radial Morse index is equal to the number of nodal zones, 
that is mrad(u

1
p) = 1 and mrad(u

2
p) = 2. In the paper [6] it has been proved that the Morse index 

(or radial Morse index) of up is the number, counted with multiplicity, of negative eigenvalues 
�̂h(p) (negative radial eigenvalues �̂rad

h (p) resp.) of the singular eigenvalue problem⎧⎨⎩−�φ̂ − p|x|α|up|p−1φ̂ = �̂h(p)

|x|2 φ̂ in B \ {0}
φ̂ = 0 on ∂B,

(3.2)

in H0 (H0,rad resp.). Here H0 := H 1
0 ∩L and L is the Lebesgue space

L := {w : B → R measurable and s.t.
∫
B

|x|−2w2dx < +∞}

with the scalar product 
∫
B

|x|−2ψw dx, which gives the orthogonality condition

w⊥ψ ⇐⇒
∫
B

|x|−2wψdx = 0 for w,ψ ∈ L

and Lrad and H0,rad are their subspaces given by radial functions. Of course H0 (H0,rad resp.) 
are Banach and Hilbert spaces with the norm

‖w‖2
H0

=
∫
B

|∇w|2 + |x|−2w2 dx.

By weak solutions to (3.2) we mean a function φ̂ ∈ H0 that satisfies
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∫
B

∇φ̂∇w − p|x|α|up|p−1φ̂w = �̂i(p)

∫
B

|x|−2φ̂w (3.3)

for any w ∈ H0. Let us remark that, since C∞
0 (B \ {0}) is dense in H0 with respect to the norm 

‖ · ‖H0 (see Lemma 5.1 in the Appendix), it is enough to take the test functions w in (3.3) in 
C∞

0 (B \ {0}). Nevertheless by [6, Proposition 3.1] a weak solution φ̂ is a classical solution to 
(3.2) in B \ {0}.

Moreover these singular eigenvalues �̂h(p) have the useful property that can be decomposed 
as

�̂h(p) = �̂rad
j (p) + k2, (3.4)

where k2 are the eigenvalues of the Laplace-Beltrami operator on S1, and �̂rad
j (p) are the radial 

singular eigenvalues of (3.2), which are all simple by [6, Property 5]. Then an eigenfunction 
φ̂h ∈H0 corresponding to �̂h(p) is given, in polar coordinate (r, θ), by

φ̂h(r, θ) = φ̂rad
j (r)(A cos(kθ) + B sin(kθ)) (3.5)

where φ̂rad
j ∈ H0,rad is an eigenfunction associated with �̂rad

j (p) and A, B ∈ R.
This decomposition allows from one side to easily compute the Morse index of a radial so-

lution up knowing only the radial eigenvalues �̂rad
j (p) and, from the other side, is useful to 

understand the feasible symmetries that nonradial solutions can have in order to prove the exis-
tence results, see Section 4.

Performing again the transformation in (2.1) and letting ψ(t) = φ̂(r) we have that the com-
putation of the Morse index is linked to the singular Sturm-Liouville problem{− (tψ ′)′ − tp|vi

p|p−1ψ = t−1ν̂j (p)ψ for t ∈ (0,1)

ψ ∈H0,rad
(3.6)

where vi
p for i = 1, 2 is defined in (2.1) and the radial singular eigenvalues �̂rad

j (p) are linked to 
the singular eigenvalues ̂νj (p) by the relation

�̂rad
j (p) = (2 + α)2

4
ν̂j (p)

see [6, Lemma 4.10]. Recall that ψ is a weak solution to (3.6) means that

1∫
0

tψ ′ϕ′ dt − p

1∫
0

t |vi
p|p−1ψϕ dt = ν̂j (p)

1∫
0

t−1ψϕ dt (3.7)

for every ϕ ∈H0,rad or for every ϕ ∈ C∞
0,rad(B \ {0}).

The space H0,rad is introduced to obtain compactness in the variational formulation of (3.2) or, 
equivalently, (3.6). Anyway compactness is possible only for negative eigenvalues, as rigorously 
proved in [19]. As far as
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Ri (φ) :=
∫ 1

0 t
(
|φ′|2 − p|vi

p|p−1φ2dt
)

dr∫ 1
0 t−1φ2dt

has a negative infimum on H0,rad, such infimum is attained by a function ψ1,p ∈ H0,rad which is 
a weak solution to (3.6) corresponding to

ν̂i
1(p) = min

{
Ri (φ) : φ ∈H0,rad, φ �= 0

}
. (3.8)

Next if Ri has a negative infimum also in the subspace of H0,rad orthogonal to ψ1,p , meaning 
that

φ⊥ψ ⇐⇒
1∫

0

t−1φψdt = 0, (3.9)

such infimum is attained by a function ψ2,p ∈ H0,rad, ψ2,p⊥ψ1,p , which is a weak solution to 
(3.6) corresponding to

ν̂i
2(p) = min

{
Ri (φ) : φ ∈H0,rad, φ �= 0, φ⊥ψ1,p

}
, (3.10)

and the procedure can be iterated.
These generalized radial singular eigenvalues ν̂i

j (p), (associated with v1
p or v2

p) have been 
studied in [6, Subsection 3.1] and [7, Section 3] where it is proved, among other things, that they 
are all simple and the only negative eigenvalues of (3.6) are

− 1 < ν̂1
1(p) < 0, and (3.11)

ν̂2
1(p) < −1 < ν̂2

2(p) < 0 (3.12)

for any value of the parameter p. Besides the radial Morse index of u1
p and u2

p coincides with the 
number of negative eigenvalues of (3.6) [6, Proposition 1.1]. Furthermore also the Morse index 
can be computed starting from the singular eigenvalues as follows:

Proposition 3.1. For every α ≥ 0 the Morse index of ui
p is given by

m(ui
p) = 2

i∑
j=1

⌈
2 + α

2

√
−ν̂i

j (p)

⌉
− i (3.13)

as i = 1, 2.

Indeed formula (3.13) is obtained putting together [6, Theorem 1.2] and [7, Theorem 1.3], and 
recalling that in dimension N = 2 the multiplicity of the eigenvalues λj = −j2 of the Laplace-
Beltrami operator are N0 = 1, Nj = 2 for j ≥ 1.

Therefore the Morse index of least energy radial solutions for large values of p can be deduced 
by the asymptotic behavior of the singular eigenvalues and of the related eigenfunctions. It is 
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therefore needed to look at the limit eigenvalue problem, which can be deduced from (3.6) via 
the asymptotic behavior of the functions vi

p recalled in previous Section. As the latter depends 
heavily by the number of nodal zones, we deal first with the minimal energy radial solution u1

p (in 
Subsection 3.1), and then with the minimal energy nodal radial solution u2

p (in Subsection 3.2).

3.1. The case of the positive solution u1
p

In this subsection we analyze the least energy radial solution u1
p in order to compute its Morse 

index, depending on α when p is sufficiently large. By the aforementioned results in this case 
(3.6) has only one negative eigenvalue which will be simply denoted by ν1(p) henceforth. It 
satisfies (3.11) and formula (3.13) simplifies into

m(u1
p) = 2

⌈
2 + α

2

√−νi(p)

⌉
− 1. (3.14)

Then the result in Theorem 1.3 is a consequence of Proposition 3.1 once we have proved that:

Proposition 3.2. Let ν1(p) the unique radial singular negative eigenvalue of (3.6) corresponding 
to v1

p . Then

lim
p→∞ν1(p) = −1 (3.15)

Before proving Proposition 3.2, which is the core of the present subsection, let us deduce 
Theorem 1.3 from it.

Proof of Theorem 1.3. The limit (3.15), together with (3.11), ensures that ν1(p) → −1 from 
above, so that 2+α

2

√−ν1(p) → 2+α
2 from below and then (3.14) gives

m(u1
p) → 2

⌈
2 + α

2

⌉
− 1 = 1 + 2

⌈α

2

⌉
because the ceiling function is left-continuous. The conclusion follows because the Morse index 
is a discrete quantity, and therefore it must be definitely equal to its limit. �

Proposition 3.2, in turn, is proved by sending p → ∞ in the Sturm-Liouville problem (3.6), 
or better into its rescaled version. To enter the details we define

ψ̃p(r) :=
{

ψp

(
εpr
)

for r ∈ [0,1/εp)

0 elsewhere
(3.16)

for εp as in (2.14). Since ψp ∈ H0,rad then ψ̃p ∈Drad, where

Drad = D1,2(R2) ∩Lrad(R
2). (3.17)



JID:YJDEQ AID:10094 /FLA [m1+; v1.304; Prn:20/11/2019; 15:00] P.18 (1-53)

18 A.L. Amadori, F. Gladiali / J. Differential Equations ••• (••••) •••–•••
Here D1,2(R2), as usual, is the closure of C∞
0 (R2) under the L2-norm of the gradient, and 

Lrad(R2) denotes the space of measurable functions g : [0, ∞) → R such that 
∫∞

0 t−1g2 dt < ∞. 
Drad has the Hilbert and Banach structure induced by the norm

‖ψ‖Drad =
⎛⎝ ∞∫

0

(
r−1ψ2 + r|ψ ′|2

)
dr

⎞⎠
1
2

,

and it actually coincides with the closure of C∞
0 (0, ∞) under this norm (see Lemma 5.2 in the 

Appendix).
Moreover ψp is an eigenfunction for (3.6) related to the eigenvalue ν1(p) < 0 if and only if 

ψ̃p satisfies

− (rψ̃ ′)′ − rWpψ̃ = r−1ν1(p)ψ̃ as r ∈ (0,1/εp) (3.18)

Here

Wp(r) = pε2
p

∣∣∣v1
p(εpr)

∣∣∣p−1 =
∣∣∣∣1 + 1

p
ṽp(r)

∣∣∣∣p−1

for r ∈ [0,1/εp). (3.19)

By the convergence result in [22] recalled in (2.16) as p → ∞ we have

Wp(r) → W 1(r) = eV (r) = 64

(8 + r2)2 in C0
loc[0,∞) (3.20)

where V has been defined in (2.6). Therefore the natural limit problem for (3.18) is{
− (rφ′)′ = r

(
W 1 + β

r2

)
φ r > 0,

φ ∈Drad

(3.21)

As usual we mean that φ solves the equation in weak sense, i.e.

∞∫
0

rφ′ϕ′ dr =
∞∫

0

r

(
W 1 + β

r2

)
φϕ dr (3.22)

for every ϕ ∈ Drad or equivalently for every ϕ ∈ C∞
0 (0, ∞).

Eigenvalues to (3.21) are attained in Drad as far as they are negative. In particular the first 
eigenvalue of (3.21) is β1 = −1, which is simple and attained by the function

η1(r) := 4r

8 + r2 , (3.23)

as shown in [13, Section 5]. It is the unique negative eigenvalue, see Proposition 5.4 in the 
Appendix.

We are now ready to prove Proposition 3.2.
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Proof of Proposition 3.2. Since ν1(p) > −1 for every p by (3.11), it suffices to show that 
lim sup
p→∞

ν1(p) ≤ −1. We shall prove it by a suitable choice of the test functions in the varia-

tional characterization (3.8) showing that, for every 0 < ε < 1 there exists an exponent pε > 0
such that ν1(p) ≤ −1 + ε for p ≥ pε .

Let us take a cut-off function � ∈ C∞
0 (0, ∞) such that

0 ≤ �(r) ≤ 1,
∣∣�′(r)

∣∣≤ 2

R
, �(r) =

{
1 0 ≤ r < R,

0 r > 2R.
(3.24)

Letting εp and η1 as defined in (2.14) and (3.23), respectively, we set

ϕp(r) = η1

(
r

εp

)
�

(
r

εp

)
, as r ∈ [0,1]. (3.25)

The function η1 is decreasing on 
(

2
3
2 ,∞

)
with lim

r→∞η1(r) = 0, and 
∫∞

0 r−1η2
1dr = 1. So we 

can choose R = R(ε) in such a way that

η1(r) ≤ η1(R) <
ε

4
for r > R, (3.26)

∞∫
0

r−1η2
1�

2dr ≥
R∫

0

r−1η21dr ≥ 1 − ε/2. (3.27)

Notice that since εp → 0 we may assume w.l.g. that p is so large that 1/εp > 2R, so that ϕp ∈
H0,rad. Inserting the test function ϕp into the variational characterization (3.8) gives

ν1(p) ≤
∫ 1

0 r
(
|ϕ′

p|2 − p|vp|p−1ϕ2
pdr

)
dr∫ 1

0 r−1ϕ2dr
,

next we compute all the terms.
First, since for all functions f and g we have 

[
(fg)′

]2 = f ′ (fg2
)′ + f 2(g′)2 we get

1∫
0

r|ϕ′
p|2dr =

1∫
0

r

(
η1

(
r

εp

))′(
η1

(
r

εp

)
�2

p

(
r

εp

))′
dr

+
1∫

0

rη1
2
(

r

εp

)[(
�p

(
r

εp

))′]2

dr

and rescaling
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=
1

εp∫
0

sη′
1(s)

(
η1(s)�

2(s)
)′

ds +
1

εp∫
0

sη2
1(s)

[
(�(s))′

]2
ds

Concerning the first integral, because � has compact support contained in [0, 2R] we have

1
εp∫

0

sη′
1

(
η1�

2
)′

ds =
+∞∫
0

sη′
1

(
η1�

2
)′

ds

and since η1 solves (3.21) corresponding to β1 = −1 we get

= −
+∞∫
0

s−1η2
1�

2ds +
+∞∫
0

sW 1η2
1�

2ds.

Therefore

1∫
0

r|ϕ′
p|2dr = −

+∞∫
0

s−1η2
1�

2ds +
+∞∫
0

sW 1η2
1�

2ds +
∞∫

0

sη2
1(�

′)2ds (3.28)

Next we compute

1∫
0

rp|v1
p|p−1ϕ2

pdr =
1∫

0

rp|v1
p|p−1

(
η1

(
r

εp

)
�p

(
r

εp

))2

dr

Rescaling and using the properties of � we get

=
∞∫

0

sWpη2
1�

2ds (3.29)

where Wp has been introduced in (3.19). Similarly

1∫
0

r−1ϕ2
pdr =

1∫
0

r−1
(

η1

(
r

εp

)
�p

(
r

εp

))2

dr

=
∞∫

0

s−1η2
1�

2(s)ds (3.30)
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Putting (3.28), (3.29) and (3.30) into the variational characterization (3.8) gives

ν1(p) ≤
∫ 1

0 r
(
|ϕ′

p|2 − p|v1
p|p−1ϕ2

p

)
dr∫ 1

0 r−1ϕ2
pdr

= − ∫∞
0 s−1η2

1�
2ds + ∫∞

0 s(W 1 − Wp)η2
1�

2ds + ∫∞
0 sη2

1

(
�′)2 ds∫∞

0 s−1η2
1�

2ds

= −1 +
∫∞

0 s(W 1 − Wp)η2
1�

2ds + ∫∞
0 sη2

1

(
�′)2 ds∫∞

0 s−1η2
1�

2ds
.

But using the explicit law for η1 given in (3.23) and the properties of � we have

1
εp∫

0

sη2
1(s)

(
(�)′

)2
ds ≤ 4

R2

2R∫
R

sη2
1(s)ds <

(3.26)

ε2

4R2

2R∫
R

s ds = 3ε2

8
<

3ε

8
,

so that

ν1(p) < −1 +
∫∞

0 s(W 1 − Wp)η2
1�

2(s)ds + 3ε
8∫∞

0 s−1η2
1�

2(s)ds

<
(3.27)

−1 +
∫ +∞

0 s
∣∣W 1 − Wp

∣∣η2
1�

2ds + 3
8ε

1 − ε/2
.

On the other hand by the properties of � we have

+∞∫
0

s

∣∣∣W 1 − Wp

∣∣∣η2
1�

2ds ≤ sup
(0,2R)

|W 1 − Wp|
2R∫
0

sη2
1ds

and since Wp → W 1 uniformly on [0, 2R] we can take pε in dependence by ε and R(ε) large 
enough such that

sup
(0,2R)

|W 1 − Wp| ≤ ε

8
∫ 2R

0 sη2
1ds

for p > pε.

Eventually we end up with ν1(p) < −1 + ε
2−ε

< −1 + ε. �
3.2. The case of the nodal solution u2

p

For the nodal solution u2
p problem (3.6) has two negative eigenvalues, that will be simply 

denoted by ν1(p) and ν2(p) in the following, and satisfy (3.12). Therefore to compute the asymp-
totic Morse index according to Proposition 3.1 we need to compute the limit of the two negative 
eigenvalues ν1(p) and ν2(p), and precisely we shall see that:
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Proposition 3.3. Let ν1(p) and ν2(p) be the radial singular negative eigenvalues of (3.6) and let 
κ be as defined in (1.19). Then

lim
p→∞ν1(p) = −κ2 
 −26.9 (3.31)

lim
p→∞ν2(p) = −1. (3.32)

Before going on, let us see how Theorem 1.4 can be easily deduced by Propositions 3.1 and 
3.3.

Proof of Theorem 1.4. Thanks to (3.12) and (3.32) one can see as in the proof of Theorem 1.3
that ⌈

2 + α

2

√−ν2(p)

⌉
→ 1 +

⌈α

2

⌉
.

Besides (3.31) yields that 2+α
2

√−ν1(p) → 2+α
2 κ , and then

⌈
2 + α

2

√−ν1(p)

⌉
→
⌈

2 + α

2
κ

⌉
,

provided that 2+α
2 κ is not integer, that is α �= αn. In this case formula (3.13) yields

m(u2
p) → 2

⌈α

2

⌉
+ 2

⌈
2 + α

2
κ

⌉
and the first part of the claim follows since the Morse index is a discrete quantity. Otherwise we 
cannot pass to the limit inside formula (3.13), because the ceiling function is not continuous at 
2+αn

2 κ . Nevertheless the just exposed arguments show that

⌈
2 + αn

2

√−ν1(p)

⌉
∈
{

2 + αn

2
κ,

2 + αn

2
κ + 1

}
for large values of p, which concludes the proof. �

To prove Proposition 3.3 we begin by taking ψj,p ∈ H0,rad, the eigenfunctions of (3.6) corre-
sponding to v2

p and to νj (p) for j = 1, 2 normalized such that

1∫
0

r−1ψj,pψk,pdr = δjk. (3.33)

Next, using the notations introduced in Section 2, for j = 1, 2 we define the rescaled eigenfunc-
tions
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ψ̃ i
j,p(r) :=

⎧⎨⎩ψj,p

(
εi
pr
)

for
ti−1,p

εi
p

< r <
ti,p

εi
p

0 elsewhere,
(3.34)

with εi
p as in (2.17), in such a way that

∞∫
0

r−1
(
ψ̃ i

j,p

)2
dr =

ti,p∫
ti−1,p

r−1ψ2
j,p dr ≤

1∫
0

r−1ψ2
j,p dr = 1 (3.35)

∞∫
0

r
(
(ψ̃ i

j,p)′
)2

dr =
ti,p∫

ti−1,p

r
(
ψ ′

j,p

)2
dr ≤

1∫
0

r
(
ψ ′

j,p

)2
dr. (3.36)

Then the functions ψ̃ i
j,p belong to the space Drad introduced in (3.17) and they satisfy

−
(
r(ψ̃ i

j,p)′
)′ = r

(
Wi

p + νj (p)

r2

)
ψ̃ i

j,p as
ti−1,p

εi
p

< r <
ti,p

εi
p

(3.37)

for

Wi
p(r) :=p(εi

p)2
∣∣∣v2

p(εi
pr)

∣∣∣p−1 =
∣∣∣∣1 + ṽi,p(r)

p

∣∣∣∣p−1

. (3.38)

Equation (3.37) is meant in weak sense, namely

∞∫
0

r(ψ̃ i
j,p)′ϕ′ =

∞∫
0

r

(
Wi

p + νj (p)

r2

)
ψ̃ i

j,pϕ dr (3.39)

for every ϕ ∈ C∞
0 (0, ∞) whose support is contained in 

(
ti−1,p

εi
p

,
ti,p

εi
p

)
.

Proposition 2.3 yields that when p → ∞

W 1
p(r) → W 1(r) = eV (r) = 64

(8 + r2)2 in C0
loc[0,∞) (3.40)

W 2
p(r) → W 2(r) = eZγ ;δ(r) = 2(2 + γ )2δrγ(

δ + r2+γ
)2 in C0

loc(0,∞) (3.41)

where V and Zγ ;δ have been defined in (2.6) and (2.8), respectively and γ and δ are fixed in 
(2.9). Therefore the natural limit problems for (3.37) are{

− (rψ ′)′ = r
(
Wi + βi

r2

)
ψ r ∈ (0,∞),

φ ∈Drad

(3.42)

whose weak solutions are meant in the sense of (3.22).
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For i = 1 (3.42) coincides with (3.21) and, as already recalled, it has only one negative eigen-
value β1 = −1 with eigenfunction η1 given by (3.23). Also for i = 2 there is only one negative 
eigenvalue

β2
1 = −κ2,

where κ =
√

2+�2

2 = 2+γ
2 is the fixed number introduced in (1.19). Such negative eigenvalue is 

simple and its related eigenfunction is

η2
1(r) :=

√
2κδ rκ

δ + r2κ
, (3.43)

see Proposition 5.5 in the Appendix.
The proof of Proposition 3.3 is quite long and involved. We divide it in two parts by dealing 

first with the first eigenvalue and after with the second one. In doing this we also compute the 
limits of the rescaled eigenfunctions and show that

Proposition 3.4 (First part of Proposition 3.3). Let ν1(p) be the first radial singular negative 
eigenvalue of (3.6) corresponding to v2

p . Then as p → ∞ we have

ν1(p) → −κ2 
 −26.9, (3.31)

ψ̃1
1,p → 0 weakly in Drad and strongly in L2

loc(R
2), (3.44)

and, up to an extracted sequence,

ψ̃2
1,p → Aη2

1 weakly in Drad and strongly in L2
loc(R

2), (3.45)

for some A ∈R, A �= 0.

Proposition 3.5 (Second part of Proposition 3.3). Let ν2(p) be the second radial singular nega-
tive eigenvalue of (3.6) corresponding to v2

p . Then as p → ∞ we have

ν2(p) → −1, (3.32)

ψ̃2
2,p → 0 weakly in Drad and strongly in L2

loc(R
2), (3.46)

and, up to an extracted sequence,

ψ̃1
2,p → Aη1, weakly in Drad and strongly in L2

loc(R
2), (3.47)

for some A ∈R, A �= 0.

The present line of reasoning has many similarities with the one used in [13] for the Lane-
Emden equation. Indeed Proposition 3.4 represents a slight generalization of their arguments, 
even though the proof that we are going to present directly uses the singular problems (3.6) in-
stead of approximating them with regular Sturm-Liouville problems in collapsing annuli. Propo-
sition 3.5, instead, is completely new since in the Lane-Emden equation (α = 0) the estimate 
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(3.12) is sufficient to see that �√−ν2(p)� = 1 for any value of p and therefore the contribution 
of the second eigenvalue to the Morse index is constant.

First we need some estimates that we introduce in a series of lemmas. As a preliminary we 
define the function

fp(r) := p r2|v2
p(r)|p−1, 0 ≤ r < 1 (3.48)

and prove some useful properties that descend by the convergence stated in Proposition 2.3 and 
improve [13, Proposition 6.10].

Lemma 3.6. We have

fp(r) = pr2|v2
p(r)|p−1 ≤ C for any r ≥ 0 and p > 1. (3.49)

Moreover for any ρ > 0 there exist R(ρ) > 1, K(ρ) > 1 and p(ρ) > 1 such that for any R ≥
R(ρ), K > K(ρ) and p ≥ p(ρ)

max
{
fp(r) : r ∈ [ε1

pR, ε2
p/K] ∪ [ε2

pK,1]
}

≤ 2ρ (3.50)

where ε1
p and ε2

p are as defined in (2.17).

Proof. (3.49) has been obtained in [13, (2.15)]. As for (3.50), it can be proved following the line 
of [8, Lemma 2.11]. Let

h(s) := W 2(s)s2 = 2(γ + 2)2δsγ+2(
δ + sγ+2

)2 and g(s) := W 1(s)s2 = 64s2(
8 + s2

)2
where W 1 and W 2 are as defined in (3.40) and (3.41). For every given ρ > 0 we choose K =
K(ρ) > 1 such that h( 1

K
) < ρ and h(K) < ρ and R = R(ρ) > 0 such that g(R) < ρ. This is 

possible since h(s) → 0 as s → 0, and h(s), g(s) → 0 as s → ∞. We let

hp(s) := fp(ε2
ps) = W 2

p(s)s2 and gp(s) := fp(ε1
ps) = W 1

p(s)s2

with Wi
p as in (3.38). The convergences in (3.40) and (3.41) imply that hp(s) → h(s) uniformly 

in [1/K, K] and also

fp

(
ε2
p

K

)
= hp

(
1

K

)
≤ h

(
1

K

)
+ ρ < 2ρ

fp(ε2
pK) = hp(K) ≤ h(K) + ρ < 2ρ

if p is large enough. Moreover gp(s) → g(s) uniformly in [0, R] and also

fp(ε1
pR) = gp(R) ≤ g(R) + ρ < 2ρ

if p is large enough.
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In[13, Lemma 6.7 and 6.9] (see also[8, Lemma 2.11]) it is proved that the function fp(r) has 
an unique maximum point in each nodal zone of vp, precisely there are 0 < cp < t1,p < dp < 1
such that fp is strictly increasing in (0, cp) and in (t1,p, dp), while it is strictly decreasing in 
(cp, t1,p) and in (dp, 1).

Further the convergence of gp to g in C0
loc[0, ∞) implies that cp ∈ [0, ε1

pR] if p is large 

enough, as well as the convergence of hp to h in C0
loc(0, ∞) implies that dp ∈ [ ε2

p

K
, ε2

pK]. Then 
the monotonicity properties of fp yield

fp(r) < fp(ε1
pR) < 2ρ when r ∈ [ε1

pR, t1,p],
fp(r) < fp

(
ε2
p/K

)
< 2ρ when r ∈ [t1,p, ε2

p/K],
fp(r) < fp(ε2

pK) < 2ρ when r ∈ [ε2
pK,1]

when p is large enough. This concludes the proof. �
Taking advantage from (3.49) it is not hard to obtain some general estimates, precisely the 

eigenvalues are bounded and the rescaled eigenfunctions are bounded in Drad.

Lemma 3.7. There exist p̄ > 0 and C > 0 such that for every p ≥ p̄ we have

−C ≤ ν1(p) < ν2(p) < 0 (3.51)

∞∫
0

r((ψ̃ i
j,p)′)2 dr ≤ C (3.52)

for every i, j = 1, 2.

Proof. Using ψj,p as a test function in (3.7) gives

1∫
0

r
(
ψ ′

j,p

)2 =
1∫

0

r

(
p|v2

p|p−1 + νj (p)

r2

)
ψ2

j,pdr

=
1∫

0

r−1 (fp + νj (p)
)
ψ2

j,pdr,

(3.53)

where fp is defined in (3.48). Taking advantage from (3.33) one can extract ν1(p) getting that

ν1(p) =
1∫

0

r
(
ψ ′

1,p

)2 − r−1fp ψ2
1,p dr ≥ − sup

r∈(0,1)

fp(r)

1∫
0

r−1ψ2
1,p dr = −C

for p large enough, by (3.49). Besides, since νj (p) < 0 for j = 1, 2 by (3.12), (3.53) also yields 
that
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1∫
0

r
(
ψ ′

j,p

)2
<

1∫
0

r−1fpψ2
j,p dr ≤ sup

r∈(0,1)

fp(r)

1∫
0

r−1ψ2
j,p dr = C.

So also (3.52) is proved, recalling (3.49) and (3.33). �
Lemma 3.8. Let ψ̃ i

j,p be as defined in (3.34) for i, j = 1, 2 and pn a sequence with pn → ∞. 
Then, there exist an extracted sequence (that we still denote by pn), a number ν̄j ≤ 0 and a 
function ψ̃ i

j ∈ Drad which is a weak solution to (3.42) with βi substituted by ν̄j such that

ψ̃ i
j,p → ψ̃ i

j weakly in Drad and strongly in L2
loc(R

2)

as p → ∞.

Proof. By (3.51) it is clear that there is an extracted sequence νj (pn) → ν̄j ≤ 0. Moreover 
estimate (3.52) implies that ψ̃ i

j,p are uniformly bounded in Drad for i, j = 1, 2. Then, up to 
another extracted subsequence

ψ̃ i
j,pn

→ ψ̃ i
j weakly in Drad

ψ̃ i
j,pn

→ ψ̃ i
j strongly in L2(BR) ∀ R > 0

ψ̃ i
j,pn

→ ψ̃ i
j almost everywhere in R2.

In particular ψ̃ i
j ∈ Drad and taking advantage from the fact that the sets (ti−1,p/εi

p, ti,p/εi
p) in-

vade (0, ∞) by (2.21), for every ϕ ∈ C∞
0 (0, ∞) we can choose n so large in such a way that 

supp ϕ ⊂ (ti−1,pn/ε
i
pn

, ti,pn/ε
i
pn

) and ψ̃ i
j,p solves

∞∫
0

r(ψ̃ i
j,p)′ϕ′ dr =

∞∫
0

rWi
pψ̃i

j,pϕ dr + νj (p)

∞∫
0

r−1ψ̃ i
j,pϕ dr

The weak convergence in Drad then implies that

∞∫
0

r(ψ̃ i
j,p)′ϕ′ dr →

∞∫
0

r(ψ̃ i
j )

′ϕ′ dr

∞∫
0

r−1ψ̃ i
j,pϕ dr →

∞∫
0

r−1ψ̃ i
j ϕ dr

while the strong convergence in L2
loc(BR) and the fact that Wi

p → Wi in C1
loc(0, ∞) implies also 

that

∞∫
rWi

pψ̃i
j,pϕ dr →

∞∫
rWiψ̃i

jϕ dr
0 0
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getting that ψ̃ i
j solves (3.42) in weak sense. �

Remark 3.9. Since the negative eigenvalues and eigenfunctions of the limit problem (3.42) are 
known, an immediate consequence of Lemma 3.8 is that or ν̄j = −κ2, −1, or 0 or, else, ψ̃ i

j = 0

for i = 1, 2. Precisely if ψ̃1
j �= 0 then ν̄j = −1 or 0, and similarly if ψ̃2

j �= 0 then ν̄j = −κ2 or 0.

For what concerns the first eigenvalue, the general estimate (3.12) forbids ν̄1 = 0. Next 
Lemma shows that neither ν̄1 = −1 is possible because the limit of first eigenvalue cannot over-
pass the lowest eigenvalue among the limit problems, which now is β2

1 = −κ2.

Lemma 3.10. We have lim sup
p→∞

ν1(p) ≤ −κ2.

Proof. It suffices to repeat the proof of Proposition 3.2 with η2
1 instead of η1, after choosing 

R = R(ε) > δ
1

2k in such a way η2
1 is decreasing in (R, +∞), it satisfies η2

1(r) ≤ η2
1(R) < ε

4 for 
r > R and

∞∫
0

r−1(η2
1)

2�2 dr ≥
R∫

0

r−1(η2
1)

2�2 dr ≥ 1 − ε/2

since by definition 

∞∫
0

r−1(η2
1)

2dr = 1. �

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Thanks to Lemma 3.10 we know that (up to an extracted sequence) 
ν1(p) → ν̄1 ≤ −κ2 < −1. So the reasoning in Remark 3.9 assures that ψ̃1

1 = 0 and leaves open 
only two options: or ψ̃2

1 = 0, or, else ν̄1 = −κ2. In the second case Lemma 3.8 yields that any 
sequence pn → ∞ has an extracted subsequence such that ψ̃1

1,pnk
→ 0, showing (3.31) and 

(3.44). Finally ψ̃2
1,pnk

→ Aη2
1 for some constant A �= 0, concluding the proof.

Eventually it is left to check that ψ̃2
1 �= 0. Let us fix a δ > 0 such that δ < κ2/12 and R = R(δ)

and K = K(δ) as in Lemma 3.6. By the definition of ν1(p) and by (3.33) it follows

−ν1(p) = −
1∫

0

r
(
(ψ ′

1,p)2 − p|v2
p|p−1(ψ1,p)2

)
dr ≤

1∫
0

pr|v2
p|p−1(ψ1,p)2dr

=
ε1
pR∫

0

pr|v2
p|p−1(ψ1,p)2dr +

ε2
p
K∫

ε1 R

pr|v2
p|p−1(ψ1,p)2dr
p
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+
ε2
pK∫

ε2
p
K

pr|v2
p|p−1(ψ1,p)2dr +

1∫
ε2
pK

pr|v2
p|p−1(ψ1,p)2dr

= I1(p) + I2(p) + I3(p) + I4(p)

Besides, for every r0, r1 ∈ [0, 1]

r1∫
r0

pr|v2
p|p−1(ψ1,p)2dr =

r1∫
r0

fp(r)
(ψ1,p)2

r
dr ≤ max

r0<r<r1
fp(r)

1∫
0

(ψ1,p)2

r
dr = max

r0<r<r1
fp(r),

so the estimate obtained in Lemma 3.6 assures that I2(p) + I4(p) < 4δ for p > p(δ).
For what concerns the first integral, rescaling according to ε1

p gives

I1(p) =
R∫

0

rW 1
p(ψ̃1

1,p)2dr

where W 1
p → W 1 in C0

loc[0, +∞) by (3.40) and ψ̃1
1,p → 0 in L2

loc(R
2) as noticed before. Then 

there exists p2(δ) > 0 such that I1(p) < δ if p > p2(δ). With respect to third integral, rescaling 
according to ε2

p gives

I3(p) =
K∫

1
K

rW 2
p(ψ̃2

1,p)2dr

where W 2
p → W 2 in C0

loc(0, +∞) by (3.41) and ψ̃2
1,p → ψ̃2

1 in L2
loc(R

2) by Lemma 3.8. Then 
there exists p3(δ) > 0 such that

I3(p) ≤
K∫

1
K

rW 2(ψ̃2
1 )2dr + δ for p > p3(δ).

Summing up, taking p̄ = max{p(δ), p2(δ), p3(δ)} we have

K∫
1
K

rW 2(ψ̃2
1 )2dr ≥ −ν1(p) − 6δ for p > p̄

and, passing to the lim inf and using Lemma 3.10,
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k∫
1
K

rW 2(ψ̃2
1 )2dr ≥ − lim supν1(p) − 6δ ≥ κ2 − 6δ > κ2/2 > 0

by the choice of δ. Hence ψ̃2
1 �= 0, concluding the proof. �

Eventually we deal with Proposition 3.5.

Proof of Proposition 3.5. Recalling (3.12) in order to prove (3.32) it suffices to show that for 
any ε > 0 there exists pε > 1 such that

ν2(p) ≤ −1 + ε (3.54)

for p ≥ pε . Let us take a cut-off function � as in (3.24). Letting ε1
p and η1 be as defined in (2.17)

and (3.23) respectively, we set

ϕp := η1

(
r

ε1
p

)
�

(
r

ε1
p

)
+ apψ1,p as r ∈ [0,1] (3.55)

where R = R(ε) > 0 is by now fixed and satisfies (3.26), (3.27), while ap ∈ R is such that 
ϕp⊥ψ1,p according to (3.9), namely

ap := −
∫ 1

0 r−1η1

(
r
ε1
p

)
�

(
r
ε1
p

)
ψ1,p(r) dr∫ 1

0 r−1(ψ1,p)2 dr

=
(3.33)

−
1∫

0

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr. (3.56)

Notice that since ε1
p → 0 we may assume w.l.g. that p is so large that 1

ε1
p

> 2R, so that ϕp ∈
H0,rad.

We insert the test function ϕp into the variational characterization (3.10) of ν2(p) and get

ν2(p) ≤
∫ 1

0 r
(
(ϕ′

p)2 − p|v2
p|p−1ϕ2

p

)
dr∫ 1

0 r−1ϕ2
p dr

, (3.57)

then we compute all the terms.
First we claim that ap → 0 as p → ∞. Indeed we can write

1∫
r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr =

t1,p∫
r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr
0 0
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+
1∫

t1,p

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr

Rescaling with respect to ε1
p we have that

t1,p∫
0

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr =

t1,p

ε1
p∫

0

s−1η1(s)�(s)ψ̃1
1,p(s) ds

and since t1,p

ε1
p

→ ∞ by (2.21), recalling that the support of � is compact we get

=
∞∫

0

s−1η1(s)�(s)ψ̃1
1,p(s) ds → 0

as p → ∞, because ψ̃1
1,p → 0 weakly in Lrad(R2) by Proposition 3.4. Further the same property 

(2.21) implies that

1∫
t1,p

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r) dr = 0

for p so large that t1,p

ε1
p

> 2R. Next

1∫
0

r|ϕ′
p|2dr =

1∫
0

r

((
η1

(
r

ε1
p

)
�

(
r

ε1
p

))′)2

dr

+ a2
p

1∫
0

r(ψ ′
1,p)2 dr + 2ap

1∫
0

rψ ′
1,p

(
η1

1

(
r

ε1
p

)
�2

(
r

ε1
p

))′
dr

and since ε1
p → 0, the same computations made to obtain (3.28) in the proof of Proposition 3.2

give

= −
∞∫

0

s−1(η1)
2�2ds +

∞∫
0

s W 1(η1)
2�2ds +

∞∫
0

s(η1)
2(�′)2ds

+ a2
p

1∫
0

r(ψ ′
1,p)2 dr + 2ap

1∫
0

r ψ ′
1,p

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))′
dr (3.58)
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Moreover

1∫
0

rp|v2
p|p−1ϕ2

p dr =
1∫

0

rp|v2
p|p−1

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))2

dr + a2
p

1∫
0

rp|v2
p|p−1ψ2

1,pdr

+ 2ap

1∫
0

rp|v2
p|p−1ψ1,pη1

(
r

ε1
p

)
�

(
r

ε1
p

)
dr

and rescaling with respect to ε1
p in the first integral, since 1

ε1
p

> 2R we get

=
∞∫

0

sW 1
p(η1)

2�2ds + a2
p

1∫
0

rp|v2
p|p−1ψ2

1,pdr

+ 2ap

1∫
0

rp|v2
p|p−1ψ1,pη1

(
r

ε1
p

)
�

(
r

ε1
p

)
dr. (3.59)

Putting together (3.58) and (3.59) we obtain

1∫
0

r|ϕ′
p|2dr −

1∫
0

rp|v2
p|p−1ϕ2

p dr = −
∞∫

0

s−1(η1)
2�2 ds

+
∞∫

0

s
[
W 1 − W 1

p

]
(η1)

2�2ds +
∞∫

0

s(η1)
2(�′)2ds

+ a2
p

1∫
0

r
(
(ψ ′

1,p)2 − p|v2
p|p−1ψ2

1,p

)
dr

+ 2ap

1∫
0

r

(
ψ ′

1,p

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))′
− p|v2

p|p−1ψ1,pη1

(
r

ε1
p

)
�

(
r

ε1
p

))
dr.

Since ψ1,p solves (3.6) we get

1∫
0

r
(
(ψ ′

1,p)2 − p|v2
p|p−1ψ2

1,p

)
dr = ν1(p)

1∫
0

r−1ψ2
1,pdr =

(3.33)
ν1(p),

and similarly
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1∫
0

r

(
ψ ′

1,p

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))′
− p|v2

p|p−1ψ1,pη1

(
r

ε1
p

)
�

(
r

ε1
p

))
dr

= ν1(p)

1∫
0

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,pdr =

(3.56)
−ν1(p)ap.

Eventually

1∫
0

r|ϕ′
p|2dr −

1∫
0

rp|v2
p|p−1ϕ2

p dr = −
∞∫

0

s−1(η1)
2�2ds

+
∞∫

0

s
[
W 1 − W 1

p

]
(η1)

2�2ds +
∞∫

0

s(η1)
2(�′)2ds − ν1(p)a2

p (3.60)

On the other hand by the definition of ϕp it follows

1∫
0

r−1ϕ2
p, dr =

1∫
0

r−1

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))2

+

+ a2
p

1∫
0

r−1(ψ1,p)2 + 2ap

1∫
0

r−1η1

(
r

ε1
p

)
�

(
r

ε1
p

)
ψ1,p(r)

=
(3.33),(3.56)

1∫
0

r−1

(
η1

(
r

ε1
p

)
�

(
r

ε1
p

))2

− a2
p

and rescaling with respect to ε1
p and using the properties of �

=
∞∫

0

s−1(η1)
2�2ds − a2

p. (3.61)

Inserting (3.60) and (3.61) into (3.57) we obtain

ν2(p) ≤
− ∫∞

0 s−1(η1)
2�2ds + ∫∞

0 s
[
W 1 − W 1

p

]
(η1)

2�2ds + ∫∞
0 s(η1)

2(�′)2ds − ν1(p)a2
p∫∞

0 s−1(η1)2�2ds − a2
p

= −1 +
∫∞

0 s
[
W 1 − W 1

p

]
(η1)

2�2ds + ∫∞
0 s(η1)

2(�′)2ds − (ν1(p) + 1) a2
p∫∞

0 s−1(η1)2�2ds − a2
p

.

By the choice of R we have
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∞∫
0

s(η1)
2(�′)2ds =

2R∫
R

s(η1)
2(�′))2ds

≤ 4

R2

2R∫
R

sη2
1(s)ds <

(3.26)

ε2

4R2

2R∫
R

s ds = 3ε2

8
<

3ε

8
.

Therefore using also (3.27) we get

ν2(p) < − 1 +
∫∞

0 s

∣∣∣W 1 − W 1
p

∣∣∣ (η1)
2�2ds + 3ε

8 − (ν1(p) + 1) a2
p

1 − ε
2 − a2

p

.

Since ap → 0 and ν1(p) is bounded, we can choose p = pε so large that

a2
p <

ε

2
and (ν1(p) + 1) a2

p > − ε

16
.

On the other hand by the properties of � we have

+∞∫
0

s

∣∣∣W 1 − W 1
p

∣∣∣ (η1)
2�2ds ≤ sup

(0,2R)

|W 1 − W 1
p |

2R∫
0

sη2
1ds

and since W 1
p → W 1 uniformly on [0, 2R] we can possibly enlarge pε in such a way that

sup
(0,2R)

|W 1 − W 1
p | ≤ ε

16
∫ 2R

0 sη2
1ds

for p > pε.

Eventually we end up with

ν2(p) < −1 + ε

2(1 − ε)
< −1 + ε,

which concludes the proof of (3.32). Next Lemma 3.8 and Remark 3.9 yield also (3.46) and 
(3.47).

In particular ψ̃1
2,p → Aη1 weakly in Drad and strongly in L2

loc(R
2) for some A ∈R. It remains 

to show that A �= 0, which can be seen reasoning as in the proof of Proposition 3.4. Recalling the 
definition of ν2(p) and the normalization in (3.33) we have

−ν2(p) = −
1∫

0

r

((
ψ ′

2,p

)2 − p|v2
p(r)|p−1ψ2

2,p

)
dr ≤

1∫
0

rp|v2
p(r)|p−1ψ2

2,pdr

For any ε > 0 we choose R = R(ε) and K = K(ε) as in Lemma 3.6 and we divide the interval 
(0, 1) in the following way
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=
ε1
pR∫

0

rp|v2
p(r)|p−1ψ2

2,pdr +
ε2
p
K∫

ε1
pR

rp|v2
p(r)|p−1ψ2

2,pdr

+
ε2
pK∫

ε2
p
K

rp|v2
p(r)|p−1ψ2

2,pdr +
1∫

ε2
pK

rp|v2
p(r)|p−1ψ2

2,pdr

= I1(p) + I2(p) + I3(p) + I4(p)

By the same computations made in the proof of Proposition 3.4, Lemma 3.6 and the normaliza-
tion in (3.33) imply that there exists pε such that

I4(p) =
1∫

ε2
pK

rp|v2
p(r)|p−1ψ2

2,p(r) dr ≤ max
ε2
pK<r<1

fp(r)

1∫
ε2
pK

r−1ψ2
2,p(r) dr

≤ max
ε2
pK<r<1

fp(r) < ε

(3.62)

and in the same manner

I2(p) ≤ max
ε1
pR<r<

e2
p
K

fp(r) < ε (3.63)

Rescaling the integral I3(p) we have instead

I3(p) =
ε2
pK∫

ε2
p
K

rp|v2
p(r)|p−1ψ2

2,pdr =
K∫

1
K

sW 2
p(s)

(
ψ̃2

2,p

)2
ds

=
K∫

1
K

s
[
W 2

p(s) − W 2(s)
](

ψ̃2
2,p

)2
ds +

K∫
1
K

sW 2(s)
(
ψ̃2

2,p

)2
ds

≤ sup
1
K

<|x|<K

∣∣∣W 2
p(s) − W 2(s)

∣∣∣+ C

K∫
1
K

s
(
ψ̃2

2,p

)2
ds

by (3.33) and the boundedness of W 2. Next (3.41) implies that W 2
p converges uniformly in 

[ 1
K

, K] to W 2, while ψ̃2
2,p → 0 in L2(BK), for every K , as p → ∞ by (3.46) and Lemma 3.8, 

showing that I3(p) → 0 as p → ∞ and there exists an exponent p̃ε such that for any p ≥ p̃ε it 
holds
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I3(p) ≤ 2ε. (3.64)

Finally, rescaling the integral I1(p) we have

I1(p) =
ε1
pR∫

0

rp|v2
p|p−1ψ2

2,p dr =
R∫

0

sW 1
p

(
ψ̃1

2,p

)2
ds

=
R∫

0

s
(
W 1

p − W 1
)(

ψ̃1
2,p

)2
ds +

R∫
0

sW 1
((

ψ̃1
2,p

)2 − (Aη1)
2
)

ds + A2

R∫
0

sW 1(η1)
2 ds

≤ sup
|x|<R

∣∣∣W 1
p(s) − W 1(s)

∣∣∣+ C

R∫
0

s

∣∣∣∣(ψ̃1
2,p

)2 − (Aη1)
2
∣∣∣∣ds + A2

R∫
0

sW 1(η1)
2 ds

by (3.33) and the boundedness of W 1. Next (3.40) implies that W 1
p converges uniformly in [0, R]

to W 1 while ψ̃1
2,p → Aη1 in L2(BR) as p → ∞ by (3.47), showing that there exists an exponent 

p̂ε such that for any p ≥ p̂ε it holds

I1(p) ≤ A2

R∫
0

sW 1(η1)
2ds + 2ε. (3.65)

Finally from (3.31) we have that for any ε > 0 there exists p∗
ε > 1 such that for any p ≥ p∗

ε it 
holds

ν2(p) ≤ −1 + ε. (3.66)

Choosing p ≥ max{pε, p̃ε, p̂ε, p∗
ε } then (3.62), (3.63), (3.64) and (3.65) imply that

1 − ε < −ν2(p) ≤ A2

R∫
0

sW 1(η1)
2ds + 6ε (3.67)

giving

A2

R∫
0

sW 1(η1)
2ds ≥ 1 − 7ε > 0

for ε < 1
7 . This implies that A �= 0 and concludes the proof. �
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4. Least energy solutions in symmetric spaces

In this section we want to find new solutions to (1.1) which admit some rotational symmetry. 
To this end, for any angle ψ , we denote by Rψ the rotation of angle ψ in counterclockwise 
direction centered at the origin and by Gψ the subgroup of SO(2) generated by Rψ . In particular 
we consider angles ψ = 2π

n
with n ∈N , n ≥ 1, so that G 2π

n
is a proper subgroup of SO(2).

We say that a function u defined in B is n-invariant if it satisfies

v(x) = v (g(x)) for every x ∈ B, for every g ∈ G 2π
n

. (4.1)

Next we denote by H 1
0,n the subspace of H 1

0 (B) given by functions which are n-invariant, namely

H 1
0,n := {v ∈ H 1

0 (B) : v(x) = v(g(x)) for any x ∈ B, for every g ∈ G 2π
n

}. (4.2)

For n = 1, G2π = {I } is the trivial subgroup of SO(2), so the space H 1
0,1 coincides with 

H 1
0 (B), while all the other spaces H 1

0,n are strictly contained in H 1
0 (B). Observe also that G 2π

n

is a subgroup of G 2π
m

if m is a multiple of n showing that H 1
0,m ⊆ H 1

0,n in this case. Lastly 

H 1
0,rad ⊂ H 1

0,n for every n. In order to obtain new n-invariant solutions let us recall for a while 
how positive and sign changing solutions to (1.1) can be produced when the problem has a 
variational structure, as in our case, namely when solutions are critical points for the energy 
functional E(u) as defined in (1.3). It is standard, in this situation, to find solutions looking at the 
minima of E(u) constraint on the manifold

N := {v ∈ H 1
0 (B) : s.t. v �= 0, E ′(v)v = 0}

where E ′(u) denotes the Fréchet derivative of E in u. In order to find sign changing solutions, 
instead, the nodal Nehari manifold has been introduced, see [9] and [11] and nodal solutions can 
be found looking at the minima of E(u) on the manifold

Nnod := {v ∈ H 1
0 (B) : s.t. v+, v− �= 0, E ′(v)v+ = 0, E ′(v)v+ = 0}

where s+ and s− denote the positive and the negative part of s respectively. As an example of 
how this procedure can be performed to obtain solutions to the Hénon problem we quote [11]
and [10] that deal with nodal solutions.

The same construction can be repeated in the symmetric spaces H 1
0,n after introducing, for 

every n ≥ 1, the n-invariant Nehari manifold

Nn := {v ∈ H 1
0,n : v �= 0, E ′(v)v = 0}

and the nodal n-invariant Nehari manifold

Nn,nod =
{
v ∈ H 1

0,n : v+, v− �= 0, E ′(v)v+ = 0, E ′(v)v+ = 0
}

Since, for every p > 1, H 1
0,n, is compactly embedded in Lp(B), it is quite standard to see that 

minu∈N E(u) is attained at a nontrivial function, that we denote by u1
p,n and call least energy 
n
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n-invariant solution. By the principle of symmetric criticality in [30] these functions u1
p,n ∈ H 1

0,n

are symmetric critical points for E(u) and hence, are weak solutions to (1.1) that are positive in 
B by construction.

In a similar way also minu∈Nn,nod E(u) is attained at a nontrivial function that we denote by 
u2

p,n and call least energy nodal n-invariant solution. Again the principle of symmetric criticality 
shows that u2

p,n are weak solutions to (1.1) that change sign in B by construction. When n = 1

u1
p,1 and u2

p,1 coincide with the least energy and the nodal least energy solutions to (1.1) that 
have been studied in [1] and [21].

In the remaining of this section we shall prove that, for suitable values of the integer n, such 
least energy n-invariant solutions are nonradial and distinct one from another, thus obtaining 
the multiplicity results stated in the Introduction as Theorems 1.5 and 1.6. Non-radiality will be 
proved by considerations based on the Morse index in the spaces H 1

0,n, while the fact that such 
solutions do not coincide follows by a strict monotonicity result in [17]. The present multiplicity 
result is inspired by an analogous one in [20], dealing with nodal solutions to the Lane-Emden 
problem. In this last paper the spaces H 1

0,n are slightly different since the functions in [20] have 
to be symmetric with respect to one variable. Basically in [17] it is shown that solutions in H 1

0,n, 
under some additional assumption which is satisfied in the present situation, are symmetric with 
respect to a direction in a sector of amplitude 2π

n
, so that the solutions in [20] are, up to a rotation, 

the same we found here working in H 1
0,n without imposing an extra symmetry. Note that while 

in [20] this procedure produces results only in the case of nodal solutions, in the framework of 
the Hénon problems it finds a wider range of applications.

In the following subsection we define the notion of Morse index in the symmetric spaces H 1
0,n

and we compute it for the least energy solutions u1
p,n and u2

p,n by taking advantage from their 
minimality. Next, using the asymptotic results obtained in Section 3, we compute it also for the 
radial solutions u1

p and u2
p , when the parameter p is large. Eventually in the last subsection we 

prove the multiplicity results.

4.1. The n−symmetric Morse index

Working in the symmetric spaces H 1
0,n, n ≥ 1 we need to adapt the notion of Morse index to 

these spaces. To this end, if up is a solution to (1.1) that belongs to H 1
0,n we denote by mn(up)

the Morse index of up in the space H 1
0,n, namely the maximal dimension of a subspace X of 

H 1
0,n in which the quadratic form Qu is negative defined, or equivalently, the number of negative 

eigenvalues of the linearized operator Lup which have corresponding eigenfunction in H 1
0,n. We 

refer hereafter to mn(up) as the n-invariant Morse index of up.
Following [10] it is not hard to see that when up = u1

p,n or up = u2
p,n are the least energy 

n-invariant (or least energy nodal n-invariant) solutions to (1.1), then

mn(u
1
p,n) = 1 and mn(u

2
p,n) = 2. (4.3)

Indeed a minimum u1
n of E(u) on Nn satisfies 〈E ′′(u1

n)ψ, ψ〉 ≥ 0 for every ψ on the tangent 
space to Nn, where E ′′(u) is the second Fréchet derivative of E at u and 〈, 〉 is the pairing. Since 
〈E ′′(u)ψ, ψ〉 = Qu(ψ), where Qu is the quadratic form as in (1.4), and Nn has codimension 1, 
this shows that mn(u

1
n) ≤ 1. The fact that the n-Morse index of u1

n is exactly one then follows 
observing that, since u1

n ∈ Nn, we have
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Qu1
n
(u1

n) =
∫
B

|∇u1
n|2 − p

∫
B

|x|α|u1
n|p+1 = (1 − p)

∫
B

|∇u1
n|2 < 0.

In the same way a minimum u2
n of E(u) on Nn,nod satisfies 〈E ′′(u2

n)ψ, ψ〉 ≥ 0 for every ψ on 
the tangent space to Nn,nod. Since Nn,nod has codimension 2 in H 1

0,n, it follows that mn(u
2
n) ≤ 2. 

Besides both the positive and negative part of u2
n belong to Nn, so that

Qu2
n
((u2

n)
±) =

∫
B

|∇(u2
n)

±|2 − p

∫
B

|x|α|(u2
n)

±|p+1 = (1 − p)

∫
B

|∇(u2
n)

±|2 < 0,

which proves that m(u2
n) = 2 because (u2

n)
+ and (u2

n)
− are linearly independent and concludes 

the proof of (4.3).
Generally speaking, for any solution up to (1.1) that belongs to H 1

0,n [6, Proposition 1.1]
states that mn(up) coincides with the number of negative singular eigenvalues �̂h(p) of (3.2)
which have corresponding eigenfunction in H 1

0,n. Coming to radial solutions, as in the case of 
the functions u1

p and u2
p studied before, the n-invariant Morse index can be computed starting 

from the decomposition recalled in Section 3:

�̂h(p) = �̂rad
j (p) + k2, (3.4)

and the shape of the corresponding eigenfunctions

φ̂h(r, θ) = φ̂rad
j (r)(A cos(kθ) + B sin(kθ)). (3.5)

Indeed �̂h(p) (when it is negative) has a corresponding eigenfunction in H 1
0,n if and only if either 

k = 0 in (3.4), since the corresponding eigenfunction is radial so that belongs to H 1
0,n for every 

n, or, else if A cos(kθ) +B sin(kθ) belongs to H 1
0,n, namely when k is a multiple of n (i.e. k/n is 

an integer). In particular the multiplicity of �̂h(p), when it is not zero, is either 1 corresponding 
to k = 0 in (3.4), or 2 corresponding to k = ln for some positive integer l.

Thanks to this in the present setting the general formula for the symmetric Morse index [6, 
Corollary 4.11] becomes

mn(u
i
p) = i + 2

i∑
j=1

[
1

n

⌈
2 + α

2

√
−νj (p) − 1

⌉]
(4.4)

where νj (p) are the negative singular eigenvalues associated with v1
p and v2

p that have been 
studied in Section 3, � � and [ ] stand respectively for the ceiling function and the integer part.

We can then deduce from the asymptotic behavior of νj (p) obtained in Propositions 3.2 and 
3.3 the value of the n-Morse index of u1

p and u2
p for large values of p.

Corollary 4.1. Let α ≥ 0 be fixed and let u1
p and u2

p be a least energy radial and a least energy 
nodal radial solution to (1.1) corresponding to α respectively. Then there exists p� = p�(α) > 1
and p� = p�(α) > 1 such that for any p > p� we have
2 2
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mn(u
1
p) = 1 + 2

[
1

n

⌈α

2

⌉]
and for any p > p�

2 we have

mn(u
2
p) = 2 + 2

[
1

n

⌈
2 + α

2
κ − 1

⌉]
+ 2

[
1

n

⌈α

2

⌉]
if α �= αi = 2( i

κ
− 1), or

2 + 2

[
1

n

⌈
2 + α

2
κ

⌉]
+ 2

[
1

n

⌈α

2

⌉]
≥ mn(u

2
p) ≥ 2 + 2

[
1

n

⌈
2 + α

2
κ − 1

⌉]
+ 2

[
1

n

⌈α

2

⌉]
if α = αi for some integer i.

Here the exponents p� and p�
2 are the same of Theorem 1.3 and 1.4 and κ is as defined in 

(1.19).

4.2. Nonradial n−symmetric solutions

Next we turn to the least energy n-invariant solutions u1
p,n ∈ H 1

0,n constructed before, and 
show that, at least for some values of n, they do not coincide with the radial positive solution u1

p. 
In this case it is interesting to understand if the least energy solutions u1

p,n and u1
p,m coincide or 

not. Luckily this last issue has been tackled by Gladiali in [17] who showed the following:

Proposition 4.2 ([17] Theorem 1.1 and Theorem 1.2). Let u ∈ H 1
0,n be a solution to (1.1), with 

p ≥ 2 if u changes sign, that satisfies

mn(u) ≤ 2.

Then, or u is radial or, else there exists a direction e such that u is symmetric with respect to this 
direction in a sector of angle 2π

n
and it is strictly monotone in the angular variable in a sector of 

amplitude π
n

.

From this it follows that whenever u1
p,n and u1

p,m are nonradial then they do not coincide, due 
to the strict angular monotonicity.

With the aid of this last consideration, and using Corollary 4.1, we can prove Theorem 1.5.

Proof of Theorem 1.5. We consider the functions u1
p,n obtained minimizing E(u) on Nn for 

n = 1, 2, . . . , �α
2 �. First we want to show that they are not radial so that the positive solution 

u1
p,n does not coincide with u1

p . To prove this we recall that mn(u
1
p,n) = 1 by (4.3). On the other 

hand by Corollary 4.1 we know that mn(u
1
p) = 1 + 2 

[ 1
n

⌈
α
2

⌉]
for p > p�, so that mn(u

1
p) > 1

when 1
n

⌈
α
2

⌉ ≥ 1 meaning n ≤ ⌈α
2

⌉
. Then u1

p does not coincide with u1
p,n for any p > p� and 

n ∈ {1, . . . , �α
2 �} by Morse index considerations. It lasts to prove that u1

p,1 �= u1
p,2 �= · · · �= u1

p,� α
2 �. 

But this follows from Proposition 4.2 by the strict angular monotonicity of u1
p,n in a sector of 

amplitude π . �

n
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As an easy consequence, adding the radial solution u1
p then we obtain

Corollary 4.3. Let α > 0 be fixed. Then, there exists an exponent p� = p�(α) such that problem 
(1.1) admits at least 1 + �α

2 � distinct positive solutions for every p ∈ (p�(α), ∞).

As noticed in [17] the solutions u1
p,n of Theorem 1.5 exhibit the same monotonicity and sym-

metry properties of the functions sinnθ , cosnθ . Up to a rotation, they are symmetric with respect 
any direction (cos hπ

n
, sin hπ

n
) for h = 1, . . . n, their maxima and minima either are attained alter-

nately for θ = hπ
n

and they are strictly monotone in each sector among two consecutive critical 
points, or the maximum (minimum) is placed in the origin and the minima (maxima) are attained 
at θ = 2hπ

n
. This result is consistent with some previous existence results by [16] where positive 

solutions to (1.1) with n symmetric concentration points placed along the vertex of a regular 
polygon are constructed via a finite dimensional reduction method. It is reasonable to conjecture 
that our solutions u1

p,n coincide with theirs, and this conjecture is strengthened by the fact that 
we obtain exactly the same number of different solutions.

A consequence of the method we used in the proof is that when n >
⌈

α
2

⌉
then mn(u

1
p) = 1 and 

we strongly believe that u1
p,n = u1

p in this case, meaning that for α fixed we can construct only 
a finite number, 1 + �α

2 �, of positive distinct solutions to (1.1). Of course the number of positive 
solutions we found increases with α, corresponding to its even values, but for any α > 0 fixed 
the number of distinct solutions is finite and depends on α. Precisely for every n = 1, . . . �α

2 �
there exists an exponent p̄n = p̄n(α) (characterized by the condition n ν1(p) < −4/(2 + α)2 as 
p > p̄n) such that the least energy solution u1

p,n is nonradial as p > p̄n. In particular since H 1
0,1

coincide with H 1
0 (B) then the least energy solution of (1.1) is nonradial when p > p̄1.

Finally we recall that following [5] it can be proved that for p sufficiently close to 1 problem 
(1.1) possesses a unique positive solution. The Morse index of u1

p when p is close to 1 has 
been computed in [3] and starting from this [4] produced �α

2 � branches of nonradial solutions 
bifurcating from the curve p �→ u1

p as p ∈ (1, ∞). Such branches are made up by functions in 
H 1

0,n and detach exactly at p̄n, it is therefore natural to conjecture that they coincide with the 
curve (p, u1

p,n) as p > p̄n.
Next we turn to the case of nodal solutions.

Proof of Theorem 1.6. We consider the functions u2
p,n obtained minimizing E(u) on Nn,nod for 

n = 1, 2, . . . , � 2+α
2 κ − 1�. First we show that they are not radial so that the solutions u2

p,n do not 
coincide with the least-energy nodal radial solution u2

p. To prove this we recall that by previous 
considerations mn(u

2
p,n) = 2 for every p > 1. On the other hand by Corollary 4.1 we know that

mn(u
2
p) ≥ 2 + 2

[
1

n

⌈
2 + α

2
κ − 1

⌉]
+ 2

[
1

n

⌈α

2

⌉]
for p > p�

2 where κ is as defined in (1.19), so that mn(u
2
p) > 2 if 1

n

⌈
α
2

⌉≥ 1 or 1
n

⌈ 2+α
2 κ − 1

⌉≥ 1. 
But from (1.19) it suffices that 1

n

⌈ 2+α
2 κ − 1

⌉≥ 1 meaning that n ≤ ⌈ 2+α
2 κ − 1

⌉
.

Then u2
p does not coincide with u2

p,n for any p > p�
2 and n ∈ {1, . . . , � 2+α

2 κ −1�}, and Propo-

sition 4.2 yields that, for p ≥ 2 every u2
p,n is strictly increasing w.r.t. the angular variable in 

a sector of amplitude π , and strictly decreasing in the subsequent sector of amplitude π . In 

n n
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particular u2
p,h �= u2

p,n as h �= n ∈ {1, . . . , � 2+α
2 κ − 1�} and up,n �= u2

p for every p > p∗
2 which 

concludes the proof. �
As an easy consequence, adding the radial solution u2

p, then we obtain

Corollary 4.4. Let α ≥ 0 be fixed. Then, there exists an exponent p∗
2 = p∗

2(α) such that problem 
(1.1) admits at least � 2+α

2 κ� distinct positive solutions for every p ∈ (p∗
2(α), ∞).

Also the solutions u2
p,n of Theorem 1.6 exhibit the same monotonicity and symmetry proper-

ties of the functions sinnθ , cosnθ , which are consistent with some previous existence results by 
[33] where nodal solutions to (1.1) with n symmetric concentration points placed along the ver-
tex of a regular polygon are constructed via a finite dimensional reduction method, for p large. 
See also the paper [15] for the Lane-Emden case corresponding to α = 0.

We do not know if the solutions found with our construction coincide or not with the ones 
in [33], even if they possess the same type of symmetries. Observe, in fact, that when α = 0
the solutions in [20] are not of the type of the ones in [15] since the nodal line of the first ones 
does not touch the boundary while the nodal line of the second does. We suspect that also in the 
Hénon regime the same behavior is possible, namely some of our solutions should have nodal line 
touching the boundary while some other not, depending on α and n. It should be very interesting 
indeed to study the asymptotic behavior of n-invariant least energy solutions for large values of 
p in order to understand this point.

Moreover also in this case the number of different solutions we can find increases with α, 
but differently from the previous case the number changes corresponding to the integer values of 
2+α

2 κ instead of the even values of α. This seems to be a new phenomenon which has never been 
highlighted before.

Finally the Morse index of u2
p has been studied also in [3] where it has been shown that there 

exists δ > 0 such that m(u2
p) = 2 

⌈ 2+α
2 β

⌉
for p ∈ (1, 1 + δ). Here β ≈ 2, 305 is another fixed 

number. Next in [4]
⌈ 2+α

2 κ − 1
⌉− [ 2+α

2 β
]

branches of nonradial solutions that bifurcate from 
the curve of radial solutions are produced, comparing the value of the Morse index (or, better of 
the eigenvalue ν1(p)) at the ends of the existence range. The number of the solutions obtained by 
bifurcation is lower than the one obtained here by minimization on rotationally invariant spaces. 
It seems that for n = 1, . . .

⌈ 2+α
2 β − 1

⌉
the solutions u2

p,n are nonradial for every p > 1 and the 
two curves p �→ u2

p,n and p �→ u2
p do not intersect each other. This is certainly true for n = 1

because m(u2
p,1) = 2 by [10], while m(u2

p) ≥ 4 + [α/2] by [7, Theorem 1.1]. Conversely for 

n = ⌈ 2+α
2 β

⌉
, . . .

⌈ 2+α
2 κ − 1

⌉
the curve p �→ u2

p,n coincide with the one of radial solutions for p
under a certain value pn, see [3], and then it branches off becoming nonradial.

5. Appendix

We report here the almost straightforward proofs of some basic facts. First we show some 
characterizations of the weighted Sobolev spaces that we have used in Section 3, next we study 
the limit singular eigenvalue problems (3.42).
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5.1. Some density properties in weighted Sobolev spaces

Throughout the paper we have used the following notations for some weighted Lebesgue 
spaces:

L :={w : B →R measurable and s.t.
∫
B

|x|−2w2dx < +∞},
L(R2) :={w :R2 → R measurable and s.t.

∫
R2

|x|−2w2dx < +∞}
and Lrad, Lrad(R2) as the subspaces of L(B) and of L made up by radial functions. Starting from 
this we have introduced

H0 := H 1
0 (B) ∩L, H0,rad := H 1

0 (B) ∩Lrad, Drad := D1,2(R2) ∩Lrad(R
2),

where H 1
0 (B) and D1,2(R2) are the usual spaces, namely H 1

0 (B) is the closure of C∞
0 (B)

under the norm 
(∫

B
|∇w|2dx

) 1
2 and D1,2(R2) is the closure of C∞

0 (R2) under the norm (∫
R2 |∇w|2dx

) 1
2 . Such weighted Sobolev spaces have been endowed with the natural norms

‖w‖H0 =
⎛⎝∫

B

(
|∇w|2 + |x|−2w2

)
dx

⎞⎠
1
2

,

‖g‖Drad =
⎛⎝ ∞∫

0

(
r|g′|2 + r−1g2

)
dr

⎞⎠
1
2

.

We check that, using these norms, C∞
0 (B \ {0}) is dense in H0 and similarly C∞

0 (0, ∞) is dense 
in Drad.

Lemma 5.1. H0 is the closure of C∞
0 (B \ {0}) with respect to the norm ‖ · ‖H0 .

Proof. Let φ ∈H0 and ε > 0. We can choose 0 < ρ < 1/2 so small that∫
B2ρ

|∇φ|2 + |x|−2|φ|2 dx <
ε2

33
(5.1)

Let � ∈ C1(B) be a cut-off function with the properties

0 ≤ �(x) ≤ 1, �(x) =
{

0 as 0 ≤ |x| ≤ ρ,

1 as 2ρ ≤ |x| < 1,
|∇�(x)| ≤ 2

ρ
. (5.2)

First we show that
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‖φ(1 − �)‖H0 < ε. (5.3)

Indeed using that, by the choice of ψ ,

|∇ (φ(1 − �)) |2 ≤ 2(1 − �)2|∇φ|2 + 2φ2|∇(1 − �)|2 ≤ 2|∇φ|2 + 8

ρ2 φ2,

gives ∫
B

|∇ (φ(1 − �)) |2dx =
∫
Bρ

|∇φ|2dx +
∫

B2ρ\Bρ

|∇ (φ(1 − �)) |2dx

≤
∫
Bρ

|∇φ|2dx + 2
∫

B2ρ\Bρ

|∇φ|2dx + 8

ρ2

∫
B2ρ\Bρ

φ2dx

≤ 2
∫

B2ρ

|∇φ|2 + 32
∫

B2ρ\Bρ

|x|−2φ2 <
32ε2

33

(5.4)

where last step follows by (5.1). Furthermore

∫
B

|x|−2φ2(1 − �)2dx ≤
∫

B2ρ

|x|−2φ2dx <
ε2

33

thanks to (5.1).
Next we show that there is a sequence φn ∈ C∞

0 (B \ {0}) with support contained in B \ Bρ

such that

φn → φ� in H0 (5.5)

as n → ∞. (5.5) together with (5.4) implies that

‖φn − φ‖H0 ≤ ‖φn − φ�‖H0 + ‖φ� − φ‖H0 < 2ε

for n large enough, showing the density of C∞
0 (B \ {0}) into H0 and concluding the proof.

We turn then to the proof of (5.5). Indeed φ� ∈ H 1
0 (B \ Bρ), and, since C∞

0 (B \ Bρ) is dense 
in H 1

0 (B \ Bρ) there exists a sequence φn ∈ C∞
0 (B \ Bρ) such that φn → φ� in H 1

0 (B \ Bρ). 
Next we extend ψn to be zero in Bρ so that φn ∈ C∞

0 (B \ {0}) and satisfies

∫
B

|∇(φn − φ�)|2dx =
∫

B\Bρ

|∇(φn − φ�)|2dx → 0 (5.6)

and clearly by the Poincaré inequality in H 1(B \ Bρ)
0
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∫
B

|φn − φ�|2dx =
∫

B\Bρ

|φn − φ�|2dx → 0

as n → ∞. From this last equality follows also that∫
B

|x|−2|φn − φ�|2dx =
∫

B\Bρ

|x|−2|φn − φ�|2dx ≤ 1

ρ2

∫
B\Bρ

|φn − φ�|2dx → 0

and together with (5.6) proves (5.5). �
Lemma 5.2. Drad is the closure of C∞

0 (0, ∞) with respect to the norm ‖ · ‖Drad .

Proof. We take φ ∈ Drad and ε > 0 and show that there exists ψ ∈ C∞
0 (0, ∞) such that

‖φ − ψ‖Drad < 2ε. (5.7)

To begin with, we choose 0 < ρ < 1/2 so small that

2ρ∫
0

(
r|φ′|2 + r−1φ2

)
dr +

∞∫
1
ρ

(
r|φ′|2 + r−1φ2

)
dr <

ε2

33
, (5.8)

and we take a cut-off function � ∈ C1
rad(R

2) with the properties

0 ≤ �(r) ≤ 1, �(r) =
{

0 as 0 ≤ r < ρ and 2/ρ < r,

1 as 2ρ ≤ r ≤ 1/ρ,

∣∣�′(r)
∣∣≤{2/ρ as ρ ≤ r ≤ 2ρ,

2ρ as 1/ρ ≤ 2/ρ.

(5.9)

Clearly ‖φ − ψ‖Drad ≤ ‖φ(1 − �)‖Drad + ‖φ� − ψ‖Drad and (5.7) follows after checking sepa-
rately that

‖φ(1 − �)‖Drad < ε, (5.10)

and that there exists ψ ∈ C∞
0 (0, ∞) such that

‖φ� − ψ‖Drad < ε. (5.11)

Concerning (5.10) we have

∞∫
0

r |(φ(1 − �)
)′|2dr ≤ 2

∞∫
0

r|φ′|2(1 − �)2dr + 2

∞∫
0

rφ2|(1 − �)′|2dr
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and (5.9) gives

≤ 2

2ρ∫
0

r|φ′|2dr + 2

∞∫
1
ρ

r|φ′|2dr + 8

2ρ∫
ρ

r

ρ2 φ2dr + 8

2
ρ∫

1
ρ

rρ2φ2dr ≤

2

2ρ∫
0

r|φ′|2dr + 2

∞∫
1
ρ

r|φ′|2dr + 32

2ρ∫
ρ

r−1φ2dr + 32

2
ρ∫

1
ρ

r−1φ2dr <
32ε2

33

by (5.8). Besides

∞∫
0

r−1|φ(1 − �)|2dr ≤
2ρ∫

0

r−1φ2dr +
∞∫

1
ρ

r−1φ2dr <
ε2

33

by (5.9) and (5.8).
Turning to (5.11), it suffices to see that there exists a sequence ψn ∈ C∞

0 (0, ∞) with support 
contained in (ρ, 2/ρ) such that

‖φ� − ψn‖2
Drad

=
2
ρ∫

ρ

r
∣∣(φ�)′ − ψ ′

n

∣∣2 dr +
2
ρ∫

ρ

r−1
∣∣φ�′ − ψn

∣∣2 dr → 0

as n → ∞. But since φ� ∈ H 1
0,rad(B 2

ρ
\ Bρ) it is clear that there is a sequence in C∞

0 (ρ, 2/ρ)

such that ‖φ� −ψn‖H 1
0 (B 2

ρ
\Bρ) → 0. Extending ψn to zero on (0, ρ) and ( 2

ρ
, ∞) gives the needed 

sequence because clearly 

2
ρ∫

ρ

r
∣∣(φ�)′ − ψ ′

n

∣∣2 dr → 0, but also

2
ρ∫

ρ

r−1 |φ� − ψn|2 dr ≤ 1

ρ2

2
ρ∫

ρ

r |φ� − ψn|2 dr

and using Poincaré inequality in H 1
0 (B 1

ρ
\ Bρ

2
) gives

≤ C

ρ2

2
ρ∫

ρ

r
∣∣(φ�)′ − ψ ′

n

∣∣2 dr → 0. �
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5.2. The limit eigenvalue problems

Here we describe the negative eigenvalues and the respective eigenfunctions of the two limit 
eigenvalue problems {

− (rη′)′ = r
(
Wi + βi

r2

)
η r ∈ (0,∞),

η ∈ Drad

(3.42)

where Drad is as defined in (3.17),

W 1(r) = 64

(8 + r2)2 , W 2(r) = 8κ2δr2κ−2(
δ + r2κ

)2
with κ = 2+γ

2 as in (1.19) and γ and δ have been fixed in (2.9).
Let

βi
1 = inf

ψ∈Drad\{0}

∫∞
0 r

(|ψ ′|2 − Wiψ2
)
dr∫∞

0 r−1ψ2dr
(5.12)

If βi
1 < 0, since the functions Wi decay at infinity the arguments of [6, Proposition 3.1] can 

be adapted to see that it is attained by a function ηi
1 ∈ Drad which solves (3.42) for βi = βi

1 in 
weak sense, i.e.

∞∫
0

r(ηi)′ϕ′ dr =
∞∫

0

r

(
Wi + βi

r2

)
ηiϕ dr (3.22)

for every ϕ ∈Drad or equivalently for every ϕ ∈ C∞
0 (0, ∞). In this case the function ηi

1 is called 
an eigenfunction related to βi

1.

Lemma 5.3. If βi
1 < 0, then it is attained by a function ηi

1 ∈ Drad which solves (3.42) for βi = βi
1

in weak sense.

Proof. Let us consider a minimizing sequence ψn ∈ Drad with

∞∫
0

r
(
|ψ ′

n|2 − Wiψ2
n

)
dr = βn

∞∫
0

r−1ψ2
ndr, βn → βi

1 < 0. (5.13)

Without loss of generality we may take that ψn is normalized such that

∞∫
0

r−1ψ2
ndr = 1 (5.14)

Hence ψn is bounded in Drad because
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∞∫
0

r|ψ ′
n|2dr ≤

∞∫
0

rWiψ2
ndr ≤ sup

[0,∞)

∣∣∣r2Wi(r)

∣∣∣ ∞∫
0

r−1ψ2
ndr ≤ C

thanks to (5.14) and the fact that r2Wi(r) → 0 as r → ∞. So, up to a subsequence, ψn → η ∈
Drad weakly in Drad and strongly in L2(BR) for every R > 0. Let us check that

∞∫
0

rWiψ2
ndr →

∞∫
0

rWiη2dr. (5.15)

Indeed for every ε > 0, there exists R > 0 such that

sup
[R,∞)

∣∣∣r2Wi(r)

∣∣∣< ε. (5.16)

Next ∣∣∣∣∣∣
∞∫

0

rWi
(
ψ2

n − η2
)

dr

∣∣∣∣∣∣≤
∣∣∣∣∣∣

R∫
0

rWi
(
ψ2

n − η2
)

dr

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∫
R

rWi
(
ψ2

n − η2
)

dr

∣∣∣∣∣∣ .
But ∣∣∣∣∣∣

R∫
0

rWi
(
ψ2

n − η2
)

dr

∣∣∣∣∣∣≤ sup
(0,R)

W i

R∫
0

r|ψ2
n − η2|dr ≤ C

R∫
0

r|ψ2
n − η2|dr → 0

as n → ∞ because ψn → η in L2(BR), and∣∣∣∣∣∣
∞∫

R

rWi
(
ψ2

n − η2
)

dr

∣∣∣∣∣∣≤ sup
[R,∞)

∣∣∣r2Wi(r)

∣∣∣
⎛⎝ ∞∫

0

r−1ψ2
ndr +

∞∫
0

r−1η2dr

⎞⎠≤ Cε

by (5.16) and since the Fatou’s Lemma implies that

∞∫
0

r−1η2dr ≤ lim inf
n→∞

∞∫
0

r−1ψ2
ndr = 1.

Next we check that η minimizes the quotient in (5.12), namely

∞∫
0

r|η′|2dr −
∞∫

0

rWiη2dr − βi
1

∞∫
0

r−1η2dr ≤ 0.

Since βi < 0, Fatou’s Lemma applies giving that
1
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∞∫
0

r|η′|2dr −
∞∫

0

rWiη2dr − βi
1

∞∫
0

r−1η2dr

≤ lim inf
n→∞

( ∞∫
0

r|ψ ′
n|2dr − βn

∞∫
0

r−1ψ2
ndr
)

−
∞∫

0

rWiη2dr

=
(5.13)

lim inf
n→∞

∞∫
0

rWiψ2
ndr −

∞∫
0

rWiη2dr = 0

by (5.15). Eventually, as η minimizes the quotient in (5.12), it is standard to see that (3.22)
holds. �

Next, if

βi
2 := inf

ψ∈Drad\{0}∫∞
0 r−1ηi

1ψdr=0

∫∞
0 r

(|ψ ′|2 − Wiψ2
)
dr∫∞

0 r−1ψ2dr
< 0,

the same arguments of Lemma 5.3 yield that it is attained by an eigenfunction ηi
2 ∈ Drad which 

solves (3.42) for βi = βi
2 in weak sense. Further such ηi

2 is the weak limit in Drad of a minimizing 
sequence ηi

2,n which satisfies 
∫∞

0 r−1ηi
1η

i
2,ndr = 0, and so

∞∫
0

r−1ηi
1η

i
2dr = 0. (5.17)

Conversely, one can see that if (3.42) has a nontrivial solution ηi corresponding to some βi < 0, 
then such βi is an eigenvalue according to (5.12) and ηi is the related eigenfunction.

We prove that

Proposition 5.4. As i = 1, β1
1 = −1 is the only negative eigenvalue of (3.42). It is simple and the 

related eigenfunction is

η1
1(r) := 4r

8 + r2 . (3.23)

Proposition 5.5. As i = 2, β2
1 = −κ2 is the only negative eigenvalue of (3.42). It is simple and 

the related eigenfunction is

η2
1(r) := rκ

δ + r2κ
. (5.18)

Proof of Proposition 5.4. In [13, Sec. 5] it has been shown that β1
1 = −1 is the first eigenvalue 

of (3.42) and η1 given by (3.23) is a related eigenfunction. It remains to show that
1
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β1
2 := inf

ψ∈Drad\{0}∫∞
0 r−1η1

1ψdr=0

∫∞
0 r

(|ψ ′|2 − W 1ψ2
)
dr∫∞

0 r−1ψ2dr
≥ 0.

Assume by contradiction that β1
2 < 0, then there exists η1

2 ∈ Drad which solves (3.42) for β1 = β1
2

in weak sense, and satisfies (5.17). By (5.17) it follows that there exists R > 0 such that η1
2(R) =

0, and η1
2 is not constantly zero on (0, R) either on (R, ∞). So the functions

ψ1(r) =
{

η1
2(r) as 0 ≤ r < R

0 as r ≥ R
and ψ2(r) =

{
0 as 0 ≤ r ≤ R

η1
2(r) as r ≥ R

are not trivial and belong to Drad. Using them as test functions in the weak formulation (3.22)
gives

∞∫
0

r
(
(ψ ′

1)
2 − W 1(ψ1)

2
)

dr =
R∫

0

r
(
(ψ ′

1)
2 − W 1(ψ1)

2
)

dr = β1
2

R∫
0

r−1(ψ1)
2dr < 0, (5.19)

∞∫
0

r
(
(ψ ′

2)
2 − W 1(ψ2)

2
)

dr =
∞∫

R

r
(
(ψ ′

2)
2 − W 1(ψ2)

2
)

dr = β1
2

∞∫
R

r−1(ψ2)
2dr < 0. (5.20)

Next we compare ψ1 and ψ2 with the function

ζ(r) = 8 − r2

8 + r2 , r ≥ 0

which solves in classical sense

− (rζ ′)′ = rW 1ζ r > 0 (5.21)

and satisfies ζ > 0 on [0, 
√

8), ζ < 0 on (
√

8, ∞), ζ(
√

8) = 0. Notice that ζ does not belong to 
Drad, anyway its restriction to [0, 

√
8] belongs to the space H 1

0,rad(0, 
√

8), i.e. the set of functions 

on (0, 
√

8) which have first order weak derivative satisfying

√
8∫

0

r
(
(ψ ′)2 + ψ2

)
dr < ∞ and ψ(

√
8) = 0.

Hence it is an eigenfunction for the regular eigenvalue problem{
− (rψ ′)′ = r

(
W 1 + σ

)
ψ r ∈ (0,

√
8),

ψ ∈ H 1
0,rad(0,

√
8)

corresponding to σ = 0, and since ζ > 0 on [0, 
√

8) it must be a first eigenfunction, implying 
that
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√
8∫

0

r
(
(ψ ′)2 − W 1(ψ)2

)
dr ≥ 0 for every ψ ∈ H 1

0,rad(0,
√

8). (5.22)

If R ≤ √
8, then ψ1 ∈ H 1

0,rad(0, 
√

8) since its support is contained in [0, 
√

8] and

√
8∫

0

r
(
(ψ ′

1)
2 + ψ2

1

)
dr ≤

√
8∫

0

r(ψ ′
1)

2dr + 8

√
8∫

0

r−1ψ2
1 dr.

But in this case (5.19) would contradict (5.22), therefore R >
√

8.
Next we show that R >

√
8 clashes with (5.20), concluding the proof. To this aim we perform 

a Kelvin transform and define

ζ̂ (r) = ζ(r−1) = 8r2 − 1

8r2 + 1
, ψ̂2(r) = ψ2(r

−1), Ŵ (r) = r−4W 1(r−1) = 64

(1 + 8r2)2

as 0 ≤ r ≤ 1/
√

8. Notice that ̂ζ ∈ H 1
0,rad(0, 1/

√
8) and Ŵ (r) is bounded. It is not hard to see that 

ζ̂ is an eigenfunction for{
− (rψ ′)′ = r

(
Ŵ + σ

)
ψ r ∈ (0,1/

√
8),

ψ ∈ H 1
0,rad(0,1/

√
8)

corresponding to σ = 0. Indeed

− (rζ̂ ′(r)
)′ = (r−1ζ ′(r−1)

)′ = − d

ds

(
sζ ′(s)

) ∣∣∣
s= 1

r

=
(5.21)

r−2
(
sW 1(s) ζ(s)

) ∣∣∣
s= 1

r

= rŴ ζ̂ (r).

Besides since ̂ζ < 0 on [0, 1/
√

8), it must be a first eigenfunction, implying that

1/
√

8∫
0

r
(
(ψ ′)2 − Ŵ (ψ)2

)
dr ≥ 0 for every ψ ∈ H 1

0,rad(0,1/
√

8). (5.23)

On the other hand, as we are taking that R >
√

8, the support of ψ̂2 is contained in [0, 1/
√

8)

and ψ̂2 ∈ H 1
0,rad(0, 1/

√
8) since

1/
√

8∫
0

r
(
(ψ̂ ′

2)
2 + ψ̂2

2

)
dr =

∞∫
√

8

(
r(ψ ′

2)
2 + r−3ψ2

2

)
dr ≤

∞∫
√

8

r(ψ ′
2)

2dr + 8

∞∫
√

8

r−1ψ2
2 dr

with ψ2 ∈Drad. Eventually
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1/
√

8∫
0

r
(
(ψ̂ ′

2)
2 − Ŵ (ψ̂2)

2
)

dr =
1/

√
8∫

0

r−3
(
(ψ ′

2(r
−1))2 − W(r−1)(ψ2(r

−1))2
)

dr

=
∞∫

√
8

r
(
(ψ ′

2)
2 − W 1(ψ2)

2
)

dr =
R>

√
8

∞∫
R

r
(
(ψ ′

2)
2 − W 1(ψ2)

2
)

dr < 0

by (5.20), which contradicts (5.23). �
Proof of Proposition 5.5. It is easy to see that η2 is an eigenfunction for (3.42) with i = 2 re-

lated to some eigenvalue β2 if and only if η2(r) = η1(

√
8
δ
rκ) and η1 is an eigenfunction for 

(3.42) with i = 1 related to the eigenvalue β1 = β2/κ2. Therefore Proposition 5.4 concludes the 
proof. �
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