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Abstract

The anti-maximum principle for the homogeneous Dirichlet problem to −�pu = λ|u|p−2u + f (x) with 
positive f ∈ L∞(�) states the existence of a critical value λf > λ1 such that any solution of this problem 
with λ ∈ (λ1, λf ) is strictly negative. In this paper, we give a variational upper bound for λf and study its 
properties. As an important supplementary result, we investigate the branch of ground state solutions of the 
considered boundary value problem in (λ1, λ2).
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1. Introduction

Consider the problem {−�pu = λ|u|p−2u + f (x) in �,

u = 0 on ∂�,
(Dλ)

where �pu := div
(|∇u|p−2∇u

)
, p > 1, λ ∈R is a spectral parameter, and � ⊂RN is a bounded 

domain of class C1,δ , δ ∈ (0, 1), with boundary ∂�, N ≥ 1. Without mentioning otherwise, we 
always assume that f ∈ L∞(�), f ≥ 0, and f �≡ 0. The problem (Dλ) is a perturbation of the 
nonlinear eigenvalue problem {−�pu = λ|u|p−2u in �,

u = 0 on ∂�.
(1.1)

Below, we will often employ the first and second eigenvalue of (1.1) which can be defined, 
respectively, as

λ1 := inf

{∫
�

|∇u|p dx∫
�

|u|p dx
: u ∈ W

1,p
0 (�) \ {0}

}
and

λ2 := inf {λ > λ1 : λ is an eigenvalue of (1.1)} .

Recall that 0 < λ1 < λ2, [2], the first eigenfunction ϕ1 is unique modulo scaling, [1,24], and 
ϕ1 can be chosen strictly positive in �, [30]. Any second eigenfunction ϕ2 has exactly two 
nodal domains, [9,14]. In particular, ϕ2 = ϕ+

2 + ϕ−
2 , where ϕ+

2 := max{ϕ2, 0} �≡ 0 and ϕ−
2 :=

min{ϕ2, 0} �≡ 0. Moreover, any eigenfunction of (1.1), as well as any weak solution of (Dλ), 
obeys C1,γ (�)-regularity for some γ ∈ (0, 1), [3,23].

Among qualitative properties of solutions of (Dλ), the information on a sign is of fundamental 
importance. It is well-known that the following maximum principle is valid, [16,30]:

(MP) if λ < λ1, then any solution u of (Dλ) satisfies u > 0 in �.

On the other hand, it was observed by Clément & Peletier [8] for p = 2 and by Fleckinger et 
al. [15] for p > 1 that the following anti-maximum principle holds. Namely, there exists λf > λ1
such that

(AMP) if λ ∈ (λ1, λf ), then any solution u of (Dλ) satisfies u < 0 in �.

We will always assume that λf is the maximal value such that (AMP) holds.
Although λf > λ1 for any fixed f , it is known that λf depends on f and cannot be bounded 

away from λ1 uniformly with respect to f , see [5,10,27]. However, apart from this fact, not much 
is known about other properties of λf , and it seems that even constructive bounds for λf have 
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not been systematically studied. We can refer only to the following lower bound obtained in [17]
in the case p = 2 and f ∈ Lq(�):

λf ≥ λ1 + Kα(∫
�

|f ⊥|q dx
)1/q

,

where α > 0 and f ⊥ are defined through the L2(�)-orthogonal decomposition f = αϕ1 + f ⊥, 
q > N for N ≥ 2 and q = 2 for N = 1, and the constant K does not depend on f , yet K is not 
explicitly quantified. In this respect, (AMP) for the analogous Neumann problem

⎧⎨⎩
−�pu = μ|u|p−2u + f (x) in �,

∂u

∂ν
= 0 on ∂�,

(1.2)

is more developed. Note that (AMP) for (1.2) is valid on a maximal interval (0, μf ), [5,8]. It 
was shown in [8] that μf ≥ μ2/4 when p = 2 and N = 1, where μ2 is the second (or, equiv-
alently, the first nonzero) eigenvalue of the Laplace operator under zero Neumann boundary 
conditions. Later, it was proved in [5] that for p > N ,

μf > inf

{∫
�

|∇u|p dx∫
�

|u|p dx
: u ∈ W 1,p(�) \ {0} and u vanishes on some ball in �

}
,

and no uniform lower bound is possible provided p ≤ N . See [20] and [29] for generalizations. 
We also refer the reader to the survey article [25] for the overview of results about (AMP) for 
(Dλ), (1.2), and related problems.

The aim of this paper is to provide an explicit upper bound for the maximal value λf of 
validity of (AMP) for (Dλ). Let us define the critical value

λ∗
f := inf

⎧⎨⎩
∫
�

|∇u|p dx∫
�

|u|p dx
:

∫
�

f udx = 0, u ∈ W
1,p
0 (�) \ {0}

⎫⎬⎭ . (1.3)

Theorem 1.1. Let p > 1. Then λ∗
f ∈ (λ1, λ2] and the following assertions hold:

(i) If λ∗
f < λ2, then λf < λ∗

f .
(ii) If p = 2 or N = 1, then λf ≤ λ∗

f .

We also state some properties of λ∗
f .

Proposition 1.2. Let p > 1. The following assertions hold:

(i) If there exists a second eigenfunction ϕ2 such that 
∫
�

f ϕ2 dx �= 0, then λ∗
f < λ2 and thus 

λf < λ∗
f < λ2.

(ii) There exists a sequence {fn} ⊂ L∞(�) such that λ∗ → λ1 as n → +∞.
fn
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Several additional basic properties of λf and λ∗
f are discussed in Lemma 2.1 below.

Apparently, the information for the linear problem (p = 2) is more accurate. This is mainly 
due to the presence of the Fredholm alternative, which states, in particular, that (Dλ) is uniquely 
solvable provided λ ∈ (λ1, λ2), and (Dλ) is solvable at λ = λ2 if and only if 

∫
�

f ϕ2 dx = 0 for 
any second eigenfunction ϕ2. While a counterpart of the Fredholm alternative for the general 
p-Laplacian is relatively well-developed when λ is in a neighborhood of λ1 (see, e.g., [13,28]
and references therein), the situation near higher eigenvalues is more complicated due to the lack 
of full description of the spectrum of the p-Laplacian. Because of that, the inequality λf ≤ λ∗

f

remains an open problem if the following three assumptions are simultaneously satisfied: p �= 2, 
N ≥ 2, and λ∗

f = λ2.
The definition of λ∗

f and the results of Theorem 1.1 are connected with energy properties of 
solutions of (Dλ). Namely, recall that (weak) solutions of (Dλ) are in one-to-one correspondence 
with critical points of the energy functional Eλ ∈ C1(W

1,p

0 (�), R) given by

Eλ(u) := 1

p
Hλ(u) −

∫
�

f udx, where Hλ(u) :=
∫
�

|∇u|p dx − λ

∫
�

|u|p dx.

Suppose that u ∈ W
1,p
0 (�) is a solution of (Dλ) with Eλ(u) = 0. Since u is a critical point of 

Eλ, we have, in particular, that 
〈
E′

λ(u),u
〉 ≡ Hλ(u) − ∫

�
f u dx = 0. It follows from Eλ(u) =〈

E′
λ(u),u

〉 = 0 that

λ =
∫
�

|∇u|p dx∫
�

|u|p dx
and

∫
�

f udx = 0.

Comparing these equalities with the definition (1.3) of λ∗
f , we directly get the first part of the 

following result.

Proposition 1.3. Let p > 1. If λ < λ∗
f , then (Dλ) has no solution u such that Eλ(u) = 0. More-

over, the following assertions hold:

(i) If λ < λ1, then, in addition to (MP), any solution u of (Dλ) satisfies Eλ(u) < 0.
(ii) If λ1 < λ < λ∗

f , then any solution u of (Dλ) satisfies Eλ(u) > 0.

More can be said if we consider the branch of ground state solutions of (Dλ) with λ ∈ [λ∗
f , λ2). 

By the ground state solution of (Dλ) we mean a solution u which satisfies

Eλ(u) ≤ Eλ(v) for any other solution v of (Dλ).

It can be easily seen that (Dλ) possesses a ground state solution for any λ ∈ [λ∗
f , λ2), see, e.g., 

Lemma 4.6 below. In the following theorem, we provide some qualitative properties of the 
corresponding branch (λ, u) ∈ [λ∗

f , λ2) × W
1,p
0 (�), which reveals the connection with Theo-

rem 1.1.

Theorem 1.4. Let p > 1. The following assertions hold:
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(i) If λ = λ∗
f < λ2, then any ground state solution u of (Dλ) is sign-changing and satisfies 

Eλ(u) = 0. Moreover, u is a minimizer for λ∗
f .

(ii) Let f > 0. If λ∗
f < λ < λ2, then any ground state solution u of (Dλ) is sign-changing and 

satisfies Eλ(u) < 0.

We schematically depict the results of Theorem 1.1 (i), Proposition 1.3, and Theorem 1.4
(taking into account the nonexistence result [15, Theorem 1] for (Dλ1 )) on Fig. 1 below.

This paper is organized as follows. In Section 2, we prove Proposition 1.2 together with some 
other properties of λf and λ∗

f . In Section 3, we discuss some auxiliary results needed for the 
proof of Theorems 1.1 and 1.4, and Proposition 1.3. Then, in Section 4, we prove three latter 
statements. Finally, Section 5 is devoted to some remarks and discussion.

2. Some properties of λ∗
f

Let us provide several basic properties of λf and λ∗
f . In particular, the following lemma 

contains Proposition 1.2 and the assertion λ∗
f ∈ (λ1, λ2] of Theorem 1.1.

Lemma 2.1. Let p > 1. The following assertions hold:

(i) λ∗
f possesses a minimizer;

(ii) λ1 < λ∗
f ≤ λ2;

(iii) if there exists a second eigenfunction ϕ2 such that 
∫
�

f ϕ2 dx �= 0, then λ∗
f < λ2;

(iv) if p = 2 and N = 1, then there exists f such that 
∫
�

f ϕ2 dx = 0 and λ∗
f < λ2;

(v) if p = 2, then λf = λ∗
f = λ2 for f = ϕ1 (modulo scaling);

(vi) there exists a sequence {fn} ⊂ L∞(�) such that λ∗
fn

→ λ1 as n → +∞.

Proof. (i) The existence of a minimizer for λ∗
f can be easily proved by standard arguments. By 

definition, any minimizer u satisfies u �≡ 0 and 
∫
�

f u dx = 0.
(ii) Since f ≥ 0, f �≡ 0, and the first eigenfunction ϕ1 is strictly positive, [30], the inequality 

λ1 < λ∗
f directly follows from assertion (i). Let us show that λ∗

f ≤ λ2. Fix any second eigenfunc-

tion ϕ2 = ϕ+
2 + ϕ−

2 . Assume first that 
∫
�

f ϕ±
2 dx �= 0. Then we can find α > 0 such that

Fig. 1. Dependence of the energy Eλ(u) of the ground state solution u of (Dλ) on λ, provided f > 0 and λ∗
f

< λ2.
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∫
�

f (αϕ+
2 + ϕ−

2 ) dx = α

∫
�

f ϕ+
2 dx +

∫
�

f ϕ−
2 dx = 0.

Since ϕ±
2 ∈ W

1,p

0 (�), cf. [19, Lemma 7.6], αϕ+
2 +ϕ−

2 is admissible for the minimization problem 
(1.3) defining λ∗

f . Therefore, from∫
�

|∇ϕ±
2 |p dx = λ2

∫
�

|ϕ±
2 |p dx (2.1)

we deduce that

λ∗
f ≤ αp

∫
�

|∇ϕ+
2 |p dx + ∫

�
|∇ϕ−

2 |p dx

αp
∫
�

|ϕ+
2 |p dx + ∫

�
|ϕ−

2 |p dx
= λ2. (2.2)

Assume now that 
∫
�

f ϕ+
2 dx = 0. In this case, ϕ+

2 is admissible for (1.3), and hence (2.1) again 
leads to the desired inequality λ∗

f ≤ λ2. The remaining case 
∫
�

f ϕ−
2 dx = 0 is similar.

(iii) Suppose, by contradiction, that there exists a second eigenfunction ϕ2 such that ∫
�

f ϕ2 dx �= 0 and λ∗
f = λ2. Assume first that 

∫
�

f ϕ±
2 dx �= 0. Arguing as in assertion (ii), 

we can find α > 0, α �= 1, such that 
∫
�

f (αϕ+
2 + ϕ−

2 ) dx = 0, and hence, recalling that λ∗
f = λ2, 

we get from (2.2) that w = αϕ+
2 + ϕ−

2 is a minimizer for λ∗
f . Thus, by the Lagrange multiplier 

rule, we obtain μ1, μ2 ∈R such that |μ1| + |μ2| > 0 and

μ1

⎛⎝∫
�

|∇w|p−2(∇w,∇ξ) dx − λ∗
f

∫
�

|w|p−2wξ dx

⎞⎠ + μ2

∫
�

f ξ dx = 0, ∀ξ ∈ W
1,p

0 (�).

(2.3)
If we suppose that μ1 = 0, then f ≡ 0, which is impossible. Therefore, μ1 �= 0. Moreover, 
μ2 �= 0 as well. Indeed, if we suppose that μ2 = 0, then (2.3) states that αϕ+

2 + ϕ−
2 is a second 

eigenfunction. However, since α �= 1, C1,γ (�)-regularity of both ϕ2 = ϕ+
2 + ϕ−

2 and αϕ+
2 +

ϕ−
2 contradicts the Hopf maximum principle at the boundary between nodal domains, see [14, 

Lemma 2.4]. Thus, μ1μ2 �= 0 implies that

v =
∣∣∣∣μ1

μ2

∣∣∣∣ 1
p−1

sign

(
μ1

μ2

)
(αϕ+

2 + ϕ−
2 )

is a solution of (Dλ). But this is again impossible in view of [14, Lemma 2.4], since α �= 1 and 
any solution of (Dλ) belongs to C1,γ (�). Suppose now that 

∫
�

f ϕ+
2 dx = 0. Thus, w = ϕ+

2 is a 
minimizer for λ∗

f = λ2 and hence it again satisfies (2.3) with some Lagrange multipliers μ1 �= 0
and μ2 ∈ R. That is, either w is a second eigenfunction (provided μ2 = 0) or a proper scaling of 
w is a solution of (Dλ) (provided μ2 �= 0). In both cases, we get a contradiction, since the Hopf 
maximum principle implies w /∈ C1,γ (�). The case 

∫
�

f ϕ−
2 dx = 0 is similar.

(iv) Let us consider the following simple example:{−u′′ = λu + (1 − sin(x)) in (0,π),

u(0) = u(π) = 0.
(2.4)
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Note that f (x) = (1 − sin(x)) > 0 a.e. in (0, π). Moreover, since ϕ2 = sin(2x), we have ∫ π

0 f ϕ2 dx = 0. One can easily find an explicit solution uλ of (2.4) and obtain that 
∫ π

0 f uλ0 dx =
0 for some λ0 ∈ (3, 3.5) ⊂ (λ1, λ2). Thus, λ∗

f ≤ λ0 < λ2.
(v) If p = 2 and f = ϕ1, then the definition (1.3) of λ∗

f coincides with the definition of the 
second eigenvalue λ2 by the Courant-Fisher variational principle, that is, λ∗

f = λ2. The equality 
λf = λ∗

f can be also observed easily by the Fredholm alternative. Indeed, consider the problem 
(Dλ) with p = 2 and f = ϕ1, i.e.,{−�u = λu + ϕ1(x) in �,

u = 0 on ∂�.
(2.5)

If we try to find a solution of (2.5) in the form u = Cϕ1, where C ∈ R, then we obtain that

u(x) = − 1

λ − λ1
ϕ1(x), x ∈ �.

This shows that u is strictly negative whenever λ > λ1. By the Fredholm alternative, u is the 
unique solution of (2.5) for λ ∈ (λ1, λ2), and if λ = λ2, then u + αϕ2 is a solution of (2.5) for 
any α ∈ R and ϕ2. Since each ϕ2 is sign-changing, we can take |α0| large enough in order to 
conclude that u + α0ϕ2 also changes sign. That is, (AMP) is valid with λf = λ∗

f = λ2.

(vi) Since ϕ1 ∈ W
1,p
0 (�), there exists a sequence {vn} ⊂ C∞

0 (�) such that vn → ϕ1 strongly 

in W 1,p

0 (�), that is,∫
�

|∇vn|p dx →
∫
�

|∇ϕ1|p dx and
∫
�

|vn|p dx →
∫
�

|ϕ1|p dx (2.6)

as n → +∞. Moreover, we can assume that each vn ≥ 0.
Since suppvn is compactly contained inside of �, we can find a sufficiently small ball Bn ⊂

� \ suppvn. Let ξn ∈ C∞
0 (�) be such that ξn ≤ 0, supp ξn ⊂ Bn, and 

∫
�

|∇ξn|p dx = 1 for each 
n ∈ N . Taking any sequence {βn} ⊂ (0, +∞) such that βn → 0 as n → +∞, we deduce from 
(2.6) that∫

�
|∇(vn + βnξn)|p dx∫
�

|vn + βnξn|p dx
=

∫
�

|∇vn|p dx + β
p
n∫

�
|vn|p dx + β

p
n

∫
�

|ξn|p dx
→ λ1 as n → +∞. (2.7)

Now, we take for each n ∈ N any function fn ∈ L∞(�) such that fn = 1 on suppvn, fn =
an > 0 on Bn, and fn ≥ 0 on � \ (suppvn ∪ Bn). Adjusting a constant an > 0 in such a way that∫

�

fn(vn + βnξn) dx =
∫

suppvn

vn dx + an βn

∫
Bn

ξn dx = 0,

we make vn + βnξn admissible for (1.3). Thus, (2.7) implies that λ∗
fn

→ λ1 as n → +∞. �
The following important property of λ∗ can be obtained directly from (1.3).
f
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Lemma 2.2. Let p > 1, and let u ∈ W
1,p

0 (�) \ {0} be such that 
∫
�

f u dx = 0. If λ < λ∗
f , then 

Hλ(u) > 0. If λ = λ∗
f , then Hλ(u) ≥ 0.

3. Auxiliary results

Let us state several auxiliary results which will be used in Section 4 below. Note that any 
solution of (Dλ) belongs to the Nehari manifold

Nλ :=
⎧⎨⎩w ∈ W

1,p

0 (�) \ {0} : Hλ(w) =
∫
�

f w dx

⎫⎬⎭ .

Since we assume that the function f is fixed, we do not indicate the dependence of the Nehari 
manifold on f by an additional index in the notation Nλ. Let us collect some basic properties of 
Nλ.

Lemma 3.1. Let p > 1. The following assertions hold:

(i) If u ∈ W
1,p
0 (�) satisfies

Hλ(u) ·
∫
�

f udx > 0, (3.1)

then there exists a unique tu > 0 such that tuu ∈ Nλ and

tu =
∣∣∫

�
f udx

∣∣ 1
p−1

|Hλ(u)| 1
p−1

, Eλ(tuu) =
(

1

p
− 1

) ∣∣∫
�

f udx
∣∣ p

p−1

|Hλ(u)| 1
p−1

sign (Hλ(u)) . (3.2)

Moreover, if Hλ(u) < 0, then tu is a point of global maximum of Eλ(tu) with respect to 
t > 0. If Hλ(u) > 0, then tu is a point of global minimum of Eλ(tu) with respect to t > 0.

(ii) Nλ �= ∅ for any λ ∈R.
(iii) If u ∈ Nλ, then ∂

∂t
Eλ(tu)

∣∣
t=1 = 0 and

Eλ(u) =
(

1

p
− 1

)
Hλ(u) =

(
1

p
− 1

)∫
�

f udx. (3.3)

Proof. To prove assertion (i), for fixed u ∈ W
1,p

0 (�) consider the fibering functional

Eλ(tu) = tp

p
Hλ(u) − t

∫
�

f udx, t > 0.

If u satisfies (3.1), then we can find tu > 0 such that ∂
∂t

Eλ(tu)
∣∣
t=tu

= 0, which yields tuu ∈ Nλ. 
Other properties of tu trivially follow from the definition of Eλ(tu).
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Let us prove assertion (ii). Since f �≡ 0, we can find a function u ∈ C∞
0 (�) with the support 

of arbitrarily small measure such that 
∫
�

f u dx �= 0, or, without loss of generality, 
∫
�

f u dx > 0. 
By the Poincaré inequality [19, (7.44)] we have

∫
�

|∇u|p dx ≥
(

ωN

|suppu|
) p

N
∫
�

|u|p dx,

where ωN is the volume of a unit ball in RN . Therefore, for any fixed λ ∈ R we can ask for the 
support of u to be of sufficiently small measure in order to get Hλ(u) > 0. Then, assertion (ii)
follows by applying assertion (i) to u.

Assertion (iii) is trivial. �
The following lemma is a consequence of [1, Theorem 2.1] and [30, Theorem 5].

Lemma 3.2. Let p > 1 and λ > λ1. Then (Dλ) does not possess nonnegative solutions. That is, 
any solution is either nonpositive or sign-changing.

Lemma 3.3. Let p > 1. If u is a solution of (Dλ) and 
∫
�

f u dx = 0, then u is sign-changing.

Proof. Let u be a solution of (Dλ) for some λ ∈ R such that 
∫
�

f u dx = 0. Since u ∈ Nλ, 
we have Hλ(u) = 0, and hence Lemma 2.2 implies that λ ≥ λ∗

f > λ1. Therefore, u is either 
nonpositive or sign-changing, as it follows from Lemma 3.2. Suppose, by contradiction, that 
u ≤ 0. Since 

∫
�

f u dx = 0 and f ≥ 0, we have f ≡ 0 on A := {x ∈ � : u(x) < 0}. Due to 
C1,γ (�)-regularity of u, the set A is open. Therefore, λ and u are the first eigenvalue and the 
first eigenfunction of (1.1) on the domain A, respectively. Since f is nontrivial, we have f �≡ 0
on � \ A, which implies ∂A ∩ � �= ∅. Let a ball B ⊂ A and a point x0 ∈ � be such that x0 ∈
∂B ∩ ∂A ∩ �. Then u(x0) = 0, and by the Hopf maximum principle ∂u(x0)

∂ν
> 0 (see, e.g., [30, 

Theorem 5]), where ν is an outward unit normal to ∂B . However, since u ≤ 0 in the whole of �, 
we obtain a contradiction with C1,γ (�)-regularity of u. Therefore, u changes sign. �

Finally, the following lemma is a consequence of the definition of the second eigenvalue, see, 
e.g., [7, Remark 4].

Lemma 3.4. Let p > 1. If there exists u ∈ W
1,p
0 (�) such that u± �≡ 0 and Hλ(u

±) ≤ 0, then 
λ ≥ λ2.

4. Proofs of the main results

First, we prove a weak form of Theorem 1.1 (i) by showing the nonstrict inequality λf ≤ λ∗
f . 

Then, we prove Theorem 1.1 (ii), Proposition 1.3, and Theorem 1.4. For technical convenience, 
we postpone the completion of the proof of Theorem 1.1 (i) to the end of this section.

We start with the following lemma. Recall that λ∗
f defined by (1.3) possesses a minimizer, see 

Lemma 2.1 (i).

Lemma 4.1. Let p > 1. If λ∗
f < λ2, then any minimizer u for λ∗

f is a sign-changing solution of 
(Dλ∗ ) and satisfies Eλ∗ (u) = 0.
f f
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Proof. Let u be a minimizer for λ∗
f . In particular, u �≡ 0 and 

∫
�

f u dx = 0. By the Lagrange 
multiplier rule, there exist ν1, ν2 ∈ R such that |ν1| + |ν2| > 0 and

ν1

⎛⎝∫
�

|∇u|p−2(∇u,∇ξ) dx − λ∗
f

∫
�

|u|p−2uξ dx

⎞⎠ + ν2

∫
�

f ξ dx = 0, ∀ξ ∈ W
1,p
0 (�).

(4.1)
Note that ν1 �= 0, since otherwise (4.1) yields f ≡ 0, which contradicts our assumptions on f . 
Suppose that ν2 = 0. In this case, (4.1) implies that λ∗

f is an eigenvalue of (1.1) and u is an 
eigenfunction associated with λ∗

f . Recalling that λ1 < λ∗
f ≤ λ2 by Lemma 2.1 (ii), we conclude 

that λ∗
f = λ2. However, it contradicts our assumption λ∗

f < λ2. Therefore ν2 �= 0, and hence we 
deduce from (4.1) that the function

v =
∣∣∣∣ν1

ν2

∣∣∣∣ 1
p−1

sign

(
ν1

ν2

)
u

is a solution of (Dλ∗
f

). Since 
∫
�

f v dx = 0 and v ∈ Nλ, we get from Lemma 3.1 (iii) that 
Eλ∗

f
(v) = 0, and Lemma 3.3 implies that v is sign-changing. �

The following direct corollary of Lemma 4.1 gives us a weak form of Theorem 1.1 (i).

Corollary 4.2. Let p > 1. If λ∗
f < λ2, then λf ≤ λ∗

f .

Let us now prove Theorem 1.1 (ii). Hereinafter, ‖u‖ := (∫
�

|u|p dx
)1/p stands for the norm 

of u in Lp(�).

Lemma 4.3. Let p > 1. If p = 2 or N = 1, then λf ≤ λ∗
f .

Proof. Assume first that p = 2. If λ∗
f < λ2, then the desired conclusion is given by Corollary 4.2. 

Suppose that λ∗
f = λ2. Then Lemma 2.1 (iii) implies that 

∫
�

f ϕ2 dx = 0 for any second eigen-
function ϕ2. Therefore, (Dλ∗

f
) has a solution w by the Fredholm alternative. If w is sign-changing, 

then λf ≤ λ∗
f , and hence we are done. Let w have a constant sign. Note that for any α ∈ R and 

any ϕ2, w +αϕ2 is also a solution of (Dλ∗
f

). Since any ϕ2 is sign-changing, we can take |α| large 
enough in order to deduce that w + αϕ2 also changes sign, and the proof for the case p = 2 is 
finished.

Assume now that p > 1 and N = 1. Recall that if λ∗
f < λ2, then the assertion is given by 

Corollary 4.2. Suppose that λ∗
f = λ2. By the definition of λf , the inequality λf ≤ λ∗

f will be 
established if we prove the existence of a sign-changing solution of (Dλ) in an arbitrarily small 
neighborhood of λ2. Assume, without loss of generality, that � = (0, 1). We easily see that v is 
a solution of (Dλ) if and only if u = ‖v′‖−2v is a solution of the problem

{−(|u′|p−2u′)′ = λ|u|p−2u + ‖u′‖2(p−1)f (x) in (0,1),

u(0) = u(1) = 0.
(4.1)λ
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To obtain the claim, we will sketchily show that (λ2, 0) ∈ R ×W
1,p

0 (0, 1) is a bifurcation point for 

(4.1)λ. For a given h ∈ W−1,p′
(0, 1), let R(h) ∈ W

1,p
0 (0, 1) be a unique solution of the problem{−(|u′|p−2u′)′ = h in (0,1),

u(0) = u(1) = 0.

Then R seen as a map Lr(0, 1) �→ W
1,p
0 (0, 1) is completely continuous for any r > 1, [12, 

p. 229]. Note that u is a solution of (4.1)λ if and only if u satisfies the operator equation

u = R
(
λ|u|p−2u + F(u)

)
,

where the composition operator F : W
1,p
0 (0, 1) �→ L∞(0, 1) is defined by F(u)(x) =

‖u′‖2(p−1)f (x). It is not hard to see that Hλ(u) := R
(
λ|u|p−2u + F(u)

)
defines a completely 

continuous map W 1,p
0 (0, 1) �→ W

1,p
0 (0, 1). That is, I − Hλ : W 1,p

0 (0, 1) �→ W
1,p
0 (0, 1) is a con-

tinuous compact perturbation of the identity I in W 1,p

0 (0, 1).
Arguing as in [12, Proposition 2.2] (see also [11, Theorem 4.1]), we see that for any δ > 0 the 

following index formula is satisfied:

deg
W

1,p
0 (0,1)

(
I − R(λ| · |p−2·),B(0, δ),0

)
=

{−1 for λ ∈ (λ1, λ2),

1 for λ ∈ (λ2, λ3),

where “deg” denotes the Leray-Schauder degree, B(0, δ) is a ball in W 1,p

0 (0, 1) with radius δ
centered at 0, λ3 is the third eigenvalue of the one-dimensional p-Laplacian, and λ2 < λ3 by, 
e.g., [11, Section 3].

Using the above-mentioned facts, we can argue in much the same way as in [12, Theorem 
1.1] to obtain that (λ2, 0) is a bifurcation point for (4.1)λ. Moreover, if μk → λ2 as k → +∞
and uk is a solution of (4.1)μk

belonging to the bifurcation branch emanating from (λ2, 0), then 
uk/‖u′

k‖ → ϕ2 in W 1,p

0 (0, 1) up to a subsequence, see [12, p. 231]. Thus, since ϕ2 is sign-
changing, uk is also sign-changing for sufficiently large k. Therefore, we conclude that vk =
‖u′

k‖−2uk is a sign-changing solution of (Dμk
) for such k, and the proof is complete. �

Now we are going to prove Proposition 1.3. Assertion (i) of Proposition 1.3 directly follows 
from the combination of Lemma 3.1 (iii) with the fact that Hλ(v) > 0 for any v ∈ W

1,p

0 (�) \ {0}
provided λ < λ1. Assertion (ii) of Proposition 1.3 follows from the combination of Lemma 3.1
(iii) with the first part of the following result.

Lemma 4.4. Let p > 1. If λ ∈ (λ1, λ∗
f ), then any solution u of (Dλ) satisfies Hλ(u) < 0. If λ∗

f <

λ2, then any solution u of (Dλ∗
f

) satisfies Hλ∗
f
(u) ≤ 0.

Proof. Suppose first, by contradiction, that there exists λ ∈ (λ1, λ∗
f ) and a solution u of 

(Dλ) such that Hλ(u) ≥ 0. Actually, the equality here is impossible, since otherwise u ∈ Nλ

gives 
∫
�

f u dx = 0, which contradicts Lemma 2.2. Therefore, Hλ(u) > 0 and consequently ∫
�

f u dx > 0 due to u ∈Nλ. Moreover, the same assumptions occur if we argue by contradiction 
in the case λ = λ∗ < λ2.
f
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The inequality 
∫
�

f u dx > 0 implies 
∫
�

f u+ dx > 0, and hence u cannot be nonpositive. 
Moreover, Lemma 3.2 implies that u cannot be nonnegative, as well. Thus, u is a sign-changing 
function. Assume first that 

∫
�

f u− dx < 0. Then we can find α ∈ (0, 1) such that∫
�

f (αu+ + u−) dx = α

∫
�

f u+ dx +
∫
�

f u− dx = 0. (4.2)

On the other hand, since u is a solution of (Dλ), we get

Hλ(u
±) =

∫
�

f u± dx. (4.3)

Combining (4.3) with (4.2), we conclude that

Hλ(αu+ + u−) = αpHλ(u
+) + Hλ(u

−) =

= αp

∫
�

f u+ dx +
∫
�

f u− dx = (αp − α)

∫
�

f u+ dx < 0,

since α ∈ (0, 1). However, it contradicts Lemma 2.2 applied to the function αu+ + u−. Assume 
now that 

∫
�

f u− dx = 0. In this case we again get a contradiction with Lemma 2.2 in view of 
(4.3), provided λ ∈ (λ1, λ∗

f ). If λ = λ∗
f < λ2, then we see that u− is a minimizer for λ∗

f and 
hence Lemma 4.1 gives a contradiction. �
Remark 4.5. Note that for λ ∈ (λ1, λf ) we have u < 0 by (AMP), which yields 

∫
�

f u dx < 0, 
and hence the result of Lemma 4.4 simply follows from Lemma 3.1 (iii). That is, the result of 
Lemma 4.4 is nontrivial only for λ ∈ [λf , λ∗

f ].

Let us now prove Theorem 1.4. First, we show that (Dλ) has a ground state solution pro-
vided λ is not an eigenvalue of (1.1). With a slight abuse of notation, we will write ‖∇u‖ :=(∫

�
|∇u|p dx

)1/p for the norm of u in W 1,p

0 (�).

Lemma 4.6. Let p > 1. If λ is not an eigenvalue of (1.1), then (Dλ) possesses a ground state 
solution.

Proof. By the results of [18, Theorem 3.1, p. 60] or [26, Theorem 3], (Dλ) possesses a solution 
for any λ which is not an eigenvalue of (1.1). If this solution is unique (as it is for p = 2) or if 
there are finitely many solutions, then we are done. Let us assume that for some admissible λ
there is an infinite sequence of solutions {vn} ⊂ W

1,p
0 (�) of (Dλ) such that

Eλ(vn) → inf {Eλ(w) : w is a solution of (Dλ)} .

If {vn} is bounded in W 1,p

0 (�), then, up to a subsequence, {vn} converges strongly in W 1,p

0 (�) to 
a solution of (Dλ) since Eλ satisfies the Palais–Smale condition provided λ is not an eigenvalue 
of (1.1). On the other hand, if we suppose that, up to a subsequence, ‖∇vn‖ → +∞ as n → +∞, 
then the normalized sequence consisted of ṽn := vn converges (again up to a subsequence) 
‖∇vn‖
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weakly in W 1,p

0 (�) and strongly in Lp(�) to some ṽ ∈ W
1,p

0 (�). Moreover, each ṽn satisfies 
the equation

−�pṽn = λ|ṽn|p−2ṽn + f (x)

‖∇vn‖p−1 in �,

in the weak sense. By the Nehari constraint, vn ∈Nλ for any n ∈N , and

Hλ(ṽn) = 1 − λ‖ṽn‖p =
∫
�

f ṽn dx

‖∇vn‖p−1 → 0 as n → +∞.

Consequently, ‖ṽn‖ does not converge to 0, which implies that ṽ �≡ 0. Thus, {ṽn} converges 
weakly to an eigenfunction of −�p, and hence λ is the associated eigenvalue, which is impossi-
ble. �

Assertion (i) of Theorem 1.4 is based on Lemmas 4.1 and 4.4 and follows from the following 
result.

Lemma 4.7. Let p > 1 and λ∗
f < λ2. Then any ground state solution u of (Dλ∗

f
) is sign-changing 

and satisfies Eλ∗
f
(u) = 0.

Proof. Since λ1 < λ∗
f < λ2, there exists a ground state solution v of (Dλ∗

f
) by Lemma 4.6. 

The second part of Lemma 4.4 in combination with Lemma 3.1 (iii) implies that Eλ∗
f
(v) ≥

0. Moreover, we know from Lemma 4.1 that (Dλ∗
f

) possesses a sign-changing solution u with 
Eλ∗

f
(u) = 0. That is, u is a ground state solution. Therefore, any other ground state solution v of 

(Dλ∗
f

) also satisfies Eλ∗
f
(v) = 0, and hence Lemma 3.3 implies that v is sign-changing. �

Let us complete the proof of Theorem 1.4 by obtaining assertion (ii). This assertion will 
follow if we show that for λ ∈ (λ∗

f , λ2) there exists a solution v of (Dλ) such that Eλ(v) < 0. In 
this case, Lemma 4.6 implies that any ground state solution u of (Dλ) also satisfies Eλ(u) < 0. 
Consequently, 

∫
�

f u dx > 0 by Lemma 3.1 (iii), and u cannot be nonnegative by Lemma 3.2. 
That is, u is sign-changing.

In fact, we will prove a more general result. Consider the following subset of the Nehari 
manifold which contains all sign-changing solutions of (Dλ):

Mλ :=
⎧⎨⎩w ∈ W

1,p
0 (�) : w± �≡ 0, Hλ(w

±) =
∫
�

f w± dx

⎫⎬⎭ ⊂Nλ.

Consider also the corresponding minimization problem:

β := inf{Eλ(w) : w ∈ Mλ}.

Proposition 4.8. Let p > 1, f > 0 a.e. in �, and λ∗
f < λ2. If λ ∈ (λ∗

f , λ2), then Mλ �= ∅, β ∈
(−∞, 0), and β is attained. Moreover, u is a minimizer for β if and only if u is a ground state 
solution of (Dλ). In particular, u is sign-changing and Eλ(u) < 0.
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Proof. Step 1. Let us fix λ ∈ (λ∗
f , λ2). We start by showing that Mλ �= ∅ and β < 0. Let u

be a minimizer for λ∗
f given by Lemma 2.1 (i). In view of the assumption λ∗

f < λ2, Lemma 4.1
implies that u is a sign-changing solution of (Dλ∗

f
) with Eλ∗

f
(u) = 0. Then Lemma 3.1 (iii) yields 

Hλ∗
f
(u) = 0, and hence we conclude that

Hλ∗
f
(u+) =

∫
�

f u+ dx > 0, Hλ∗
f
(u−) =

∫
�

f u− dx < 0,

thanks to the assumption f > 0. The continuity of Hλ with respect to λ implies the existence 
of λ̃ ∈ (λ∗

f , +∞) such that Hλ(u
+) > 0 for all λ ∈ (λ∗

f , ̃λ), and Hλ̃(u
+) = 0. Note that λ̃ ≥ λ2. 

Indeed, if we suppose that λ̃ < λ2, then Hλ̃(u
+) = 0 and Hλ̃(u

−) < 0 lead to a contradiction 
thanks to Lemma 3.4. Consequently, recalling that λ ∈ (λ∗

f , λ2), we have

Hλ∗
f
(u+) > Hλ(u

+) > 0, Hλ(u
−) < Hλ∗

f
(u−) < 0. (4.4)

Thus, Lemma 3.1 (i) yields the existence of t+ > 0 and t− > 0 such that t+u+, t−u− ∈ Nλ, and 
hence t+u+ + t−u− ∈ Mλ. Therefore, Mλ �= ∅. Moreover, by (3.2) and (4.4),

Eλ(t+u+ + t−u−) =
(

1

p
− 1

)⎛⎝∣∣∫
�

f u+ dx
∣∣ p

p−1∣∣Hλ(u+)
∣∣ 1

p−1

−
∣∣∫

�
f u− dx

∣∣ p
p−1∣∣Hλ(u−)

∣∣ 1
p−1

⎞⎠ < Eλ∗
f
(u) = 0, (4.5)

which shows that β < 0.
Step 2. Let us prove that β > −∞. The fact Mλ �= ∅ implies the existence of a minimizing 

sequence {vn} ⊂Mλ for β , and in view of (4.5) we can assume that Eλ(vn) < 0 for each n ∈N . 
It is enough to show that {vn} is bounded in W 1,p

0 (�).

Below, we will denote by {w±
n } the sequence of normalized functions w±

n := v±
n

‖∇v±
n ‖ , n ∈ N . 

Since ‖∇w±
n ‖ = 1 for each n ∈ N , {w±

n } converges (up to a subsequence) weakly in W 1,p

0 (�), 

strongly in Lp(�), and almost everywhere in � to some w± ∈ W
1,p
0 (�). In particular, w+ ≥ 0

and w− ≤ 0. Moreover, w− �≡ 0 since Hλ(w
−
n ) < 0 for all n ∈N , and

Hλ(w
−) ≤ lim inf

n→+∞Hλ(w
−
n ) ≤ 0. (4.6)

First, we show that {v+
n } is bounded in W 1,p

0 (�). Suppose, by contradiction, that ‖∇v+
n ‖ →

+∞ as n → +∞, up to a subsequence. Then, we have

0 < Hλ(w
+
n ) = 1

‖∇v+
n ‖p−1

∫
f w+

n dx ≤ C

‖∇v+
n ‖p−1

→ 0,
�
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which implies that ‖w+
n ‖ > c1 for some c1 > 0 and all n ∈N . That is, w+ �≡ 0, and

Hλ(w
+) ≤ lim inf

n→+∞Hλ(w
+
n ) = 0.

Thus, recalling (4.6), Lemma 3.4 applied to w gives a contradiction with λ < λ2, which shows 
that {v+

n } is bounded in W 1,p
0 (�).

Second, we show that {v−
n } is bounded in W 1,p

0 (�). By Lemma 3.1 (iii), we have

0 < Eλ(v
−
n ) =

(
1

p
− 1

)∫
�

f v−
n dx =

(
1

p
− 1

)
‖∇v−

n ‖
∫
�

f w−
n dx. (4.7)

Suppose, by contradiction, that ‖∇v−
n ‖ → +∞ as n → +∞, up to a subsequence. Note that 

Eλ(v
−
n ) < c2 < +∞ for some c2 > 0 and all n ∈ N , since each Eλ(vn) < 0, and {v+

n } is 
bounded. Therefore, we deduce from (4.7) and Lebesgue’s dominated convergence theorem that ∫
�

f w− dx = 0. However, this is impossible since w− ≤ 0, w− �≡ 0, and f > 0. Thus, {v−
n } is 

bounded in W 1,p
0 (�).

Therefore, we conclude that {vn} is bounded in W 1,p

0 (�), which yields β > −∞.
Step 3. Let us now prove that β is attained. We may assume that the minimizing sequence 

{vn} converges (up to a subsequence) weakly in W 1,p

0 (�) and strongly in Lp(�) to some v =
v+ + v− ∈ W

1,p
0 (�), since {vn} is bounded in W 1,p

0 (�). Our claim will follow if we show that 

{vn} converges (up to a subsequence) strongly in W 1,p

0 (�) and v ∈ Mλ.
First, we show that v+ �≡ 0. Suppose that ‖∇v+

n ‖ → 0. Since Eλ(vn) < 0, Eλ(v
+
n ) < 0, and 

Eλ(v
−
n ) > 0 for each n ∈N , we have

Eλ(vn) = Eλ(v
+
n ) + Eλ(v

−
n ) > Eλ(v

+
n ) → 0,

which contradicts the minimization property of {vn}. Thus, ‖∇v+
n ‖ > c3 for some c3 > 0 and all 

n ∈ N . Suppose now that ‖v+
n ‖ → 0. Then we have

0 <

∫
�

|∇v+
n |p dx − λ

∫
�

|v+
n |p dx =

∫
�

f v+
n dx ≤ C‖v+

n ‖ → 0

which is impossible since ‖∇v+
n ‖ > c3 > 0. Therefore, v+ �≡ 0. Moreover,

0 < Hλ(v
+) ≤ lim inf

n→+∞Hλ(v
+
n ) =

∫
�

f v+ dx. (4.8)

Indeed, if we suppose that Hλ(v
+) ≤ 0, then, recalling (4.6), we apply Lemma 3.4 to u = v+ +

w− and again get a contradiction with λ < λ2.
Second, we show that v− �≡ 0. Suppose that ‖∇v−

n ‖ → 0 as n → +∞. In this case, the Nehari 
constraint v−

n ∈Nλ implies∫
f w−

n dx = ‖∇v−
n ‖p−1Hλ(w

−
n ) → 0 as n → +∞,
�



JID:YJDEQ AID:10264 /FLA [m1+; v1.327; Prn:20/02/2020; 14:26] P.16 (1-21)

16 V. Bobkov et al. / J. Differential Equations ••• (••••) •••–•••
and we get a contradiction with w− �≡ 0. Therefore, there exists c4 > 0 such that ‖∇v−
n ‖ > c4 > 0

for all n ∈N . Then, Hλ(v
−
n ) < 0 implies v− �≡ 0, and hence

Hλ(v
−) ≤ lim inf

n→+∞Hλ(v
−
n ) =

∫
�

f v− dx < 0. (4.9)

Third, we show that {vn} converges (up to a subsequence) to v = v+ + v− strongly in 
W

1,p

0 (�). Suppose, by contradiction, that

‖∇v‖ < lim inf
n→+∞‖∇vn‖. (4.10)

In view of (4.8) and (4.9), Lemma 3.1 (i) implies the existence of t+, t− > 0 such that 
t+v+, t−v− ∈ Nλ and hence t+v+ + t−v− ∈ Mλ. Moreover, t+ �= 1 or t− �= 1 due to (4.10). 
Since t+ is a point of global minimum of Eλ(tv

+) with respect to t > 0, and t = 1 is a point of 
global maximum of Eλ(tv

−
n ) with respect to t > 0 for each n ∈N , we get

β = inf
Mλ

Eλ ≤ Eλ(t+v+ + t−v−) = Eλ(t+v+) + Eλ(t−v−) ≤ Eλ(v
+) + Eλ(t−v−)

< lim inf
n→+∞Eλ(v

+
n ) + lim inf

n→+∞Eλ(t−v−
n ) ≤ lim inf

n→+∞Eλ(v
+
n ) + lim inf

n→+∞Eλ(v
−
n ) = β,

a contradiction. Thus, {vn} converges to v strongly in W 1,p

0 (�), up to a subsequence, which 
yields v ∈Mλ. That is, β is achieved at v.

Step 4. Let us prove that v is a critical point of Eλ. Note that the constraints for v± given 
by Mλ are not necessarily differentiable. That is, we cannot use the Lagrange multipliers rule 
or a deformation lemma over Mλ. To obtain the result, we employ the quantitative deformation 
lemma [31, Lemma 2.3] over W 1,p

0 (�). The following arguments are inspired by [6].

Suppose, by contradiction, that ‖E′
λ(v)‖

(W
1,p
0 (�))∗ > 0. Since Eλ ∈ C1(W

1,p

0 (�), R), we can 

find ε, δ > 0 such that if Eλ(w) ∈ [β − 2ε, β + 2ε] and ‖∇(v − w)‖ ≤ 2δ for some w, then 
‖E′

λ(w)‖
(W

1,p
0 (�))∗ ≥ 8ε

δ
. Then, using [31, Lemma 2.3], we obtain a continuous family of home-

omorphisms �(·, τ) in W 1,p
0 (�), τ ∈ [0, 1], such that

(i) �(w, τ) = w provided τ = 0 or τ ∈ (0, 1] and |Eλ(w) − β| ≥ 2ε;
(ii) Eλ(�(w, τ)) < β for any τ ∈ (0, 1] provided Eλ(w) ≤ β and ‖∇(v − w)‖ ≤ δ.

We will reach a contradiction by considering the deformations �(g(s), τ) of the function g(s) ∈
W

1,p

0 (�) defined as

g(s) := v+ + sv−, s > 0.

Note that g(s)+ = v+ and g(s)− = sv−. Since v ∈ Mλ, (4.9) and Lemma 3.1 (i) imply that s = 1
is a unique point of global maximum of Eλ(sv

−) with respect to s > 0, which yields

Eλ(g(s)) = Eλ(v
+) + Eλ(sv

−) < Eλ(v
+) + Eλ(v

−) = β (4.11)
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for any s �= 1, and

∂

∂t
Eλ(tg(s)−)

∣∣∣∣
t=1

= Hλ(g(s)−) −
∫
�

fg(s)− dx > 0 for s ∈ (0,1), (4.12)

∂

∂t
Eλ(tg(s)−)

∣∣∣∣
t=1

= Hλ(g(s)−) −
∫
�

fg(s)− dx < 0 for s > 1. (4.13)

Let us take some constants κ± > 0 such that κ− < 1 < κ+ and ‖∇(v − g(s))‖ ≤ δ for any 
s ∈ [κ−, κ+]. Considering ε > 0 smaller, if necessary, we may assume by (4.11) that

max {Eλ(g(κ−)),Eλ(g(κ+))} < β − 2ε. (4.14)

Thus, we deduce from (4.14) and assertion (i) that �(g(κ±), τ) = g(κ±) for any τ ∈ [0, 1]. 
Therefore, we see from (4.12), (4.13), and the continuity of �, that for any τ ∈ [0, 1] there exists 
s0 ∈ (κ−, κ+) such that

Hλ(�(g(s0), τ )−) −
∫
�

f �(g(s0), τ )− dx = 0. (4.15)

Moreover, since g(s)± �≡ 0 for any s > 0 and (4.8) is satisfied, assertion (i) and the continuity of 
� imply the existence of sufficiently small τ0 > 0 such that �(g(s0), τ0)

± �≡ 0 and

Hλ(�(g(s0), τ0)
+) > 0. (4.16)

In particular, (4.15) yields �(g(s0), τ0)
− ∈ Nλ. Furthermore, by (4.16) and Lemma 3.1 (i), there 

exists t+ > 0 such that

Hλ(t+�(g(s0), τ0)
+) −

∫
�

f t+�(g(s0), τ0)
+ dx = 0,

Eλ(t+�(g(s0), τ0)
+) ≤ Eλ(�(g(s0), τ0)

+). (4.17)

Therefore, we also have t+�(g(s0), τ0)
+ ∈Nλ, which gives t+�(g(s0), τ0)

+ + �(g(s0), τ0)
− ∈

Mλ.
Since Eλ(g(s)) = Eλ(�(g(s), 0)) ≤ β for any s > 0 by (4.11), and s0 ∈ (κ−, κ+), assertion

(ii) and the choice of κ± imply

Eλ(�(g(s0), τ0)) < β. (4.18)

Thus, using (4.17) and (4.18), we obtain the following contradiction:
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β = inf
Mλ

Eλ ≤ Eλ(t+�(g(s0), τ0)
+ + �(g(s0), τ0)

−)

= Eλ(t+�(g(s0), τ0)
+) + Eλ(�(g(s0), τ0)

−)

≤ Eλ(�(g(s0), τ0)
+) + Eλ(�(g(s0), τ0)

−) = Eλ(�(g(s0), τ0)) < β.

That is, v is a critical point of Eλ.
Step 5. To finish the proof, let us recall that {vn} was an arbitrary minimizing sequence for β , 

and β < 0. That is, any minimizer u for β is a sign-changing solution of (Dλ) with Eλ(u) = β . 
Consequently, any ground state solution w of (Dλ) satisfies Eλ(w) ≤ β . Note that w is also 
sign-changing and hence w ∈ Mλ. Indeed, Lemma 3.2 implies that w is either nonpositive or 
sign-changing. However, if we suppose that w is nonpositive, then 

∫
�

f w dx ≤ 0, and hence 
Eλ(w) ≥ 0 by Lemma 3.1 (iii), which contradicts β < 0. Therefore, we see that w ∈ Mλ and 
Eλ(w) = β , which establishes the desired claim that u is a minimizer for β if and only if u is a 
ground state solution of (Dλ). �

Arguing in a similar (but simpler) way as in Proposition 4.8, the following fact can be proved.

Lemma 4.9. Let p > 1 and λ ∈ (λ1, λ∗
f ). Then u is a ground state solution of (Dλ) if and only if 

u is a minimizer for the problem

inf {Eλ(w) : w ∈ Nλ, Eλ(w) > 0} .

Let us finally complete the proof of Theorem 1.1 (i).

Lemma 4.10. Let p > 1. If λ∗
f < λ2, then λf < λ∗

f .

Proof. We know from Corollary 4.2 that λf ≤ λ∗
f . Suppose, by contradiction, that λf = λ∗

f . 
Then for any sequence {μn} ⊂ (λ1, λ∗

f ) such that μn → λ∗
f we can obtain from Lemma 4.6 a 

sequence of corresponding ground state solutions {un} of (Dμn ) with un < 0 in �.
Let us normalize each un as vn := un‖∇un‖ . Lemma 4.4 implies Hμn(vn) < 0 for every n ∈ N , 

and hence vn converges (up to a subsequence) to some v ≤ 0, v �≡ 0, weakly in W 1,p

0 (�) and 
strongly in Lp(�). Moreover, each vn satisfies the equation

−�pvn = μn|vn|p−2vn + f (x)

‖∇un‖p−1 in �,

in the weak sense. Suppose first that {un} is unbounded in W 1,p
0 (�). Then we see from the 

last equation that v is an eigenfunction and λ∗
f is a corresponding eigenvalue. However, this is 

impossible since λ∗
f ∈ (λ1, λ2). Therefore, {un} is a bounded sequence in W 1,p

0 (�), and hence 

{un} converges (up to a subsequence) to some u ≤ 0 weakly in W 1,p
0 (�) and strongly in Lp(�).

Suppose that ‖∇un‖ → 0 as n → +∞. Since each un is a solution of (Dμn ), we have∫
f ξ dx = 〈

H ′
μn

(un), ξ
〉 → 0 as n → +∞ for any ξ ∈ W

1,p

0 (�),
�
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which yields f ≡ 0, a contradiction. Therefore, there exists c1 > 0 such that ‖∇un‖ ≥ c1 for all 
n ∈ N . Since Hμn(un) < 0 by Lemma 4.4, there exists c2 > 0 such that ‖un‖ ≥ c2 > 0 for all 
n ∈ N . That is, u �≡ 0.

We conclude from the weak convergence that u is a solution of (Dλ∗
f

), and by the weak 
lower semicontinuity argument we have lim inf

n→+∞Eμn(un) ≥ Eλ∗
f
(u). Since u ≤ 0, Lemma 4.7

implies that Eλ∗
f
(u) > 0. Let us show that this is impossible. Recall that any minimizer v for 

λ∗
f (which exists by Lemma 2.1 (i)) is a sign-changing solution of (Dλ∗

f
) with Eλ∗

f
(v) = 0, see 

Lemma 4.1. We have two possibilities: either Eλ∗
f
(v±) = 0 or Eλ∗

f
(v±) �= 0. In the former case, 

Hλ∗
f
(v±) = 0 by Lemma 2.1 (ii), which contradicts Lemma 3.4. Therefore, the latter case takes 

place, which yields Hλ∗
f
(v±) �= 0. By Lemma 3.1 (i) and the continuity of Hλ with respect to 

λ, for any sufficiently large n ∈ N we can find t±n > 0 such that t±n v± ∈ Nμn , and t±n → 1 as 
n → +∞. That is, t+n v+ + t−n v− ∈ Mμn ⊂ Nμn , and Eμn(t

+
n v+ + t−n v−) → 0 as n → +∞. 

Thus, we get a contradiction, since any un is a minimizer of Eμn over Nμn (see Lemma 4.9), but 
lim inf
n→+∞Eμn(un) ≥ Eλ∗

f
(u) > 0. The proof is complete. �

5. Discussion

Let us provide several final remarks.

1. The critical value λ∗
f defined by (1.3) can be obtained via a general theory developed in 

[21,22].
2. Along with (AMP), one can consider a weak anti-maximum principle which states that 

there exists ̃λf ≥ λf > λ1 such that any solution u of (Dλ) with λ ∈ (λ1, ̃λf ) satisfies u ≤ 0. 
In this case, the estimates of Theorem 1.1 remain valid for ̃λf instead of λf .

3. It was proved in [4, Theorems 17 and 27] that (AMP) holds true provided f ∈ L∞(�)

satisfies a weaker assumption 
∫
�

f ϕ1 dx > 0 instead of f ≥ 0. Although λ∗
f is well-defined 

for such f , we do not know whether λ∗
f bounds λf as in Theorem 1.1.

4. Let us recall that the inequality λf ≤ λ∗
f is an open problem provided the following three 

assumptions are simultaneously satisfied: p �= 2, N ≥ 2, and λ∗
f = λ2.

5. Most of the existence results for (Dλ), as well as properties of λ∗
f , obtained in the present 

paper remain valid under considerably weaker assumptions on f than f ∈ L∞(�) \ {0} and 
f ≥ 0. However, since (AMP) requiring the latter two assumptions was our primary object 
of study, we omitted general statements in order to keep the exposition more transparent.
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