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Abstract

We perform a thorough study of the blow up profiles associated to the following second order reaction-
diffusion equation with non-homogeneous reaction:

∂tu = ∂xx(um) + |x|σ up,

in the range of exponents 1 < p < m and σ > 0. We classify blow up solutions in self-similar form, that are 
likely to represent typical blow up patterns for general solutions. We thus show that the non-homogeneous 
coefficient |x|σ has a strong influence on the qualitative aspects related to the finite time blow up. More 
precisely, for σ ∼ 0, blow up profiles have similar behavior to the well-established profiles for the homoge-
neous case σ = 0, and typically global blow up occurs, while for σ > 0 sufficiently large, there exist blow 
up profiles for which blow up occurs only at space infinity, in strong contrast with the homogeneous case. 
This work is a part of a larger program of understanding the influence of unbounded weights on the blow 
up behavior for reaction-diffusion equations.
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1. Introduction

In the present work, we deal with the phenomenon of blow up in finite time for the following 
quasilinear reaction-diffusion equation with a weighted reaction term:

ut = (um)xx + |x|σ up, u = u(x, t), (x, t) ∈R× (0, T ), (1.1)

in the range of exponents 1 < p < m and σ > 0, where, as usual, the subscript notation in (1.1)
indicates partial derivative with respect to the time or space variable. We say that a solution u
to (1.1) blows up in finite time if there exists T ∈ (0, ∞) such that u(T ) /∈ L∞(R), but u(t) ∈
L∞(R) for any t ∈ (0, T ). The time T < ∞ satisfying this property is known as the blow up time 
of u. Here and in all the paper, we denote by u(t) the map x �→ u(x, t) for a fixed time t ∈ [0, T ].

The blow up phenomenon for the homogeneous reaction-diffusion equation

ut = �um + up, (1.2)

with either m = 1 or m > 1 is already well studied, cf. for example the well-known books [30], 
respectively [31], the paper [9], and references therein. Meanwhile, due to its difficulty intro-
duced by the nonhomogeneous reaction term and the fact that some important techniques such as 
translations or intersection comparison do not work with unbounded weights, Eq. (1.1) is much 
less studied. The main questions one addresses in the study of the blow up phenomenon are:

• When does blow up occur (that is, for which initial data)?
• In case blow up occurs at time T ∈ (0, ∞), what is the time scale (called rate) as t → T ?
• Where does blow up occurs? In which sets?
• How does blow up occurs? This raises the problem of the “asymptotic” blow up behavior, 

that means, to which kind of profile the solutions approach as t → T .

Answers to most of these questions were given (at least partially) for the homogeneous equa-
tion (1.2). On the other hand, for Eq. (1.1) and its N -dimensional form

ut = �um + |x|σ up, (x, t) ∈RN × (0, T ), (1.3)

little is known. Some works were devoted to the semilinear case m = 1, establishing the critical 
(Fujita) exponent p∗ = 1 + σ+2

N
below which all the solutions with data u0 ∈ L∞(RN) blow up 

in finite time, and studying the “life span” of solutions [4,3,28,29]. Afterwards, coupled systems 
of reaction-diffusion semilinear equations with weighted reaction were also considered and con-
ditions for global existence or, on the contrary, finite time blow up were established [21]. More 
recently, some partial but quite interesting results concerning blow up sets were established for 
the semilinear case m = 1, in particular concerning whether the origin can or cannot be a blow 
up point (see for example the series of papers [13–15]).

Coming back to Eq. (1.3) with general m ≥ 1, due to its difficulty given by the play between 
the three exponents involved, there are only a few works dealing with it. Suzuki [32] gave a 
detailed answer in the range p > m to the question concerning critical exponents limiting finite 
time blow up, both in the sense of varying the reaction exponent p, but also the behavior of the 
initial data u0(x) as |x| → ∞. More precisely, he proved the following results for (1.3):
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(a) There exists an exponent p∗
m,σ := m + (σ + 2)/N , such that if m < p ≤ p∗

m,σ , all nontrivial 
solutions to (1.3) blow up in finite time (there is no global solution). This exponent p∗

m,σ is the 
analogous to the Fujita exponent for (1.3).

(b) If p > p∗
m,σ , then there exists a constant A > 0 such that if the initial condition u0(x) satisfies

lim inf|x|→∞ |x|(σ+2)/(p−m)u0(x) > A,

then the corresponding solution of the Cauchy problem blows up in finite time.

(c) If p > p∗
m,σ , then for any α > (σ + 2)/(p − m), there exists a constant k > 0 such that if for 

some R > 0 sufficiently large,

u0(x) ≤ k|x|−α, |x| > R > 0,

then the corresponding solution to (1.1) with initial condition u0 exists globally in time.
The rate of convergence for a very general diffusion (known as doubly nonlinear) was also 

investigated by Andreucci and Tedeev [1]. Restricting to (1.3), they prove that, when m < p <

m + 2/N and 0 < σ ≤ N(p − m)/m, any nonnegative solution to (1.3) having the blow up time 
T > 0 satisfies

‖u(t)‖∞ ≤ K(T − t)−(σ+2)/[2(p−1)+σ(m−1)], T

2
< t < T .

As we can see, all these results deal with the case p > m, letting aside (due to technical reasons) 
the complementary case 1 < m ≤ p. Moreover, up to our knowledge, there is no work on the blow 
up sets and blow up behavior for these cases, that is, addressing the third and fourth questions in 
the list above.

More recently, the problem of blow up for non-homogeneous but localized reaction terms, 
that is, equations of the type

ut = �um + a(x)up, m > 1, p > 0,

with a(x) a compactly supported function (typically a characteristic function of a bounded set) 
has been investigated, starting from the work by Ferreira, de Pablo and Vázquez [7] dealing 
with the one-dimensional case. The results were then generalized to the equation posed in RN in 
[22,24] and also to the fast diffusion case m < 1 [2]. In all the above mentioned works, interesting 
properties related to the Fujita-type exponent are proved: that is, there are important and striking 
differences concerning the value of the Fujita-type critical exponent that differs with respect to 
dimension N = 1, N = 2 and N ≥ 3 and also in all these cases it is different from the standard 
exponent of the homogeneous case. Moreover, in [7], blow up rates, sets and profiles are also 
established for the one-dimensional case. But all these works rely deeply on the fact that the 
non-homogeneous reaction is compactly supported (and in particular, there is no reaction close 
to the spatial infinity).

This is why, our main goal is to study the influence of the non-localized weight |x|σ (whose 
main property is that it precisely weights more while approaching spatial infinity) on the blow 
up set and behavior of solutions to (1.1) (and more general (1.3)), trying to give some answers 
to these questions that were up to now not properly studied. In the present work, we restrict 
562



R.G. Iagar and A. Sánchez Journal of Differential Equations 272 (2021) 560–605
ourselves to dimension N = 1 and the range of exponents 1 < m < p, the complementary cases 
being left to be treated in further papers due to important qualitative differences in the techniques 
and results.

Main results. As it has been noticed since long, special (particular) solutions, usually in self-
similar form, contain very important information concerning the qualitative properties of solu-
tions to (1.3), and are likely to be blow up profiles for a large class of solutions, that is, patterns 
to which solutions approach near their blow up time. That is the reason for which we want to find 
and (if possible) classify self-similar blow up solutions associated to (1.1). These are solutions 
to (1.1) (at least at a formal level) having the particular form:

u(x, t) = (T − t)−αf (ξ), ξ = |x|(T − t)β, (1.4)

for some positive exponents α and β to be determined, where T ∈ (0, ∞) is the blow up time. 
Replacing the form given in (1.4) into (1.1), we find that the self-similar profile f satisfies the 
following non-autonomous differential equation

(f m)′′(ξ) − αf (ξ) + βξf ′(ξ) + ξσ f (ξ)p = 0, ξ ∈ [0,∞) (1.5)

where

α = σ + 2

2(p − 1) + σ(m − 1)
, β = m − p

2(p − 1) + σ(m − 1)
> 0. (1.6)

We define our concept of solution we are looking for in the next

Definition 1.1. We say that f solution to (1.5) is a good profile if it fulfills one of the following 
two properties related to its behavior at ξ = 0:

(P1) f (0) = a > 0, f ′(0) = 0.
(P2) f (0) = 0, (f m)′(0) = 0.

A good profile f is called a good profile with interface at some point η ∈ (0, ∞) if

f (η) = 0, (f m)′(η) = 0, f > 0 on (η − δ, η), for some δ > 0.

With this definition, we can state our first main result.

Theorem 1.2 (Existence of good profiles with interface). For any σ > 0, there exists at least one 
good profile with interface f to Eq. (1.5).

Remark. For σ = 0, the analogous of Theorem 1.2 is proved in [31, Theorem 2, p. 187]. Let us 
notice that for σ = 0 there exist only good profiles fulfilling condition (P1) above. The weighted 
reaction |x|σ up in (1.1) introduces thus a sharp difference with respect to the homogeneous 
case: profiles satisfying condition (P2) above may exist and they have to be considered as good. 
Moreover, as we shall see, profiles in (P2) present interesting properties with respect to the blow 
up behavior.
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Fig. 1. Evolution of good profiles with interface for σ sufficiently small.

In view of the previous remark, a natural question arises: one can ask in which conditions the 
good profiles with interface satisfy condition (P1) and in which conditions they satisfy (P2). This 
is the subject of the following two results which reflect a strong influence of the magnitude of 
σ > 0 on the blow up behavior.

Theorem 1.3 (Good profiles with interface for σ > 0 small). There exists σ∗ > 0 such that, for 
any σ ∈ (0, σ∗), any good profile with interface to Eq. (1.5) is of type (P1). In particular, the 
corresponding solutions to Eq. (1.1) blow up globally.

In the following numerical experiment (see Fig. 1), we represent the evolution of the profiles 
with interface for σ sufficiently small, more precisely for m = 3, p = 2 and σ = 1. Let us notice 
that profiles with interface at points η large cut the axis y = 0 at positive points, then the profiles 
with interface at small η > 0 cut the axis x = 0 at some positive point and are decreasing, and in 
the middle the good profiles with interface touch the vertical axis with varying slopes, which may 
be both positive and negative. In the middle there is one with f (0) = a > 0 and slope f ′(0) = 0. 
All this is proved in Sections 3 and 4. This does not go very far from the homogeneous case, since 
the result is similar for σ = 0. But the next theorem produces a sharp contrast to the homogeneous 
case.

Theorem 1.4 (Good profiles with interface for σ > 0 large).

(a) For any m > 1 and p ∈ (1, m), there exists σ ∗ = σ ∗(m, p) > 0 depending on m and p such 
that, for σ = σ ∗ there exists a good profile with interface solution to Eq. (1.5) satisfying 
property (P2) in Definition 1.1 and moreover

f (ξ) ∼
[

m − 1

2m(m + 1)

]1/(m−1)

ξ2/(m−1), as ξ → 0. (1.7)

The corresponding solutions to Eq. (1.1) blows up globally in R.
(b) For any m > 1 and p ∈ (1, m) there also exists σ1 ≥ σ ∗(m, p) sufficiently large such that for 

any σ ∈ (σ1, ∞), there exist good profiles with interface satisfying property (P2) in Defini-
tion 1.1 and moreover

f (ξ) ∼ Kξ(σ+2)/(m−p), K > 0, as ξ → 0, (1.8)

and in this case, the corresponding solutions to Eq. (1.1) blow up at space infinity.
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Fig. 2. Evolution of good profiles with interface for σ sufficiently small.

Remark. Blow up sets. In order to clarify the references about the blow up sets in the statement 
of Theorem 1.4, we define for a generic solution u to (1.1) with initial condition u0(x) := u(x, 0)

and (finite) blow up time T ∈ (0, ∞), the blow up set [30, Section 24] by

B(u0) := {x ∈ R : ∃(xk, tk) ∈R× (0, T ), tk → T , xk → x, and |u(xk, tk)| → ∞, as k → ∞}.
(1.9)

With this definition, we notice that for either a good profile with f (0) = a > 0, that is, fulfilling 
assumption (P1) in Definition 1.1, or for a profile behaving as in (1.7) as ξ → 0, the correspond-
ing solution u blows up globally. Indeed, in the former, we have,

u(x, t) = (T − t)−αf (|x|(T − t)β) ∼ a(T − t)−α, as t → T , (1.10)

while in the latter case, the solution u satisfies

u(x, t) ∼ C(T − t)−α+2β/(m−1)|x|2/(m−1) = C(T − t)−1/(m−1)|x|2/(m−1), as t → T ,

(1.11)
and in both cases blows up globally according to the definition of the blow up set (1.9). An 
important remark is that, however, the blow up rate over fixed compact sets is different in the 
two cases, as it readily follows from (1.10) and (1.11). A sharper difference occurs for profiles 
behaving as in (1.8) as ξ → 0. Indeed, for any x ∈ R fixed, we find

u(x, t) ∼ C(T − t)−α+(σ+2)β/(m−p)|x|(σ+2)/(m−p) = C|x|(σ+2)/(m−p) < ∞, as t → T ,

hence these solutions remain bounded forever at any finite point. However, they still blow up at 
t = T , but only on curves x(t) depending on t such that x(t) → ∞ as t → T . This phenomenon 
is known in literature as blow up at (space) infinity, which seems to have been considered for the 
first time by Lacey [23], and some other cases where it has been established (even for semilinear 
reaction-diffusion equation with sufficiently large initial data) appear in [10,11]. In our opinion, 
this sharp difference with respect to the blow up set between solutions for σ > 0 small and σ > 0
large is one of the most interesting contributions of the present work.

In the following numerical experiment (see Fig. 2), realized for m = 3, p = 2 and σ = 1, 5, 
one can see the evolution of the good profiles with interface as expressed in Theorem 1.4. The 
main difference with respect to σ > 0 smaller appears to be that all the profiles with interface 
intersecting the vertical axis do that with negative slope, so that the good profile starts at ξ = 0
with f (0) = 0 and (f m)′(0) = 0. Theorems 1.3 and 1.4 show that there is a very strong influ-
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ence of σ on the blow up behavior of solutions to Eq. (1.1), which we believe that is one of 
the main points of interest of the paper. We thus show that the weighted reaction introduces 
some unexpected differences with respect to the homogeneous reaction, and it is logical that 
these influences are noticed more when σ > 0 increases, as the weight becomes very strong at 
infinity.

Apart from the good profiles with interface, that are our main object of interest throughout the 
paper, there exists another category of good profiles, more precisely solutions f to (1.5) decaying 
to zero as ξ → ∞. We can also classify them.

Theorem 1.5. There exists σ0 > 0 such that for any σ ∈ (0, σ0) there exist good profiles satisfying 
property (P2) with both behaviors (1.7) and (1.8) near ξ = 0 and with the following decay rate 
at space infinity

f (ξ) ∼
(

1

p − 1

)1/(p−1)

ξ−σ/(p−1), as ξ → ∞. (1.12)

Moreover, for any σ > 0 there exists at least a good profile satisfying property (P2) with behavior 
(1.8) near ξ = 0 and with the decay rate at infinity given by (1.12).

Remark. The result in Theorem 1.5 shows another difference between the cases σ = 0 and σ >

0, holding even for σ > 0 small. Indeed, in the homogeneous case σ = 0, no solutions decaying 
to zero as ξ → ∞ exist, which readily follows as a byproduct of [31, Theorem 2, p. 187] and 
[31, Lemma 3 and Corollary, p. 264-265]. While for σ > 0, there are even two types of such 
solutions, with sharply different blow up behavior: global blow up for solutions as in (1.7) and 
blow up at space infinity for solutions as in (1.8).

Another interesting point in the paper is, in our opinion, the general techniques we are using 
for the proofs. Since already three decades, the shooting method has imposed itself as a standard, 
and very useful, technique in the classification of the self-similar profiles to diffusion equations, 
in a variety of situations, starting from blow up profiles for reaction-diffusion equations (see for 
example [31, Chapter 4]), to algebraic decay or extinction profiles for diffusion equations with 
absorption (see as relevant examples [8,6]) or more recently, also for equations with gradient 
terms (see for example [17,18]). In all these cited works, the goal was to classify profiles f (ξ)

solutions to ordinary differential equations such that f (0) = a > 0, f ′(0) = 0 and f decreasing 
while positive, and the shooting parameter is f (0) = a > 0.

In our case, this direct shooting technique cannot be used. First of all, there is the (non-trivial) 
technical problem that our profiles are not decreasing; indeed, they might have one or more local 
maximum points at ξ > 0 due to the effect of the weight ξσ . But even most important, we cannot 
apply the standard shooting method since, as we shall see, we have to allow as “good solutions”, 
profiles starting from zero, that is, solutions f (ξ) with f (0) = 0 (and a suitable local behavior 
near ξ = 0) and at ξ = 0, Eq. (1.5) lacks the uniqueness property in our range of exponents 
1 < p < m. That is why, one cannot use f (0) as a shooting parameter. Still keeping the general 
idea of the shooting, we instead construct our proofs on basis of a backward shooting method 
from the interface point. Indeed, for any η ∈ (0, ∞), there exists a unique profile f such that 
f (η) = 0, f > 0 in (0, η) and (f m)′(η) = 0, and we will use this η ∈ (0, ∞) as the shooting 
parameter and try to trace backward the unique profile fη vanishing at the given η. We think that 
this particular form of applying the shooting technique was very seldom exploited in literature, 
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as we only have knowledge of the paper [12] using it in this way. Let us stress at this point the 
other big technique we use in the present paper, that of a careful and complete study of a phase 
space associated to a system of three ODEs. Such a technique is rather involved and not very 
common for systems of more than two ODEs, see for example [5,26] or our companion paper 
[19] where such analysis is also performed.

2. Self-similar profiles. The phase space

This rather technical section is devoted to the local analysis of a suitable phase space asso-
ciated to a quadratic autonomous dynamical system into which (1.5) can be transformed. All 
the results in this section can be seen as technical preliminaries for the global analysis which 
is performed later. We thus transform Eq. (1.5) into an autonomous dynamical system of three 
equations of order one, by letting in a first step

x(η) = f m−1(ξ), y(η) = (f m−2f ′)(ξ), z(η) = ξ, (2.1)

and the new independent variable η = η(ξ) satisfies

dη

dξ
= mf m−1(ξ) = mx(η).

With this notation, it is easy to check that Eq. (1.5) transforms into the following system:

⎧⎪⎨
⎪⎩

ẋ = m(m − 1)xy,

ẏ = −my2 − βyz + αx − |z|σ x(m+p−2)/(m−1),

ż = mx.

(2.2)

This system, however, has an important disadvantage: in it, there are still terms with fractional 
powers, which sometimes are difficult to handle. That is why we also consider a different change 
of variables leading to an autonomous system which is quadratic. More precisely, let

X(η) = ξ−2f m−1(ξ), Y (η) = ξ−1f m−2(ξ)f ′(ξ), Z(η) = ξσ f p−1(ξ), (2.3)

where the new independent variable η = η(ξ) satisfies

dη

dξ
= 1

m
ξf 1−m(ξ).

With this notation, Eq. (1.5) transforms into the following system (the calculations leading to it 
are sometimes tedious, but straightforward and are left to the reader):

⎧⎪⎨
⎪⎩

Ẋ = mX[(m − 1)Y − 2X],
Ẏ = −mY 2 − βY + αX − mXY − XZ,

Ż = mZ[(p − 1)Y + σX].
(2.4)

We will use freely both systems in the subsequent analysis, as both of them have advantages and 
disadvantages for the study. We keep the notation with capital letters X, Y , Z when referring to 
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the system (2.4) and with lower case letters x, y, z when referring to the system (2.2). Notice 
that in both systems, the planes {X = 0} and {Z = 0} (respectively {x = 0})) are invariant and we 
work only with X ≥ 0 and Z ≥ 0 (respectively x ≥ 0, z ≥ 0), only Y (resp. y) may change sign.

Local analysis of the finite critical points in the phase space. We will take as phase space 
of reference, the one associated to the system (2.4). We readily notice that this system has four 
categories of finite critical points: three isolated ones

P0 = (0,0,0), P1 =
(

0,− β

m
,0

)
, P2 =

(
m − 1

2m(m + 1)
,

1

m(m + 1)
,0

)
,

and a line of critical points on the OZ-axis, denoted by Pγ = (0, 0, γ ), for any γ > 0. Of course, 
one can say that P0 belongs to the same axis (with γ = 0), but as we shall see, the origin is 
qualitatively very different from all the other Pγ with γ > 0 and should be considered separately.

Lemma 2.1 (Analysis of the point P0 = (0, 0, 0)). The system in a neighborhood of the critical 
point P0 has a one-dimensional stable manifold and a two-dimensional center manifold. The 
connections over the center manifold go out of the point P0 and contain profiles with the local 
behavior:

f (ξ) ∼ kξ (σ+2)/(m−p) = kξα/β, f (0) = 0, (2.5)

for any constant k > 0.

Proof. The linearization of the system (2.4) near this critical point has the matrix:

M(P0) =
⎛
⎝ 0 0 0

α −β 0
0 0 0

⎞
⎠

hence it has a one-dimensional stable manifold (corresponding to the eigenvalue −β) and a two-
dimensional center manifold. As we are interested in the orbits going out of P0 in the phase space 
(if any), we will analyze this center manifold and the flow on it following the recipe given in [27, 
Theorem 1, Section 2.12]. In order to put the system in a “canonical form” near P0, we introduce 
the new variable

W := βY − αX

and after straightforward calculations, we obtain the new system

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = m(m−1)
β

XW + m
β
X2,

Ẇ = −βW − m
β
W 2 − m[α(m+1)+β]

β
XW − mα

β
(α + β + 1)X2 − βXZ,

Ż =
[

m(p−1)α + mσ
]
XZ + m(p−1)

WZ.

(2.6)
β β
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We are then in position to apply Theorem 1 in [27, Section 2.12], and to look for a center manifold 
of the form

W = h(X,Z) := aX2 + bXZ + cZ2 + O(|(X,Z)|3).
We introduce this ansatz in Theorem 1 in [27, Section 2.12] and conclude that the center manifold 
is given by the equation

h(X,Z) = −mα(α + β + 1)

β2 X2 − XZ + O(|(X,Z)|3).

Using the same theorem, replacing h(X, Z) by its formula and taking into account the expres-
sions of α and β from (1.6), we get that the flow on the center manifold in a neighborhood of the 
point P0 is given by the following system:

{
Ẋ = m

β
X2 + O(|(X,Z)|3),

Ż = m
β
XZ + O(|(X,Z)|3).

Integrating this system up to first order, we find that Z ∼ kX for some positive constant k. 
Coming back to profiles in (2.3), we obtain

ξσ f p−1(ξ) ∼ kξ−2f m−1(ξ), k > 0,

whence the orbits going out of P0 on the two-dimensional center manifold contain profiles of the 
form given in (2.5). �
Lemma 2.2 (Analysis of the point P1 = (0,−β/m,0)). The system in a neighborhood of the crit-
ical point P1 has a one-dimensional unstable manifold and a two-dimensional stable manifold. 
The orbits entering P1 on the stable manifold contain profiles such that

f (ξ) ∼
[
C − β(m − 1)

2m
ξ2

]1/(m−1)

, C > 0, (2.7)

for ξ → ξ0 = √
2mC/(m − 1)β ∈ (0, ∞).

Proof. The linearization of the system (2.4) near this critical point has the matrix:

M(P1) =
⎛
⎝ −β(m − 1) 0 0

α + β β 0
0 0 −(p − 1)β

⎞
⎠

with eigenvalues λ1 = −β(m − 1), λ2 = β and λ3 = −(p − 1)β and respective eigenvectors 
(not normalized) e1 = (1, −(α + β)/mβ, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Then, there is a 
two-dimensional stable manifold, with orbits entering the point P1 in the phase space, and (as it 
is easy to check) a unique orbit going out of P1 along the Y -axis. We will be interested in the 
profiles contained in the orbits entering P1. Taking into account the change of variables (2.3), in 
particular that
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Y(ξ) = ξ−1(f m−2f ′)(ξ) = ξ−1

m − 1
(f m−1)′(ξ) (2.8)

and that Y(ξ) ∼ −β/m when entering P1 either when ξ → ∞ or when ξ → ξ0 ∈ (0, ∞), by 
integration in (2.8) we find that the orbits entering P1 contain profiles satisfying (2.7). We readily 
notice that these profiles satisfy the flow equation at the zero point ξ = ξ0, that is

lim
ξ→ξ0

(f m)′(ξ) = 0,

hence these profiles satisfying (2.7) present an interface point at finite distance ξ = ξ0 ∈ (0, ∞). 
These will be the profiles we are mostly interested in within the present paper, as their existence 
is characteristic to the range of exponents 1 < p < m even in the homogeneous case σ = 0
[31]. �

As an interesting remark, it will be useful for some purposes to see these orbits also in the 
first phase space, that is, the one associated to the system (2.2). In that system, and taking into 
account (2.7), we notice that

my(ξ) + βz(ξ) = m

m − 1
(f m−1)′(ξ) + βξ → 0, as ξ → ξ0,

so that, viewed in the phase space associated to (2.2), the critical point P1 expands into the critical 
half-line my + βz = 0 with z > 0 and y < 0.

Lemma 2.3 (Analysis of the point P2 = ((m − 1)/2m(m + 1), 1/m(m + 1), 0)). The system 
in a neighborhood of the critical point P2 has a two-dimensional stable manifold and a one-
dimensional unstable manifold. The stable manifold is included in the invariant plane Z = 0. 
There exists a unique orbit going out of P2, containing profiles which locally satisfy

f (0) = 0, f (ξ) ∼
[

m − 1

2m(m + 1)

]1/(m−1)

ξ2/(m−1) − ψ(σ)ξ (σ+2)/(m−p), as ξ → 0, (2.9)

where ψ(σ) is a coefficient depending on σ such that

lim
σ→∞ψ(σ) = 0. (2.10)

Proof. The linearization of the system (2.4) near this critical point has the matrix:

M(P2) =

⎛
⎜⎜⎜⎝

−m−1
m+1

(m−1)2

2(m+1)
0

α − 1
m+1 −β − m+3

2(m+1)
− m−1

2m(m+1)

0 0 2(p−1)+σ(m−1)
2(m+1)

⎞
⎟⎟⎟⎠

having eigenvalues λ1, λ2 and

λ3 = 2(p − 1) + σ(m − 1)
.

2(m + 1)
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Moreover, it is immediate to see that

λ1 + λ2 = −m − 1

m + 1
− β − m + 3

2(m + 1)
< 0

and

λ1λ2 = m − 1

m + 1

[
β + m + 3

2(m + 1)

]
− (m − 1)2

2(m + 1)

[
α − 1

m + 1

]

= m − 1

2(m + 1)
> 0,

so that λ1 < 0 and λ2 < 0. Thus, there is a two-dimensional stable manifold, composed by orbits 
entering P2 and included in the invariant plane Z = 0, and it is easy to check that there exists 
only one orbit (for any σ > 0 fixed) going out of P2 tangent to the eigenvector associated to the 
eigenvalue λ3. In the sequel, we will be interested in this unique orbit. Let us notice first that this 
orbit contains profiles for which

lim
ξ→0

ξ−2f m−1(ξ) = m − 1

2m(m + 1)
. (2.11)

Moreover, elementary but rather tedious calculations show that the eigenvector of the matrix 
M(P2) corresponding to the eigenvalue λ3 is (x(σ ), y, z(σ )) with

x(σ ) = − (m − 1)2

2(m + p − 2) + σ(m − 1)
, y = −1,

z(σ ) = 2m

m − 1

[
− (α(m + 1) − 1)(m − 1)2

2(m + p − 2) + σ(m − 1)
+ 2(m + 1)β + m + 2p + 1 + σ(m − 1)

2

]
,

where the choice of the signs was taken in order for z(σ ) > 0. In particular we infer that the 
components X and Y decrease very close to P2 along the orbit going out of P2. Defining ψ(σ) :=
|x(σ )/z(σ )|1/(m−p), we readily infer (2.10). Moreover, the second (algebraic) order in the local 
behavior of a profile f near P2 is given by the relation

X − m − 1

2m(m + 1)
∼ |ψ(σ)|m−pZ

as ξ → 0, which taking into account the definitions of X and Z in (2.3) and the first term of the 
expansion given by (2.11), readily gives (2.9). �
Lemma 2.4 (Analysis of the points Pγ = (0, 0, γ ), for γ > 0). There exists a unique

γ0 = α + βσ

p − 1
= 1

p − 1
(2.12)

such that the critical point Pγ0 is an attractor. The orbits entering Pγ0 contain profiles which 
decay at infinity with the rate
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f (ξ) ∼
(

1

p − 1

)1/(p−1)

ξ−σ/(p−1), as ξ → ∞. (2.13)

For γ ∈ (0, ∞) with γ �= γ0 there is no orbit entering Pγ .

Proof. The linearization of the system (2.4) near this critical point has the matrix:

M(Pγ ) =
⎛
⎝ 0 0 0

α − γ −β 0
mσγ m(p − 1)γ 0

⎞
⎠

having a double eigenvalue λ1 = λ3 = 0 and λ2 = −β . That is, these points have a two-
dimensional center manifold and a one-dimensional stable manifold. The most involved part 
is the analysis of the center manifold. Following once more the recipe given in [27, Section 
2.12], we first change the system in order to transfer the critical point Pγ to the origin by letting 
Z = Z̄ + γ . The new system writes:

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = mX[(m − 1)Y − 2X],
Ẏ = −mY 2 − βY + (α − γ )X − mXY − XZ̄,

˙̄Z = mZ̄[(p − 1)Y + σX] + mσγX + m(p − 1)γ Y.

(2.14)

We now do a second change of variable by letting

Z̄ = H − kY,

for some k to be determined later, in order to eliminate the linear term in Y from the third equation 
in the system (2.14). We thus get

Ḣ = ˙̄Z + kẎ = m(H − kY )[(p − 1)Y + σX] + mσγX + m(p − 1)γ Y

− mkY 2 − kβY + k(α − γ )X − mkXY − kX(H − kY )

= [mσγ + k(α − γ )]X + [m(p − 1)Y + (mσ − k)X]H − mkpY 2 − k(mσ + m − k)XY,

provided

k := m(p − 1)γ

β
.

With this notation, we finally do the last change of variable needed in order to analyze the center 
manifold near Pγ , by replacing Y by the new variable

G := βY − (α − γ )X.
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We then calculate the new system by doing:

Ġ = βẎ − (α − γ )Ẋ = −βG − m

β
G2 −

[
m(m + 1)(α − γ )

β
+ (m − k)

]
GX

− (α − γ )

[
m2(α − γ )

β
− (m + k)

]
X2 − βXH.

(2.15)

The equation for X writes in the new variables X, G, H :

Ẋ = m(m − 1)

β
XG +

[
m(m − 1)(α − γ )

β
− 2m

]
X2, (2.16)

and finally, the equation satisfied by H writes

Ḣ = [mσγ + k(α − γ )]X + D1XH − D2X
2 + terms containing G, (2.17)

with

D1 =
[
m(α − γ )(p − 1)

β
+ mσ − k

]
, D2 = k(α − γ )

β

[
mp(α − γ )

β
+ mσ + m − k

]

where we stress that the terms containing G are at least of quadratic order. We are now ready 
to apply Theorem 1 in [27, Section 2.12] to the system formed by the equations (in this order) 
(2.16), (2.15) and (2.17). To this end, we look for a center manifold of the form

G(X,H) = aX2 + bXH + cH 2 + O(|(X,H)|3),

with coefficients a, b and c to be determined. After rather long calculations, the equation of the 
center manifold near the points Pγ becomes

G(X,H) = DX2 − XH + O(|(X,H)|3), (2.18)

where

D := − 1

β2

[
−2(α − γ )βk − mβ(σγ + α − σ) + m2(α − γ )2

]
.

We now replace G(X, H) from (2.18) into the equations (2.16) and (2.17) and we infer that 
locally near the point Pγ the flow on the center manifold is given by the reduced system (where 
the particular form of the higher order terms comes from (2.16), (2.17), (2.18) and an easy proof 
by induction)

⎧⎨
⎩

Ẋ =
[

m(m−1)(α−γ )
β

− 2m
]
X2 + m(m−1)D

β
X3 − m(m−1)

β
X2H + XO(|(X,H)|3)

Ḣ = [
mσγ + k(α − γ )

]
X + D XH + D X2 + XO(|(X,H)|2).

(2.19)
1 2
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For γ = γ0 := 1/(p − 1) the linear term in the second equation of (2.19) vanishes. Noticing that

L := m(m − 1)(α − γ0)

β
− 2m = −m

σ(m − 1) + 2(p − 1)

p − 1
< 0, D1 = −m

β
< 0,

by changing the independent variable as

dθ = Xdη, (2.20)

one can reduce the order of the system (2.19) dividing by X in the right-hand side in the region 
{X > 0} and thus get a nonlinear system for which the linearization near the point (0, 0) has 
eigenvalues L and D1, both negative. This, together with the fact that in the matrix M(Pγ0) we 
have λ2 = −β < 0, prove that Pγ0 is an attractor. By performing the same change of variable 
(2.20) for γ �= 1/(p − 1), that is, mσγ + k(α − γ ) �= 0, in the topologically equivalent system 
obtained (0, 0) is no longer a critical point, thus it is easy to verify that there is no connection 
from the phase plane into the point Pγ for γ �= γ0 = 1/(p − 1). Coming back to profiles and 
noticing that Z = 1/(p − 1) for all orbits entering Pγ0 , we find that all the orbits entering this 
attractor contain profiles supported in the whole R and decaying at infinity with the rate given in 
(2.13). �

These profiles might give us very interesting solutions to (1.1) with this typical decay. In 
particular, for the homogeneous case σ = 0, this attractor corresponds to the constant profile

f ≡
(

1

p − 1

)1/(p−1)

,

but let us notice that for σ > 0, these profiles decay to 0 as ξ → ∞ and they will be considered 
in the sequel.

Local analysis of the critical points at space infinity. Apart from the finite critical points, there 
are several critical points at infinity for the system (2.4). In order to study the critical points 
at infinity, we first pass to the Poincaré hypersphere following the recipes given for example 
in [27, Section 3.10]. In order to pass to the Poincaré hypersphere, we pass to new variables 
(X, Y , Z, W) by letting:

X = X

W
, Y = Y

W
, Z = Z

W

and according to [27, Theorem 4, Section 3.10], the critical points at infinity in the phase space 
associated to the system (2.4) lie on the Poincaré hypersphere at points (X, Y , Z, 0) where X

2 +
Y

2 + Z
2 = 1 and the following system is fulfilled:

⎧⎪⎨
⎪⎩

XQ2(X,Y ,Z) − YP2(X,Y ,Z) = 0,

XR2(X,Y ,Z) − ZP2(X,Y ,Z) = 0,

YR (X,Y ,Z) − ZQ (X,Y ,Z) = 0,

(2.21)
2 2
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where P2, Q2 and R2 are the homogeneous second degree parts of the polynomials in the right 
hand side of the system (2.4), that is

P2(X,Y ,Z) = mX((m − 1)Y − 2X),

Q2(X,Y ,Z) = −mY
2 − mXY − XZ,

R2(X,Y ,Z) = mZ((p − 1)Y + σX).

The system (2.21) thus becomes

⎧⎪⎪⎨
⎪⎪⎩

X(−m2Y
2 + mXY − XZ) = 0,

mXZ((σ + 2)X − (m − p)Y ) = 0,

Z(mpY
2 + m(σ + 1)XY + XZ) = 0.

(2.22)

Taking into account that we are considering only points with coordinates X ≥ 0 and Z ≥ 0, we 
find the following five critical points at infinity (on the Poincaré hypersphere):

Q1 = (1,0,0,0), Q2,3 = (0,±1,0,0), Q4 = (0,0,1,0), Q5 =
(

m√
1 + m2

,
1√

1 + m2
,0,0

)
.

We perform below the local analysis of these points following the recipes given in [27, Theorem 
5, Section 3.10].

Lemma 2.5. The critical point at infinity represented as Q1 = (1, 0, 0, 0) in the Poincaré hyper-
sphere is an unstable node. The orbits going out of this point to the finite part of the phase space 
contain profiles f (ξ) such that f (0) = a > 0 with any possible behavior of the derivative f ′(0).

Proof. Applying part (a) of [27, Theorem 5, Section 3.10], we obtain that the flow of the system 
in a neighborhood of the point Q1 is topologically equivalent to the flow defined (in a neighbor-
hood of the origin) by the system:

⎧⎪⎨
⎪⎩

−ẏ = −my + z − αw + m2y2 + βyw,

−ż = −m(σ + 2)z + m(m − p)yz,

−ẇ = −2mw + m(m − 1)yw,

(2.23)

where the minus sign has been chosen according to the direction of the flow in the original system 
(2.4). This follows for example from the first equation in (2.4), which writes

Ẋ = mX[(m − 1)Y − 2X],

and as X/Y → ∞ when approaching Q1, it follows that Ẋ < 0 in a neighborhood of the point 
Q1, which gives the minus sign above. Thus, the linearization of the system (2.23) in a neigh-
borhood of the origin has the matrix
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M(Q1) =
⎛
⎝ m −1 α

0 m(σ + 2) 0
0 0 2m

⎞
⎠ ,

showing that Q1 is an unstable node. In order to classify the profiles contained in the orbits going 
out of Q1, we notice that, in the variables of the equivalent system (2.23),

dz

dw
∼ σ + 2

2

z

w
,

whence by direct integration, z ∼ Cw(σ+2)/2 for some C ∈ R. Coming back to the original vari-
ables in the system (2.4) and recalling that the projection of the Poincaré hypersphere in order 
to arrive to (2.23) has been done by dividing with the X variable (as explained in [27, Section 
3.10]), we infer

Z

X
∼ K

1

X(σ+2)/2
,

whence by direct substitution in (2.3) we obtain

f (ξ) ∼ K > 0, as ξ → 0,

as stated. The fact that we have to choose K > 0 above is due to the fact that the profiles resulting 
from taking K = 0 are already classified in Lemma 2.3 and they go out of the finite point P2. �
Remark. We can delve deeper into the local behavior as ξ → 0 of the profiles going out of Q1. 
Since z ∼ Cw(σ+2)/2, we readily get that

dy

dw
∼ 1

2

y

w
+ α

2m
,

whence by substitution in X, Y , Z variables we get

Y ∼ KX1/2 + α

m
, K ∈R (2.24)

Thus, when the constant K �= 0, we have profiles with Y ∼ KX1/2, thus f (ξ) ∼ (C+Kξ)2/(m−1)

as ξ → 0, with non-zero derivative at ξ = 0. On the other hand, when K = 0 in (2.24), we get 
that Y ∼ α/m, whence by direct integration

f (ξ) ∼
(

K + α(m − 1)

2m
ξ2

)1/(m−1)

, K > 0,

thus obtaining here the profiles with initial conditions f (0) = a = K1/(m−1) > 0, f ′(0) = 0 that 
are interesting for our goals.
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Lemma 2.6. The critical points at infinity represented as Q2,3 = (0, ±1, 0, 0) in the Poincaré 
hypersphere are an unstable node, respectively a stable node. The orbits going out of Q2 to 
the finite part of the phase space contain profiles f (ξ) such that there exists ξ0 ∈ (0, ∞) with 
f (ξ0) = 0, f ′(ξ0) > 0. The orbits entering the point Q3 and coming from the finite part of the 
phase space contain profiles f (ξ) such that there exists ξ0 ∈ (0, ∞) with f (ξ0) = 0, f ′(ξ0) < 0.

By convention, we will say that all these profiles are of changing sign type.

Proof. Applying part (b) of [27, Theorem 5, Section 3.10], we obtain that the flow of the sys-
tem in a neighborhood of the points Q2,3 is topologically equivalent to the flow defined (in a 
neighborhood of the origin) by the system:

⎧⎪⎨
⎪⎩

±ẋ = −m2x − βxw + mx2 + αx2w − x2z,

±ż = −mpz − m(σ + 1)xz − βzw + αxzw − xz2,

±ẇ = −mw − βw2 − mxw + αxw2 − xzw.

(2.25)

Since approaching the points Q2,3 we have |Y/X| → ∞ and |Y/Z| → ∞, it follows from the 
second equation of the original system (2.4), that is,

Ẏ = −mY 2 − βY − mXY + αX − XZ,

that in a neighborhood of the points Q2 and Q3, Ẏ < 0, whence Y is decreasing. This gives the 
direction of the flow near these points and shows that in the previous system (2.25) we have to 
choose the minus sign for the point Q2 = (0, 1, 0, 0) and the plus sign for Q3 = (0, −1, 0, 0). 
The matrix of the linearization of the system (2.25) in a neighborhood of the origin is

M(Q2,3) =
⎛
⎝ −m2 0 0

0 −mp 0
0 0 −m

⎞
⎠ ,

hence by the previous choice of signs, Q2 is an unstable node and Q3 is a stable node. In order to 
classify the profiles contained in the orbits going out of Q2 (respectively entering Q3), we notice 
that, in the variables of the equivalent system (2.25),

dx

dw
∼ m

x

w
,

whence by direct integration, x ∼ Cwm for some C > 0. Coming back to the original variables 
in the system (2.4) and recalling that the projection of the Poincaré hypersphere in order to arrive 
to (2.25) has been done by dividing with the Y variable (as explained in [27, Section 3.10]), we 
infer

X ∼ C
1

,

Y Ym
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and by direct integration we obtain

f (ξ) ∼
[
K + Cξ2m/(m−1)

]1/m

, K, C ∈R. (2.26)

Let us notice that for the orbits entering Q3, Y(ξ) < 0 in a neighborhood of it, which means 
that the profiles contained in such orbits have f ′ < 0 and C < 0, thus compulsory K > 0 in the 
formula (2.26). Then there exists ξ0 ∈ (0, ∞) such that f (ξ0) = 0, f ′(ξ0) < 0. On the other hand, 
the profiles going out of Q2 do it with Y > 0 (although decreasing), hence C > 0 in (2.26). Thus, 
for part of these profiles, more precisely those with K < 0 in (2.26), there exists ξ0 ∈ (0, ∞) such 
that f (ξ0) = 0, f ′(ξ0) > 0, as stated. �

We next analyze locally the flow in the phase space system near Q5.

Lemma 2.7. The critical point at infinity represented as Q5 = (m/
√

1 + m2, 1/
√

1 + m2, 0, 0)

in the Poincaré hypersphere has a two-dimensional unstable manifold and a one-dimensional 
stable manifold. The orbits going out from this point into the finite region of the phase space 
contain profiles satisfying f (0) = 0 and f (ξ) ∼ Kξ1/m as ξ → 0 in a right-neighborhood of 
ξ = 0.

Proof. Using once more the results in [27, Section 3.10], we deduce that the flow in a neigh-
borhood of the point Q5 is topologically equivalent to the flow of the same system (2.23) but 
this time in a neighborhood of the critical point with coordinates (y, z, w) = (1/m, 0, 0) in the 
notation of (2.23). Moreover, since X ∼ mY when approaching Q5,

Ẋ = mX[(m − 1)Y − 2X] ∼ −m2(m + 1)Y 2 < 0,

hence we have to choose again the minus sign in the system (2.23). The linearization of (2.23)
near Q5 has thus the matrix

M(Q5) =
⎛
⎝ −m −1 −β/m + α

0 m(σ + 1) + p 0
0 0 m + 1

⎞
⎠ ,

whence we obtain a two-dimensional unstable manifold and a one-dimensional stable manifold. 
An easy analysis of the eigenvectors of the matrix M(Q5) shows that the orbits going out from 
Q5 on the unstable manifold go to the finite part of the phase-space. Passing now to profiles, 
since X ∼ mY in a neighborhood of Q5, whence by (2.3),

f m−1(ξ)ξ−2 ∼ mf m−2(ξ)f ′(ξ)ξ−1,

and by direct integration we obtain

f (ξ) ∼ Kξ1/m as ξ → 0, for K > 0,

as stated. �
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We still have to analyze the orbits connecting to or from the critical point Q4. This point is a 
non-hyperbolic one and the local analysis near it might be a difficult task if performed in standard 
ways. However, we can conclude that there are no orbits entering Q4 from the finite part of the 
phase space or going out of Q4 into the finite part of the phase space. This is a consequence of 
the following result.

Lemma 2.8. There are no solutions to (1.5) such that

lim
ξ→∞ ξσ f (ξ)p−1 = +∞. (2.27)

Proof. Assume for contradiction that (1.5) admits such a solution f . As an immediate remark, 
it follows that f (ξ) > 0 for any ξ ∈ (R, ∞) with some R > 0 sufficiently large. The rest of the 
proof is divided into several steps.

Step 1. In a first step we show that f is monotonic in a neighborhood of infinity. Indeed, assume 
that (ξ0,n)n≥1 is a sequence of local minima for f such that ξ0,n → ∞ as n → ∞. Evaluating 
(1.5) at ξ = ξ0,n and taking into account that f ′(ξ0,n) = 0, (f m)′′(ξ0,n) ≥ 0, we infer that

ξσ
0,nf (ξ0,n)

p ≤ αf (ξ0,n), n ≥ 1,

whence ξσ
0,nf (ξ0,n)

p−1 ≤ α, which contradicts (2.27) as we assumed that the sequence (ξ0,n)n≥1
was unbounded. It thus follows that there exists R > 0 such that f has no local minima in 
(R, ∞), that is, it is either increasing or having at some point a local maxima and then becoming 
decreasing in a neighborhood of infinity.

Step 2. Step 1 implies that there exists lim
ξ→∞f (ξ) =: L ≥ 0. If L ∈ (0, ∞), it follows by applying 

twice a standard calculus lemma (stated explicitly in [17, Lemma 2.9]) either to the function 
f (ξ) − L if f decreasing near infinity or to the function L − f (ξ) if f increasing near infinity, 
that there exists a subsequence {ξn}n≥1 such that

lim
n→∞(f m)′′(ξn) = lim

n→∞ ξnf
′(ξn) = 0, lim

n→∞ ξn = ∞.

Evaluating then (1.5) at ξ = ξn for any n ≥ 1, we get that

lim
n→∞(ξσ

n f (ξn)
p − αf (ξn)) = 0,

which is once more a contradiction with the assumption (2.27).

Step 3. If L = +∞, then we infer from Step 1 that f is increasing on an interval (R, ∞), and 
we further deduce from (1.5) and (2.27) that (f m)′′(ξ) → −∞ as ξ → ∞. By straightforward 
calculus techniques we reach a contradiction.

Step 4. If L = 0, then f (ξ) decreases to zero in an interval of the form (R, ∞) according to Step 
1. Since

(f m)′′(ξ) = mf m−1(ξ)f ′′(ξ) + m(m − 1)f m−2(ξ)f ′(ξ)2 ≥ mf m−1(ξ)f ′′(ξ),
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there exists a sequence of intervals [ξ1
n , ξ2

n ] with ξ1
n → ∞ as n → ∞, such that f ′′(ξ) ≥ 0 in 

[ξ1
n , ξ2

n ] (and the same for (f m)′′(ξ)), which together with (1.5) gives

[
ξσ f (ξ)p−1 − α

]
f (ξ) + βξf ′(ξ) ≤ 0, ξ ∈ [ξ1

n , ξ2
n ]. (2.28)

We further derive from (2.27) and (2.28) that for any K > 0 large there exists an integer n = n(K)

such that

f ′(ξ)

f (ξ)
≤ − K

βξ
, ξ ∈ [ξ1

n , ξ2
n ], n ≥ n(K),

but it can be easily proved that the latter contradicts the fact that f (ξ) decays to zero slower than 
a fixed tail. �

Going back to the phase space in variables (X, Y, Z), a profile contained in an orbit entering 
Q4 means that Z = ξσ f p−1(ξ) → ∞ along this orbit, and such an orbit cannot contain any 
profile according to Lemma 2.8. We are now prepared to perform the global analysis of the 
phase space and prove our main results.

3. Existence of compactly supported self-similar solutions

This section is devoted to the proof of Theorem 1.2. We will thus consider good profiles with 
interface according to Definition 1.1, either satisfying property (P1) or property (P2). Let us recall 
that for the homogeneous case σ = 0, existence (and uniqueness in the one-dimensional case) of 
such profiles is well-known, see for example [31, Theorem 2, p. 187]. In this case, in dimension 
N = 1 there exists a unique compactly supported profile f such that f (0) > 0, f ′(0) = 0 and f
strictly decreasing in (0, ξ0), where ξ0 ∈ (0, ∞) is the first point such that f (ξ0) = 0. However, 
the presence of the weighted reaction term in Eq. (1.1) lead to some striking differences with 
respect to the homogeneous case σ = 0. The first one of them is illustrated by the following

Lemma 3.1. Let f be a solution to (1.5) with σ > 0 such that f (0) = a > 0 and f ′(0) = 0. Then 
f ′(ξ) > 0 in a right neighborhood of ξ = 0. In particular, there are no decreasing self-similar 
good profiles for Eq. (1.1).

Proof. We first notice that

(f m)′(0) = mf m−1(0)f ′(0) = 0, (3.1)

and that lim
ξ→0

|ξ |σ f p(ξ) = 0, for σ > 0. Thus, taking limits as ξ → 0 in (1.5) we find that

lim
ξ→0

(f m)′′(ξ) = αf (0) = αa > 0. (3.2)

Combining (3.1) and (3.2) leads to

0 < (f m)′(ξ) = mf m−1(ξ)f ′(ξ)
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for any ξ in a sufficiently small right neighborhood of the origin, thus also f ′(ξ) > 0 in this 
neighborhood, as stated. �

Related to the previous lemma, one can prove an easy, but still very important property related 
to the maximums of the profiles. More precisely:

Lemma 3.2. Let f be a solution to (1.5) and ξ0 ∈ (0, ∞) be a local maximum point for f . Then 
we have:

f (ξ0) ≥ α1/(p−1)ξ
−σ/(p−1)
0 . (3.3)

Proof. This follows easily by evaluating Eq. (1.5) at the point ξ = ξ0, taking into account that 
f ′(ξ0) = 0 and (f m)′′(ξ0) ≤ 0. This implies that

αf (ξ0) ≤ ξσ
0 f (ξ0)

p,

which, together with the fact that f (ξ0) > 0, readily leads to (3.3). �
In order to establish the existence of self-similar profiles for (1.1) satisfying properties (P1) 

and (P2), a first important step is to establish a uniqueness result for any given interface point. 
We thus prove:

Proposition 3.3. For any given ξ0 ∈ (0, ∞), there exists a unique solution f to (1.5) such that

f (ξ) > 0 for ξ ∈ (0, ξ0), f (ξ) = 0 for ξ ≥ ξ0, lim
ξ→ξ0

(f m)′(ξ) = 0,

or in other words, a unique solution to (1.5) having ξ0 as interface point.

Proof. Let ξ0 ∈ (0, ∞) be given. Throughout this proof, we will be using the phase space asso-
ciated to the system (2.2) and recall that the interface points and profiles were seen in this phase 
space as critical points on the half-line of equations x = 0, my +βz = 0 with z > 0 and y < 0 and 
orbits entering these points. Recalling (2.1), the critical point corresponding to the given ξ0 > 0
has the coordinates (0, −βξ0/m, ξ0). The linearization of the system (2.2) near this critical point 
has the matrix

M =

⎛
⎜⎜⎝

−(m − 1)βξ0 0 0

α βξ0
β2ξ0
m

m 0 0

⎞
⎟⎟⎠

which shows that the critical point has a one-dimensional stable manifold, a one-dimensional 
unstable manifold and a one-dimensional center manifold. Similarly as in the analysis performed 
in [19, Lemma 2.2], one can readily prove that the center and unstable manifolds are unique and 
lie in the invariant plane x = 0, while there is a unique connection entering this critical point 
from outside the plane x = 0 which contains the profile we look for. �
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Remark. One can also establish how a compactly supported profile f approaches its interface 
point ξ0. Indeed, we obtain that

(f m−2f ′)(ξ) ∼ − β

m
ξ, as ξ → ξ0,

whence by integration,

f (ξ) ∼
[
C − β(m − 1)

2m
ξ2

]1/(m−1)

, C = β(m − 1)

2m
ξ2

0 , as ξ → ξ0.

This obviously reminds of the Barenblatt solutions to the standard porous medium equation (see 
for example [20]).

According to Proposition 3.3, for η ∈ (0, ∞) given, we denote by fη the unique solution to 
(1.5) having η > 0 as interface point. The next step in the existence proof is to display a shooting 
method from the interface point, that is, to trace the trajectory of fη when moving η ∈ (0, ∞), as 
already explained in the Introduction. The idea of the shooting is to show that, when either η > 0
is too close to +∞, or too close to 0, then fη is not a good profile. We then have

Proposition 3.4. There exists η∗ ∈ (0, ∞) such that, for any η > η∗, the profile fη solution to 
(1.5) with interface point at η changes sign “backward” at some positive point. More precisely, 
for any η > η∗, there exists θ ∈ (0, η) such that

fη(θ) = 0, (f m
η )′(θ) > 0, fη(ξ) > 0 for ξ ∈ (θ, η).

In the proof of Proposition 3.4, due to technical problems, we will switch to another quadratic 
phase plane system, slightly different from (2.4). To this end, we replace Z by the new variable

Z := XZ

obtaining the following autonomous system

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = mX[(m − 1)Y − 2X],
Ẏ = −mY 2 − βY + αX − mXY − Z,

Ż = mZ[(m + p − 2)Y + (σ − 2)X].
(3.4)

Let us notice that in terms of profiles, we have Z = ξσ−2f (ξ)m+p−2. This shows why we do 
not use always in our analysis the system (3.4): in many situations, using it will lead us to a 
discussion of whether σ > 2 or σ < 2. But it is useful in the proof of Proposition 3.4.

Proof. This proof is divided into several steps. The first of them is establishing a limit connection
which lies in the invariant plane X = 0 and connects with a point at space infinity. Then, in a 
second step we show that the critical point at space infinity is a node, and finally, this allows us to 
establish that there exist connections in the phase space associated to (3.4) but outside the plane 
X = 0, connecting the same two critical points, which can be translated into profiles f (ξ).
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Step 1. Analysis in the invariant plane X = 0. Letting X = 0, we arrive to the following reduced 
phase plane:

{
Ẏ = −mY 2 − βY − Z,

Ż = m(m + p − 2)YZ.
(3.5)

In this plane, the interface point P1 reduces to the critical point with coordinates P1 =
(−β/m, 0), which is a saddle point (we omit the easy verification). We are interested in the 
(unique) orbit of the plane entering P1. We notice that there exists a special curve in the phase 
plane associated to the system (3.5), which is

Z = −mY 2 − βY, (3.6)

which together with the two axis divide the plane into three regions of monotonicity of Z as a 
function of Y : the region “interior” to the curve (3.6), where Z decreases with respect to Y , the 
first quadrant Z > 0, Y > 0 where again Z is decreasing with respect to Y , and the region where 
Y < 0 and Z > −mY 2 − βY , in which Z is increasing with respect to Y along the orbits. With 
this splitting of the plane in mind, we readily observe that the orbit entering the saddle point P1
in the plane has to enter through the region Y < 0, Z > −mY 2 − βY .

We next show that the orbit entering P1 in the plane has to cross the axis Y = 0 at a positive 
height Z. Assume by contradiction that this is not the case. It follows that the orbit entering P1
comes from a critical point (has a vertical asymptote) with Y ∈ (−β/m, 0) and Z = ∞. We can 
then write that, along this curve, we have:

dZ

dY
= m(m + p − 2)ZY

−Z − mY 2 − βY
= m(m + p − 2)Z(−Y)

Z + (mY 2 + βY)

≤ −m(m + p − 2)ZY

Z
= −m(m + p − 2)Y,

whence by integration we get that

Z ≤ K − m(m + p − 2)

2
Y 2, for some K > 0,

a contradiction with the fact that Y ∈ (−β/m, 0) and Z → ∞.
Thus, the orbit entering P1 will cross the axis Y = 0 at some finite positive height Z > 0, thus 

entering the first quadrant where it remains decreasing forever with lim
Y→∞Z(Y ) = L ≥ 0. In this 

case, for a sufficiently large constant K > 0, we find that

dZ

dY
= m(m + p − 2)ZY

−Z − mY 2 − βY
≤ −m(m + p − 2)ZY

K + mY 2 + βY
,

so that Z ≤ �, where � is the solution to the equation

d� = −m(m + p − 2)�Y

2 . (3.7)

dY mY + βY + K
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But an easy integration of (3.7) gives

�(Y) = C exp

⎡
⎣−m(m + p − 2)

Y∫
0

s

ms2 + βs + K
ds

⎤
⎦ −→ 0 as Y → ∞,

hence also Z(Y ) → 0 as Y → ∞.

Step 2. Critical point at infinity. From Step 1 above, we deduce that on the orbit included in 
the plane X = 0 one gets Y → ∞ and Z → 0. This suggests that this orbit comes from a critical 
point at infinity whose coordinates (in generalized sense) would be (0, +∞, 0). But we already 
know that such point exists for the whole phase space and is seen on the Poincaré hypersphere 
as Q2 = (0, 1, 0, 0) according to the analysis done in Lemma 2.6. In particular, it also follows 
from Lemma 2.6 that this critical point is an unstable node. We can thus combine this fact with 
the theorem of continuity with respect to data and parameters to prove that there exists ε0 > 0
such that for any ε ∈ (0, ε0), there exists a connection between the critical points Q2 and P1 in 
the whole phase space with X(ξ) < ε for ξ ∈ (0, ∞). We will analyze the profiles contained in 
these orbits.

Step 3. Analysis of the profiles. Fix for the moment ε ∈ (0, ε0) as explained in Step 2 above 
and consider an orbit on which X(ξ) < ε for any ξ ∈ (0, ∞). Let us notice first that any profile 
contained in such orbit has a maximum point. Indeed, as the orbit connects Q2 and P1, it follows 
from Lemmas 2.2 and 2.6 that there exist 0 < ξ1 < η < ∞ such that f (ξ1) = f (η) = 0, f ′(ξ1) >
0 and f ′(η) = 0. Thus, there exists a maximum point ξM ∈ (ξ1, η) for f . On the one hand, we 
derive from Lemma 3.2 that

f (ξM) ≥ α1/(p−1)ξ
−σ/(p−1)
M .

On the other hand, since X(ξM) < ε, we get

f (ξM) < εξ
2/(m−1)
M ,

whence

ξ

2(p−1)+σ(m−1)
(m−1)(p−1)

M >
1

ε
α1/(p−1). (3.8)

The estimate (3.8) shows that, by making ε ∈ (0, ε0) as small as we want, the point ξM (and then, 
also the interface point of f , η > ξM ) can be as large as we want.

We next easily remark that the following transformation

X = xz−2, Y = yz−1, Z = x1+ p−1
m−1 zσ−2,

is a diffeomorphism between the following regions of the phase planes associated to the systems 
(3.4), respectively (2.2):

{
X > 0, Y ∈R,Z > 0

} �−→ {x > 0, y ∈ R, z > 0} ,
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mapping the orbits entering P1 in the phase plane associated to the system (3.4) into the unique 
orbits entering the points on the critical line x = 0, my + βz = 0 in the phase-space associated 
to the system (2.2) (we leave to the reader the easy verification of this fact). Thus, the orbits 
entering P1 with X(ξ) < ε analyzed previously are mapped into orbits entering a point of the 
critical line x = 0, my + βz = 0 of the system (2.2) with z as large as we want. Since the set of 
interface points η ∈ (0, ∞) such that fη belongs to an orbit connecting Q2 to P1 is an open set, 
we get that all the profiles with interface in some neighborhood of infinity belong to connections 
between Q2 and P1 in the phase space associated to the system (3.4). We reach the conclusion 
by Lemmas 2.2 and 2.6. �

We are now ready to study the behavior of the profiles whose interface lies very close to the 
origin.

Proposition 3.5. There exists η∗ ∈ (0, ∞) such that, for any 0 < η < η∗, the profile fη solution 
to (1.5) with interface point at η satisfies

fη(0) = a > 0, f ′
η(0) < 0, fη(ξ) > 0 and decreasing for ξ ∈ (0, η).

Proof. This proof is divided into several steps following a similar strategy as in the proof of 
Proposition 3.4. The first of them is establishing a limit connection which lies in the invariant 
plane Z = 0 and connects with a point at space infinity. In a second step we show that the critical 
point at space infinity is an unstable node, which allows us to establish that there exist orbits 
in the phase space associated to (2.4) outside the plane Z = 0, connecting the same two critical 
points. Finally, we undo the change of variable to characterize the profiles contained in such 
orbits.

Step 1. Analysis in the invariant plane Z = 0. Letting Z = 0 in (2.4), we arrive to the following 
reduced phase plane:

{
Ẋ = mX[(m − 1)Y − 2X],
Ẏ = −mY 2 − βY − mXY + αX.

(3.9)

In this plane, the interface point P1 reduces to the critical point with coordinates P1 =
(0, −β/m), which is a saddle point (we omit the easy verification). We are interested in the 
(unique) orbit of the plane entering P1. We notice that there exists a special curve in the phase 
plane associated to the system (3.9), given by the equation dY/dX = 0, that is

X = mY 2 + βY

α − mY
, (3.10)

which passes through all the three finite critical points of the system (3.9), corresponding to O , 
P1 and P2 in the big phase space, and having a horizontal asymptote at Y = α/m. The curve 
(3.10) together with the two axis and the line (m − 1)Y − 2X = 0 divide the plane into several 
regions of monotonicity of Y as a function of X according to the sign of the quantity

dY = −mY 2 + βY + mXY − αX
.

dX mX[(m − 1)Y − 2X]
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In particular, the fourth quadrant {X > 0, Y < 0} is divided into two regions of monotonicity: 
one “inside the curve” (3.10), where dY/dX < 0, and the other “below the curve” (3.10), where 
dY/dX > 0. The orbit entering P1 in the plane Z = 0 has to do it through the region “inside 
the curve” (3.10) due to monotonicity reasons. Indeed, assume by contradiction that the orbit 
enters P1 from the region below the curve where dY/dX > 0. Then on the orbit, Y increases 
with respect to X, which is a contradiction as the orbit would come from the region {X > 0, Y <

−β/m} to approach the point X = 0, Y = −β/m. Thus, the unique orbit entering P1 comes from 
the interior of the curve (3.10), where dY/dX < 0, hence along this orbit, variable Y decreases 
as X increases. It is also obvious that the orbit entering P1 cannot cross the curve (3.10) at some 
later point, thus Y decreases with X forever. In particular, there exists a limit L > β/m such that

Y = Y(X) → −L, as X → ∞.

Assume for contradiction that L < ∞. Then, for X sufficiently large (and Y(X) then sufficiently 
close to −L), we have(

α + m

2
L

)
X ≤ (α − mY)X − (mY 2 + βY) ≤ (α + mL)X,

and since Y < 0 all along the orbit we are dealing with, we infer that

dY

dX
≤ − (α + mL/2)X

2mX2 = −2α + mL

4m

1

X
.

Integrating the previous differential inequality between X = 1 and X = X0 > 1, we get

Y(X0) − Y(1) ≤ −2α + mL

4m
logX0. (3.11)

As X0 > 1 is arbitrarily chosen, passing to the limit as X0 → ∞ in (3.11) we obtain

−L ≤ Y(1) − 2α + mL

4m
lim

X0→∞ logX0 = −∞,

and a contradiction. It follows that Y → −∞ on the orbit entering P1 contained in the plane 
Z = 0.

Step 2. Critical point at infinity. By the previous analysis, it follows that the orbit entering P1
contained in the plane Z = 0 of (2.4) comes from a critical point at infinity for which Z = 0. 
From the classification performed in Lemmas 2.5, 2.6 and 2.7, we find that the only critical point 
at infinity from which it may come is Q1, whose analysis is performed in Lemma 2.5. The fact 
that Q1 is an unstable node together with the theorem of continuity with respect to data and 
parameters give that there exists ε0 > 0 such that for any ε ∈ (0, ε0), there exists a connection 
between the critical points Q1 and P1 in the whole phase space with Z(ξ) < ε for ξ ∈ (0, ∞). 
We will analyze next the profiles contained in these orbits.

Step 3. Analysis of the profiles. Since along the orbits under consideration, we have Z(ξ) < ε, 
it first follows that
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ξσ f p−1(ξ) < ε, for any ξ ∈ (0,∞).

In particular, choosing ε ∈ (0, α) sufficiently small, it follows from Lemma 3.2 that f (ξ) de-
creases for ξ ∈ (0, η), where we recall that we denote by η the interface point of the profile f . 
Indeed, for any ε ∈ (0, α), the inequality (3.3) is false, hence f does not admit local maximum 
points. Moreover, coming back to the original equation (1.5), one finds that

(f m)′′(ξ) = f (ξ)(α − ξσ f p−1(ξ)) − βξf ′(ξ) ≥ Lf (ξ), L = α − ε, (3.12)

where we took into account that f ′(ξ) ≤ 0 for ξ ∈ (0, η). By letting first g = f m in (3.12) and 
then doing a standard integration in two steps in the resulting differential inequality (taking into 
account that g′ < 0), we find that

f (ξ) ≥ K(η − ξ)2/(m−1), for ξ ∈ (0, η),

for a constant K > 0 (that can be explicitly calculated, but we omit its expression) depending on 
m, α − ε and the initial value a = f (0). In particular,

ξσ Kp−1(η − ξ)2(p−1)/(m−1) < ε, for ξ ∈ (0, η),

and we infer by evaluating this inequality at ξ = η/2 that

Kp−1
(η

2

)σ+2(p−1)/(m−1)

< ε. (3.13)

We deduce from (3.13) that η is forced to be as small as we want, provided ε > 0 is chosen 
sufficiently small. Noticing next that the following transformation:

X = xz−2, Y = yz−1, Z = x(p−1)/(m−1)zσ ,

is a diffeomorphism between the following regions of the phase planes associated to the systems 
(2.4), respectively (2.2):

{X > 0, Y ∈R,Z > 0} �−→ {x > 0, y ∈R, z > 0} ,

mapping the orbits entering P1 in the phase plane associated to the system (2.4) into the unique 
orbits entering the points on the critical line x = 0, my +βz = 0 in the phase-space associated to 
the system (2.2), we end up the proof as in the last part of Step 3 in the proof of Proposition 3.4, 
we leave these details to the reader. �

With all these preparations, we are now ready to prove the existence theorem.

Proof of Theorem 1.2. Denote by A− the set of η ∈ (0, ∞) such that the profile fη with inter-
face exactly at ξ = η satisfies

fη(0) = a > 0, f ′
η(0) < 0,
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and by A+ the set of η ∈ (0, ∞) such that there exists ξ0 ∈ (0, η) with

fη(ξ0) = 0, f ′
η(ξ0) > 0.

It is easy to see (by continuity with respect to the parameters) that A− and A+ are both open 
sets. Moreover, Proposition 3.5 insures that A− �= ∅, while Proposition 3.4 insures that A+ �= ∅
and there exists an interval (η∗, ∞) ⊆ A+. Let then

η0 = supA− < η∗ < ∞.

We want to analyze the behavior of the unique profile fη0(ξ) having an interface at ξ = η0. First 
of all, since both A+ and A− are open sets, η0 does not belong to any of them.

Moreover, fη0 cannot have a vertical asymptote at ξ = 0, since according to the local analysis 
in Section 2, there is no such behavior in the phase space.

Moreover, there is no point ξ1 ∈ (0, η0) such that fη0(ξ1) = 0 and fη0 > 0 in (ξ1, η0). Indeed, 
assuming for contradiction that such ξ1 exists,

• either f ′
η0

(ξ1) > 0, meaning that η0 ∈ A+. As A+ is open, there exists δ > 0 such that 
(η0 − δ, η0) ⊆ A+. But by the definition of η0 as supremum of A−, it follows that A+ ∩A− �= ∅, 
and a contradiction.

• or f ′
η0

(ξ1) = 0, which is a contradiction as such behavior does not exist in the phase space 
system (2.4) as it follows from Section 2.

From these facts and the continuity with respect to the parameter we deduce that fη0 intersects 
the axis ξ = 0 either at the origin (which is one case of “good solution”) or at some point a > 0. 
In the latter case, we easily find by continuity that f ′

η0
(0) ≤ 0, and since η0 /∈ A−, the case 

f ′
η0

(0) < 0 is impossible, whence we reach the conclusion. �
4. Self-similar blow up profiles for σ small

In this section, we deal with the blow up profiles to Eq. (1.1) for σ > 0 sufficiently small, in 
particular proving Theorems 1.3 and 1.5. Let us recall that, by Theorem 1.2, there exists at least 
a good profile with interface, that is, a solution f to (1.5) satisfying one of the hypotheses (P1) 
and (P2). Our next goal is to prove that, for σ > 0 sufficiently small, only condition (P1) occurs.

Proof of Theorem 1.3. Assume for contradiction that the statement of Theorem 1.3 is not true, 
that is, there exists a sequence {σn}n such that σn → 0 as n → ∞ and corresponding good profiles 
with interface of type (P2) denoted by fn with corresponding interface points ηn ∈ (0, ∞). We 
first prove the following important technical step.

Lemma 4.1. There exists σ0 > 0 and constants C1, C2 > 0 which are independent of σ such that 
C1 < η < C2 for any good profile fη to (1.5) with exponent σ ∈ (0, σ0) and with interface at 
point η ∈ (0, ∞).

Proof. For σ = 0, there exists a unique good profile fη0 with interface at some η0 ∈ (0, ∞) [31, 
Theorem 2, p. 187 and Lemma 3, pp. 264-265]. We also infer from Propositions 3.5 and 3.4 that 
for any σ > 0 fixed there exist constants C1(σ ) < C2(σ ) ∈ (0, ∞) such that for any good profile 
fη, his interface point η satisfies
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C1(σ ) < η < C2(σ ).

Thus we readily reach the conclusion from the continuity with respect to the parameter σ in the 
system (2.2) [16, Theorem 3, Chapter 15] (valid up to σ = 0) and the fact that C1(0) = C2(0) =
η0. �

We obtain from Lemma 4.1 that there exists a positive integer n0 such that

C1 < ηn < C2, for n ≥ n0. (4.1)

Without losing on generality, we may relabel the sequences {σn}n and {fn}n such that n0 = 1, 
thus (4.1) holds true for any n ≥ 1. Moreover, since ηn is uniformly bounded, it has a convergent 
subsequence, so that we can once more relabel (retaining only a subsequence) the sequences 
{σn}n and {fn}n such that ηn → η0 as n → ∞. We need now a second technical step.

Lemma 4.2. There exists a positive integer n1 ≥ 1 such that the sequence {fn}n is uniformly 
bounded (independent of σ ) for n ≥ n1.

Proof. We use once more the continuity with respect to the parameter σ > 0 (and to the data) 
in the non-autonomous first order system (2.2) (see for example [16, Theorem 3, Chapter 15]). 
Let f0 be the unique profile to (1.5) with σ = 0 having interface at ξ = η0. At a formal level, we 
know that f0 ∈ L∞[0, ∞) and by the above mentioned result, for any given δ > 0, there exist 
nδ ≥ 1 and K > 0 such that for any n ≥ nδ and ξ ∈ [0, max{η0, ηn}] we have

|fn(ξ) − f0(ξ)| ≤ δ (K exp |ξ − η0| − 1) . (4.2)

This is only formal, as it cannot be applied rigorously when taking as initial data a critical point in 
(2.2). But it can be made rigorous by taking a very small ball B(η0, r0) around the point ξ = η0, 
which contains an infinity of the points ηn, and taking as data the intersections of the trajectories 
in the phase plane associated to the system (2.2) with this ball. The conclusion follows obviously 
from (4.2) and the fact that f0 ∈ L∞[0, ∞). �

Relabeling the sequences such that n1 = 1 in order to simplify the notation, we deduce from 
Lemma 4.2 and (1.5) that

(f m
n )′′(ξ) + βnξf

′
n(ξ) = αnfn(ξ) − ξσnfn(ξ)p ∈ [−K,K], ξ ∈ [0,C2]

for some K > 0 sufficiently large but independent of σ . Here and in the sequel, we denote by

αn := σn + 2

2(p − 1) + σn(m − 1)
, βn := m − p

2(p − 1) + σn(m − 1)

the self-similarity exponents corresponding to our sequence {σn}n. We thus find that

−K ≤ (f m
n )′′(ξ) + βnξf

′
n(ξ) ≤ K, ξ ∈ [0,C2],

whence by integration by parts on [0, ξ ],
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|(f m)′(ξ)| ≤ Kξ +
∣∣∣∣∣∣βnξfn(ξ) −

ξ∫
0

βnfn(s) ds

∣∣∣∣∣∣ ≤ K, ξ ∈ [0,C2], (4.3)

for K > 0 independent of σ , where we have used once more for the last inequality in (4.3)
Lemmas 4.1 and 4.2. Since

f ′
n(ξ) = 1

m
(f m

n )′(ξ)fn(ξ)1−m, ξ ∈ [0,C2]

it follows that (fn)
′ is uniformly bounded (independent of σn) far from ξ = 0 and ξ = ηn. Notice 

for example that (fn)
′ may not be uniformly bounded at ξ = 0 or ξ = ηn (a closer inspection of 

the behavior of fn shows that this is only true when 1 < m ≤ 2). From (1.5) we also deduce that

(f m
n )′′(ξ) = αnfn(ξ) − βnξ(fn)

′(ξ) + ξσnfn(ξ)p, ξ ∈ [0,C2], (4.4)

whence on the one hand, recalling that we are under the assumption that fn(0) = 0, (f m
n )′(0) = 0

and that there are only two possible behaviors for f as ξ → 0, established in Lemmas 2.1 and 
2.3, we infer that (f m

n )′′(0) = 0 whatever the behavior of fn is (among the two possibilities). On 
the other hand, we also get from (4.4) that (f m

n )′′ is uniformly bounded on any interval [0, ξ ]
with ξ < ηn. Even more, we derive from (4.4) that (f m

n )′′ is uniformly Holder in any interval 
[0, ξ ] with ξ < ηn, as the right hand side of (4.4) has obviously this property.

Using the Arzelà-Ascoli Theorem (and in particular the compact embedding of the Holder 
space C2,γ [0, ξ ] in C2[0, ξ ] for any γ ∈ (0, 1)), we find that there exist functions g1, g2 and g3
such that for any 0 < ξ1 < ξ2 < C2, the following hold true:

• fn �−→ g1 uniformly in [0, ξ2],
• (fn)

′ �−→ g2 uniformly in [ξ1, ξ2],
• (f m

n )′′ �−→ g3 uniformly in [0, ξ2].

It is now easy to identify the functions g1, g2 and g3. In a first step, the first convergence 
in the list above holds also pointwisely for any ξ ∈ (0, η0), where we recall that η0 = lim

n→∞ηn

according to a convention we made at the beginning of the proof. Thus, one readily gets that 
g1(0) = g1(η0) = 0 and that g1 is supported in [0, η0]. Moreover, using the uniform convergence 
and the definition of the derivative, we have for any ξ ∈ (0, η0):

g2(ξ) = lim
n→∞f ′

n(ξ) = lim
n→∞

(
lim
h→0

fn(ξ + h) − fn(ξ)

h

)

= lim
h→0

(
lim

n→∞
fn(ξ + h) − fn(ξ)

h

)
= lim

h→0

g1(ξ + h) − g1(ξ)

h
= g′

1(ξ).

By a similar argument of commuting limits, one can also show that

g3(ξ) = (gm
1 )′′(ξ), ξ ∈ (0, η0).

Thus, relabeling for simplicity g1 ≡ g, we can pass to the limit as n → ∞ in (1.5) (applied to 
fn) to show that g solves the ordinary differential equation
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(gm)′′(ξ) + β(0)ξg′(ξ) − α(0)g(ξ) + gp(ξ) = 0, α(0) = 1

p − 1
, β(0) = m − p

2(p − 1)
,

for any ξ ∈ (0, η0). Moreover, suppg = [0, η0] and the interface condition at ξ = η0 is fulfilled 
by g:

(gm)′(η0) = lim
n→∞(gm)′(ηn) = lim

n→∞(f m
n )′(ηn) = 0,

where the second equality was allowed by the uniform convergence of (f m
n )′ to (gm)′ in any com-

pact interval included in (0, η0). It thus follows that g is a solution to the homogeneous equation 
corresponding to (1.5) for σ = 0, with interface point at η0 and with g(0) = 0, (gm)′(0) = 0.

We still need to prove that the limit function g is not the trivial function. To this end, recalling 
that fn(0) = fn(ηn) = 0, let zn ∈ (0, ηn) be such that

fn(zn) = max
ξ∈(0,ηn)

fn(ξ).

We then infer from Lemma 3.2 that

fn(zn) ≥ α
1/(p−1)
n z

−σn/(p−1)
n ,

hence passing to the limit and taking into account the uniform convergence on compact sets in 
(0, η0), implies

‖g‖∞ ≥ α(0)1/(p−1) =
(

1

p − 1

)1/(p−1)

> 0,

and a contradiction to well-established results concerning the homogeneous case σ = 0, which 
show that such solution g as above does not exist [31, Theorem 2, p. 187 and Lemma 3, pp. 264-
265]. �
5. Self-similar profiles with f (0) = 0

We devote this section to the study of self-similar profiles satisfying property (P2) in Defi-
nition 1.1, that is, profiles f (ξ) solving (1.5) with initial conditions f (0) = 0, (f m)′(0) = 0. In 
particular, we prove here Theorem 1.4. Let us recall here with the title of an example the fol-
lowing exact solution with interface to (1.5) for the limit case p = 1, already established in [19, 
Theorem 1.2], satisfying property (P2) in Definition 1.1

f1(ξ) := ξ2/(m−1)

(
m − 1

2m(m + 1)
− Bξσ

)1/(m−1)

+
, B = (m − 1)2

m(σ + 2)(mσ + m + 1)
, (5.1)

where σ = √
2(m + 1). We show here that such solutions exist also for p ∈ (1, m), although they 

are no longer explicit. We refer the reader to our companion work [19] for a complete study of 
the interesting case p = 1.
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5.1. General properties of self-similar profiles with f (0) = 0

Before passing to the actual proof of Theorem 1.4, we gather here several facts related to 
profiles f solutions to (1.5) with f (0) = 0, (f m)′(0) = 0. Besides their use in the next subsec-
tions to help with the proof of Theorem 1.4, we think that these results have interest by them-
selves. Throughout all this subsection, f is assumed to be a self-similar profile with f (0) = 0, 
(f m)′(0) = 0, and by ξ0 we will understand any (local) maximum point of f .

Proposition 5.1. In the previous notation and conditions

(a) The following upper bound holds true:

f (ξ) ≤
[
α(m − 1)

2m

]1/(m−1)

ξ2/(m−1), for any ξ > 0. (5.2)

(b) Recalling that ξ0 is a maximum point of f , we have

ξ0 ≥ ξ := αβ

[
2m

m − 1

](p−1)β/(m−p)

. (5.3)

Before proving Proposition 5.1, let us notice here that its part (a) can be seen as a uniform 
bound (with respect to the exponent σ ) for f over compact sets in [0, ∞). Indeed, there is a 
dependence on α in the right hand side of (5.2), but recall that α = α(σ) is uniformly bounded 
with respect to σ . We also infer from part (b) that a maximum point ξ0 cannot lie as close as the 
ξ = 0 as we want.

Proof of Proposition 5.1. (a) We consider the plane {Y = α/m} in the phase space associated to 
the system (2.4). The direction of the flow of the phase space over the plane {Y = α/m} is given 
by the sign of the following expression:

F(X,Z) := −m
( α

m

)2 − β
α

m
+ αX − m

α

m
X − XZ = −α2 + αβ

m
− XZ < 0,

since X, Z ≥ 0. Thus, once an orbit in the phase space lies in the half-space {Y ≤ α/m}, it cannot 
cross the plane {Y = α/m}. But in particular, any profile f with f (0) = 0 and (f m)′(0) = 0
belongs to an orbit starting from one of the points P0 = (0, 0, 0) or P2 = ((m − 1)/2m(m +
1), 1/m(m + 1), 0). Noticing that

σ(m − 1) + 2(p − 1) < (σ + 2)(m − 1) < (σ + 2)(m + 1),

we readily find that both points P0 and P2 lie in the half-space {Y ≤ α/m}. This implies that 
along any orbit containing profiles f with f (0) = 0, (f m)′(0) = 0, we have Y < α/m. Recalling 
the definition of Y in (2.3), we get

(f m−1)′(ξ) ≤ (m − 1)α

m
ξ, ξ ∈ (0,∞) (5.4)

whence by integrating over (0, ξ) one readily obtains (5.2).
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(b) Since ξ0 is a maximum point for f , we gather the estimates (3.3) and (5.2) to obtain

α1/(p−1)ξ
−σ/(p−1)

0 ≤ f (ξ0) ≤
[
α(m − 1)

2m

]1/(m−1)

ξ
2/(m−1)

0 ,

which leads to the estimate (5.3) after straightforward calculations. �
The following technical result shows that for any σ > 0, there exist good profiles with f (0) =

0 and with the tail behavior (2.13).

Lemma 5.2. For any p ∈ (1, m) and σ > 0, there exists at least an orbit in the phase space 
associated to (2.4) connecting the points P0 and Pγ0 . These orbits contain profiles such that 
f (0) = 0, (f m)′(0) = 0, and behaving as in (1.8) at ξ = 0 and as in (2.13) as ξ → ∞.

Proof. We once more replace Z by the new variable Z = XZ, as we previously did in Propo-
sition 3.4, to obtain the autonomous system (3.4). We analyze the critical point (X, Y, Z) =
(0, 0, 0) in (3.4). Let us first notice that the above change of variable gather in the origin of the 
system (3.4) the orbits connecting to any points Pγ with γ > 0. But we know from Lemma 2.4
that there is only one point among them that attracts orbits in the phase space, that is the attractor 
Pγ0 with γ0 = 1/(p − 1). Thus, it is easy to check that the new point (X, Y, Z) = (0, 0, 0) puts 
together the orbits of P0 and Pγ0 . The linearization of the system (3.4) near the origin has the 
matrix

⎛
⎜⎝

0 0 0

α −β −1

0 0 0

⎞
⎟⎠

having thus a one-dimensional stable manifold and a two-dimensional center manifold. We ana-
lyze the center manifold following, as usual, the recipe given in [27, Section 2.12]. To this end, 
we replace Y by the new variable

T := βY − αX + Z,

deriving the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = m
β
X[(m − 1)T + X − (m − 1)Z],

Ṫ = −βT − m
β
T 2 − m(2α+3β+1)

β
T X + m(m+p)

β
T Z

−mα(α+β+1)
β

X2 + m(3β+2α+3)
β

XZ − m(m+p−1)
β

Z
2
,

Ż = m
β
Z[(m + p − 2)T + 2X − (m + p − 2)Z].

After rather long calculations, one can find that the center manifold is given by
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T (X,Z) = −mα(α + β + 1)

β2 X2 + m(3β + 2α + 3)

β2 XZ

− m(m + p − 1)

β2 Z
2 + O(|(X,Z)|3),

and the flow on the center manifold is given (discarding the terms containing T , which are of 
higher order) by the reduced system

⎧⎨
⎩

Ẋ = m
β
X[X − (m − 1)Z] + O(|(X,Z)|3),

Ż = m
β
Z[2X − (m + p − 2)Z] + O(|(X,Z)|3).

(5.5)

In order to study the orbits near the nonhyperbolic critical point (X, Z) in the system (5.5), we 
first do an affine change of variable by letting:

X1 := X − (p − 1)Z, Z1 := −(p − 1)Z, (5.6)

which transforms (5.5) into the following topologically equivalent system (in which we only 
keep the quadratic terms and we omit the higher order ones for simplicity)

⎧⎪⎨
⎪⎩

Ẋ1 = m
β
X1

[
m−1
p−1 Z1 + X1

]
,

Ż1 = m
β
Z1

[
2X1 + m−p

p−1 Z1

]
,

(5.7)

which can be written in the following form

dZ1

dX1
= f

(
Z1

X1

)
, f (k) = a + bk + ck2

d + ek + f k2 ,

with coefficients

a = f = 0, b = 2, c = m − p

p − 1
, d = 1, e = m − 1

p − 1
.

We are thus in the framework of the general classification given in the paper [25], and more 
precisely, noticing that

f ′(0) = b

d
= 2 > 1, f ′(1) = c + d

e + d
= m − 1

m + p − 2
∈ (0,1), f ′(∞) = c

e
= m − p

m − 1
∈ (0,1),

the phase portrait of the system (5.7) near the origin corresponds to Case 9 in [25, Page 177], 
that is, a nonhyperbolic point having an elliptic sector in the quadrant {X1 > 0, Z1 < 0} and a 
hyperbolic sector in the quadrant {X1 > 0, Z1 > 0}. Undoing the affine transformation (5.6) to 
come back to the original variables, we have
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Fig. 3. Local behavior of the system (5.5) with one elliptic sector and one hyperbolic sector at the origin.

X = X1 − Z1, Z = − 1

p − 1
Z1,

thus the phase portrait of the system (5.5) in a neighborhood of the origin has an elliptic sector 
in a part of the quadrant {X > 0, Z > 0} and a hyperbolic sector in the remaining part of this 
quadrant, see Fig. 3. In particular, this implies that there are orbits going out and entering the 
origin of the system (3.4) along the center manifold of this critical point. Since we identified the 
orbits entering (X, Y, Z) = (0, 0, 0) in (3.4) tangent to the center manifold of this point to the 
orbits entering the critical point Pγ0 tangent to its center manifold in the system (2.4), it follows 
that there is always at least an orbit connecting P0 to Pγ0 in the phase space associated to the 
system (2.4). The conclusion follows from Lemmas 2.1 and 2.4. �

We plot in Fig. 3 the phase portrait of the system (5.5) near the origin, with the two sectors, 
one elliptic and one hyperbolic, separated by the line {X = Z}.

One more interesting remark noticed first in the numerical experiments was the monotonicity 
of the components X and Y along any orbit going out of P2 in the system (at least in the region 
where Y > 0). This is in fact a very important feature and is established below.

Lemma 5.3. Consider the orbit in the phase space coming out of P2 for any σ > 0. Then the X
component is decreasing along the whole orbit and the Y component is also decreasing in the 
region {Y ≥ 0}. In particular, X < X(P2) := (m −1)/2m(m +1) and Y < Y(P2) := 1/m(m +1)

at any point different from P2.

Proof. We readily get from the analysis in Lemma 2.3 that the unique orbit coming out of P2
starts with components X and Y decreasing in a (small) neighborhood of P2. Moreover, where 
Y < 0, it is obvious that Ẋ < 0 from the first equation in (2.4). Assume by contradiction that X
is not decreasing in the region {Y > 0}, thus there exists a first point η = η1 on the connection 
starting from P2 where X changes its monotonicity, that is, Ẋ(η1) = 0 and X′′(η1) ≥ 0. That is, 
(m − 1)Y (η1) = 2X(η1), hence

0 ≤ X′′(η1) = m(m − 1)X(η1)Y
′(η1)
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and we infer that Y should have already changed monotonicity either before η1 or at the same 
point. Let then η2 ∈ (0, η1] be the first point where the Y component of the orbit coming out of 
P2 changes monotonicity, that is, Ẏ (η2) = 0 and Y ′′(η2) ≥ 0. In a first case, if η2 = η1, taking 
into account that also Ẋ(η1) = 0, we compute from the second equation in (2.4) that

Y ′′(η2) = −X(η2)Ż(η2) = −mX(η2)Z(η2)[(p − 1)Y (η2) + σX(η2)] < 0,

and a contradiction, since in the region {Y > 0} component Z is strictly increasing and thus 
Z(η2) > 0. In a second case, if η2 < η1 (the point where the monotonicity of Y changes for the 
first time lies on the orbit before the one where X does the same), we thus have Ẋ(η2) < 0. Since 
Ẏ (η2) = 0 we get that

α − mY(η2) − Z(η2) = mY 2(η2) + βY(η2)

X(η2)
> 0, (5.8)

thus we deduce from (5.8) that

Y ′′(η2) = αẊ(η2) − mẊ(η2)Y (η2) − Ẋ(η2)Z(η2) − X(η2)Ż(η2)

= Ẋ(η2)[α − mY(η2) − Z(η2)] − mX(η2)Z(η2)[(p − 1)Y (η2) + σX(η2)] < 0,

and a contradiction, ending the proof. �
Before stating the main proposition of this subsection, we need one more technical result 

concerning the reduced phase-plane inside the invariant plane {Z = 0}.

Lemma 5.4. For any p > 1, σ > 0 there exists an orbit connecting P0 to P2, lying in the plane 
{Z = 0} of the phase space associated to the system (2.4).

Proof. We restrict to the invariant plane {Z = 0}, and the system (2.4) reduces to

{
Ẋ = mX[(m − 1)Y − 2X],
Ẏ = −mY 2 − βY + αX − mXY.

(5.9)

We consider next two important curves in the phase plane associated to the system (5.9). The 
first of them is the line of equation (m − 1)Y − 2X = 0, passing through the critical points P0
and P2. The flow of the system (5.9) over this curve is given by the sign of the expression

−mY 2 − βY + αX − mXY = 2m(m + 1)

(m − 1)2 X[X(P2) − X],

which is positive in the region {0 ≤ X < X(P2)}. The second curve we consider is the curve 
where dY/dX = 0, that is, of equation

−mY 2 − βY + αX − mXY = 0,
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and the flow of the system (5.9) across this curve is given by the sign of the expression

mX(α − mY)[(m − 1)Y − 2X],

which is negative in the region Y < Y(P2) since α > 1/(m + 1) = mY(P2). Since both curves 
above connect P0 to P2, they bound an interior region in which an orbit of the phase plane 
associated to the system (5.9) may enter from outside, but never go out of it. Since the point P2 is 
an attractor for the phase plane associated to (5.9), it is an easy verification that the orbits going 
out of P0 inside the region enclosed by the two curves will enter P2. The same proof for the case 
p = 1 is given in great detail as Lemma 5.4 in [19]. �

Let us next introduce:

Y0 := (m − 1)(σ + 2)

2m[σ(m − 1) + 2(p − 1)] = (m − 1)(σ + 2)

2(m − p)

β

m
, p ∈ (1,m), σ > 0.

Notice first that Y0 > β/m for any p > 1, σ > 0. We then have

Lemma 5.5. If an orbit in the phase space associated to the system (2.4) crosses the plane 
{Y = −Y0} for p ∈ (1, m), σ > 0 and at the crossing point the coordinate X < X(P2) :=
(m − 1)/2m(m + 1), then it cannot reenter the half-space {Y > −Y0} later on.

Proof. The flow of the system (2.4) on the plane {Y = −Y0} is given by the sign of P(−Y0), 
where

P(Y ) := −mY 2 − (β + mX)Y + αX − XZ,

whose smallest real root (if any, otherwise P(y) < 0 for any y ∈ R and the conclusion becomes 
obvious) is

y := − (β + mX) + √
(β + mX)2 + 4m(αX − Z)

2m
.

We readily get that

y > − (β + mX(P2)) + √
(β + mX(P2))2 + 4mαX(P2)

2m
= −Y0,

whence P(−Y0) < 0. Since in the half-space {Y < 0} we have Ẋ < 0, the inequality X < X(P2)

is also preserved along the orbit after the crossing point, thus the orbit cannot come back and 
cross again the plane {Y = −Y0}. �
Remark. It readily follows from Lemma 5.5 and the inequality (5.4) that if f is a profile with 
interface, then its orbit in the phase space does not cross the plane {Y = −Y0} and there exists a 
constant C > 0 depending only on m and p, but independent of σ and f , such that

|(f m−1)′(ξ)| ≤ Cξ, for any ξ > 0. (5.10)
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Moreover,

(f m)′(ξ) = m

m − 1
(f m−1)′(ξ)f (ξ) ≤ K(m,p)ξ (m+1)/(m−1), (5.11)

which is an immediate consequence of (5.2) and (5.10), the constant K(m, p) depending only on 
m and p.

We are now in a position to state the main result concerning the good profiles contained in the 
orbit starting from the critical points P2 and P0 for sufficiently large σ > 0.

Proposition 5.6. Given p ∈ (1, m) fixed, there is σ1 > 0 (depending on p) such that, for any 
σ ∈ (σ1, ∞), the orbit going out of P2 in the phase space associated to the system (2.4) enters 
the critical point at infinity denoted by Q3 on the Poincaré hypersphere. Moreover, for any σ ∈
(σ1, ∞) there are orbits connecting P0 and Q3 in the same phase space.

Proof. The proof is technically involved and consists in constructing suitable geometric barriers 
in form of planes in the phase space associated to the system (2.4), limiting the way for the orbit 
coming out of P2 (at least for suitably large σ ). Some of the calculations required in the proof 
are very technical and were performed with the help of a computer program. We divide the proof 
into several steps.

Step 1. Consider the following two planes of equations

Z = E − DY, D = 2m(m + 1)2

m − 1
, E = 2(m + 1)

m − 1
, (5.12)

and respectively

X = BY + C, B = m(m − 1)

2m2 + 5m + 1
, C = (2m + 1)(m − 1)

2m(2m2 + 5m + 1)
(5.13)

Notice that both planes contain the point P2. After some calculations, the flow of the system (2.4)
on the plane given by (5.12) is given by the sign of the following complicated expression:

F(X,Y ;m,p,σ ) := −mpY 2 − m2 + mσ − mp − mpσ + m + pσ − 2p2 + 3p − σ − 2

(m + 1)(σ (m − 1) + 2(p − 1))
Y

+ m(2m2 − mσ + 3m + σ + 3)

m − 1
XY − L(m,p,σ )

(m + 1)(m − 1)(σ (m − 1) + 2(p − 1))
X,

where

L(m,p,σ ) := −(m − 1)2σ 2 + σ(m − 1)(2m2 + 3m + 3 − 2p)

+ 4p(m + 1)2 − 2(m + 1)(3m + 1).

We show first that in the region of the phase space where −Y0 < Y < Y(P2) := 1/m(m + 1), the 
term multiplying X in the expression of F(X, Y ; m, p, σ) is positive, that is
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K(Y) := m(2m2 − mσ + 3m + σ + 3)

m − 1
Y − L(m,p,σ )

(m + 1)(m − 1)(σ (m − 1) + 2(p − 1))
> 0,

(5.14)
for σ > 0 sufficiently large. Indeed, we notice that the coefficient of Y in (5.14) is negative 
for σ > (2m2 + 3m + 3)/(m − 1) and the same happens for the expression L(m, p, σ) for σ
large enough. Thus it is obvious that K(Y) > 0 for Y ≤ 0. Moreover, replacing Y = Y(P2) =
1/m(m + 1) in (5.14), we get

K(Y(P2)) = 2(m − p + σ + 2)

(m + 1)(σ (m − 1) + 2(p − 1))
> 0.

Since K(Y) is a linear expression, it follows that K(Y) > 0 for Y ∈ (−Y0, Y(P2)). Let us restrict 
now to the region of the plane (5.12) limited by the intersection with the plane (5.13) in which 
we have X > BY + C, where B , C are given in (5.13). According to the positivity of K(Y), we 
infer that for −Y0 < Y < Y(P2) and σ > 0 sufficiently large holds

F(X,Y ;m,p,σ ) > F(BY + C,Y ;m,p,σ )

= (m(m + 1)Y − 1)(K1Y + K2)

2m(m + 1)(2m2 + 5m + 1)(σ (m − 1) + 2(p − 1))
,

where

K1 = 2m(σ(m − 1) + 2(p − 1))
[
−m(m − 1)σ + 2m3 + 3m2 + 3m − 2m2p − 5mp − p

]
,

K2 = (2m + 1)
[
−(m − 1)2σ + (m − 1)(2m2 + 3m − 2p + 3)σ

+2(m + 1)(2mp − 3m + 2p − 1)]

One can next prove (we omit here the rather tedious but straightforward calculations, for example 
by estimating at Y = −Y0, Y = 0 and noticing that K1 < 0 for σ > 0 large) that for σ > 0 large 
enough, the quantity K1Y + K2 is negative for −Y0 < Y < Y(P2). Moreover, since Y < Y(P2), 
it follows that m(m +1)Y < 1, hence F(BY +C, Y ; m, p, σ) > 0 in the region we are concerned 
with, that is −Y0 < Y < Y(P2). Thus, the flow in this region of the plane (5.12) is in the positive 
direction of the normal to the plane (5.12).

Step 2. We consider now the plane given by the equation (5.13) and we restrict ourselves to the 
region where Z > E − DY with D, E as in (5.12). The flow of the system (2.4) on the plane 
(5.13) is given by the sign of the following expression:

H(Y,Z;m,p,σ ) = 2m3(m − 1)(m + 1)2

(2m2 + 5m + 1)2 Y 2 + (m − 1)(m + 1)J (m,p,σ )

2(σ (m − 1) + 2(p − 1))(2m2 + 5m + 1)2 Y

+
[

m2(m − 1)2

(2m2 + 5m + 1)2 Y + (2m + 1)(m − 1)2

2(2m2 + 5m + 1)2

]
Z

− (2m2σ + 4mp − 2m + 2p − σ − 2)(2m + 1)(m − 1)2

2 2 ,

2m(σ(m − 1) + 2(p − 1))(2m + 5m + 1)
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where

J (m,p,σ ) := σ(4m4 − 6m3 + m + 1) + (8m3 − 8m2 − 6m − 2)p − 4m3 + 6m2 + 4m + 2.

Since the coefficient of Z in the expression of H(Y, Z; m, p, σ) is BY + C = X > 0, we can 
replace Z in the above mentioned region by E − DY and thus obtain

H(Y,Z;m,p,σ ) > H(Y,E − DY ;m,p,σ )

= − (m − 1)(2m + 1)S(m,p,σ )

2m(σ(m − 1) + 2(p − 1))(2m2 + 5m + 1)2 (m2Y + mY − 1),

with

S(m,p,σ ) := (2m + 1)(m − 1)σ − 2m2 + 6mp − 4m + 2p − 2 > 0,

provided σ > 0 is large enough. Noticing that m2Y + mY − 1 = m(m + 1)(Y − Y(P2)) which is 
negative on any connection coming out of P2 according to Lemma 5.3, we readily infer that the 
flow on the considered region of the plane (5.13) has positive sign for Y ∈ (−Y0, Y(P2)).

Step 3. Connections from P2 to Q3. Let us now take σ > 0 sufficiently large in order to fulfill all 
the conditions for the positivity of the flows in the previous Steps 1 and 2. Recall that a connection 
coming out of the critical point P2 starts tangent to the eigenvector e3 = (x(σ ), −1, z(σ )), where 
x(σ ), z(σ ) are defined in the proof of Lemma 2.3. Noticing that the scalar product between the 
normal to the plane given by (5.12) and e3 is

(0,D,1) · e3 = z(σ ) − D > 0,

for σ > 0 large enough, we infer that the orbit coming out of P2 starts in the region where 
Z > E − DY (and Y < Y(P2) by Lemma 5.3). Moreover, the same can be said about the plane 
given by (5.13), since

(1,−B,0) · e3 = x(σ ) + B = m(m − 1)

2m2 + 5m + 1
− (m − 1)2

2(m + p − 2) + σ(m − 1)
> 0,

provided σ > 0 is very large. Thus, the orbit coming out of P2 also begins in the region where 
X > BY + C for σ > 0 large enough. But then, the outcome of Steps 1 and 2 above proves that 
the orbit coming out of P2 has to remain in the region where simultaneously

X > BY + C, Z > E − DY, for − Y0 < Y < Y(P2).

Indeed, due to the positive signs of the flows given by F(X, Y ; m, p, σ) and H(Y, Z; m, p, σ) in 
the corresponding region, the orbit cannot intersect any of the two planes given by the equations 
(5.12) and (5.13). This means that, in particular, taking σ > σ1 > 0 with σ1 large enough so that 
all the positivity conditions in Steps 1, 2 and 3 are satisfied, the orbit coming out of P2 will 
remain in the geometric region {X > BY +C} while Y > −Y0. It is then obvious that the critical 
point Pγ0 does not lie in the region {X > BY + C}. Moreover, the same is true for the interface 
critical point P1 = (0, −β/m, 0) given σ large enough, since
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− β

m
B + C = m − 1

2m2 + 5m + 1

[
2m + 1

2m
− m − p

σ(m − 1) + 2(p − 1)

]
> 0.

It thus follows that, provided σ > 0 sufficiently large, the orbit coming out of P2 cannot enter 
any of the critical points Pγ0 and P1 before, in a first step, crossing the plane {Y = −Y0}. But 
then Lemma 5.5 implies that the orbit cannot go back to enter again the half-space {Y > −Y0}, 
in which both critical points Pγ0 and P1 lie. This argument discards that, for σ > 0 large enough 
so that all the previous conditions of positivity hold true, the orbit coming out of P2 may enter 
the points Pγ0 and P1. From the monotonicity of the components X (see Lemma 5.3) and Y in 
the region {Y < −Y0} (see the proof of Lemma 5.5), and from the invariance of the ω-limit set 
[27, Theorem 2, Section 3.2], we infer that the orbit coming out of P2 for σ > 0 sufficiently large 
must enter a critical point in the closure of the region {Y < −Y0}, and the only such critical point 
is Q3.

Step 4. Connections from P0 to Q3. Let p ∈ (1, m) and σ > σ1 be fixed, where σ1 > 0 is large 
enough such that all the positivity conditions in Steps 1, 2, 3 are simultaneously satisfied and thus 
the orbit coming out of P2 in the phase space connects to the stable node Q3 at infinity. Since Q3
is a stable node and P2 a saddle point, there exists δ > 0 sufficiently small such that for any (non-
critical) point in a small half-ball near P2, namely (X, Y, Z) ∈ B(P2, δ) ∩ {Z > 0}, the unique 
orbit passing through this point in the phase-space enters Q3. It also follows from Lemma 5.4
that there is an orbit connecting P0 to P2 inside the plane {Z = 0}. Again by continuity, there 
exists an orbit going out of P0 and entering the ball B(P2, δ) (without connecting to P2). We thus 
infer that this orbit in the phase space coming out of P0 enters Q3, as desired. �
5.2. Proof of Theorems 1.4 (b) and 1.5

We begin with the following preparatory result:

Lemma 5.7.

(a) Let m > 1, p ∈ (1, m) be such that there exist σ1, σ2 > 0 such that for σ = σ1, the orbit 
coming out of P2 in the phase space associated to the system (2.4) enters Pγ0 and for σ = σ2
the orbit coming out of P2 enters Q3. Then there exists σ0 > 0 such that for σ = σ0 there is 
a good profile with interface with behavior (1.7) near ξ = 0.

(b) Let m > 1, p ∈ (1, m) and σ > 0 be such that in the phase space associated to the system 
(2.4) there are orbits connecting P0 to Pγ0 and orbits connecting P0 to Q3. Then there exists 
at least one good profile with interface with behavior (1.8) near ξ = 0.

Proof. (a) We define the following three sets:

A := {σ > 0 : the orbit from P2 enters Pγ0},
B := {σ > 0 : the orbit from P2 enters P1},
C := {σ > 0 : the orbit from P2 enters Q3}.

Since Pγ0 and Q3 are both attractors, it is easy to see that the sets A and C are open. Moreover, 
both sets are non-empty, since σ1 ∈ A and σ2 ∈ C. It follows from the analysis in Section 2
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that A ∪ B ∪ C = (0, ∞) and the three sets are obviously disjoint. It then follows that B is 
nonempty and closed, hence any element σ0 ∈ B gives the conclusion. (b) Inspecting the proof 
of Lemma 2.1, we readily observe that the orbits going out of P0 tangent to the center manifold 
form a one-parameter family depending on the constant k > 0 such that Z ∼ kX near ξ = 0. We 
also remark from the local analysis done in Section 2 that the orbits coming out of P0 can only 
enter the attractors Pγ0 and Q3 and the interface critical point P1. We can thus define the sets:

A0 := {k > 0 : the orbit from P0 with Z ∼ kX enter Pγ0},
B0 := {k > 0 : the orbit from P0 with Z ∼ kX enter P1},
C0 := {k > 0 : the orbit from P0 with Z ∼ kX enter Q3}.

The hypothesis implies that A0 and C0 are nonempty. Moreover, A0 ∪ B0 ∪ C0 = (0, ∞) and A0

and C0 are open sets, since both Pγ0 and Q3 are attractors. Thus the complement B0 is a closed 
and nonempty set, hence there exists at least a connection in the phase space from P0 to P1 as 
claimed. �

We are now in a position to prove part (b) of Theorem 1.4.

Proof of Theorem 1.4, (b). Let p ∈ (1, m) and σ ∈ (σ1, ∞), with σ1 > 0 defined in Proposi-
tion 5.6. Then Proposition 5.6 implies that the orbit starting from P2 enters Q3 and there are 
orbits going out of P0 and entering Q3. We also infer from Lemma 5.2 that there are orbits going 
out of P0 and entering Pγ0 . Lemma 5.7 then proves that there are orbits coming out of P0 and 
entering P1, for any p ∈ (1, m) and σ ∈ (σ1, ∞). Any profile contained in such an orbit is a good 
profile with interface with behavior near ξ = 0 given by (1.8). �

Since we are also interested in profiles with decay (1.12) as ξ → ∞, we prove first the fol-
lowing result for σ = 0.

Lemma 5.8. In the homogeneous case σ = 0, all the good profiles with f (0) = 0 and (f m)′(0) =
0, go to a constant as ξ → ∞, that is

lim
ξ→∞f (ξ) =

(
1

p − 1

)1/(p−1)

.

Proof. We adapt here an argument from [31, Lemma 1, pp. 183-184] (in the cited book, it is 
used for profiles with f (0) = a > 0 and f ′(0) = 0). We multiply Eq. (1.5) (with σ = 0) by 
f m−1(ξ)f ′(ξ) to get

(m − 1)(f m−1f ′)(ξ)(f m−1f ′)′(ξ) − α(f mf ′)(ξ) + βξf m−1(ξ)(f ′)2(ξ)

+ (f m+p−1f ′)(ξ) = 0.
(5.15)
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Integrating (5.15) on a generic interval (0, ξ) and taking into account the initial conditions 
f (0) = 0, (f m)′(0) = 0, we get

1

m + p
f m+p(ξ) − α

m + 1
f m+1(ξ) + m − 1

2
(f m−1f ′)2(ξ)

= −β

ξ∫
0

sf m−1(s)(f ′)2(s) ds < 0.

(5.16)

This shows that there is no point ξ0 > 0 such that f (ξ0) = 0, as the existence of such point 
would contradict (5.16). We thus infer that f (ξ) > 0 for any ξ > 0. But coming back to the 
list of behaviors in Section 2 (which at the level of the phase space also works for σ = 0), the 
only possibility is that the profiles f belong to orbits entering the attractor Pγ0 , that is, go to the 
special constant (1/(p − 1))1/(p−1) as ξ → ∞, as stated. �

This helps us to complete the proof of our Theorem 1.5.

Proof of Theorem 1.5. As the point Pγ0 is an attractor for any σ ≥ 0 and as for σ = 0, the 
orbit going out of P2 and all orbits going out of P0 enter Pγ0 according to Lemma 5.8, standard 
continuity arguments show that this fact stays true in a right neighborhood σ ∈ (0, σ0) of σ = 0. 
We stress here that, although at the level of the phase space is the same behavior, at the level of 
profiles a big difference occurs when passing from σ = 0 to σ > 0: in the former, these profiles 
were converging to the constant (1/(p − 1))1/(p−1) as ξ → ∞, while in the latter they decay to 
zero with the decay rate given in (2.13). Finally, Lemma 5.2 shows that for any σ > 0 there exists 
at least an orbit connecting P0 and Pγ0 in the phase space, concluding the proof. �
5.3. Critical connections. Proof of Theorem 1.4 (a)

With the preparations done in the previous subsections, we are now in a position to proceed 
to the proof of our remaining result, that is the existence of good profiles with interface with 
behavior as in (1.7) starting with f (0) = 0, (f m)′(0) = 0, for any p ∈ (1, m) and some σ ∗ =
σ ∗(m, p) > 0.

Proof of Theorem 1.4, (a). Fix m > 1. On the one hand, it follows in particular from the above 
proof of Theorem 1.5 that for any p ∈ (1, m), there exists σ0 > 0 such that the orbit starting 
from P2 for σ ∈ (0, σ0) enters Pγ0 . On the other hand, we infer from Proposition 5.6 that for 
any p ∈ (1, m) and σ > σ1 > 0 sufficiently large, the orbit coming out of P2 enters the critical 
point Q3. Thus, by Lemma 5.7, part (a), we deduce that for any p ∈ (1, m) there exists at least 
a connection from P2 to P1 for some σ = σ ∗(p), hence a good profile with interface f starting 
with f (0) = 0, (f m)′(0) = 0, as claimed. �

For the reader’s convenience, we gather in Fig. 4 below a visual representation of how the 
connections starting from the points P2 and P0 in the phase space associated to the system (2.4)
vary with σ > 0. We notice how the good profiles with interface arrive from these two points 
according to σ , as proved above. The numerical experiments were realized with m = 3, p = 1.5
and for the three cases σ = 1.5 (small), σ = 2.3218 (critical) and σ = 3 (large).
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Fig. 4. Orbits from P2 and P0 for different values of σ .
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