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Abstract

A jumping problem for a class of singular semilinear elliptic equations is considered. Minimax
methods in the framework of nonsmooth critical point theory are applied.
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1. Introduction

Let � be a bounded domain in Rn, let � > 0 and let g : � × R → R be a
Carathéodory function. Since the pioneering papers of Crandall et al. [8] and Stuart
[17], singular semilinear elliptic problems of the form⎧⎪⎨

⎪⎩
u > 0 in � ,

−�u = u−� + g(x, u) in � ,

u = 0 on ��

(1.1)

have been considered, under various assumptions on g, by several authors (see e.g.
[10,14–16,20] and the references therein). Let us also mention [7,9], where the case in
which the singular term u−� has the opposite sign is treated.
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However, in spite of the fact that (1.1) is formally the Euler equation of the functional

f (u) = 1

2

∫
�

|Du|2 dx +
∫
�

�(u) dx −
∫
�

∫ u(x)

0
g(x, s) dsdx , u ∈ W

1,2
0 (�) ,

where

�(s) =
⎧⎨
⎩−

∫ s

1
t−� dt if s�0 ,

+∞ if s < 0 ,

few existence and multiplicity results for (1.1) have been so far obtained through a
direct variational approach. The main reason, apart from the nonsmoothness of �, is that,
already in the case g ≡ 0, problem (1.1) has no solution u in W

1,2
0 (�) and f ≡ +∞,

if ��3 (see [16, Theorem 2]). Nevertheless, other methods have been successfully
applied to (1.1) in the mentioned papers, providing the existence of solutions u in
C(�)∩C2(�), without any restriction on �. Among the few papers dealing with direct
variational methods, let us mention [13,18], where the case in which ��1 and g is
superlinear at +∞ is studied.

The main purpose of this paper is to face a classical problem of nonlinear analysis,
that of “jumping” [1], in the setting of (1.1) by a direct minimax approach without
any restriction on �.

The starting point is the recent paper [6], where a variational approach is provided
for the problem ⎧⎪⎨

⎪⎩
u > 0 in � ,

−�u = u−� + w in � ,

u = 0 on �� ,

(1.2)

in the case in which w is a function depending only on x. In particular, if � has
smooth boundary and w is Hölder continuous on �, it has been proved in [6] that the
solution u ∈ C(�) ∩ C2(�) of (1.2) already found in [8] can be also obtained as the
minimum of a suitable lower semicontinuous, strictly convex functional �w.

Here we will apply critical point theory to a functional of the form �0 + �, where
�0 is the functional corresponding to the case w = 0 and � is a perturbation of class
C1 associated with the nonlinearity g.

1.1. The main results

Suppose that g satisfies the following assumptions:

(g.1) there exists C > 0 such that

|g(x, s)|�C(1 + |s|) for a.e. x ∈ � and every s ∈ R,
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(g.2) there exists � ∈ R such that

lim
s→+∞

g(x, s)

s
= � for a.e. x ∈ �.

Denote by �1 the first eigenvalue of −� with homogeneous Dirichlet condition and
by �1 an associated eigenfunction with �1 > 0 in �.

We are interested in the solvability, in dependence on t ∈ R, of the problem

⎧⎪⎨
⎪⎩

u > 0 in � ,

−�u = u−� + g(x, u) − t�1 a.e. in � ,

u = 0 on �� .

(1.3)

Let us state our main results.

Theorem 1.1. Assume that each x ∈ �� satisfies the Wiener criterion [12] (for instance,
� has Lipschitz boundary) and that � > �1.

Then there exists t ∈ R such that, for every t > t , problem (1.3) has at least two

distinct solutions in C(�) ∩
( ⋂

1�p<∞
W

2,p
loc (�)

)
.

Theorem 1.2. Let � > �1. Then there exists t ∈ R such that, for every t < t , problem

(1.3) has no solution in C(�) ∩
( ⋂

1�p<∞
W

2,p
loc (�)

)
.

Theorems 1.1 and 1.2 will be proved in Section 4. In Section 2, we recall from [19]
the nonsmooth version of the Mountain pass theorem we need. In Section 3, we prove
a more general version of Theorem 1.1, without any regularity assumption on �� and
with a further term in W−1,2(�) at the right-hand side of the elliptic equation. In such
a case, according to [6], the boundary condition “u = 0 on ��” needs a suitable weak
reformulation and the equation in � has to be substituted by a variational inequality
(see in particular [6, Theorem 3.4 and Example 3.6]).

2. A nonsmooth version of the Mountain pass theorem

In this section we recall from [19] an extension of the celebrated Mountain pass
theorem of Ambrosetti and Rabinowitz [2].

Let X be a real Banach space and f : X →] − ∞, +∞] a function. Assume that
f = � + �, where � : X →] − ∞, +∞] is convex, proper (i.e. f �≡ +∞) and lower
semicontinuous and � : X → R is of class C1.
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Definition 2.1. A point u ∈ X is said to be critical for f , if

�(v)��(u) − 〈�′(u), v − u〉 ∀v ∈ X .

Definition 2.2. We say that f satisfies the Palais–Smale (PS) condition if, for every
sequence (uh) in X and (wh) in X∗ such that sup

h

|f (uh)| < +∞, ‖wh‖ → 0 and

�(v)��(uh) − 〈�′(uh), v − uh〉 + 〈wh, v − uh〉 ∀v ∈ X ,

the sequence (uh) admits a convergent subsequence in X.

Remark 2.3. (a) The notions introduced in Definitions 2.1 and 2.2 are independent of
the decomposition f = � + �.

(b) If u ∈ X with f (u) < +∞ is a local minimum of f , then u is a critical point
of f .

For the next result, we refer the reader to [19, Theorem 3.2].

Theorem 2.4. Assume that f satisfies (PS) and that there exist r > 0 and � > f (0)

such that

f (u)�� ∀u ∈ X with ‖u‖ = r ,

f (u1)�f (0) for some u1 ∈ X with ‖u1‖ > r .

Then there exists a critical point u for f with f (u)��.

3. Jumping for a class of singular variational inequalities

Let � be a bounded domain in Rn, let � > 0, let g : � × R → R be a Carathéodory
function and let w ∈ W−1,2(�). Suppose also that g satisfies (g.2) and

(g.1′) there exist two functions a, b such that

|g(x, s)|�a(x) + b(x)|s| for a.e. x ∈ � and every s ∈ R,

where a ∈ L
2n

n+2 (�) and b ∈ L
n
2 (�) if n�3, a, b ∈ Lp(�) for some p > 1 if

n = 2, a, b ∈ L1(�) if n = 1.

Throughout this section, no regularity condition is imposed on ��.
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In the following, we will consider the space W
1,2
0 (�) endowed with the norm

‖u‖ :=
(∫

�
|Du|2 dx

) 1
2

.

We also denote by L∞
c (�) the space of L∞-functions on � vanishing a.e. outside some

compact subset of �.

Definition 3.1. Let u ∈ W
1,2
loc (�). We say that u�0 on �� if, for every ε > 0, the

function (u − ε)+ belongs to W
1,2
0 (�).

Given t ∈ R, we are interested in the solutions u ∈ W
1,2
loc (�) of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u > 0 a.e. in � and u−� ∈ L1
loc(�) ,∫

�
DuD(v − u) dx�

∫
�

(
u−� + g(x, u)

)
(v − u) dx

−t

∫
�

�1(v − u) dx + 〈w, v − u〉

∀v ∈ u +
(
W

1,2
0 (�) ∩ L∞

c (�)
)

with v�0 a.e. in � ,

u�0 on �� .

(3.1)

According to [6, Theorem 2.2], there exists one and only one u0 ∈ L∞(�)∩C∞(�)

such that

⎧⎪⎨
⎪⎩

u0 > 0 in � ,

−�u0 = u
−�
0 in � ,

u0 �0 on �� .

(3.2)

Define a lower semicontinuous, convex function � : R →] − ∞, +∞] by

�(s) =
⎧⎨
⎩−

∫ s

1
t−� dt if s�0 ,

+∞ if s < 0

and a Borel function G0 : � × R → [0, +∞] by

G0(x, s) = �(u0(x) + s) − �(u0(x)) + s u
−�
0 (x) .

Finally, let g1(x, s) = g(x, u0(x) + s) and let G1(x, s) =
∫ s

0
g1(x, t) dt .
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For every t ∈ R, let ft : W
1,2
0 (�) →] − ∞, +∞] be the functional defined as

ft = � + �t , where

�(u) = 1

2

∫
�

|Du|2 dx +
∫
�

G0(x, u) dx ,

�t (u) = −
∫
�

G1(x, u) dx + t

∫
�

�1 u dx − 〈w, u〉 .

According to [6, Section 4], the functional � : W
1,2
0 (�) → [0, +∞] is strictly convex

and lower semicontinuous, with �(0) = 0, while it is standard that �t : W
1,2
0 (�) → R

is of class C1 with �t (0) = 0.

Theorem 3.2. Let u ∈ W
1,2
0 (�) be such that

1

2

∫
�

|Dv|2 dx +
∫
�

G0(x, v) dx � 1

2

∫
�

|Du|2 dx +
∫
�

G0(x, u) dx

+
∫
�

(
g1(x, u) − t�1

)
(v − u) dx + 〈w, v − u〉

∀v ∈ W
1,2
0 (�) .

Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 + u > 0 a.e. in � and (u0 + u)−� ∈ L1
loc(�) ,∫

�
DuD(v − u) dx�

∫
�

(
(u0 + u)−� − u

−�
0

)
(v − u) dx

+
∫
�

(
g(x, u0 + u) − t�1

)
(v − u) dx + 〈w, v − u〉

∀v ∈ u +
(
W

1,2
0 (�) ∩ L∞

c (�)
)

with v� − u0 a.e. in � ,

u0 + u�0 on �� .

(3.2.1)

Proof. Since g(x, u0+u)−t�1+w ∈ W−1,2(�), the assertion follows from [6, Theorem
3.4]. �

Lemma 3.3. Let (uh) be a sequence in W
1,2
0 (�) and (�h) a sequence in W−1,2(�).

Assume that (�h) is strongly convergent in W−1,2(�) and that

1

2

∫
�

|Dv|2 dx +
∫
�

G0(x, v) dx � 1

2

∫
�

|Duh|2 dx +
∫
�

G0(x, uh) dx

+〈�h, v − uh〉 ∀v ∈ W
1,2
0 (�) . (3.3.1)

Then (uh) is strongly convergent in W
1,2
0 (�).
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Proof. If we set v = 0 in (3.3.1), we get

1

2

∫
�

|Duh|2 dx +
∫
�

G0(x, uh) dx�〈�h, uh〉 .

It follows that (uh) is bounded, hence weakly convergent, up to a subsequence, to some
u in W

1,2
0 (�) with G0(x, u) ∈ L1(�).

If we put v = u in (3.3.1), we obtain

lim sup
h

(
1

2

∫
�

|Duh|2 dx +
∫
�

G0(x, uh) dx

)
� 1

2

∫
�

|Du|2 dx +
∫
�

G0(x, u) dx .

Since G0(x, s)�0, we infer that

lim sup
h

∫
�

|Duh|2 dx�
∫
�

|Du|2 dx

and the strong convergence, up to a subsequence, of (uh) to u follows.
Finally, if we denote by � ∈ W−1,2(�) the limit of (�h) and pass to the lower limit

in (3.3.1), we get

1

2

∫
�

|Dv|2 dx +
∫
�

G0(x, v) dx � 1

2

∫
�

|Du|2 dx +
∫
�

G0(x, u) dx

+〈�, v − u〉 ∀v ∈ W
1,2
0 (�) .

This means that u is the minimum of the strictly convex functional � − �. It follows
that the whole sequence (uh) is convergent to u. �

Theorem 3.4. Assume that � > �1. Then, for every t ∈ R, the functional ft satisfies
(PS).

Proof. Let (uh) be a sequence in W
1,2
0 (�) and (�h) a sequence in W−1,2(�) with

sup
h

|ft (uh)| < +∞, �h → 0 and

1

2

∫
�

|Dv|2 dx +
∫
�

G0(x, v) dx

� 1

2

∫
�

|Duh|2 dx +
∫
�

G0(x, uh) dx
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+
∫
�

(
g1(x, uh) − t�1

)
(v − uh) dx + 〈w + �h, v − uh〉

∀v ∈ W
1,2
0 (�) . (3.4.1)

By Theorem 3.2, it follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 + uh > 0 a.e. in � and (u0 + uh)
−� ∈ L1

loc(�) ,∫
�

DuhDv dx�
∫
�

(
(u0 + uh)

−� − u
−�
0

)
v dx

+
∫
�

(
g1(x, uh) − t�1

)
v dx + 〈w + �h, v〉

∀v ∈ W
1,2
0 (�) ∩ L∞

c (�) with v� − u0 − uh a.e. in � ,

u0 + uh �0 on �� .

(3.4.2)

First of all, we claim that (uh) is bounded in W
1,2
0 (�). By contradiction, let �h :=

‖uh‖ → +∞ and let zh = uh/�h. Up to a subsequence, (zh) is weakly convergent to
some z in W

1,2
0 (�) with z�0 a.e. in �.

By an easy approximation argument (see also [3]), we can choose v = −uh in
(3.4.2), obtaining∫

�
|Duh|2 dx �

∫
�

|Duh|2 dx −
∫
�

(
(u0 + uh)

−� − u
−�
0

)
uh dx

�
∫
�

g1(x, uh)uh dx − t

∫
�

�1uh dx + 〈w + �h, uh〉 ,

hence

1 =
∫
�

|Dzh|2 dx�
∫
�

g1(x, �hzh)

�h

zh dx − t

�h

∫
�

�1zh dx + 1

�h

〈w + �h, zh〉 .

On the other hand, by Canino [5, Lemma 3.3] we have that

lim
h

g1(x, �hzh)

�h

= �z strongly in W−1,2(�) . (3.4.3)

Passing to the limit as h → ∞, we get

∫
�

|Dz|2 dx��
∫
�

z2 dx and 1��
∫
�

z2 dx . (3.4.4)

In particular, z �= 0.
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On the other hand, if we choose v ∈ C∞
c (�) with v�0 in (3.4.2), we get

∫
�

DuhDv dx �
∫
�

(
(u0 + uh)

−� − u
−�
0

)
v dx

+
∫
�

(
g1(x, uh) − t�1

)
v dx + 〈w + �h, v〉 .

It follows

∫
�

DzhDv dx � 1

�h

∫
{uh �0}

(
(u0 + uh)

−� − u
−�
0

)
v dx

+
∫
�

g1(x, �hzh)

�h

v dx − t

�h

∫
�

�1v dx + 1

�h

〈w + �h, v〉 .

Since u0 is bounded away from 0 on the support of v, we can pass to the limit as
h → ∞ and, taking again into account (3.4.3), we obtain

∫
�

DzDv dx��
∫
�

zv dx for every v ∈ C∞
c (�) with v�0 .

Combining this fact with (3.4.4) and arguing by density, we get

∫
�

DzD(v − z) dx��
∫
�

z(v − z) dx for every v ∈ W
1,2
0 (�) with v�0 a.e. in � .

It follows (see e.g. [6, Lemma 2.7]) that z is a positive nontrivial solution of −�z = �z

and this contradicts the assumption that � > �1.
Up to a subsequence, (uh) is weakly convergent to some u in W

1,2
0 (�). Then, by

(g.1′), (g1(x, uh)) is strongly convergent to g1(x, u) in W−1,2(�). By Lemma 3.3 the
assertion follows. �

Theorem 3.5. Assume that � > �1. Then the following facts hold:

(a) there exist r, t, � > 0 such that ft (u)��t2 for every t > t and every u ∈ W
1,2
0 (�)

with ‖u‖ = tr;
(b) there exists v ∈ W

1,2
0 (�) ∩ L∞

c (�) such that v�0 a.e. in � and

lim
s→+∞ ft (sv) = −∞ for every t ∈ R .
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Proof. To prove (a), let, for every t > 0, f̃t (u) = ft (tu)/t2 and define f̃∞ : W
1,2
0 (�) →

] − ∞, +∞] by

f̃∞(u) =
⎧⎨
⎩

1

2

∫
�

|Du|2 dx − �

2

∫
�

u2 dx +
∫
�

�1 u dx if u�0 a.e. in � ,

+∞ otherwise.

By Groli [11, Proposition 6.2] there exists r > 0 such that

f̃∞(u) > 0 for every u ∈ W
1,2
0 (�) with 0 < ‖u‖�r . (3.5.1)

By contradiction, suppose there exist a sequence (uh) in W
1,2
0 (�) and a sequence

th → +∞ with ‖uh‖ = r and

0 � lim sup
h

f̃th(uh) = lim sup
h

(
1

2

∫
�

|Duh|2 dx + 1

t2
h

∫
�

G0(x, thuh) dx

−
∫
�

G1(x, thuh)

t2
h

dx +
∫
�

�1 uh dx − 1

th
〈w, uh〉

)

� lim sup
h

(
1

2

∫
�

|Duh|2 dx −
∫
�

G1(x, thuh)

t2
h

dx +
∫
�

�1 uh dx − 1

th
〈w, uh〉

)
.

Up to a subsequence, (uh) is weakly convergent to some u in W
1,2
0 (�) with ‖u‖�r .

Since, by Canino [5, Lemma 3.3], we have

lim
h

G1(x, thuh)

t2
h

= �

2
u2 strongly in L1(�) ,

we deduce that u �= 0 and

1

2

∫
�

|Du|2 dx − �

2

∫
�

u2 dx +
∫
�

�1 u dx�0 . (3.5.2)

On the other hand, since f̃th (uh) < +∞, from the definition of G0 it follows that
thuh > −u0 a.e. in �. Therefore u�0 a.e. in � and (3.5.2) is equivalent to f̃∞(u)�0.
This fact contradicts (3.5.1).

To prove (b), take v ∈ W
1,2
0 (�) ∩ L∞

c (�), with v�0, close enough to �1 to have

∫
�

|Dv|2 dx < �
∫
�

v2 dx .

Since u0 is bounded away from 0 on the support of v, assertion (b) easily follows. �
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We can now prove the main result of this section.

Theorem 3.6. Assume that � > �1. Then there exists t ∈ R such that, for every t > t ,
problem (3.1) admits at least two distinct solutions in W

1,2
loc (�).

Proof. Let t, r > 0 be as in assertion (a) of Theorem 3.5 and take t > t . Since
ft (0) = 0, from Theorems 3.4 and 3.5 it follows that ft satisfies the assumptions of
Theorem 2.4. Let u′ ∈ W

1,2
0 (�) be a critical point for ft with ft (u

′) > 0.
On the other hand, ft is weakly lower semicontinuous. Therefore it admits a min-

imum u′′ on
{
u ∈ W

1,2
0 (�) : ‖u‖�r

}
with ft (u

′′)�0. Since ‖u′′‖ < r , we have that

u′′ is a (free) local minimum of ft , hence another critical point for ft .
From Theorem 3.2 and (3.2) we conclude that u0 + u′ and u0 + u′′ are two distinct

solutions of (3.1) in W
1,2
loc (�). �

We conclude this section with a regularity result we need to pass from the variational
inequality to the equation.

Theorem 3.7. Let u ∈ W
1,2
loc (�) be a solution of (3.1) with w = 0. If n�3, suppose

also that a, b of assumption (g.1′) belong to Lp(�) for some p > n/2.
Then u ∈ L∞(�) and we have

−�u = u−� + g(x, u) − t�1 in D′(�) . (3.7.1)

Proof. From [6, Theorem 3.5] it follows that (3.7.1) holds. More precisely, the state-
ment of [6, Theorem 3.5] would require that g(x, u) − t�1 ∈ L1

loc(�) ∩ W−1,2(�), but
from the proof it is clear that g(x, u) − t�1 ∈ L1

loc(�) is enough.

If we set û = (u − 1)+, we have that û ∈ W
1,2
0 (�) and û is a weak subsolution of

the equation

−�v = ĝ(x, v) + ŵ ,

where ĝ(x, s) = (
g(x, s + 1) − t�1(x)

)
	{u>1} and ŵ = u−�	{u>1} ∈ L∞(�). Then

it is standard to show (see in particular [4, Theorem 2.3]) that û ∈ L∞(�), whence
u ∈ L∞(�). �

4. Proof of the main results

Proof of Theorem 1.1. Since (g.1) implies (g.1′), we can apply Theorem 3.6 with
w = 0, obtaining two distinct solutions u1, u2 ∈ W

1,2
loc (�) of (3.1).

From Theorem 3.7 we deduce that, for k = 1, 2, uk ∈ L∞(�) and that uk satisfies
Eq. (3.7.1). Since g(x, uk) − t�1 ∈ L∞(�) and each x ∈ �� satisfies the Wiener
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criterion, from [6, Corollary 3.7] we conclude that uk ∈ C(�) ∩
( ⋂

1�p<∞
W

2,p
loc (�)

)
,

that the elliptic equation is satisfied also a.e. in � and that uk vanishes on ��. �

Proof of Theorem 1.2. By contradiction, let th → −∞ and, for each h, let uh ∈
C(�)∩

( ⋂
1�p<∞

W
2,p
loc (�)

)
be a solution of (1.3) with t = th. Without loss of generality,

we may assume that th < 0. From [6, Theorems 3.5 and 3.6] it follows that uh − u0 ∈
W

1,2
0 (�).

First suppose that zh := (u0 − uh)/th is bounded in W
1,2
0 (�), hence weakly conver-

gent, up to a subsequence, to some z with z�0 a.e. in �. Since

−�zh = − 1

th

(
(u0 − thzh)

−� − u
−�
0

)
+ g1(x, −thzh)

−th
+ �1 a.e. in � ,

for every v ∈ W
1,2
0 (�) ∩ L∞

c (�) with v�0 a.e. in � we have

∫
�

DzhDv dx = − 1

th

∫
�

(
(u0 − thzh)

−� − u
−�
0

)
v dx +

∫
�

(
g1(x, −thzh)

−th
+ �1

)
v dx

� − 1

th

∫
{zh �0}

(
(u0 − thzh)

−� − u
−�
0

)
v dx

+
∫
�

(
g1(x, −thzh)

−th
+ �1

)
v dx .

Since u0 is bounded away from 0 on the support of v, we can pass to the limit as
h → ∞ taking also into account (3.4.3). We get

∫
�

DzDv dx�
∫
�

(
�z + �1

)
v dx

for every v ∈ W
1,2
0 (�) ∩ L∞

c (�) with v�0 a.e. in � .

By density, we can also choose v = �1, obtaining

�1

∫
�

z�1 dx =
∫
�

DzD�1 dx��
∫
�

z�1 dx +
∫
�

�2
1 dx .

Since z�0, this contradicts the assumption that � > �1.
Now suppose that th/‖uh − u0‖ is convergent to 0. If we set �h = ‖uh − u0‖ and

zh = (uh − u0)/�h, up to a subsequence (zh) is weakly convergent to some z in
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W
1,2
0 (�) with z�0 a.e. in �. We have that

∫
�

DzhDv dx = 1

�h

∫
�

(
(u0 + �hzh)

−� − u
−�
0

)
v dx +

∫
�

(
g1(x, �hzh)

�h

− th

�h

�1

)
v dx

for every v ∈ W
1,2
0 (�) ∩ L∞

c (�) .

(4.1)

By the result of [3], we can also choose v = zh in (4.1), obtaining

1 =
∫
�

|Dzh|2 dx = 1

�h

∫
�

(
(u0 + �hzh)

−� − u
−�
0

)
zh dx

+
∫
�

(
g1(x, �hzh)

�h

− th

�h

�1

)
zh dx

�
∫
�

(
g1(x, �hzh)

�h

− th

�h

�1

)
zh dx .

Taking again into account (3.4.3), it follows that

∫
�

|Dz|2 dx��
∫
�

z2 dx

and that z �= 0. On the other hand, if we choose v�0 a.e. in � in (4.1), we get arguing
as before

∫
�

DzDv dx��
∫
�

zv dx for every v ∈ W
1,2
0 (�) ∩ L∞

c (�) with v�0 a.e. in � .

Therefore we have∫
�

DzD(v − z) dx��
∫
�

z(v − z) dx

for every v ∈ W
1,2
0 (�) ∩ L∞

c (�) with v�0 a.e. in � .

As in the proof of Theorem 3.4 we conclude that z is a positive nontrivial solution of
−�z = �z and a contradiction follows. �
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