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Abstract

A jumping problem for a class of singular semilinear elliptic equations is considered. Minimax
methods in the framework of nonsmooth critical point theory are applied.
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1. Introduction

Let Q be a bounded domain in R”, let y > 0 and let g : Q x R — R be a
Carathéodory function. Since the pioneering papers of Crandall et al. [8] and Stuart
[17], singular semilinear elliptic problems of the form

u>0 in Q,
—Au=u""+gkx,u) inQ, (1.1)
u=0 on 0Q

have been considered, under various assumptions on g, by several authors (see e.g.
[10,14-16,20] and the references therein). Let us also mention [7,9], where the case in
which the singular term u~" has the opposite sign is treated.
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However, in spite of the fact that (1.1) is formally the Euler equation of the functional

u(x)
f(u):lf|Du|2dx+fﬁ(u)dx—// g(x, s)dsdx ue Wy,
2 Jo Q o

where

N
—/ t7dt  if =0,

Bls) = 1
+00 if s <0,

few existence and multiplicity results for (1.1) have been so far obtained through a
direct variational approach. The main reason, apart from the nonsmoothness of f, is that,
already in the case g = 0, problem (1.1) has no solution u in W01’2(Q) and f = o0,
if Y>3 (see [16, Theorem 2]). Nevertheless, other methods have been successfully
applied to (1.1) in the mentioned papers, providing the existence of solutions u in
C(Q) N C*(Q), without any restriction on y. Among the few papers dealing with direct
variational methods, let us mention [13,18], where the case in which y<1 and g is
superlinear at 400 is studied.

The main purpose of this paper is to face a classical problem of nonlinear analysis,
that of “jumping” [1], in the setting of (1.1) by a direct minimax approach without
any restriction on Y.

The starting point is the recent paper [6], where a variational approach is provided
for the problem

u>0 in Q,
—Au=u""4+w inQ, (1.2)
u=20 on 0Q),

in the case in which w is a function depending only on x. In particular, if Q has
smooth boundary and w is Hélder continuous on Q, it has been proved in [6] that the
solution u € C(Q) N C2(Q) of (1.2) already found in [8] can be also obtained as the
minimum of a suitable lower semicontinuous, strictly convex functional ¥,.

Here we will apply critical point theory to a functional of the form ¥y + @, where
Yy is the functional corresponding to the case w = 0 and @ is a perturbation of class
C! associated with the nonlinearity g.

1.1. The main results

Suppose that g satisfies the following assumptions:

(g.1) there exists C > 0 such that

lg(x, )| <C(1 4+ [s]) for a.e. x € Q and every s € R,
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(g.2) there exists o € R such that

i g(x,s)
im =
s——+o00 S

o for a.e. x € Q.

Denote by A; the first eigenvalue of —A with homogeneous Dirichlet condition and
by ¢; an associated eigenfunction with ¢; > 0 in Q.
We are interested in the solvability, in dependence on ¢ € R, of the problem

u>0 in Q,
—Au=u""+gx,u)—tp; ae. inQ, (1.3)
u=0 on 0Q).

Let us state our main results.

Theorem 1.1. Assume that each x € 0Q satisfies the Wiener criterion [12] (for instance,
Q has Lipschitz boundary) and that o > A.
Then there exists T € R such that, for every t > t, problem (1.3) has at least two

distinct solutions in C(Q) N ( N Wli’cp (Q)).

1< p<co
Theorem 1.2. Let o > Ay. Then there exists t € R such that, for every t < t, problem

(1.3) has no solution in C(Q) N ( N wa’ (Q)).

loc
1< p<o

Theorems 1.1 and 1.2 will be proved in Section 4. In Section 2, we recall from [19]
the nonsmooth version of the Mountain pass theorem we need. In Section 3, we prove
a more general version of Theorem 1.1, without any regularity assumption on 0Q and
with a further term in W~1-2(Q) at the right-hand side of the elliptic equation. In such
a case, according to [6], the boundary condition “u = 0 on 0Q” needs a suitable weak
reformulation and the equation in Q has to be substituted by a variational inequality
(see in particular [6, Theorem 3.4 and Example 3.6]).

2. A nonsmooth version of the Mountain pass theorem

In this section we recall from [19] an extension of the celebrated Mountain pass
theorem of Ambrosetti and Rabinowitz [2].

Let X be a real Banach space and f : X —] — 0o, +0oc] a function. Assume that
f=Y+®, where ¥ : X —] — 00, +00] is convex, proper (i.e. f # +o00) and lower
semicontinuous and ® : X — R is of class C'.
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Definition 2.1. A point u € X is said to be critical for f, if
YY) =) — (D), v—u) YveX.

Definition 2.2. We say that f satisfies the Palais—Smale (PS) condition if, for every
sequence (up) in X and (wjp) in X* such that sup | f(up)| < 400, |lw,|| — 0 and
h

P() =¥ (un) — (D up), v —up) + (wn, v —up)  YveX,

the sequence (u;,) admits a convergent subsequence in X.
Remark 2.3. (a) The notions introduced in Definitions 2.1 and 2.2 are independent of

the decomposition f =¥ + O.
(b) If u € X with f(u) < +o0 is a local minimum of f, then u is a critical point

of f.
For the next result, we refer the reader to [19, Theorem 3.2].

Theorem 2.4. Assume that f satisfies (PS) and that there exist r > 0 and o > f(0)
such that

fwy>c  VYue X with ul| =r,
fu)<fO)  for some uy € X with |ui| >r.

Then there exists a critical point u for f with f(u)>o.

3. Jumping for a class of singular variational inequalities

Let Q be a bounded domain in R", let y > 0, let g : Q x R — R be a Carathéodory
function and let w € W—12(Q). Suppose also that g satisfies (g.2) and

(g.1") there exist two functions a, b such that

lg(x, s)|<a(x) 4+ b(x)|s| for a.e. x € Q and every s € R,

where a € Ln%(Q) and b € L%(Q) if n>3, a,b € LP(Q) for some p > 1 if
n=2a,belL' Q) if n=1.

Throughout this section, no regularity condition is imposed on 0Q.



214 A. Canino / J. Differential Equations 221 (2006) 210-223

In the following, we will consider the space WOI’Z(Q) endowed with the norm

3
lull = </ |Du|2dx> )
Q

We also denote by L2°(Q2) the space of L*°-functions on Q vanishing a.e. outside some
compact subset of Q.

Definition 3.1. Let u € Wli)’Cz(Q). We say that u <0 on 0Q if, for every ¢ > 0, the
function (z — &)™ belongs to Wol’z(Q).

Given ¢ € R, we are interested in the solutions u € WIL’CZ(Q) of
(Q) 9

u>0ae inQandu=’ €Ll

/DuD(v—u)dx}/ (™ +gCx,u)) (v—u)dx
Q Q

_’/ Qv —u)dx + (w,v—u) (3.1)
Q

Vo eu+ (WP (@ NLEQ) with v>0 ae. in Q,

u<0 on 0Q.

According to [6, Theorem 2.2], there exists one and only one ug € L% (Q) N C*(Q)
such that

uy >0 in Q,
—Aug=u,” in Q, (3.2)
up<0 on 0Q.

Define a lower semicontinuous, convex function ff: R —] — oo, +00] by

N
—/t‘”/dt if >0,

B(s) = 1
+00 if s <0

and a Borel function Gg : Q x R — [0, +00] by

Go(x, ) = Bluo(x) + ) — Puo(x)) + suy’ (x).

S
Finally, let g1(x,s) = g(x, ug(x) +s) and let G(x,s) = / g1(x, 1) dt.
0
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For every t € R, let f; : WOI’Z(Q) —] — 00, +00] be the functional defined as
fr =¥ + ®;, where

1
‘P(u):—/|Du|2dx+/ Go(x,u)dx,
2 Jo 0

d)t(u)z—/Gl(x,u)dx+t/goludx—(w,u).
Q Q

According to [6, Section 4], the functional ¥ : WOI’Z(Q) — [0, +o0] is strictly convex

and lower semicontinuous, with W(0) = 0, while it is standard that @, : W, *(Q) — R
is of class C! with ®,(0) = 0.

Theorem 3.2. Let u € Wy'>(Q) be such that

1 1
—/|Dv|2dx+/ Go(x,v)dx > —/|Du|2dx+/ Go(x, u)dx
2 Jo Q 2 Ja Q

+/ (gl(xa u) — t€01) (w—u)dx + (w,v — u)
Q

Yo e Wy (Q).
Then we have

ug+u>0a.e. in Qand (ug+u)=’ € LllOC

(Q)’
/D“D(v—u)dx>/ ((uo+u>‘"’—u5”’) (v—u)dx
Q Q
+/ (g(x,uo +u) — 1) (v —u)dx + (w, v — u) (3.2.1)
Q

Yveu+ (W&’Z(Q) ﬁLgo(Q)) with v= —ug a.e. in Q,

up+u<0 on 0Q.

Proof. Since g(x, uo+u)—to,+w € W’I’Z(Q), the assertion follows from [6, Theorem
34]. O

Lemma 3.3. Let (up) be a sequence in WOI’Z(Q) and () a sequence in w—12(Q).
Assume that (n;,) is strongly convergent in W=12(Q) and that

1 1
—/|Dv|2dx+/ Go(x,v)dx > —/|Duh|2dx+f Go(x, up)dx
2 Ja Q 2 Ja Q
v —up) Ve Wyt(@Q). (33.1)

Then (up) is strongly convergent in WO1 ’Z(Q).



216 A. Canino / J. Differential Equations 221 (2006) 210-223

Proof. If we set v =0 in (3.3.1), we get

1
—/lDuh|2dx+f Go(x, up) dx < (ny,, up) .
2 Ja 0

It follows that (u;,) is bounded, hence weakly convergent, up to a subsequence, to some
u in Wy 2(Q) with Go(x,u) € L1(Q).
If we put v =u in (3.3.1), we obtain

1 1
lim sup <— / |Duh|2dx+/ Go(x,uh)dx> <= / |Du|2dx+/ Go(x,u)dx .
h 2 Jo 0 2 Jo Q

Since Go(x, s) >0, we infer that
limsup/ |Duh|2dx</ |Du|? dx
h Q Q

and the strong convergence, up to a subsequence, of (u;) to u follows.
Finally, if we denote by 7 € W~12(Q) the limit of (1,) and pass to the lower limit
in (3.3.1), we get

1 1
—f|Dv|2dx+/ Go(x,v)dx > —/|Du|2dx+f Go(x,u)dx
2 Jo Q 2 Jo Q

v —u)  Yve WyiQ).

This means that « is the minimum of the strictly convex functional ¥ — 7. It follows
that the whole sequence (uj) is convergent to u. [J

Theorem 3.4. Assume that o > 1. Then, for every t € R, the functional f; satisfies
(PS).

Proof. Let (u;) be a sequence in Wol’z(Q) and (17,) a sequence in W~12(Q) with
sup | f; (up)| < 400, 1, = 0 and
h

1
- / |Dv|2dx+/ Go(x,v)dx
2 Jo 0

1
2—/|Duh|2dx+/Go(X,Mh)dx
2 Jo Q
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+/Q(g1(x, up) — tq)l) (v —up)dx + (w+ny, v —up)
Vv e Wy Q). (3.4.1)
By Theorem 3.2, it follows

uo+up >0 ae. in Q and (ug+up)~? € L1 (Q),

loc

/ DupDvdx > / ((uo +up)” — u(;}’) vdx
Q Q

"‘/S;(gl(x,uh)—t(pl)vdx+(w+;1h,v> (3.4.2)

Yo e Wy (Q) N LP(Q) with v —ug — uy, ae. in Q,

ug +up <0 on Q.

First of all, we claim that (uj;) is bounded in W&’z(Q). By contradiction, let g, :=
llup|l = +oo and let z;, = up/0;,. Up to a subsequence, (z,) is weakly convergent to
some z in WOI’Z(Q) with z>0 a.e. in Q.

By an easy approximation argument (see also [3]), we can choose v = —uy in
(3.4.2), obtaining

/IDuhlzdx < / |Duh|2dx—/ ((uo+uh)_y—u(;v)uhdx
Q Q Q
< /Qg1(x,uh)uhdx—tfgwluthwL(w-Fﬂh,uh),

hence

X, 042 t 1
1:/ |DZh|2dx</MZhdx—— @1zndx + — (W +ny, 2n) -
Q Q n 9n JQ n

On the other hand, by Canino [5, Lemma 3.3] we have that

X,
lim g1(x, 0p21) _

oz strongly in W~12(Q). (3.4.3)
h (o

Passing to the limit as & — oo, we get

/|Dz|2dx<oc/ 2 dx and lga/zzdx. (3.4.4)
Q Q Q

In particular, z # 0.
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On the other hand, if we choose v € C°(€2) with v>0 in (3.4.2), we get

/ Dup,Dvdx > / ((uo—l—uh)_y —u(;y> vdx
Q Q

+/Q(g1(x,uh) — 1)) vdx + (w+n,,v).

It follows

1 A —
/ DzyDvdx > — ((uo +up) — u0'> vdx
Q Qn J{uy =0}

» & g t 1
d [ B0 g L[ pudi s ).
0 o on Ja 9n

Since ug is bounded away from O on the support of v, we can pass to the limit as
h — oo and, taking again into account (3.4.3), we obtain

/ DzDv dx}oc/ zvdx for every v € C°(Q) with v>0.

Q Q

Combining this fact with (3.4.4) and arguing by density, we get

/ DzD(v — z2) dx}oc/ z(v —z)dx for every v € W01’2(Q) with v >0 a.e. in Q.
Q Q

It follows (see e.g. [6, Lemma 2.7]) that z is a positive nontrivial solution of —Az = az
and this contradicts the assumption that o > ;.

Up to a subsequence, (uj) is weakly convergent to some u in Wol’z(Q). Then, by
(g.1), (g1(x,up)) is strongly convergent to g1(x, ) in W~ 12(Q). By Lemma 3.3 the
assertion follows. [

Theorem 3.5. Assume that o > 1. Then the following facts hold:

(a) there exist r,1, 0 > 0 such that f;(u)>at* for every t >t and every u € W01’2(Q)
with ||ul|| = tr;
(b) there exists v € WOI’Z(Q) N L (Q) such that v=0 a.e. in Q and

lim f;(sv) = —o0 for every t € R.
§—>+00
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Proof. To prove (a), let, for every ¢ > 0, f,(u) = f;(tu)/t* and define foo : WOI’Z(Q) —
] — o0, +00] by

1
i —/|Du|2dx—f/u2dx+/<pludx if u>0 ae. in Q,
fow) =1 2 Jo 2 Jo Q

+00 otherwise.

By Groli [11, Proposition 6.2] there exists » > 0 such that

foo) >0 for every u € Wy 2(Q) with 0 < [lu]| <r. (3.5.1)

By contradiction, suppose there exist a sequence (u;) in Wol’z(Q) and a sequence
t, — 400 with |juy|| =r and

. 1 1
0 > limsup fz, (up) = limsup <— / |Duh|2dx—i-—2 / Go(x, thup) dx
h h 2 Ja ty Ja

Gi(x,t 1
—/ dejuf o uhdx——(w,uh))
Q Q Ih

Iy

1 Gi(x,t 1
> lim sup (— / |Duh|2dx—/ de+/ o uhdx——(w,uh)>.
h 2 Ja Q 1 Q I

Up to a subsequence, (1) is weakly convergent to some u in Wé ’Z(Q) with |lu]| <r.
Since, by Canino [5, Lemma 3.3], we have

Gi(x, thup) _ %o

lizn t}% 7 u strongly in L'(Q),
we deduce that u # 0 and
1 2 « 2
- |Dul“dx — = udx + | oudx<0. (3.5.2)
2 Ja 2 Ja Q

On the other hand, since f,h (up) < +oo, from the definition of G it follows that

thup > —ug a.e. in Q. Therefore u >0 a.e. in Q and (3.5.2) is equivalent to foo(u)<0.
This fact contradicts (3.5.1).
To prove (b), take v € WO1 ’2(Q) N L2°(Q), with v>0, close enough to ¢ to have

/ |Dv|?dx < ot/ vV dx .
Q Q

Since uq is bounded away from 0 on the support of v, assertion (b) easily follows. [J
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We can now prove the main result of this section.

Theorem 3.6. Assume that o > A1. Then there exists t € R such that, for every t > 1,
problem (3.1) admits at least two distinct solutions in WIL’CQ(Q).

Proof. Let 7,7 > 0 be as in assertion (a) of Theorem 3.5 and take ¢ > . Since
f:(0) = 0, from Theorems 3.4 and 3.5 it follows that f; satisfies the assumptions of
Theorem 2.4. Let u’ € W01’2(Q) be a critical point for f; with f;(u") > 0.

On the other hand, f; is weakly lower semicontinuous. Therefore it admits a min-
imum u” on {u e W@ : ||u||<r} with f,(u”)<0. Since |[u”| < r, we have that

u” is a (free) local minimum of f;, hence another critical point for f;.

From Theorem 3.2 and (3.2) we conclude that ug + ' and ug + u” are two distinct
solutions of (3.1) in Wb2(Q). O

We conclude this section with a regularity result we need to pass from the variational
inequality to the equation.

Theorem 3.7. Let u € WIL’CZ(Q) be a solution of (3.1) with w = 0. If n>3, suppose
also that a, b of assumption (g.1') belong to L?(Q) for some p > n/2.

Then u € L*°(Q) and we have
—Au=u""+g(x,u) —tg, in D'(Q). (3.7.1)

Proof. From [6, Theorem 3.5] it follows that (3.7.1) holds. More precisely, the state-
ment of [6, Theorem 3.5] would require that g(x,u) —t¢; € Ll (@ nw=12(Q), but

loc
from the proof it is clear that g(x,u) —t@; € Ll (Q) is enough.

loc
If we set i = (u — 1)*, we have that & € Wol’z(Q) and 1 is a weak subsolution of

the equation
—Av=gkx,v)+w,

where g(x,s) = (g(x,s+1) =10 (x)) x>y and = u 7y € L®(Q). Then
it is standard to show (see in particular [4, Theorem 2.3]) that 7 € L°°(Q), whence
uel>®Q). O

4. Proof of the main results

Proof of Theorem 1.1. Since (g.1) implies (g.1"), we can apply Theorem 3.6 with
w = 0, obtaining two distinct solutions uy, uy € WIL’CZ(Q) of (3.1).

From Theorem 3.7 we deduce that, for k = 1,2, u; € L>®°(Q) and that u; satisfies
Eq. (3.7.1). Since g(x,ux) —tep, € L*°(Q) and each x € 0Q satisfies the Wiener
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criterion, from [6, Corollary 3.7] we conclude that u; € C @n < N leo’cp (Q)),
1< p<oo

that the elliptic equation is satisfied also a.e. in Q and that u; vanishes on 0Q. [

Proof of Theorem 1.2. By contradiction, let #;, — —oo and, for each h, let u; €

C (ﬁ)ﬂ( N Wli’cp (Q) ) be a solution of (1.3) with r = ;. Without loss of generality,
1< p<oo
we may assume that #;, < 0. From [6, Theorems 3.5 and 3.6] it follows that uy —ug €
1,2
Wy (Q).
First suppose that zj, := (ug9 — up)/t, is bounded in WO1 ’Z(Q), hence weakly conver-
gent, up to a subsequence, to some z with z>0 a.e. in Q. Since

1 o o x’_t z
_Ath_t_ ((Mo—thzh) y_uoy)+81( hZh) n
h

o a.e. in Q,

for every v € Wol’z(Q) N L°(Q) with v=>0 a.e. in Q we have

1 \ —y , —1
/ DzyDvdx = ——/ ((uo —thzp) " — ”0)) vdx +/ (M +q)1> vdx
Q th JO Q —In

1 " .
> —— ((uo—thzh)_’ —u0’>vdx
Ih Jizy >0}

X, —Ih2
+f (gl( hh)+q)1>vdx'
Q —Ip

Since ug is bounded away from O on the support of v, we can pass to the limit as
h — oo taking also into account (3.4.3). We get

/ DzDvdx}/ (0z + @) vdx
Q Q
for every v € WOI’Z(Q) N L2°(Q) with v>0 ae. in Q.

By density, we can also choose v = ¢;, obtaining

ﬂvlfzgoldx:/ DzD(pldx>oc/ch1dx+/ (p%dx.
Q Q Q Q

Since z >0, this contradicts the assumption that o > ;.
Now suppose that #;,/||up — uoll is convergent to 0. If we set ¢, = |lup — uo| and
zn = (up — up)/0y, up to a subsequence (z;) is weakly convergent to some z in
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WJ’Z(Q) with z>0 a.e. in Q. We have that

1 . —y X, 052 1
/Dthvdx:—/ ((u0+ghzh) f—uo’)vdx+/ <M—i¢l)vdx
Q 9 JQ Q 9 5

for every v e Wy (Q) N LE(Q).
.1

By the result of [3], we can also choose v = z; in (4.1), obtaining
2 1 -y =7
L= [ 1DzPdx=— | (@o+eua™ —uy") zadx
Q (o)

X, 0,2 1
+/ (81( nzh) ——h<p1>zhdx
Q h Qn

1(x, 05,2 t
</<ﬂ;iﬁ_i%%wm
Q On 4

Taking again into account (3.4.3), it follows that

/|Dz|2dx<a/zzdx
Q Q

and that z # 0. On the other hand, if we choose v>0 a.e. in Q in (4.1), we get arguing
as before

/ DzDvdx}oc/ zvdx for every v € W&’Z(Q) NLX(Q) with v>0 ae. in Q.
Q Q

Therefore we have

/ DzD(v —z)dx}oc/ zZ(v —z)dx
Q Q
for every v € W&’z(Q) N LX(Q) with v>0 ae. in Q.

As in the proof of Theorem 3.4 we conclude that z is a positive nontrivial solution of
—Az = oz and a contradiction follows. [
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