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Abstract

The global existence of non-negative weak solutions to a strongly coupled parabolic system
arising in population dynamics is shown. The cross-diffusion terms are allowed to be arbitrarily
large, whereas the self-diffusion terms are assumed to disappear. The last assumption complicates
the analysis since these terms usually provide H 1 estimates of the solutions. The existence proof
is based on a positivity-preserving backward Euler–Galerkin approximation, discrete entropy
estimates, and L1 weak compactness arguments. Furthermore, employing the entropy–entropy
production method, we show for special stationary solutions that the transient solution converges
exponentially fast to its steady state. As a by-product, we prove that only constant steady states
exist if the inter-specific competition parameters disappear no matter how strong the cross-
diffusion constants are.
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1. Introduction

In their pioneering work, Shigesada et al. [23] proposed a generalization of the Lotka–
Volterra differential equations in order to describe spatial segregation of interacting
population species. Denoting by u1 = u1(x, t) and u2 = u2(x, t) the densities of the
two competing species, the equations read as follows:

�t ui − div Ji = (ai − biu1 − ciu2)ui, Ji = ∇((di + �i1u1 + �i2u2)ui

)
(1)

with homogeneous Neumann boundary and initial conditions

Ji · � = 0 on �� × (0, ∞), u(·, 0) = u0
i �0 in �, i = 1, 2. (2)

Problem (1)–(2) has to be solved in QT = � × (0, T ), where T > 0 and � ⊂ Rd

(d �1) is a bounded domain. In (1), d1, d2 �0 are the diffusion rates, �11, �22 �0 the
self-diffusion coefficients, and �12, �21 �0 are the cross-diffusion constants making the
parabolic problem strongly coupled. Furthermore, the non-negative coefficients a1 and
a2 denote the intrinsic growth rates, b1 and c2 the intra-specific competition constants,
and b2 and c1 the rates of inter-specific competition. Eq. (1) has the interesting feature
that they allow for pattern formation depending on the relative sizes of the interaction
coefficients [19]. For disappearing coefficients di and �ij , we obtain the classical Lotka–
Volterra differential equations.

The above system possesses the diffusion matrix

(
d1 + 2�11u1 + �12u2 �12u1

�21u2 d2 + 2�22u2 + �21u1

)
.

Nonlinear problems with a full diffusion matrix are difficult to deal with since, for
instance, maximum principles, employed for the derivation of a priori estimates, gen-
erally cannot be applied. Moreover, the above matrix is not symmetric and generally
not positive definite. In [5,9], it has been shown that problem (1)–(2) can be trans-
formed into a system with a symmetric, positive-definite diffusion matrix via the change
of variables w1 = ln(u1)/�12 and w2 = ln(u2)/�21. This symmetrization property is
strongly connected to the existence of the entropy

E(t) =
∫
�

(
1

�12
�(u1) + 1

�21
�(u2)

)
dx,

where �(x) = x(ln x − 1)+ 1, x�0 (see [7,12]). Differentiating this function formally,
the a priori estimate

E(t) + 2
∫

Qt

(
d1

�12
|∇√

u1|2 + d2

�21
|∇√

u2|2 + |∇√
u1u2|2

)
dx d�
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+
∫

Qt

(
b1

�12
(u2

1 ln u2
1 + 1) + c2

�21
(u2

2 ln u2
2 + 1) +

(
c1

�12
+ b2

�21

)
u1u2

)
dx d�

+ 2
∫

Qt

(
�11

�12
|∇u1|2 + �22

�21
|∇u2|2

)
dx d��C(E(0) + 1), 0 < t �T (3)

for some C > 0 depending on T is obtained. In particular, if �11 > 0 and �22 > 0, we
obtain L2(0, T ; H 1(�)) bounds for u1 and u2.

The above inequality can be derived by employing the test functions ln(u1)/�12
and ln(u2)/�21 in the weak formulation of (1) for i = 1 and 2, respectively. Clearly,
this derivation is only rigorous if the densities u1 and u2 are positive. However, since
we are lacking a maximum (or minimum) principle, it is not clear how to prove this
property. This problem can be solved by working in the variables w1, w2 since then
u1 = exp(�12w1) and u2 = exp(�21w2) are automatically positive. In order to make
estimate (3) rigorous, the idea of [5] was to semi-discretize system (1) in time and to
approximate the cross-diffusion terms by finite differences in such a way that a discrete
entropy inequality analogous to (3) holds.

In this paper, we extend the results and improve the method of [5]. The main
differences of our results and those of [5] are as follows:

• In [5], the case of disappearing self-diffusion �11 = �22 = 0 could not be treated
since in this situation, there is a lack of L2(0, T ; H 1(�)) estimates for u1 and u2.
In the present paper, we fill this gap.

• In [5], the cross-diffusion term �(u1u2) is approximated by the finite-difference
expression

D−h

(
�h

u1u2

(1 + εu+
1 )(1 + εu+

2 )
Dh ln

(
(ε + u+

1 )(ε + u+
2 )
))

,

where D±h denotes discrete derivatives, �h is a characteristic function on {x :
dist(x, ��) > h}, and u+

i = max{0, ui}. In the limit ε, h → 0, the cross-diffusion
term �(u1u2) is formally recovered. In this paper we can simplify this discretiza-
tion significantly. In fact, we only need to approximate the cross-diffusion term by
�(u

(k)
1 u

(k)
2 ), where u

(k)
i are elements of some finite-dimensional Galerkin space. This

simplifies the proof considerably.
• Our (backward Euler) Galerkin approximation is also of numerical interest since

this provides a positivity-preserving numerical scheme in which (higher order) finite
elements may be employed.

• Furthermore, in contrast to paper [5], we are able to prove the long-time behavior of
the solutions to (1) in the case of disappearing self-diffusion (under some additional
assumptions; see Theorem 2).

In the following we explain our results in more detail. We set �11 = �22 = 0 and
we rescale the equations such that �12 = �21 = 1. Then the equations to be studied
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are as follows:

�t ui − �(diui + u1u2) = (ai − biu1 − ciu2)ui, (x, t) ∈ QT , i = 1, 2 (4)

with boundary and initial conditions

∇ui · � = 0 on �� × (0, ∞), ui(·, 0) = u0
i in �, i = 1, 2. (5)

Our first main result is contained in the following existence theorem.

Theorem 1. Let s = 1 + d2/(2d + 2) and �� ∈ C�,1 with � ∈ N, ��s. Furthermore,
let ai, bi, ci �0, di > 0, and u0

i ∈ L�(�) be, such that u0
i �0 in �, i = 1, 2. Then

there exists a weak solution (u1, u2) of problem (4)–(5) satisfying ui �0 in �× (0, ∞)

and

�t ui ∈ L1
loc(0, ∞; (Hs(�))′), u1u2 ∈ Lr(0, T ; W 1,r (�)),

ui ∈ L
4/3
loc (0, ∞; W 1,4/3(�)) ∩ L∞

loc(0, ∞; L�(�)),

where r = (2d + 2)/(2d + 1). Eq. (4) is satisfied in the sense of distributions and the
initial data (5) are satisfied in the sense of the dual space (Hs(�))′.

The space L�(�) is the Orlicz space with the function �(x) = �(x + 1) = (1 +
x) ln(1 + x) − x, x�0. We refer to [1,14] for its definition and properties. The choice
of s = 1 + d2/(2d + 2) ensures that the embedding Hs(�) ↪→ W 1,r ′

(�) is continuous,
where r ′ = 2d + 2 is the conjugate number to r. The space W 1,r ′

(�) is needed for the
test functions � in the weak formulation of (4) to define the integral

∫ ∇(u1u2)·∇� dx.
In order to prove Theorem 1 we use a semi-discretization in time (backward Euler

method), so that problem (4)–(5) become recursive sequences of elliptic equations.
Then we perform the change of unknowns ui = ewi (i = 1, 2). The advantage of this
transformation is that the property wi ∈ L∞(�) implies the positivity of ui . In [9],
problem (1)–(2) have been considered in one space dimension only, since then the
solution satisfies w1, w2 ∈ H 1(�) ↪→ L∞(�). Clearly, this argument cannot be used in
several space dimensions. Our new idea is to employ a Galerkin approximation. More
precisely, we solve the semi-discrete elliptic problem in a sequence of finite-dimensional
spaces whose union is dense in Hs(�) with s > d/2. Then wi ∈ Hs(�) ↪→ L∞(�)

and the transformation ui = ewi is well defined and yields positive discrete solutions.
The discrete entropy inequality and Aubin’s lemma allow us to conclude the strong

convergence in L1(QT ) of a subsequence of the discrete solutions u
(�)
i , where � denotes

the discretization parameters. However, from the entropy estimates, we obtain a uniform
estimate for the discrete time derivative of u

(�)
i only in the space L1(0, T ; (Hs(�))′).

Since L1 is not reflexive, generally, we cannot extract a converging subsequence. In
order to prove the weak compactness in L1 we use a variant of a result of Yosida [25]
(see Lemma 6).
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We turn to the study of the long-time behavior of the solutions to (4)–(5). The case
of the Lotka–Volterra equations with diffusion (i.e. �ij = 0 for i, j = 1, 2) has been
studied in [3,8]. It turns out that the asymptotic behavior depends on the relative sizes
of the quantities A = a1/a2, B = b1/b2, and C = c1/c2:

(i) A > max{B, C},
(ii) A < max{B, C},

(iii) B > A > C (weak competition),

(iv) B < A < C (strong competition).

The solution (u1(·, t), u2(·, t)) converges, as t → ∞, uniformly to (a1/b1, 0) in case (i),
to (0, a2/c2) in case (ii), and to u∗ = ((a1c2−a2c1)/(b1c2−b2c1), (b1a2−b2a1)/(b1c2−
b2c1)) in case (iii). Thus, in cases (i) or (ii), one of the species is eliminated whereas
in case (iii), both species coexist. Case (iv) is more involved. For instance, the con-
stant steady states (a1/b1, 0) and (0, a2/c2) are locally stable and u∗ is unstable [19],
and the stability of positive steady states depends on the shape of the domain �
[13,20,21].

In the triangular cross-diffusion case (i.e. �ij �0 but �21 = 0), Le et al. proved the
existence of a global attractor of the system [16,17]. However, only a few results are
available on the asymptotic behavior of the solutions to the cross-diffusion model with
a full diffusion matrix, since in this situation, the influence from both the Lotka-Volterra
and the self- and cross-diffusion terms needs to be taken into account. The interesting
topic here is the question of whether the system admits non-constant steady states,
expressing spatial segregation of the species. For some results in this direction, we
refer to [11,20,22]. Lou and Ni investigate this question extensively in [19]. Roughly
speaking, their results can be summarized as follows:

• If the diffusion or self-diffusion rates are sufficiently large, there exist only constant
steady states (no segregation).

• In the weak competition case and if the self-diffusion and/or cross-diffusion rates
are weaker than the diffusion coefficients, there still exist only constant stationary
solutions.

• In the weak or strong competition case, fixing one of the cross-diffusion parame-
ters �12 or �21, there exists a non-constant steady state if the other cross-diffusion
constant is sufficiently large (and if the diffusion and Lotka–Volterra parameters are
appropriately chosen; see [19]).

These results indicate that diffusion and self-diffusion seem to prevent pattern formation,
whereas cross-diffusion seems to support the segregation process. In [19] the following
question remained unsolved: do non-constant steady states still exist if both cross-
diffusion coefficients are strong but qualitatively similar? In this paper, we give a
partial answer to this question. More precisely, we show that in the case of disappearing
inter-specific competition b2 = c1 = 0 (special case of weak competition), only constant
solutions exist no matter how strong the cross-diffusion coefficients are. Furthermore,
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we prove that the solution, constructed in Theorem 1, converges exponentially fast to
its (constant) steady state if ai = bi = ci = 0 (i = 1, 2).

In order to prove the long-time behavior we employ the so-called entropy–entropy
production method (see, e.g. [2,4]). The relative entropy of the population system with
a stationary solution (U1, U2) equals

E(t; U1, U2) =
∫
�

(
U1

�12
�
( u1

U1

)
+ U2

�21
�
( u2

U2

))
dx,

where we recall that �(x) = x(ln x − 1) + 1, x�0. If ai = bi = ci = 0 (i = 1, 2) the
steady state is given by

(Ū1, Ū2) = 1

meas(�)

∫
�
(u0

1, u
0
2) dx (6)

and we are able to show that

E(t; Ū1, Ū2) − E(s; Ū1, Ū2)� − C

∫ t

s

2∑
i=1

‖∇√
ui‖2

L2(�)
d�, 0�s < t < ∞. (7)

The logarithmic Sobolev inequality allows to relate the L2 norm of ∇√
ui with the

relative entropy and then, the Gronwall inequality yields the exponential decay in the
entropy.

Theorem 2. Let the assumptions of Theorem 1 hold and let ai = bi = ci = 0, i = 1, 2.
Furthermore, let (u1, u2) be the weak solution constructed in Theorem 1. Then there
exists a constant C > 0, such that (u1(·, t), u2(·, t)) converges exponentially fast to its
steady state (6) as t → ∞. More precisely, we have the entropy decay

E(t; Ū1, Ū2)�E(0; Ū1, Ū2)e
−Ct , t > 0

and the L1 decay

2∑
i=1

1

2 meas(�)Ūi

‖ui(·, t) − Ūi‖L1(�) �
√

E(0; Ū1, Ū2)e
−Ct/2, t > 0.

From a biological viewpoint, this theorem states that in the case of disappearing
intrinsic growth and disappearing (inter- and intra-specific) competition, the popula-
tion densities become homogeneous exponentially fast. Thus, cross-diffusion has no
segregating effects here.
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Our final result for the case b2 = c1 = 0 is obtained by considering the steady state
(a1/b1, a2/c2) and proving the entropy inequality (7) for this situation.

Proposition 3. If a1, a2, b1, c2 > 0 and b2 = c1 = 0 then there exist only constant
stationary solutions to (4)–(5).

Since, roughly speaking, self-diffusion prevents pattern formation, one might think
that there exist steady states corresponding to the no-self-diffusion model (4), which
are non-homogeneous. The above proposition shows that this is not the case if there is
no inter-specific competition. In fact, even in the presence of intra-specific competition
and cross-diffusion, there exist only constant stationary solutions. This result answers
partially the question of Lou and Ni in [19].

The paper is organized as follows: in Section 2, we formulate the fully discretized
equations and prove the existence of an approximate positive solution. The limit of
disappearing approximation parameters and hence the existence of a weak solution
to (4)–(5) are proven in Section 3. Finally, the long-time behavior of the solution is
analyzed in Section 4.

2. An approximate problem

In this section, we prove the existence of solutions to an approximate problem which
can be seen as a positivity-preserving fully discretized numerical scheme.

Let (vj ) be a dense subset of Hs(�) with s = 1 + d2/(2d + 2) being orthogonal in
the L2 scalar product. For instance, one may choose vj as the eigenfunctions of the
Laplace operator with homogeneous Neumann boundary conditions. We may assume
that v1 = 1 in �. Then, by the regularity of ��, vj ∈ Hs(�), and, since the Laplace
operator is self-adjoint and compact, (vj ) is dense in L2(�) and therefore also in
Hs(�). We can see vj ∈ W 1,r ′

(�) ↪→ L∞(�), r ′ = 2d + 2.
Let Vn = span{v1, . . . , vn}, n ∈ N, be a finite-dimensional subspace of Hs(�), and

let w
(0,n)
i ∈ Vn be, such that exp(w

(0,n)
i ) → u0

i strongly in L�(�), as n → ∞, i = 1, 2.

We decompose (0, T ] = ∪K
k=1((k − 1)�, k�] for � = T/K , K ∈ N. Let w

(k−1,n)
i ∈ Vn

be given and set u
(k−1,n)
i = exp(w

(k−1,n)
i ), i = 1, 2. This definition makes sense since

w
(k−1,n)
i ∈ Vn ⊂ L∞(�). In the following, we solve the approximate problem

∫
�

(
ε∇w

(k,n)
i + diu

(k,n)
i ∇w

(k,n)
i + u

(k,n)
1 u

(k,n)
2 ∇(w

(k,n)
1 + w

(k,n)
2 )

)
· ∇� dx

+ ε

∫
�

w
(k,n)
i � dx

= −1

�

∫
�

(
u

(k,n)
i − u

(k−1,n)
i

)
� dx +

∫
�

u
(k,n)
i

×
(
ai − biu

(k,n)
i − ciu

(k,n)
i

)
� dx (8)
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for all � ∈ Vn, where ε > 0, u
(k,n)
i = exp(w

(k,n)
i ), i = 1, 2, and we show that the

discrete entropy

E(k,n) =
2∑

i=1

∫
�

(
u

(k,n)
i (ln u

(k,n)
i − 1) + 1

)
dx (9)

is uniformly bounded.

Lemma 4. For sufficiently small fixed � > 0 and for all k = 1, . . . , K , there exists a
solution (w

(k,n)
1 , w

(k,n)
2 ) ∈ V 2

n to (8), satisfying the discrete entropy estimate

E(k,n) + ε�
k∑

j=1

2∑
i=1

∫
�

(|∇w
(j,n)
i |2 + (w

(j,n)
i )2) dx

+ �
k∑

j=1

∫
�

(
2∑

i=1

diu
(j,n)
i |∇w

(j,n)
i |2 + u

(j,n)
1 u

(j,n)
2 |∇

(
w

(j,n)
1 + w

(j,n)
2

)
|2
)

dx

+ �
k∑

j=1

∫
�

(b1

2

(
(u

(j,n)
1 )2 ln(u

(j,n)
1 )2 + 1

)+ c2

2

(
(u

(j,n)
2 )2 ln(u

(j,n)
2 )2 + 1

)

+ (b2 + c1)u
(j,n)
1 u

(j,n)
2

)
dx�C(E(0,n) + 1), (10)

where the constant C > 0 is independent of �, n, and ε (but dependent on T).

Proof. In order to simplify the presentation, we omit the indices k and n, i.e. we set
ui = u

(n,k)
i and wi = w

(n,k)
i . The idea is to employ the Leray–Schauder fixed-point

theorem. For this, we construct a mapping S : V 2
n × [0, 1] → V 2

n by solving, for given
(w̄1, w̄2) ∈ V 2

n , ū1 = ew̄1 , ū2 = ew̄2 , and � ∈ [0, 1], the problem

ε

∫
�
(∇wi · ∇� + wi�) dx + �

∫
�

(
diūi∇w̄i + ū1ū2∇(w̄1 + w̄2)

) · ∇� dx

= −�

�

∫
�
(ūi − u

(k−1,n)
i )� dx + �

∫
�

ūi (ai − biū1 − ci ū2)� dx (11)

for all � ∈ Vn, where i = 1, 2. Since ūi ∈ L∞(�), we can apply the lemma
of Lax–Milgram to obtain a unique solution (w1, w2) ∈ V 2

n to (11). Thus, setting
S(w̄1, w̄2, �) = (w1, w2) defines the fixed-point operator S.

We can see that S(w̄1, w̄2, 0) = (0, 0). Furthermore, by standard arguments, S is
continuous. Since Vn is finite dimensional, S(·, �) is a compact operator for all � ∈
[0, 1]. It remains to establish uniform estimates for every fixed point of S(·, �). Let
(w1, w2) be a fixed point, i.e. (w1, w2) solves (11) with w̄i = wi and ūi = ui = ewi ,
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i = 1, 2. We use � = w1 as a test function in (11) for i = 1 and � = w2 in (11) for
i = 2 and add both equations. This gives

�

�

2∑
i=1

∫
�
(ui − u

(k−1,n)
i )wi dx + ε

2∑
i=1

∫
�
(|∇wi |2 + w2

i ) dx

+ �
∫
�

(
2∑

i=1

diui |∇wi |2 + u1u2|∇(w1 + w2)|2
)

dx

= �
2∑

i=1

∫
�
(ai − biu1 − ciu2)ui ln ui dx. (12)

The first integral on the left-hand side can be estimated by means of the elementary
inequality x(ln x − ln y)�x − y for all x, y > 0 as

�

�

2∑
i=1

∫
�

(
ui − u

(k−1,n)
i

)
wi dx

= �

�

2∑
i=1

∫
�

(
ui ln ui − u

(k−1,n)
i ln u

(k−1,n)
i + u

(k−1,n)
i (ln u

(k−1,n)
i − ln ui)

)
dx

� �

�

2∑
i=1

∫
�

(
ui ln ui − u

(k−1,n)
i ln u

(k−1,n)
i + u

(k−1,n)
i − ui

)
dx

= �

�

2∑
i=1

∫
�

(
ui(ln ui − 1) + 1 − u

(k−1,n)
i (ln u

(k−1,n)
i − 1) − 1

)
dx

= �

�
E(k,n) − �

�
E(k−1,n),

using definition (9) of the discrete entropy. For the estimate of the right-hand side of
(12) we employ the elementary inequality x ln x�x − 1 for x�0:

�
2∑

i=1

∫
�
(ai − biu1 − ciu2)ui ln ui dx

= �
∫
�

(
2∑

i=1

ai

(
ui(ln ui − 1) + 1

)+ a1(u1 − 1) + a2(u2 − 1) + b1

2
+ c2

2

− b1

2
(u2

1 ln u2
1 + 1) − c2

2
(u2

2 ln u2
2 + 1) − b2u1u2 ln u2 − c1u2u1 ln u1

)
dx
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��
∫
�

(
max{a1, a2}

2∑
i=1

(
ui(ln ui − 1) + 1

)

− b1

2
(u2

1 ln u2
1 + 1) − c2

2
(u2

2 ln u2
2 + 1)

+ b1

2
+ c2

2
− a1 − a2 + (a1 + b2)u1 + (a2 + c1)u2 − (b2 + c1)u1u2

)
dx.

The linear terms in u1 and u2 can be estimated in terms of the entropy. Indeed, the
elementary inequality x�(x(ln x − 1) + 1) + (e − 1) for x > 0 implies that

�
2∑

i=1

∫
�
(ai − biu1 − ciu2)ui ln ui dx

��
∫
�

(
C1

2∑
i=1

(
ui(ln ui − 1) + 1

)− b1

2
(u2

1 ln u2
1 + 1) − c2

2
(u2

2 ln u2
2 + 1)

− (b2 + c1)u1u2 + C2

)
dx,

where

C1 = max{a1, a2} + (a1 + b2) + (a2 + c1),

C2 = b1

2
+ c2

2
− a1 − a2 + (a1 + b2)(e − 1) + (a2 + c1)(e − 1).

Thus, (12) gives, for C = max{C1, C2},

�

�
E(k,n) + ε

2∑
i=1

∫
�
(|∇wi |2 + w2

i ) dx

+ �
∫
�

(
2∑

i=1

diui |∇wi |2 + u1u2|∇(w1 + w2)|2
)

dx

+ �
∫
�

(b1

2
(u2

1 ln u2
1 + 1) + c2

2
(u2

2 ln u2
2 + 1) + (b2 + c1)u1u2

)
dx

� �

�
E(k−1,n) + �C(E(k,n) + 1) (13)

and the discrete Gronwall inequality for sufficiently small � > 0 (and � = 1) implies
(10), using k��T . Estimate (10) provides a uniform H 1 estimate for w1 and w2.
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We have shown that all assumptions of the Leray–Schauder fixed-point theorem are
satisfied, i.e. S(w1, w2, 0) = (0, 0) for all (w1, w2) ∈ V 2

n , S(·, �) is continuous and
compact, and there is a constant C0 > 0, such that for all � and all fixed points
(w1, w2) of S(·, �), the estimate ‖(w1, w2)‖H 1 �C0 is satisfied. Therefore, there exists
a fixed point of S(·, 1), which is a solution to (8). �

3. Existence of weak solutions

The solution of the fully discrete system (8) also depends on ε and will be denoted

by
(
w

(k,n,ε)
1 , w

(k,n,ε)
2

)
. We also introduce the piecewise constant function w

(�)
i (x, t) =

w
(k,n,ε)
i (x) if x ∈ �, t ∈ ((k − 1)�, k�], i = 1, 2. Setting Qt = � × (0, t), u

(�)
i =

exp(w
(�)
i ) for i = 1, 2 and

E(�)(t) =
2∑

i=1

∫
�

(
u

(�)
i (x, t)

(
ln u

(�)
i (x, t) − 1

)+ 1
)

dx,

we can rewrite the estimate (10) as

E(�)(t) +
∫

Qt

(
2∑

i=1

di

∣∣∇√u
(�)
i

∣∣2 + ∣∣∇√u
(�)
1 u

(�)
2

∣∣2) dx d�

+ ε

2∑
i=1

∫
Qt

(|∇w
(�)
i |2 + w2

i ) dx + (b2 + c1)

∫
Qt

u
(�)
1 u

(�)
2 dx d�

+
∫

Qt

(b1

2

(
(u

(�)
1 )2 ln(u

(�)
1 )2 + 1

)+ c2

2

(
(u

(�)
2 )2 ln(u

(�)
2 )2 + 1

))
dx d�

�C(E(�)(0) + 1). (14)

The constant C > 0 is independent of �, ε, and n.
For the limit (ε, �) → 0, n → ∞, we employ the following convergence results.

Lemma 5. Let � ⊂ Rd (d �1) be a bounded domain and let un ∈ Lp(�), 1�p�∞,
such that (un) is bounded in Lp(�) and un → u pointwise a.e. in � as n → ∞. Then
un → u strongly in Lq(�) as n → ∞ for all q < p.

A proof of this lemma can be found in [18, Chapter 1.3 and p. 144].

Lemma 6. Let X be a reflexive Banach space, T > 0, and (un) ⊂ L1(0, T ; X) be a
sequence, such that (un) is bounded in L1(0, T ; X) and

∫
�〈�, un〉X′,X dt converges

for every � ∈ X′ and � ∈ L∞(0, T ) as n → ∞, where 〈·, ·〉X′,X denotes the duality
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product of X and its dual space X′. Then un ⇀ u weakly in L1(0, T ; X) for some
u ∈ L1(0, T ; X) as n → ∞.

Proof. The lemma is a consequence of Theorem 4 (Chapter 5.1) in [25]. Indeed, let
� ∈ X′ and fn[�](t) = 〈�, un(t)〉X′,X for t ∈ (0, T ). Then fn[�] ∈ L1(0, T ), the
sequence (fn[�]) is bounded in L1(0, T ), and limn→∞

∫
fn[�]� dt exists for all � ∈

L∞(0, T ). Thus, by Theorem 4 (Chapter 5.1) of [25], there exists f [�] ∈ L1(0, T ),
such that fn[�] ⇀ f [�] weakly in L1(0, T ) as n → ∞. The function u, defined by
u(�) = f [�] for � ∈ X′, satisfies u ∈ L1(0, T ; X′′). Since X is reflexive, u can be
interpreted as a function in L1(0, T ; X) and f [�] = 〈�, u〉X′,X. Hence, as n → ∞,

∫ T

0
�〈�, un〉X′,X dt =

∫ T

0
fn[�]� dt →

∫ T

0
�〈�, u〉X′,X dt

for all � ∈ X′ and � ∈ L∞(0, T ). This implies the conclusion. �

In the following lemma we show that the sequences (w
(�)
i ) and (u

(�)
i ) have convergent

subsequences. For this we define

��
t ui(·, t) = 1

�

(
u

(k,n)
i − u

(k−1,n)
i

)
if t ∈ ((k − 1)�, k�].

Lemma 7. As (ε, �) → 0, n → ∞, it holds for i = 1, 2, up to subsequences which
are not relabeled, that

u
(�)
i → ui strongly in L1(0, T ; L�(�)), (15)

∇u
(�)
i = u

(�)
i ∇w

(�)
i ⇀ ∇ui weakly in L4/3(�), (16)

u
(�)
1 u

(�)
2 ⇀ u1u2 weakly in L1+1/d(QT ), (17)

u
(�)
1 u

(�)
2 ∇

(
w

(�)
1 + w

(�)
2

)
⇀ ∇(u1u2) weakly in Lr(QT ), (18)

(
u

(�)
i

)2
⇀ u2

i weakly in L1(QT ), (19)

εw
(�)
i , ε∇w

(�)
i ⇀ 0 weakly in L2(QT ), (20)

��
t u

(�)
i ⇀ �t ui weakly in L1(0, T ; (Hs(�))′) (21)

for some functions u1, u2, where 1�� < 4
3 and r = (2d + 2)/(2d + 1).

Proof. We first show (15). Since ‖u(�)
i ‖L∞(0,T ;L�(�)) is uniformly bounded, from (14)

we obtain ∥∥∥√u
(�)
1 u

(�)
2

∥∥∥
L∞(0,T ;L1(�))

�C,

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥
L2(0,T ;H 1(�))

�C,
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where here and in the following, C > 0 denotes a generic constant which is independent
of ε, �, and n. By Gagliardo–Nirenberg’s inequality with p = 2 + 2/d and � =
2d(p − 1)/(d + 2)p (and thus �p = 2), we infer∥∥∥√u

(�)
1 u

(�)
2

∥∥∥
Lp(QT )

� C

(∫ T

0

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥(1−�)p

L1(�)

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥�p

H 1(�)
dt

)1/p

� C

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥1−�

L∞(0,T ;L1(�))

(∫ T

0

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥�p

H 1(�)
dt

)1/p

� C. (22)

Therefore, with r = (2d + 2)/(2d + 1),

‖u(�)
1 u

(�)
2 ∇(w

(�)
1 + w

(�)
2 )‖Lr(QT )

= 2
∥∥∥√u

(�)
1 u

(�)
2 ∇

√
u

(�)
1 u

(�)
2

∥∥∥
L(2d+2)/(2d+1)(QT )

�2
∥∥∥√u

(�)
1 u

(�)
2

∥∥∥
L2+2/d (QT )

∥∥∥∇√u
(�)
1 u

(�)
2

∥∥∥
L2(QT )

�C, (23)

‖∇u
(�)
i ‖L4/3(QT ) = ‖u(�)

i ∇w
(�)
i ‖L4/3(QT ) = 2

∥∥∥√u
(�)
i ∇

√
u

(�)
i

∥∥∥
L4/3(QT )

� 2
∥∥∥√u

(�)
i

∥∥∥
L4(QT )

∥∥∥∇√u
(�)
i

∥∥∥
L2(QT )

�C, (24)

‖u(�)
1 u

(�)
2 ‖L1+1/d (QT ) =

∥∥∥√u
(�)
1 u

(�)
2

∥∥∥2

L2+2/d (QT )
�C. (25)

Let Pn : Hs(�) → Vn be the projection on Vn. Then, for all 	 = �
 with � ∈ Hs(�)

and 
 ∈ L∞(0, T ),∣∣∣∣
∫

QT

��
t u

(�)
i 	 dx dt

∣∣∣∣ =
∣∣∣∣
∫

QT

��
t u

(�)
i (Pn�)
 dx dt

∣∣∣∣
=
∣∣∣∣
∫

QT

(∇(diu
(�)
i + u

(�)
1 u

(�)
2 ) · ∇(Pn�)

+ u
(�)
i

(
ai − biu

(�)
1 − ciu

(�)
2

)
Pn�

)

 dx dt

∣∣∣∣
�
∫ T

0

(
‖∇(diu

(�)
i + u

(�)
1 u

(�)
2 )‖Lr(QT )‖∇�‖

Lr′ (�)

×‖
‖
Lr′ (0,T )

+ ‖u(�)
i

(
ai − biu

(�)
1 − ciu

(�)
2

)
× ‖L1(�)‖�‖L∞(�)‖
‖L∞(0,T )

)
dx dt
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� C‖�‖
W 1,r′ (�)

‖
‖L∞(�) �C‖	‖L∞(0,T ;Hs(�)),

where r ′ = 2d +2. By density, this inequality also holds for all 	 ∈ L∞(0, T ; Hs(�)).
This shows that

‖��
t u

(�)
i ‖L1(0,T ;(Hs(�))′) �C, i = 1, 2.

Summarizing, this bound and (24) give

‖u(�)
i ‖L4/3(0,T ;W 1,4/3(�)) + ‖��

t u
(�)
i ‖L1(0,T ;(Hs(�))′) �C.

Since W 1,4/3(�) injects compactly into L4/3(�) and the latter space injects continuously
into (Hs(�))′, we can apply the version of Aubin’s lemma in [24] (Theorem 5) to
conclude, may be passing to a subsequence which is not relabeled, that (15) holds.

In particular, (a subsequence of) the sequence (u
(�)
i ) converges pointwise a.e. in

QT to ui as (ε, �) → 0, n → ∞. Since

(√
u

(�)
i

)
is bounded in L4(QT ) (again a

consequence of (14)), Lemma 5 implies that

√
u

(�)
i → √

ui strongly in Lq(QT ) for all q < 4.

With this strong convergence result and the boundedness of

(
∇
√

u
(�)
i

)
in L2(QT ) we

conclude that

∇
√

u
(�)
i ⇀ ∇√

ui weakly in L2(QT ).

Thus,

∇u
(�)
i = 2

√
u

(�)
i ∇

√
u

(�)
i ⇀ 2

√
ui∇√

ui = ∇ui weakly in Lq(QT ) (26)

for all 1 < q < 4
3 . In fact, since

∥∥∥√u
(�)
i ∇

√
u

(�)
i

∥∥∥4/3

L4/3(QT )
=
∥∥∥∇√u

(�)
i

∥∥∥4/3

L2(QT )
‖u(�)

i ‖2/3
L2(QT )

�C,

by (14), the sequence (∇u
(�)
i ) is bounded in L4/3(QT ), and the weak convergence (26)

also holds true for q = 4
3 . This shows (16).
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The bound (25) and the pointwise convergence of (u
(�)
i ) imply that

√
u

(�)
1 u

(�)
2 ⇀

√
u1u2 weakly in L2+2/d(QT ),

which proves (17).
Moreover, the discrete entropy estimate (14) gives

∇
√

u
(�)
1 u

(�)
2 ⇀ ∇√

u1u2 weakly in L2(QT ).

Thus

√
u

(�)
1 u

(�)
2 ∇

√
u

(�)
1 u

(�)
2 ⇀

√
u1u2∇√

u1u2 weakly in Lq(QT ) for all q < r.

In fact, this convergence also holds true for q = r in view of the uniform bound
provided by (23). Hence, (18) is shown.

Furthermore, (14) shows that (u
(�)
i ) is bounded in L2(QT ) and therefore, the point-

wise convergence of (u
(�)
i ) yields (19). The convergence (20) is a consequence of the

uniform bound for (
√

εw
(�)
i ) in L2(0, T ; H 1(�)) which follows from (14).

It remains to show that (21) holds. For this, let � ∈ Hs(�), 
 ∈ L∞(0, T ). Let
� > 0 be arbitrary and let n ∈ N be so large that there exists � ∈ Vn, such that
‖� − �‖Hs(�) ��. Then

∫
QT

��
t u

(�)
i �
 dx dt =

∫
QT

��
t u

(�)
i (� − �)
 dx dt +

∫
QT

(∇(diu
(�)
i + u

(�)
1 u

(�)
2 )

· ∇� + u
(�)
i (ai − biu

(�)
1 − ciu

(�)
2 )�

)

 dx dt. (27)

The first term on the right-hand side can be estimated by

∣∣∣∣
∫

QT

��
t u

(�)
i (� − �)
 dx dt

∣∣∣∣ ��‖��
t u

(�)
i ‖L1(0,T ;(Hs(�))′)‖
‖L∞(�) ��C.

In view of the above convergence results, the second term on the right-hand side of
(27) is also converging. Therefore,

lim
(ε,�)→0,n→∞

∫
QT

��
t u

(�)
i 	 dx dt

exists for all 	 = �
 and hence, by density, also for all 	 ∈ L∞(0, T ; Hs(�)). Thus,
Lemma 6 implies (21). �
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Proof of Theorem 1. The approximate problem (8) can be written as

1

�

∫
QT

��
t u

(�)
i �
 dx dt + ε

∫
QT

(
∇w

(�)
i · ∇� + w

(�)
i �

)

 dx dt

+
∫

QT

(
diu

(�)
i ∇w

(�)
i + u

(�)
1 u

(�)
2 ∇(w

(�)
1 + w

(�)
2 )
)

∇�
 dx dt

=
∫

QT

u
(�)
i

(
ai − biu

(�)
1 − ciu

(�)
2

)
�
 dx dt, i = 1, 2,

where � ∈ Vn and 
 ∈ L∞(0, T ). Lemma 7 allows to pass to the limit (ε, �) → 0,
n → ∞ in the above equation which yields

∫ T

0
〈�t ui, 	〉 dt +

∫
QT

∇(diui + u1u2) · ∇	 dx dt =
∫

QT

ui(ai − biu1 − ciu2)	 dx dt

for i = 1, 2 and for all 	 ∈ L∞(0, T ; Hs(�)), where 〈·, ·〉 denotes the duality product
between (Hs(�))′ and Hs(�).

The initial data are satisfied in the sense of (Hs(�))′ since

ui ∈ W 1,1(0, T ; (Hs(�))′) ⊂ C0([0, T ]; (Hs(�))′).

This proves Theorem 1. �

4. Long-time behavior of the solutions

The exponential decay of the transient solutions (u1, u2)(·, t) to its steady state
(U1, U2) as t → ∞ will be proven by means of the entropy–entropy production
method. For this, we introduce the relative entropy

E(t; U1, U2) =
2∑

i=1

∫
�

Ui�

(
ui(t)

Ui

)
dx,

where we recall that �(x) = x(ln x −1)+1. We only consider the special steady states

(Ū1, Ū2) = 1

meas(�)

∫
�
(u0

1, u
0
2) dx if ai = bi = ci = 0 (i = 1, 2) and

(U∗
1 , U∗

2 ) =
(

a1

b1
,
a2

c2

)
if b2 = c1 = 0.
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Lemma 8. Let 0 < s < t and (u1, u2) be weak solutions to (4)–(5) obtained by
Theorem 1. Then

E(t; Ū1, Ū2) − E(s; Ū1, Ū2)� − C

2∑
i=1

∫ t

s

‖∇√
ui‖2

L2(�)
d� (28)

if ai = bi = ci = 0 (i = 1, 2) and

E(t; U∗
1 , U∗

2 ) − E(s; U∗
1 , U∗

2 )

� − C

2∑
i=1

∫ t

s

‖∇√
ui‖2

L2(�)
d� −

∫ t

s

∫
�

(
b1u1(u1 − U∗

1 )(ln u1 − ln U∗
1 )

+ c2u2(u2 − U∗
2 )(ln u2 − ln U∗

2 )
)
dx dt (29)

if b2 = c1 = 0.

Proof. We only prove the second inequality (29) since the proof of the first one is
similar (and, in fact, simpler).

We choose � = w
(k,n)
i − ln U∗

i ∈ Vn in (8) and add the equations for i = 1 and i = 2.
Since b2 = c1 = 0, after a similar computation as in the proof of Lemma 4, we obtain

1

�

(
E(k,n)∗ − E(k−1,n)∗

)
+ ε

2∑
i=1

∫
�

(
|∇w

(k,n)
i |2 + |w(k,n)

i |2
)

dx

+
2∑

i=1

∫
�

diu
(k,n)
i |∇w

(k,n)
i |2 dx +

∫
�

u
(k,n)
1 u

(k,n)
2 |∇

(
w

(k,n)
1 + w

(k,n)
2

)
|2 dx

+
∫
�

[
b1u

(k,n)
1 (u

(k,n)
1 − U∗

1 ) ln
(u

(k,n)
1

U∗
1

)

+ c2u
(k,n)
2

(
u

(k,n)
2 − U∗

2

)
ln
(u

(k,n)
2

U∗
2

)]
dx

�ε

2∑
i=1

∫
�

w
(k,n)
i ln U∗

i dx, (30)

where

E(k,n)∗ =
2∑

i=1

∫
�

U∗
i �
(u

(k,n)
i

U∗
i

)
dx.
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As in the proof of Lemma 4 we can rewrite the above estimate in terms of the variables
u

(�)
i , i = 1, 2, which are piecewise constant in time.
We now claim that for all 0 < s < t , up to subsequences which are not relabeled,

the following limits hold as (ε, �) → 0 and n → ∞:

(i) E(t; U∗
1 , U∗

2 ) = lim E(k,n)∗ if t ∈ (tk−1, tk],

(ii)
∫ t

s

∫
�

|∇√
ui |2 dx d�� lim inf

∫ t

s

∫
�

u
(�)
i |∇w

(�)
i |2 dx d�,

(iii)
∫ t

s

∫
�

ui(ui − U∗
i ) ln

( ui

U∗
i

)
dx d�

� lim inf
∫ t

s

∫
�

u
(�)
i (u

(�)
i − U∗

i ) ln
(u

(�)
i

U∗
i

)
dx d�, and

(iv) ε

∫ t

s

∫
�

w
(�)
i ln U∗

i dx d� → 0.

Indeed, the convergence result (i) follows from the strong Lp (p < 2) convergence
of u

(�)
i (·, t) to ui(·, t) for a.e. t > 0 and Lebesgue’s dominated convergence theorem.

The result (ii) is a consequence of the weakly lower semi-continuity of the L2 norm.
Furthermore, Fatou’s lemma and the pointwise convergence of (u

(k,n)
i ) imply (iii).

Finally, estimate (14) shows that

∣∣∣∣ε
∫
�

w
(k,n)
i ln U∗

i dx

∣∣∣∣ �
√

εC‖√εw
(k,n)
i ‖L2(�) �C

√
ε

from which we conclude (iv). Thus, the limit (ε, �) → 0, n → ∞ in (30) completes
the proof. �

Proof of Theorem 2. Inequality (28) implies

E(t; Ū1, Ū2)�E(0; Ū1, Ū2) − C

2∑
i=1

∫ t

0
‖∇√

ui‖2
L2(�)

d�.

Thus, employing the logarithmic Sobolev inequality [4,10],

∫
�

g2 ln
(g2

ḡ

)
dx�C

∫
�

|∇g|2 dx
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for all g ∈ H 1(�), such that ḡ = meas(�)−1‖g‖2
L2(�)

, and the conservation of mass,

∫
�

ui(·, t) dx =
∫
�

u0
i dx = meas(�)Ūi , t > 0,

we obtain

E(t; Ū1, Ū2)�E(0; Ū1, Ū2) − C

∫ t

0
E(�; Ū1, Ū2) d�, t > 0.

Hence, by Gronwall’s inequality,

E(t; Ū1, Ū2)�E(0; Ū1, Ū2)e
−Ct , t > 0.

The L1 decay is derived by applying the Csiszár–Kullback inequality [4,6,15]

‖g − G‖2
L1(�)

�4M

∫
�

G�
( g

G

)
dx

for all non-negative g, G ∈ L1(�) such that
∫

G�(g/G) dx exists and satisfies
∫

g dx =∫
G dx = M . Indeed, we obtain

2∑
i=1

1

2 meas(�)Ūi

‖ui(·, t) − Ūi‖L1(�) �
√

E(t; Ū1, Ū2)

�
√

E(0; Ū1, Ū2)e
−Ct/2.

This proves the theorem. �

Proof of Proposition 3. Let (u1, u2) be a weak solution to the stationary version of
(4). Under the assumption b2 = c1 = 0, an analogous (but simpler) calculation as in
the proof of Lemma 8 gives

2∑
i=1

‖∇√
ui‖L2(�) �0.

This shows that u1 and u2 are constant in �. Since they satisfy the stationary equations
corresponding to (4), we conclude that

(a1 − b1u1)u1 = (a2 − c2u2)u2 = 0 in �.
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Thus, either u1 = 0 or u1 = a1/b1 = U∗
1 and either u2 = 0 or u2 = a2/c2 = U∗

2 . In
particular, this proves that any stationary solution is constant in �. �
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