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We consider the Cauchy problem for a semilinear heat equation,

{
∂t u = D�u + |u|p−1u, x ∈ RN , t > 0,

u(x,0) = λ + ϕ(x), x ∈ RN ,

where D > 0, p > 1, N � 3, λ > 0, and ϕ ∈ L∞(RN ) ∩ L1(RN ,

(1 + |x|)2 dx). In this paper we assume

∫
RN

ϕ(x)dx > 0,

and study the blow-up time and the location of the blow-up set of
the solution for the case where D is sufficiently large. In particular,
we prove that the location of the blow-up set depends on the large
time behavior of the hot spots for the heat equation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with the Cauchy problem for a semilinear heat equation,

∂t u = D�u + |u|p−1u, x ∈ RN , t > 0, (1.1)

u(x,0) = λ + ϕ(x), x ∈ RN , (1.2)
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where ∂t = ∂/∂t , D > 0, p > 1, N � 3, λ > 0, and

ϕ ∈ L∞(
RN) ∩ L1(RN ,

(
1 + |x|)2

dx
)
. (1.3)

Problem (1.1) and (1.2) with (1.3) has a unique classical solution u in L∞(RN × (0, T )) for some T > 0.
We denote by T D the maximal existence time of the unique classical solution u of (1.1) and (1.2).
If T D < ∞, then

lim sup
t→T D

sup
x∈RN

∣∣u(x, t)
∣∣ = ∞,

and we call T D the blow-up time of the solution u. We denote by B D the blow-up set of the solu-
tion u, that is,

B D =
{

x ∈ RN : there exists a sequence
{
(xn, tn)

} ⊂ RN × (0, T D)

such that lim
n→∞(xn, tn) = (x, T D), lim

n→∞
∣∣u(xn, tn)

∣∣ = +∞
}
.

In this paper we study the blow-up time and the location of the blow-up set of the solution u of (1.1)
and (1.2) for the case where D is sufficiently large, and reveal the relationship among the blow-up
time T D , the location of the blow-up set B D , and the large time behavior of the solutions for the heat
equation. Here we remark that the function v(x, t) = D−1/(p−1)u(x, D−1t) is a solution of

∂t v = �v + |v|p−1 v in RN × (0, DT D), v(x,0) = D−1/(p−1)u(x,0) in RN . (1.4)

The blow-up set for a semilinear heat equation (1.1) has been studied intensively by many authors
since the work due to Weissler [23]. We refer to [2–12,14–16,18–20,22–27], and a survey [21], which
includes a considerable list of references for this topic. Generally speaking, the location of the blow-
up set is decided by given data such as the initial data and the boundary data and by the balance
between the diffusion and the nonlinear term. Consider the blow-up problem

⎧⎪⎪⎨
⎪⎪⎩

∂t u = D�u + |u|p−1u, x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x,0) = φ(x), x ∈ Ω,

(1.5)

where Ω is a bounded smooth domain in RN , ν is the exterior unit normal vector to ∂Ω , and φ is
a positive continuous function on Ω . Then, if the constant D is sufficiently small, the location of the
blow-up set is decided mainly by the initial datum, and the solution u of (1.5) blows up only near
the maximum points of its initial datum (see [24]). This result also holds true for the case Ω = RN

(see Proposition 2.3) and for the case of the Dirichlet boundary condition under some additional
assumptions (see [2,5,9]). On the other hand, if D is sufficiently large, the location of the blow-up
set is influenced strongly by the effect of the diffusion driven from Laplacian �, and depends on the
large time behavior of the solutions of the heat equation. Indeed, the second author of this paper and
Yagisita in [16] proved that

T D = (p − 1)−1
(

1

|Ω|
∫

φ(x)dx

)−(p−1)

+ O
(

D−1) as D → ∞, (1.6)
Ω
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and that if D is sufficiently large, the solution of (1.5) blows up only near the set of maximum points
of the function P2φ, where |Ω| is the Lebesgue measure of Ω and P2 is the projection from L2(Ω)

onto the second Neumann eigenspace (see also [12] and [15]). Let z be a solution of

∂t z = �z in Ω × (0,∞),
∂

∂ν
z = 0 on ∂Ω × (0,∞), z(x,0) = φ(x) in Ω.

Then, if P2φ �≡ 0 in Ω , then the set of the maximum points of P2φ coincides with the limit of the
hot spots

{
x ∈ Ω: z(x, t) = max

y∈Ω

z(y, t)
}

as t → ∞. Therefore, for the problem (1.5) with a large constant D , we can find a strong connection
between the location of the blow-up set and the large time behavior of the hot spots for the heat
equation.

For the case Ω = RN , we have no eigenfunctions for Laplacian �, and cannot expect the same
results as in [16] even if D is sufficiently large. However we can propound the following problem:

(P )

for the case Ω = RN , if D is sufficiently large, is the location of the blow-up
set for problem (1.5) determined mainly by the large time behavior of the hot
spots for the heat equation?

In this paper we study the location of the blow-up set for the problem (1.1)–(1.3) by using the large
time behavior of the solutions for the heat equation and of their hot spots, and give an affirmative
answer to problem (P ).

We introduce some notation. Put B(x, r) = {y ∈ RN : |x − y| < r} for x ∈ RN and r > 0. For any
f ∈ C(RN ) ∩ L∞(RN ) and η > 0, we set

H( f ) =
{

x ∈ RN : f (x) = sup
y∈RN

f (y)
}
,

H( f , η) =
{

x ∈ RN : f (x) � sup
y∈RN

f (y) − η
}
.

Furthermore, for f ∈ L1(RN , (1 + |x|)dx), we put

C( f ) =
∫

RN

xf (x)dx/

∫
RN

f (x)dx if
∫

RN

f (x)dx �= 0.

Here C( f ) is the center of the mass for the function f . On the other hand, for any λ > 0, we put

ζλ(t) = κ(Sλ − t)−
1

p−1 , κ =
(

1

p − 1

) 1
p−1

, Sλ = λ−(p−1)

p − 1
. (1.7)

Then ζλ = ζλ(t) is a solution of the ordinary differential equation ζ ′ = ζ p with ζ(0) = λ and Sλ is the
blow-up time of ζλ .

Now we are ready to state the main result of this paper.
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Theorem 1.1. Let N � 3 and u be the solution of (1.1) and (1.2) under condition (1.3). Assume

M(ϕ) :=
∫

RN

ϕ(x)dx > 0. (1.8)

Then T D � Sλ for any D > 0 and

Sλ − T D = (4π Sλ)
− N

2 λ−p D− N
2
[
M(ϕ) + O

(
D−1)] as D → ∞. (1.9)

Furthermore

lim
D→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ B D

} = 0. (1.10)

By Theorem 1.1, we see that the solution u blows up only near the point C(ϕ) if D is sufficiently
large and M(ϕ) > 0. We conjecture that Theorem 1.1 holds even if N � 2, however it is open. Indeed,
our argument fails in the proof of Proposition 4.1 if N � 2.

In the following remark, we discuss the relationship among the blow-up time T D , the location of
the blow-up set B D , and the large time behavior of the solutions for the heat equation and of their
hot spots.

Remark 1.1. (i) Assume conditions (1.3) and (1.8). Then the function

(
et�ϕ

)
(x) = (4πt)−

N
2

∫
RN

e− |x−y|2
4t ϕ(y)dy (1.11)

is a unique bounded classical solution of the heat equation with the initial datum ϕ . Then

lim
t→∞ t

N
2
(
et�ϕ

)
(x) = (4π)−

N
2 M(ϕ)

uniformly on any compact set in RN . Furthermore

lim
t→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ H

(
et�ϕ

)} = 0,

that is, the hot spots of et�ϕ tend to C(ϕ) as t → ∞. See Lemma 2.2. For further details in the hot
spots for the heat equation on RN , see [1].

(ii) Consider the problem (1.1) and (1.2) under conditions (1.3) and (1.8). Then, by Theorem 1.1
and Remark 1.1(i), we see that, if D is sufficiently large, then the blow-up time and the location of
the blow-up set depend on the large time behavior of the solution of the heat equation et�ϕ and of
its hot spots, respectively (see also the proof of Theorem 1.1). This gives an answer of this paper to
problem (P ).

Next we give some comments on the problem (1.1) and (1.2) for the case λ = 0.

Remark 1.2. Let u be a positive solution of (1.1) and (1.2) with λ = 0.
(i) Let p > 1 + 2/N and assume (1.3). If D is sufficiently large, then the solution u exists globally

in time and T D = ∞.
(ii) The results of Dickstein [6] imply that under suitable assumptions, the blow-up set consists of

only one point if D is sufficiently large. See also (1.4).
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(iii) Let 1 < p � 1 + 2/N and assume (1.3). Then T D < ∞ for D > 0 and limD→∞ T D = ∞. In the
proof of Theorem 1.1, it is important to obtain the profile of the solution just before the blow-up time.
However, since limD→∞ T D = ∞, it seems difficult to study the profile of the solution just before the
blow-up time and to apply the arguments of this paper to the case λ = 0.

We explain the idea of proving Theorem 1.1. In order to study the location of the blow-up set B D ,
we study the profile of the solution u of (1.1) and (1.2) just before the blow-up time T D . Indeed, for
any sufficiently small ε > 0, the function

v(x, t) := ε1/(p−1)u(x, T D − ε + εt)

satisfies

∂t v = Dε�v + |v|p−1 v in RN × (0,1), v(x,0) = ε1/(p−1)u(x, T D − ε) in RN .

Then, by [9], if Dε is sufficiently small, under suitable assumptions on v(x,0), we see that the func-
tion v blows up only near the maximum points of v(x,0) (see also Proposition 2.3). Therefore we can
study the location of blow-up set B D by using the profile of u(x, T D − ε).

Let D be a sufficiently large constant. In order to study the profile of the solution just before
the blow-up, we study the profile of the solution at the time Sλ − AD−1 with A > 0 by use of
the comparison method. For any nonnegative bounded function φ in RN , it is well known that the
functions

u(x, t) = (
eDt�φ

)
(x)

[
1 − (p − 1)

t∫
0

∥∥eDs�φ
∥∥p−1

∞ ds

]− 1
p−1

,

u(x, t) = ((
eDt�φ

)
(x)−(p−1) − (p − 1)t

)− 1
p−1

are a supersolution and a subsolution of Eq. (1.1) with the initial datum φ, respectively. If the decay
rate of ‖et�φ‖∞ as t → ∞ is sufficiently large, for example, the dimension N is sufficiently large,
then functions u and u are useful for the study of the profile of the solution at Sλ − AD−1, however,
at least, for the cases N = 3,4,5, u is not enough for our study of the profile of the solution just
before the blow-up time. So we introduce the following function

U (x, t : φ, M) = ((
eDt�φ

)
(x)−(p−1) − (p − 1)(1 + M)t

)− 1
p−1 , (1.12)

where M � 0. If M = 0, U (x, t : φ, M) = u(x, t) and U is a subsolution of (1.1). If

M > 0 and inf
x∈RN

φ(x) � m > 0

for some constant m, then infx∈RN (eDt�φ)(x) � m for t > 0, and we have

∂t U = U p((
eDt�φ

)−p
∂t

(
eDt�φ

) + 1 + M
)
,

�U = U p(
eDt�φ

)−p
�

(
eDt�φ

) + [
pU 2p−1(eDt�φ

)−2p − pU p(
eDt�φ

)−p−1]∣∣∇(
eDt�φ

)∣∣2
,

and obtain

∂t U − (
D�U + U p)

� U p(
M − cm D U p−1

∣∣∇(
eDt�φ

)∣∣2)
, (1.13)
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where cm = p/m2p . This implies that U is a supersolution of (1.1) if U satisfies

cm D U p−1
∣∣∇(

eDt�φ
)∣∣2 � M. (1.14)

By using a short time behavior of the solution u, we choose a suitable constant M and construct
a supersolution U . Then we can obtain the profile of the solution u at the time Sλ − AD−1/3 (see
Proposition 2.1 and Lemma 4.1). Furthermore, by using the profile of u(·, Sλ − AD−1/3), we con-
struct a supersolution U with a suitable choice of M , and obtain the profile of u(·, Sλ − AD−2/3)

(see Lemma 4.2). Repeating this argument again, we obtain the profile of the solution u at the time
Sλ − AD−1 (see Proposition 4.1). Then we follow the strategy in [16] and [25], and obtain the profile
of the solution u just before the blow-up time under a suitable choice of A. Finally we apply the
result of [9] (see Proposition 2.3), and complete the proof of Theorem 1.1. Our arguments heavily de-
pend on the behavior of the solution of the heat equation, and need more careful calculations than in
[16] because of the difference of the diffusion of � between bounded domains and RN .

The rest of this paper is organized as follows. In Section 2 we study the large time behavior of
the hot spots for the heat equation, and give two propositions, which are useful for the study of the
profile of the solutions of (1.1) and (1.2). Furthermore we recall one proposition on the blow-up set
of the solution of (1.1) with small diffusion. In Section 3 we study the short time behavior of the
solutions of (1.1) and (1.2), and give some global estimates of the solutions. Section 4 is devoted to
the study the profile of the solution at the time Sλ − AD−1 with A > 0. In Section 5 we follow the
strategy in [16] and [25], and study the profile of the solution just before the blow-up time. Then
we can prove Theorem 1.1 by using propositions given in Section 2, which are related to the blow-up
problem with small diffusion.

2. Preliminary results

In this section we introduce some notation and recall some properties of the solution of the heat
equation. Furthermore we give three propositions on the blow-up problem for the semilinear heat
equation (1.1).

We first introduce some notation. For any q ∈ [1,∞], we denote by ‖ ·‖q the usual norm of Lq(RN ).
For any multi-index α = (α1, . . . ,αN ) ∈ (N ∪ {0})N , we put

|α| =
N∑

n=1

αn, α! = α1! · · ·αN !, ∂α
x = ∂ |α|

∂xα1
1 · · · ∂xαN

N

,

G(x, t) = (4πt)−N/2e−|x|2/4t, Gα(x, t) = (−1)|α|∂α
x G(x, t + 1)/α!.

For any sets Λ and Σ , let f = f (λ,σ ) and h = h(λ,σ ) be maps from Λ × Σ to (0,∞). Then we say

f (λ,σ ) � h(λ,σ )

for all λ ∈ Λ if, for any σ ∈ Σ , there exists a positive constant C such that f (λ,σ ) � Ch(λ,σ ) for all
λ ∈ Λ. Furthermore we say f (λ,σ ) � h(λ,σ ) for all λ ∈ Λ if f (λ,σ ) � h(λ,σ ) and f (λ,σ ) � h(λ,σ )

for all λ ∈ Λ.

2.1. Behavior of the solutions of the heat equation

In this subsection we recall some properties of et�ϕ , and give a lemma on the hot spots for the
heat equation. We first recall the following properties of et�ϕ:
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(P1) for any 1 � r � q � ∞, l, m ∈ N ∪ {0}, and φ ∈ Lr(RN ),

∥∥∂ l
t∇met�φ

∥∥
q � t− N

2 ( 1
r − 1

q )−l− m
2 ‖φ‖r for t > 0.

In particular, if r = q, then ‖et�φ‖q � ‖φ‖q for t > 0;
(P2) for any φ ∈ L1(RN , (1 + |x|)dx),

∥∥∇et�φ
∥∥

L∞(B(0,R))
� t− N

2 −1(1 + R)

∫
RN

(
1 + |x|)∣∣φ(x)

∣∣dx for t > 0 and R > 0;

(P3) for any φ ∈ L1(RN , (1 + |x|)k dx) with k � 0,

∫
RN

|x|k∣∣et�φ(x)
∣∣dx �

∫
RN

|x|k∣∣φ(x)
∣∣dx + t

k
2 ‖φ‖1 for t > 0.

Properties (P1) and (P2) easily follow from (1.11). For property (P3), see Lemma 2.1 in [13]. Further-
more we have:

Lemma 2.1. Let φ ∈ L1(RN , (1 + |x|)2 dx). Then

lim
t→∞ t

N
2 +1

∥∥∥∥et�φ −
∑

|α|�2

cαGα(t)

∥∥∥∥∞
= 0, where cα =

∫
RN

yαφ(y)dy. (2.1)

Proof. Let φ ∈ L1(RN , (1 + |x|)2 dx). Put

v(x, t) = (
et�φ

)
(x) −

∑
|α|�2

cαGα(x, t).

Since v is a solution of the heat equation such that

∫
RN

xα v(x,0)dx = 0, |α| � 2,

by Lemma 2.4 in [13], we have limt→∞ t
N
2 +1‖v(t)‖L∞(RN ) = 0, and Lemma 2.1 follows. �

By properties (P1)–(P3) and Lemma 2.1, we have the following lemma on the large time behavior
of the hot spots for the heat equation.

Lemma 2.2. Assume conditions (1.3) and (1.8). Then, for any δ > 0, there exists a positive constant T such that

(
et�ϕ

)
(x) �

(
et�ϕ

)(
C(ϕ)

) − dN M(ϕ)t− N
2 −1δ2 (2.2)

for all (x, t) ∈ RN × (T ,∞) with |x − C(ϕ)| � δ, where dN is a constant depending only on N. Furthermore

lim
t→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ H

(
et�ϕ

)} = 0. (2.3)
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Proof. We can assume, without loss of generality, that C(ϕ) = 0. Let δ > 0 and ε > 0. By (2.1), we
have

(
e(t−1)�ϕ

)
(x) = (4πt)−

N
2 e− |x|2

4t

[
M(ϕ) − 1

4t

∫
RN

|y|2ϕ(y)dy + O
(|x|2t−2)] + o

(
t− N

2 −1)

= (4πt)−
N
2 e− |x|2

4t

[
M(ϕ) − 1

4t

∫
RN

|y|2ϕ(y)dy

]

+ O

(
t− N

2 −1 |x|2
t

e− |x|2
4t

)
+ o

(
t− N

2 −1) (2.4)

for all (x, t) ∈ RN × (2,∞). This implies that

(
e(t−1)�ϕ

)
(x) = (4πt)−

N
2

(
1 − |x|2

4t
+ O

( |x|4
t2

))

×
[

M(ϕ) − 1

4t

∫
RN

|y|2ϕ(y)dy

]
+ O

(
ε2t− N

2 −1) + o
(
t− N

2 −1)

= (4πt)−
N
2

[
M(ϕ)

(
1 − |x|2

4t

)
− 1

4t

∫
RN

|y|2ϕ(y)dy

]

+ O
(
ε2|x|2t− N

2 −1) + O
(
ε2t− N

2 −1) + o
(
t− N

2 −1)
for all (x, t) ∈ RN × (2,∞) with |x| � εt1/2. So we have

(
e(t−1)�ϕ

)
(x) − (

e(t−1)�ϕ
)
(0)

= − (4πt)− N
2

4t

[
M(ϕ) + O

(
ε2)]|x|2 + O

(
ε2t− N

2 −1) + o
(
t− N

2 −1) (2.5)

for all (x, t) ∈ RN × (2,∞) with |x| � εt1/2. Then, by (1.8) and (2.5), taking a sufficiently small ε > 0
if necessary, we see that there exists a constant T such that

(
e(t−1)�ϕ

)
(x) − (

e(t−1)�ϕ
)
(0)

� − (4πt)− N
2

8t
M(ϕ)δ2 + O

(
ε2t− N

2 −1) + o
(
t− N

2 −1) � − (4πt)− N
2

16t
M(ϕ)δ2 (2.6)

for all (x, t) ∈ RN × (T ,∞) with δ � |x| � εt1/2. Furthermore, by (1.8) and (2.4), taking a sufficiently
large T if necessary, we have

(
e(t−1)�ϕ

)
(x) − (

e(t−1)�ϕ
)
(0)

= (4πt)−
N
2 M(ϕ)

(
e− |x|2

4t − 1
) + O

(
t− N

2 −1)
� (4πt)−

N
2 M(ϕ)

(
e− ε2

4 − 1
) + O

(
t− N

2 −1) � − (4πt)− N
2

M(ϕ)δ2 (2.7)

16t
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for all (x, t) ∈ RN × (T ,∞) with |x| � εt1/2. By (2.6) and (2.7), we have (2.2), which together with the
arbitrariness of δ implies (2.3). Thus Lemma 2.2 follows. �
2.2. Blow-up for a semilinear heat equation

In this subsection we give two propositions, which are useful for the study of the profile of the
solutions of (1.1) and (1.2). Furthermore we recall one proposition on the blow-up set of the solution
of (1.1) with small diffusion.

We first give the following proposition, which is proved by use of the supersolution and the sub-
solution given in Section 1.

Proposition 2.1. Let u be the solution of

{
∂t u = D�u + |u|p−1u, x ∈ RN , t > 0,

u(x,0) = λD + φD(x), x ∈ RN ,
(2.8)

where N � 1, p > 1, D > 0, λD > 0, and φD ∈ C1(RN ). Assume

sup
D>D0

Dα‖φD‖∞ < ∞, sup
D>D0

Dβ‖∇φD‖∞ < ∞, (2.9)

0 < inf
D>D0

λD � sup
D>D0

λD < ∞, (2.10)

for some α > 0, β > 1/2, and D0 > 0. For any γ ∈ (0,α) with 2β > 2γ + 1 and any A > 0, put sD =
SλD − AD−γ . Then there exists a positive constant D∗ such that, for any D > D∗ , the solution u exists in
E := RN × [0, sD ] and

u(x, t) = ((
eDt�u(0)

)
(x)−(p−1) − (p − 1)

(
1 + O

(
D−2β+γ +1)

)
t
)− 1

p−1

= ζλD (t)
[
1 − (p − 1)λ

−p
D ζλD (t)p−1((eDt�φD

)
(x) + O

(
D−σ

))]− 1
p−1 , (2.11)∣∣∇u(x, t)

∣∣ = ζλD (t)p(
O

(
D−β

) + O
(

D−2σ ′− 1
2
))

, (2.12)

in E, where σ = min{2α,2β − γ − 1} and σ ′ = min{α − γ ,2β − 2γ − 1}.

Proof. We first prove (2.11). Let μ be a positive constant to be chosen later. Put

u(x, t) := U
(
x, t : u(0),μD−2β+γ +1)

= ((
eDt�u(0)

)
(x)−(p−1) − (p − 1)

(
1 + μD−2β+γ +1)t

)− 1
p−1 (2.13)

(see (1.12)). In what follows, we write zD(x, t) = (eDt�φD)(x) for simplicity. By (P1) and (2.9), we see
that

sup
t>0

∥∥zD(t)
∥∥∞ � ‖φD‖∞ � D−α,

sup
t>0

∥∥∇zD(t)
∥∥∞ = sup

t>0

∥∥eDt�∇φD
∥∥∞ � ‖∇φD‖∞ � D−β, (2.14)
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for all D > D0. On the other hand, by (1.7) and (2.10), we have

sup
D>D0

sD � sup
D>D0

SλD < ∞. (2.15)

Then, since

(1 + h)−(p−1) = 1 − (p − 1)h + O
(
h2), |h| < 1, (2.16)

by (1.7), (2.10), (2.14), (2.15), and the definition of σ , we have

(
eDt�u(0)

)
(x)−(p−1) − (p − 1)

(
1 + μD−2β+γ +1)t

= (
λD + zD(x, t)

)−(p−1) − (p − 1)t + O
(
μD−2β+γ +1)

= λ
−(p−1)
D

(
1 + λ−1

D zD(x, t)
)−(p−1) − (p − 1)t + O

(
μD−σ

)
= λ

−(p−1)
D

(
1 − (p − 1)λ−1

D zD(x, t) + O
(

D−2α
)) − (p − 1)t + O

(
μD−σ

)
= (

λ
−(p−1)
D − (p − 1)t

) − (p − 1)λ
−p
D zD(x, t) + O

(
(1 + μ)D−σ

)
= ζλD (t)−(p−1) − (p − 1)λ

−p
D

(
zD(x, t) + O

(
(1 + μ)D−σ

))
for all (x, t) ∈ E and all sufficiently large D . This together with (2.13) yields

u(x, t) = ζλD (t)
[
1 − (p − 1)λ

−p
D ζλD (t)p−1(zD(x, t) + O

(
(1 + μ)D−σ

))]− 1
p−1 (2.17)

for all (x, t) ∈ E and all sufficiently large D . Furthermore there holds σ > γ by 2β > 2γ + 1, and since
α > γ and

sup
0�t�sD

ζλD (t)p−1 = ζλD (sD)p−1 = κ p−1 A−1 Dγ , (2.18)

the inequalities (2.14) together with (2.10) yield

sup
(x,t)∈E

λ
−p
D ζλD (t)p−1

∣∣zD(x, t)
∣∣ � D−α+γ = o(1),

sup
0�t�sD

λ
−p
D ζλD (t)p−1 D−σ � D−σ+γ = o(1), (2.19)

for all sufficiently large D . Therefore, by (2.17), (2.18), and (2.19), we have

u(x, t) = ζλD (t)
(
1 + o(1)

)
� 2κ

(
A−1 Dγ

) 1
p−1 (2.20)

for all (x, t) ∈ E and all sufficiently large D . Similarly to (2.17), putting

u(x, t) := U
(
x, t : u(0),0

) = ((
eDt�u(0)

)
(x)−(p−1) − (p − 1)t

)− 1
p−1 , (2.21)

we have

u(x, t) = ζλD (t)
[
1 − (p − 1)λ

−p
D ζλD (t)p−1(zD(x, t) + O

(
D−σ

))]− 1
p−1 (2.22)

for all (x, t) ∈ E and all sufficiently large D .
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On the other hand, by (2.10), (2.14), and (2.20), we have

inf
x∈RN

u(x,0) = λD + O
(

D−α
)
� λD/2 � inf

D>D0
λD/2 > 0,

sup
0�t�sD

D
∥∥u(t)

∥∥p−1
∞

∥∥∇eDt�u(0)
∥∥2

∞ = sup
0�t�sD

D
∥∥u(t)

∥∥p−1
∞

∥∥∇zD(t)
∥∥2

∞ � νD−2β+γ +1,

for all sufficiently large D , where ν is a positive constant independent of μ. Put

μ = cmν, cm = p/m2p, m = inf
D>D0

λD/2.

Then we have

cm Du(x, t)p−1
∣∣∇(

eDt�u(0)
)
(x)

∣∣2 � μD−2β+γ +1 in E

for all sufficiently large D , that is, there holds (1.14) for u in E . Therefore, by (1.13) and (2.13), we see
that the function u is a supersolution of (2.8) in E with u(0) = u(0). On the other hand, the function
u = U (x, t : u(0),0) is a subsolution of (2.8) in E with u(0) = u(0). Thus, by the comparison principle,
we have

u(x, t) � u(x, t) � u(x, t) in E.

This together with (2.20) implies that the solution u exists in E . Furthermore, by (2.17) and (2.22),
we have (2.11).

Next we prove inequality (2.12). Put

v(x, t) = ζλD (t)−p(
u(x, t) − ζλD (t)

)
,

F (s) = |1 + s|p−1(1 + s), f (x, t) = [
F (s) − F (0) − F ′(0)s

]∣∣
s=ζλD (t)p−1 v(x,t).

(See (1.7).) Then v satisfies

∂t v = D�v + f (x, t), x ∈ RN , t > 0, v(x,0) = λ
−p
D φD(x), x ∈ RN , (2.23)

and

v(t) = λ
−p
D zD(t) +

t∫
0

eD(t−s)� f (s)ds, t > 0. (2.24)

Furthermore, by (2.11) and (2.19), we have

ζλD (t)p−1 v(x, t) = [
1 − (p − 1)λ

−p
D ζλD (t)p−1(zD(x, t) + O

(
D−σ

))]− 1
p−1 − 1

= [
1 + O

(
D−α+γ

) + O
(

D−σ+γ
)]− 1

p−1 − 1

= O
(

D−α+γ
) + O

(
D−σ+γ

) = O
(

D−σ ′)
(2.25)

for all (x, t) ∈ E and all sufficiently large D . On the other hand, since F ∈ C2((−1,∞)), by (2.25),
we apply the Taylor theorem to have
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f (x, t) = 1

2
F ′′(θss)s2

∣∣
s=ζλD (t)p−1 v(x,t) = O

(
D−2σ ′)

(2.26)

for all (x, t) ∈ E and all sufficiently large D , where θs ∈ (0,1). Therefore, by (P1), (2.10), (2.14), (2.15),
(2.24), and (2.26), we have

∣∣∇v(x, t)
∣∣ � λ

−p
D

∣∣∇zD(x, t)
∣∣ +

t∫
0

∣∣(∇eD(t−s)� f (s)
)
(x)

∣∣ds

� D−β + D− 1
2

t∫
0

(t − s)−
1
2
∥∥ f (s)

∥∥∞ ds � D−β + D−2σ ′− 1
2

for all (x, t) ∈ E and sufficiently large D . This implies inequality (2.12), and the proof of Proposition 2.1
is complete. �

Next we give the following proposition, which is used for the study of the profile of the solution
just before the blow-up time. The proof of Proposition 2.2 is given in [10] by the similar argument as
in Theorem 6 in [25] (see also Proposition 2.3 in [16]).

Proposition 2.2. Let N � 1, p > 1, ε0 > 0, and {Mε}0<ε<ε0 ⊂ (0,∞) such that

0 < inf
0<ε<ε0

Mε � sup
0<ε<ε0

Mε < ∞.

Let {ϕε}0<ε<ε0 ⊂ C1(RN ) and C be a constant such that

0 � (1 − Cε)Mε � ϕε(x) � Mε,
∣∣∇ϕε(x)

∣∣ � Cε,

for all x ∈ RN and all ε ∈ (0, ε0). Assume that there exist constants t∗ ∈ [0, lim infε→+0 SMε ), C∗ > 0, and
ε∗ > 0 such that

sup
x∈RN

(
et∗�ϕε

)
(x) � (1 − C∗ε)Mε, 0 < ε < ε∗.

Let uε be the solution of the problem

∂t u = �u + up, x ∈ RN , t > 0, u(x,0) = ϕε(x), x ∈ RN ,

and Tε the blow-up time of uε . Then SMε < Tε for ε ∈ (0, ε∗) and

lim
ε→0

∥∥ε 1
p−1 uε(SMε ) − κM

p
p−1
ε

[
ε−1(Mε − eS Mε �ϕε

)]− 1
p−1

∥∥∞ = 0,

where κ is the constant given in (1.7).

Furthermore we recall the following proposition on the location of the blow-up set of the solution
of (1.1) for the case where D is sufficiently small. See Theorem 1.1 and Remark 1.2 in [9].
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Proposition 2.3. Let N � 1, p > 1, ε0 > 0, and {ϕε}0<ε<ε0 ⊂ C1(RN ) be nonnegative functions such that

0 < inf
0<ε<ε0

‖ϕε‖∞ � sup
0<ε<ε0

‖ϕε‖∞ < ∞.

Assume that there exists a positive constant α such that

sup
0<ε<ε0

ε1/2−α‖∇ϕε‖∞ < ∞.

Let uε be the solution of

∂t u = ε�u + up, x ∈ RN , t > 0, u(x,0) = ϕε(x) � 0, x ∈ RN ,

and Tε and Bε be the blow-up time and the blow-up set of uε , respectively. Assume

sup
0<ε<ε0

sup
0<t<Tε

(Tε − t)1/(p−1)
∥∥uε(t)

∥∥∞ < ∞.

Then, for any η > 0, there exists a positive constant ε∗ such that

Bε ⊂ {
x ∈ RN : ϕε(x) � ‖ϕε‖∞ − η

}
, ε ∈ (0, ε∗).

3. Short time behavior of the solution

Let T = Sλ+‖ϕ‖∞/2 ∈ (0, Sλ). In this section we study the profile of the solution of (1.1) at the
time t = T , and prove the inequality T D � Sλ . In what follows, we put ζ(t) = ζλ(t) and S = Sλ for
simplicity.

Similarly to in the proof of Proposition 2.1, we put

v(x, t) = ζ(t)−p(
u(x, t) − ζ(t)

)
, f (x, t) = [

F (s) − F (0) − F ′(0)s
]∣∣

s=ζ(t)p−1 v(x,t), (3.1)

where F (s) = |1 + s|p−1(1 + s). Then v satisfies

{
∂t v = D�v + f (x, t), x ∈ RN , t > 0,

v(x,0) = v0(x) ≡ λ−pϕ(x), x ∈ RN ,
(3.2)

and

v(t) = eD(t−t′)�v
(
t′) +

t∫
t′

eD(t−s)� f (s)ds, t > t′ � 0. (3.3)

Furthermore we put

z(t) = eD(t−T )�v(T ), g(x) =
T∫

0

(
eD(T −s)� f (s)

)
(x)ds. (3.4)
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Then, by (3.3) and (3.4), we have

z(t) = eDt�v0 + eD(t−T )�g = λ−peDt�ϕ + eD(t−T )� g, t � T . (3.5)

We first give the following lemma on the behavior of z.

Lemma 3.1. Assume (1.3). Let T = Sλ+‖ϕ‖∞/2. Then, for any l ∈ {0,1,2} and m ∈ [0,2], there exist positive
constants C and D1 such that

sup
t�T

∥∥∇l z(t)
∥∥∞ �

∥∥∇l v(T )
∥∥∞ � C D− N+l

2 , (3.6)

∥∥z(t1) − z(t2)
∥∥∞ � C D− N

2 |t1 − t2|, t1, t2 ∈ [T ,∞), (3.7)

‖g‖∞ � C D− N
2 −1, (3.8)∫

RN

|x|m∣∣g(x)
∣∣dx � C D

m
2 −1, (3.9)

for all D > D1 .

Proof. We first prove the inequality (3.6) for the case l = 0. By (1.1), (1.2), (1.7), and (3.1), we apply
the comparison principle to have

∥∥u(t)
∥∥∞ � ζ‖u(0)‖∞(t) = ζλ+‖ϕ‖∞(t) � 1, ζ(t) � 1, ζ(t)p−1

∥∥v(t)
∥∥∞ � 1,

for all t ∈ [0, T ] and D > 0. Then, since F ∈ C1(R), applying the mean value theorem, we see that
there exists a positive constant C1 such that

∣∣ f (x, t)
∣∣ = ∣∣[F ′(θss)s − F ′(0)s

]∣∣
s=ζ(t)p−1 v

∣∣ � C1
∣∣v(x, t)

∣∣ (3.10)

for all (x, t) ∈ RN × (0, T ] and D > 0, where θs ∈ (0,1). Furthermore, by (3.2) and (3.10), we apply the
comparison principle to have

∣∣v(x, t)
∣∣ � eC1t(eDt�|v0|

)
(x) �

(
eDt�|ϕ|)(x), (x, t) ∈ RN × (0, T ]. (3.11)

Therefore, by (P1) and (3.11), we have

∥∥v(t)
∥∥

1 � ‖ϕ‖1,
∥∥v(t)

∥∥∞ � min
{‖ϕ‖∞, (Dt)−

N
2 ‖ϕ‖1

}
, (3.12)

for all 0 � t � T . Then, by (P1), (3.4), and (3.12), we have

sup
t�T

∥∥z(t)
∥∥∞ �

∥∥v(T )
∥∥∞ � D− N

2

for all sufficiently large D , and obtain the inequality (3.6) for the case l = 0.
Next we prove the inequalities (3.8) and (3.9). By (3.12), we can take a sufficiently large constant L

so that

∣∣ζ(t)p−1 v(x, t)
∣∣ � C2ζ(T )p−1(Dt)−

N
2 ‖ϕ‖1 � C2ζ(T )p−1L− N

2 ‖ϕ‖1 � 1
(3.13)
2
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for all (x, t) ∈ RN ×[LD−1, T ] and all sufficiently large D , where C2 is a positive constant independent
of L and D . Then, since F ∈ C2((−1,∞)), by (3.12) and (3.13), we apply the Taylor theorem to have

∣∣ f (x, t)
∣∣ = 1

2

∣∣F ′′(θ̃ss)
∣∣s2

∣∣
s=ζ(t)p−1 v(x,t) � ζ(T )2(p−1)

∣∣v(x, t)
∣∣2 � (Dt)−

N
2
∣∣v(x, t)

∣∣
for all (x, t) ∈ RN × [LD−1, T ] and all sufficiently large D , where θ̃s ∈ (0,1). This together with (3.4),
(3.10), and (3.11) yields

∣∣g(x)
∣∣ �

LD−1∫
0

∣∣(eD(T −s)� f (s)
)
(x)

∣∣ds +
T∫

LD−1

∣∣(eD(T −s)� f (s)
)
(x)

∣∣ds

�
LD−1∫
0

(
eD(T −s)�

∣∣v(s)
∣∣)(x)ds +

T∫
LD−1

(Ds)−
N
2
(
eD(T −s)�

∣∣v(s)
∣∣)(x)ds

�
[ LD−1∫

0

ds +
T∫

LD−1

(Ds)−
N
2 ds

](
eDT �|ϕ|)(x) � D−1(eDT �|ϕ|)(x) (3.14)

for all x ∈ RN and all sufficiently large D . Properties (P1) and (P3) together with (3.14) imply (3.8)
and (3.9).

Next we prove the inequality (3.6) for the case l = 1,2. By (P1), (3.3), (3.10), and (3.12), we have

∥∥∇v(t)
∥∥∞ �

∥∥∇eDt�v0
∥∥∞

+
t/2∫
0

∥∥∇(
eD(t−s)� f (s)

)∥∥∞ ds +
t∫

t/2

∥∥∇(
eD(t−s)� f (s)

)∥∥∞ ds

� D− N+1
2 ‖v0‖1 +

t/2∫
0

(
D(t − s)

)− N+1
2

∥∥ f (s)
∥∥

1 ds

+
t∫

t/2

(
D(t − s)

)− 1
2
∥∥ f (s)

∥∥∞ ds � D− N+1
2 ‖ϕ‖1 (3.15)

for all T /2 � t � T and all sufficiently large D . Therefore, by (P1), (3.4), and (3.15), we have

sup
t�T

∥∥∇z(t)
∥∥∞ = sup

t�T

∥∥eD(t−T )�∇v(T )
∥∥∞ �

∥∥∇v(T )
∥∥∞ � D− N+1

2 ‖ϕ‖1

for all sufficiently large D , and obtain the inequality (3.6) for the case l = 1. Furthermore, by (3.1),
(3.13), and (3.15), we have

∣∣∇ f (x, t)
∣∣ = ∣∣F ′(s) − F ′(0)

∣∣∣∣
s=ζ(t)p−1 v(x,t)ζ(t)p−1

∣∣∇v(x, t)
∣∣

� ζ(T )p−1
∥∥∇v(t)

∥∥ � D− N+1
2 (3.16)
∞
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for all (x, t) ∈ RN × (T /2, T ) and all sufficiently large D . Therefore, similarly to (3.15), by (P1), (3.3),
(3.15), and (3.16), we have

∥∥∇2 v(T )
∥∥∞ �

∥∥∇eD(T /2)�∇v(T /2)
∥∥∞ +

T∫
T /2

∥∥∇eD(T −s)�∇ f (s)
∥∥∞ ds

� D− 1
2
∥∥∇v(T /2)

∥∥∞ +
T∫

T /2

(
D(T − s)

)− 1
2
∥∥∇ f (s)

∥∥∞ ds � D− N
2 −1

for all sufficiently large D . This together with (P1) yields

sup
t�T

∥∥∇2z(t)
∥∥∞ = sup

t�T

∥∥eD(t−T )�∇2 v(T )
∥∥∞ �

∥∥∇2 v(T )
∥∥∞ � D− N

2 −1

for all sufficiently large D , and we obtain the inequality (3.6) for the case l = 2. Finally, since
∂t z = D�z in RN × (0,∞), the mean value theorem with (3.6) yields

∥∥z(t1) − z(t2)
∥∥∞ � sup

t�T

∥∥∂t z(t)
∥∥∞|t1 − t2| = D sup

t�T

∥∥�z(t)
∥∥∞|t1 − t2| � D− N

2 |t1 − t2|

for all t1, t2 � T . So we have (3.7), and the proof of Lemma 3.1 is complete. �
Next we study the hot spots for the function z(t).

Lemma 3.2. Assume (1.3) and (1.8). Let T ′ > T = Sλ+‖ϕ‖∞/2 and R > 0. Then there exist positive constants
C and D2 such that

z(x, t) � z
(
C(ϕ), t

) − C D− N
2 −1 if

∣∣x − C(ϕ)
∣∣ � R, (3.17)∥∥∇z(t)

∥∥
L∞(B(0,R))

� C D− N
2 −1, (3.18)∥∥z(t)

∥∥∞ − z
(
C(ϕ), t

)
� C D− N

2 −1, (3.19)

for all t � T ′ and D > D2 . In particular,

lim
D→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ H

(
z(t)

)} = 0, (3.20)

lim
D→∞ sup

t�T ′
D

N+2
2

∣∣∥∥z(t)
∥∥∞ − z

(
C(ϕ), t

)∣∣ = 0. (3.21)

Proof. We can assume, without loss of generality, that C(v0) = C(ϕ) = 0. Let T ′ > T and R > 0. Then,
by Lemma 2.2, we see that, for any δ > 0, there exists a positive constant D0 such that

(
eDt�v0

)
(x) �

(
eDt�v0

)
(0) − C1δ

2 D− N
2 −1 (3.22)

for all (x, t) ∈ RN × (T ′,∞) with |x| � δ and all D � D0. Here C1 is a constant depending only on N
and M(v0) = λ−p M(ϕ). Then, by (P1), (3.5), and (3.8), taking a sufficiently large L, we apply (3.22)
with δ = L to have
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z(x, t) − z(0, t) � −C1L2 D− N
2 −1 + C2 D− N

2 −1 � −C1

2
L2 D− N

2 −1 (3.23)

for all (x, t) ∈ RN × (T ′,∞) with |x| � L and all sufficiently large D , where C2 is a constant indepen-
dent of L. On the other hand, by (P2) and (3.9), we apply the mean value theorem to have

∣∣(eD(t−T )� g
)
(x) − (

eD(t−T )� g
)
(0)

∣∣ � |x|∥∥∇eD(t−T )� g
∥∥

L∞(B(0,|x|))

�
(

D(t − T )
)− N

2 −1|x|(1 + |x|)[ ∫
RN

(
1 + |x|)∣∣g(x)

∣∣dx

]

� D− N
2 − 3

2
(
1 + |x|)2

(3.24)

for all t � T ′ and all sufficiently large D . Then, by (3.5), (3.22) with δ = R , and (3.24), we see that
there exists a constant C3 such that

z(x, t) − z(0, t) � −C1 R2 D− N
2 −1 + C3 D− N

2 − 3
2 (1 + L)2 � −C1

2
R2 D− N

2 −1

for all (x, t) ∈ RN × (T ′,∞) with R � |x| � L and all sufficiently large D . This together with (3.23)
yields (3.17), which together with the arbitrariness of R gives (3.20). Furthermore, by (P2), (3.5),
and (3.9), we have

∥∥∇z(t)
∥∥

L∞(B(0,R))
�

∥∥∇eDt�v0
∥∥

L∞(B(0,R))
+ ∥∥∇eD(t−T )� g

∥∥
L∞(B(0,R))

= O
(
(1 + R)D− N

2 −1)(∫
RN

(
1 + |x|)∣∣v0(x)

∣∣dx +
∫

RN

(
1 + |x|)∣∣g(x)

∣∣dx

)

� C3(R + 1)D− N
2 −1 (3.25)

for all t � T ′ and all sufficiently large D , where C3 is a constant independent of R . Therefore we have
inequality (3.18). Moreover, by (3.17) and (3.25), we have

∥∥z(t)
∥∥∞ − z(0, t) = ∥∥z(t)

∥∥
L∞(B(0,R))

− z(0, t) � R
∥∥∇z(t)

∥∥
L∞(B(0,R))

� C3 R(R + 1)D− N
2 −1

for all t � T ′ and sufficiently large D . This gives (3.19). Furthermore we have

lim sup
D→∞

sup
t�T ′

D
N+2

2
∣∣∥∥z(t)

∥∥∞ − z(0, t)
∣∣ � C3 R(R + 1).

This together with the arbitrariness of R implies (3.21), and the proof of Lemma 3.2 is complete. �
At the end of this section we prove T D � S and give some estimates of the solution u and its

gradient.

Proposition 3.1. Assume the same conditions as in Theorem 1.1. Then

T D � S (3.26)

for any D > 0. Furthermore there exist positive constants C , c, and D3 such that
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inf
x∈RN

u(x, t) > 0, (3.27)

∥∥u(t)
∥∥∞ �

(
κ + C D− N

2
)
(T D − t)−

1
p−1 , (3.28)

∥∥∇u(t)
∥∥∞ � C D− N

2 − 1
2 (T D − t)−

p
p−1 −cD− N

2
, (3.29)

for all T � t < T D and all D > D3 , where T = Sλ+‖ϕ‖∞/2.

Proof. We first prove T D � S for any D > 0. The proof is by contradiction. Assume T D > S for some
D > 0. Let S ′ ∈ (0, S). Then, since

∥∥u(t)
∥∥∞ = ζ(t) + ζ(t)p

∥∥v(t)
∥∥∞ � 1

for all 0 � t � S ′ , similarly to in (3.11), we have

∣∣v(x, t)
∣∣ �

∣∣(eDt�|ϕ|)(x)
∣∣

for all (x, t) ∈ RN × (0, S ′]. This together with (1.3), (1.11), and (3.1) implies

∥∥u
(

S ′)∥∥∞ � lim|x|→∞ u
(
x, S ′) = ζ

(
S ′).

Therefore, by the arbitrariness of S ′ and (1.7), we have ‖u(S)‖∞ = ∞, which contradicts T D > S .
Therefore we have T D � S for any D > 0.

Next, following the argument as in [8] and [14], we prove inequalities (3.27) and (3.28). By (3.1)
and (3.6), we have

u(x, T ) = ζ(T ) + ζ(T )p v(x, T ) � ζ(T )/2 > 0 (3.30)

for all sufficiently large D . This together with the maximum principle implies (3.27). Furthermore,
by (3.1) and (3.6), we see that there exists a constant C1 such that

∥∥∇lu(T )
∥∥∞ = ζ(T )p

∥∥∇l v(T )
∥∥∞ � C1 D− N

2 − l
2 , l ∈ {1,2}, (3.31)

for all sufficiently large D . Let C2 be a constant such that C2(ζ(T )/2)p � C1, and put

δD = 1 − C2 D− N
2 , J (x, t) = ∂t u − δD up .

Then, by (1.1), (3.30), and (3.31), we have ∂t u(x, T ) � δD u(x, T )p for all x ∈ RN and all sufficiently
large D , which implies J (x, T ) � 0 in RN . Furthermore J satisfies

∂t J − D� J − pup−1 J = DδD p(p − 1)up−2|∇u|2 � 0 in RN × [T , T D)

for all sufficiently large D . Therefore, applying the maximum principle, we have J � 0 in RN ×[T , T D),
and see that ∂t u � δD up in RN × [T , T D) for all sufficiently large D . This implies that

0 � u(x, t) �
(
(p − 1)δD

)− 1
p−1 (T D − t)−

1
p−1 = [

κ + O
(

D− N
2
)]

(T D − t)−
1

p−1

for all sufficiently large D , and we have inequality (3.28).
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Next we prove inequality (3.29). By (P1), (1.1), and (3.27), we have

∥∥∇u(t)
∥∥∞ �

∥∥∇eD(t−T )�u(T )
∥∥∞ +

∥∥∥∥∥
t∫

T

∇eD(t−s)�u(s)p ds

∥∥∥∥∥∞

�
∥∥∇u(T )

∥∥∞ + p

t∫
T

∥∥u(s)p−1∇u(s)
∥∥∞ ds

for all T � t < T D . Then, in view of (3.28), there exists a positive constant C3 such that

∥∥∇u(t)
∥∥∞ �

∥∥∇u(T )
∥∥∞ + (

pκ p−1 + C3 D− N
2
) t∫

T

(T D − s)−1
∥∥∇u(s)

∥∥∞ ds (3.32)

for all T � t < T D and all sufficiently large D . Putting

U (t) =
t∫

T

(T D − s)−1
∥∥∇u(s)

∥∥∞ ds, αD = p

p − 1
+ C3 D− N

2 > 1,

by (1.7) and (3.32), we have

(T D − t)
d

dt
U (t) − αD U (t) �

∥∥∇u(T )
∥∥∞,

and by (3.26), we obtain

d

dt

[
(T D − t)αD U (t)

]
� (T D − t)αD−1

∥∥∇u(T )
∥∥∞ � SαD−1

∥∥∇u(T )
∥∥∞

for all T � t < T D and all sufficiently large D . This together with (3.26) and U (T ) = 0 implies

(T D − t)αD U (t) � SαD
∥∥∇u(T )

∥∥∞ �
∥∥∇u(T )

∥∥∞ (3.33)

for all T � t < T D and all sufficiently large D . Therefore, by (3.31)–(3.33), we obtain inequality (3.29),
and the proof of Proposition 3.1 is complete. �
4. Profile of the solution at the time t = S − A D−1

In this section, by using Proposition 2.1 three times, we study the profile of the solution u of (1.1)
and (1.2) at t = S − AD−1 with A > 0, and prove the following proposition.

Proposition 4.1. Assume the same conditions as in Theorem 1.1. Let A > 0 and sD = S − AD−1 . Then there
exists a positive constant D∗ such that T D > sD and

u(x, t) = ζ(t)
[
1 − (p − 1)ζ(t)p−1z(x, t) + O

(
D−N+ 4

3
)]− 1

p−1 (4.1)

for all (x, t) ∈ RN × [S − AD−2/3, sD ] and all D > D∗ .
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In order to prove Proposition 4.1, we first study the profile of u(x, S − AD−1/3).

Lemma 4.1. Assume the same conditions as in Proposition 4.1. Let s1
D = S − AD−1/3 . Then there exists a

positive constant D1 such that T D > s1
D and

u(x, t) = ζ(t)
[
1 + ζ(t)p−1(z(x, t) + O

(
D−N+ 1

3
))]

, (4.2)∣∣∇u(x, t)
∣∣ = ζ(t)p O

(
D− N

2 − 1
2
)
, (4.3)

for all (x, t) ∈ RN × [T , s1
D ] and all D > D1 , where T = Sλ+‖ϕ‖∞/2.

Proof. Put φD(x) = ζ(T )p v(x, T ) and u1(x, t) = u(x, t + T ). Then, by (3.1), the function u1 is a solution
of (1.1) with

u1(x,0) = ζ(T ) + φD(x) in RN .

Furthermore, by (3.6), we have

‖φD‖∞ � D− N
2 , ‖∇φD‖∞ � D− N+1

2 , (4.4)

for all sufficiently large D . Put α = N/2, β = (N + 1)/2, γ = 1/3, σ = min{2α,2β − γ − 1}, and
σ ′ = min{α − γ ,2β − 2γ − 1}. Then, since

α > γ , 2β > 2γ + 1, σ = N − 1

3
, σ ′ = N

2
− 1

3
, ζζ(T )(t) = ζ(t + T ), Sζ(T ) = S − T ,

applying Proposition 2.1 with λD = ζ(T ) to u1, we see T D > s1
D and have

u(x, t) = u1(x, t − T )

= ζ(t)
[
1 − (p − 1)ζ(T )−pζ(t)p−1((eD(t−T )�φD

)
(x) + O

(
D−N+ 1

3
))]− 1

p−1 , (4.5)

∣∣∇u(x, t)
∣∣ = ∣∣∇u1(x, t − T )

∣∣
= ζ(t)p(

O
(

D− N+1
2

) + O
(

D−N+ 1
6
)) = ζ(t)p O

(
D− N+1

2
)
, (4.6)

for all (x, t) ∈ RN × [T , s1
D ] and all sufficiently large D . On the other hand, by (3.4), (3.6), and the

definition of φD , we have

ζ(T )−p(
eD(t−T )�φD

)
(x) = z(x, t) = O

(
D− N

2
)

(4.7)

for all sufficiently large D . Therefore, since

sup
T �t�s1

D

ζ(t)p−1 = ζ
(
s1

D

)p−1 = O
(

D
1
3
)
,

by (4.5) and (4.7), we have
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u(x, t) = ζ(t)
[
1 − (p − 1)ζ(t)p−1(z(x, t) + O

(
D−N+ 1

3
))]− 1

p−1

= ζ(t)
[
1 + ζ(t)p−1z(x, t) + ζ(t)p−1 O

(
D−N+ 1

3
) + ζ(t)2(p−1) O

(
D−N)]

= ζ(t)
[
1 + ζ(t)p−1z(x, t) + ζ(t)p−1 O

(
D−N+ 1

3
)]

(4.8)

for all (x, t) ∈ RN × [T , s1
D ] and all sufficiently large D . Therefore, by (4.6) and (4.8), we have (4.2)

and (4.3), and Lemma 4.1 follows. �
Next we put

z2(y, τ ) = z
(
μy, s1

D + μ2τ
)
, u2(y, τ ) = μ

2
p−1 u

(
μy, s1

D + μ2τ
)
, μ = A

1
2 D− 1

6 , (4.9)

and study the profile of u2 at τ = 1 − D−1/3, that is, the profile of the solution u at t = S − AD−2/3.
We remark that

∂τ z2 = D�z2 in RN × [0,∞), (4.10)

∂τ u2 = D�u2 + up
2 , y ∈ RN , τ > 0. (4.11)

Lemma 4.2. Assume the same conditions as in Proposition 4.1. Then there exists a positive constant D2 such
that, for any D > D2 , the function u2 exists in RN × [0,1 − D−1/3] and there hold

u2(y, τ ) = ζκ (τ )

[
1 + μ−2ζκ (τ )p−1z2(y, τ )

+ p

2
μ−4ζκ (τ )2(p−1)z2(y, τ )2 + ζκ (τ )p−1 O

(
D−N+ 2

3
)]

, (4.12)

∣∣∇u2(y, τ )
∣∣ = ζκ (τ )p O

(
D− N

2 − 1
3
)
, (4.13)

in RN × [0,1 − D−1/3].

Proof. By (3.6) and (4.9), we have

sup
τ�0

∥∥z2(τ )
∥∥∞ � D− N

2 , sup
τ�0

∥∥∇z2(τ )
∥∥∞ � μ sup

t�T

∥∥∇z(t)
∥∥∞ � D− N

2 − 2
3 , (4.14)

for all sufficiently large D . Since

ζ
(
s1

D

) = κ
(

AD−1/3)−1/(p−1) = κμ−2/(p−1), (4.15)

by (4.9) and (4.14), we apply Lemma 4.1 to have

u2(y,0) = μ
2

p−1 u
(
μy, s1

D

) = μ
2

p−1 ζ
(
s1

D

)[
1 + ζ

(
s1

D

)p−1(
z
(
μy, s1

D

) + O
(

D−N+ 1
3
))]

= κ
[
1 + ζ

(
s1

D

)p−1
z2(y,0) + O

(
D−N+ 2

3
)] = κ

[
1 + O

(
D− N

2 + 1
3
)]

, (4.16)

∣∣(∇u2)(y,0)
∣∣ � μ

p+1
p−1

∥∥(∇u)
(
s1

D

)∥∥ � μ
p+1
p−1 · μ− 2p

p−1 D− N
2 − 1

2 � D− N
2 − 1

3 , (4.17)
∞
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for all y ∈ RN and all sufficiently large D . Put φD(y) = u2(y,0) − κ , that is,

u2(y,0) = κ + φD(y). (4.18)

Then, by (4.16) and (4.17), we have

‖φD‖∞ � D− N
2 + 1

3 , ‖∇φD‖∞ = ∥∥∇u2(0)
∥∥∞ � D− N

2 − 1
3 , (4.19)

for all sufficiently large D . Furthermore, by (P1), (4.10), (4.15), and (4.16), we have

(
eDτ�φD

)
(y) = κζ

(
s1

D

)p−1
z2(y, τ ) + O

(
D−N+ 2

3
) = κ pμ−2z2(y, τ ) + O

(
D−N+ 2

3
)

(4.20)

for all (y, τ ) ∈ RN × (0,∞) and all sufficiently large D .
Put α = N/2 − 1/3, β = N/2 + 1/3, γ = 1/3, σ = min{2α,2β − γ − 1}, and σ ′ = min{α − γ ,

2β − 2γ − 1}. Then, since

α > γ , 2β > 2γ + 1, σ = N − 2

3
, σ ′ = N

2
− 2

3
,

by (4.18) and (4.19), we apply Proposition 2.1 with A = 1 and λD = κ to u2, and have

u2(y, τ ) = ζκ(τ )
(
1 − (p − 1)κ−pζκ(τ )p−1((eDτ�φD

)
(y) + O

(
D−N+ 2

3
)))− 1

p−1

=: ζκ(τ )
(
1 − J (y, τ )

)− 1
p−1 , (4.21)∥∥∇u2(τ )

∥∥∞ = ζκ(τ )p(
O

(
D− N

2 − 1
3
) + O

(
D−N+ 5

6
)) = ζκ (τ )p O

(
D− N

2 − 1
3
)
, (4.22)

for all 0 � τ � Sκ − D−1/3 = 1 − D−1/3 and all sufficiently large D . Then, since

μ−2 = O
(

D1/3) and ζκ
(
1 − D−1/3)p−1 = O

(
D1/3),

by (4.14), (4.15), (4.20), and (4.21), we have

J (y, τ ) = (p − 1)κ−pζκ (τ )p−1((eDτ�φD
)
(y) + O

(
D−N+ 2

3
))

= (p − 1)ζκ (τ )p−1(μ−2z2(y, τ ) + O
(

D−N+ 2
3
)) = ζκ(τ )p−1 O

(
D− N

2 + 1
3
)
,

J (y, τ )2 = (p − 1)2μ−4ζκ(τ )2(p−1)z2(y, τ )2 + ζκ (τ )2(p−1) O
(

D− N
2 + 1

3
)

O
(

D−N+ 2
3
)

= (p − 1)2μ−4ζκ(τ )2(p−1)z2(y, τ )2 + ζκ (τ )p−1o
(

D−N+ 2
3
)
,

J (y, τ )3 = ζκ (τ )p−1 O
(

D
2
3
)

O
(

D− 3N
2 +1) = ζκ (τ )p−1o

(
D−N+ 2

3
)
, (4.23)

for all (y, τ ) ∈ RN × [0,1 − D− 1
3 ] and all sufficiently large D . Therefore, since

(1 − h)
− 1

p−1 = 1 + 1

p − 1
h + p

2(p − 1)2
h2 + O

(
h3), |h| � 1

2
,

by (4.21) and (4.23), we obtain
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u2(y, τ ) = ζκ(τ )

[
1 + 1

p − 1
J (y, τ ) + p

2(p − 1)2
J (y, τ )2 + O

(∣∣ J (y, τ )
∣∣3)]

= ζκ(τ )

[
1 + μ−2ζκ(τ )p−1z2(y, τ ) + p

2
μ−4ζκ (τ )2(p−1)z2(y, τ )2

+ ζκ(τ )p−1 O
(

D−N+ 2
3
)]

(4.24)

for all (y, τ ) ∈ RN × [0,1 − D−1/3] and all sufficiently large D . Thus, by (4.22) and (4.24), we have
(4.12) and (4.13), and the proof of Lemma 4.2 is complete. �

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Put

z3(y, τ ) = z2
(
ν y,1 − ν2 + ν2τ

)
, u3(y, τ ) = ν

2
p−1 u2

(
ν y,1 − ν2 + ν2τ

)
, ν = D− 1

6 . (4.25)

Then, by (4.10) and (4.11), we have

∂τ z3 = D�z3 in RN × (0,∞), (4.26)

∂τ u3 = D�u3 + up
3 , y ∈ RN , τ > 0. (4.27)

By (4.14) and (4.25), we have

sup
τ�0

∥∥z3(τ )
∥∥∞ � D− N

2 , sup
τ�0

∥∥∇z3(τ )
∥∥∞ � ν sup

τ�0

∥∥∇z2(τ )
∥∥∞ � D− N

2 − 5
6 , (4.28)

for all sufficiently large D . Since ζκ (1 −ν2) = κν−2/(p−1) and (μν)−2 = O (D2/3), by (4.25) and (4.28),
we apply Lemma 4.2 to have

u3(y,0) = ν
2

p−1 u2
(
ν y,1 − ν2)

= ν
2

p−1 · κν
− 2

p−1

[
1 + μ−2 · 1

p − 1
ν−2z2

(
ν y,1 − ν2)

+ p

2
μ−4 ·

(
1

p − 1

)2

ν−4z2
(
ν y,1 − ν2)2 + O

(
ν−2 D−N+ 2

3
)]

= κ

[
1 + 1

p − 1
μ−2ν−2z3(y,0) + p

2(p − 1)2
μ−4ν−4z3(y,0)2 + O

(
D−N+1)]

= κ + O
(

D− N
2 + 2

3
)
, (4.29)∥∥∇u3(0)

∥∥∞ = ν
p+1
p−1

∥∥∇u2
(
1 − D− 1

3
)∥∥∞ � ν

p+1
p−1 · ν− 2p

p−1 D− N
2 − 1

3 � D− N
2 − 1

6 , (4.30)

for all sufficiently large D . On the other hand, by (4.26), we have

∂τ (z3)
2 − D�(z3)

2 = −2D|∇z3|2,

and by (P1) and (4.28), we obtain
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sup
0<τ<1

∥∥z3(τ )2 − eτ D�z3(0)2
∥∥∞ = sup

0<τ<1

∥∥∥∥∥−2D

τ∫
0

eD(τ−s)�
∣∣∇z3(s)

∣∣2
ds

∥∥∥∥∥∞

� 2D

1∫
0

∥∥∇z3(s)
∥∥2

∞ ds = O
(

D−N− 2
3
)

(4.31)

for all sufficiently large D . Then, by (4.26), (4.29), and (4.31), we have

(
eDτ�u3(0)

)
(y) = κ

[
1 + 1

p − 1
μ−2ν−2z3(y, τ ) + p

2(p − 1)2
μ−4ν−4z3(y, τ )2 + O

(
D−N+1)]

=: κ[
1 + K (y, τ )

]
(4.32)

for all (y, τ ) ∈ RN × (0,1) and all sufficiently large D . Then

K (y, τ ) = L(y, τ ) + p

2
L(y, τ )2 + O

(
D−N+1) with L(y, τ ) = 1

p − 1
μ−2ν−2z3(y, τ ), (4.33)

and by (4.28) and (μν)−2 = O (D2/3), we obtain

L(y, τ ) = O
(

D− N
2 + 2

3
)
, (4.34)

K (y, τ )2 = L(y, τ )2 + o
(

D−N+1), K (y, τ )3 = o
(

D−N+1), (4.35)

for all (y, τ ) ∈ RN × (0,1) and all sufficiently large D . Therefore, since

(1 + h)−(p−1) = 1 − (p − 1)h + 1

2
p(p − 1)h2 + O

(
h3), |h| � 1

2
,

by (1.7) and (4.32)–(4.35), we obtain

(
eDτ�u3(0)

)
(y)−(p−1) − (p − 1)τ

= κ−(p−1)
(
1 + K (y, τ )

)−(p−1) − (p − 1)τ

= (p − 1)

[
1 − (p − 1)K (y, τ ) + 1

2
p(p − 1)K (y, τ )2 + O

(|K (y, τ )|3)] − (p − 1)τ

= (p − 1)

[
1 − (p − 1)

(
L(y, τ ) + p

2
L(y, τ )2 + O

(
D−N+1))

+ 1

2
p(p − 1)

(
L(y, τ )2 + o

(
D−N+1)) + o

(
D−N+1)] − (p − 1)τ

= (p − 1)
[
1 − (p − 1)L(y, τ ) + O

(
D−N+1)] − (p − 1)τ

= (p − 1)
[
1 − μ−2ν−2z3(y, τ ) + O

(
D−N+1)] − (p − 1)τ

= ζκ (τ )−(p−1) − (p − 1)μ−2ν−2z3(y, τ ) + O
(

D−N+1) (4.36)

for all (y, τ ) ∈ RN × [0,1 − D−1/3] and all sufficiently large D .
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Put α = N/2 − 2/3, β = N/2 + 1/6, and γ = 1/3. Then, since

α > γ , 2β > 2γ + 1, 2β − γ − 1 = N − 1,

by (4.29), (4.30), and (4.36), applying Proposition 2.1 with A = 1 and λD = κ to u3, we see that, for
any sufficiently large D , the function u3 exists in RN × [0,1 − D−1/3] and there holds

u3(y, τ ) = ((
eDτ�u3(0)

)
(y)−(p−1) − (p − 1)

(
1 + O

(
D−2β+γ +1))τ )− 1

p−1

= (
ζκ (τ )−(p−1) − (p − 1)μ−2ν−2z3(y, τ ) + O

(
D−N+1))− 1

p−1

= ζκ (τ )
(
1 − (p − 1)μ−2ν−2ζκ(τ )p−1z3(y, τ ) + O

(
ζκ (τ )p−1 D−N+1))− 1

p−1

= ζκ (τ )
(
1 − (p − 1)μ−2ν−2ζκ(τ )p−1z3(y, τ ) + O

(
D−N+ 4

3
))− 1

p−1 (4.37)

in RN × [0,1 − D−1/3]. Therefore, since

u
(
x, S − AD− 2

3 (1 − τ )
) = μ

− 2
p−1 u2

(
μ−1x,1 − D− 1

3 (1 − τ )
) = (μν)

− 2
p−1 u3

(
(μν)−1x, τ

)
,

z
(
x, S − AD− 2

3 (1 − τ )
) = z2

(
μ−1x,1 − D− 1

3 (1 − τ )
) = z3

(
(μν)−1x, τ

)
,

ζ
(

S − AD− 2
3 (1 − τ )

) = (μν)
− 2

p−1 ζκ (τ ),

for all τ ∈ [0,1 − D−1/3], (4.37) implies (4.1). Thus Proposition 4.1 follows. �
5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Similarly to in Sections 3 and 4, we write ζ(t) = ζλ(t) and
S = Sλ for simplicity. We first prove (1.9), which gives the asymptotic behavior of the blow-up time
T D as D → ∞.

Proof of (1.9). We can assume, without loss of generality, that

C(ϕ) = 0. (5.1)

Let A = 1, and put sD = S − D−1 and w(x, τ ) = D− 1
p−1 u(x, sD + D−1τ ). Let σD be the blow-up time

of w . Then

T D = sD + D−1σD , (5.2)

and w satisfies

∂τ w = �w + w p in RN × (0,σD), w(x,0) = D− 1
p−1 u(x, sD) in RN .

Then, since ζ(sD) = κ D1/(p−1) and κ p−1 = 1/(p − 1), by Proposition 4.1 with t = sD and A = 1, we
have

∥∥w(0)
∥∥ � κ

[
1 − D

∥∥z(sD)
∥∥ + O

(
D−N+ 4

3
)]− 1

p−1 (5.3)
∞ ∞
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for all sufficiently large D . Then, by the comparison principle, we have σD � S‖w(0)‖∞ , and by (1.7),
(3.7), and (5.3), we obtain

σD � S‖w(0)‖∞ � 1 − D
∥∥z(sD)

∥∥∞ + O
(

D−N+ 4
3
)

� 1 − D
∥∥z(S)

∥∥∞ − D
∥∥z(sD) − z(S)

∥∥∞ + O
(

D−N+ 4
3
)

= 1 − D
∥∥z(S)

∥∥∞ + O
(

D− N
2
)

for all sufficiently large D . This together with (5.2) implies that

T D = S − D−1 + D−1σD � S − ∥∥z(S)
∥∥∞ + O

(
D− N

2 −1) (5.4)

for all sufficiently large D .
On the other hand, since the function

u(x, t) := ((
eD(t−T )�u(T )

)−(p−1) − (p − 1)(t − T )
)− 1

p−1 (5.5)

is a subsolution of (1.1) in RN × (T , T D), we apply the comparison principle to have

T D � T ′
D , (5.6)

where T ′
D is the blow-up time of the function u, that is,

∥∥eD(T ′
D−T )�u(T )

∥∥−(p−1)

∞ − (p − 1)
(
T ′

D − T
) = 0.

Then, by (1.7), (3.1), (3.4), and (3.6), we have

T ′
D = T + 1

p − 1

(
ζ(T ) + ζ(T )p

∥∥eD(T ′
D−T )�v(T )

∥∥∞
)−(p−1)

= T + ζ(T )−(p−1)

p − 1

(
1 + ζ(T )p−1

∥∥z
(
T ′

D

)∥∥∞
)−(p−1)

= T + ζ(T )−(p−1)

p − 1
− ∥∥z

(
T ′

D

)∥∥∞ + O
(∥∥z

(
T ′

D

)∥∥2
∞

)
= S − ∥∥z

(
T ′

D

)∥∥∞ + O
(

D−N) = S + O
(

D− N
2
)

for all sufficiently large D . This together with (3.7) and (5.6) implies

T D � S − ∥∥z
(
T ′

D

)∥∥∞ + O
(

D−N)
� S − ∥∥z(S)

∥∥∞ + ∥∥z(S) − z
(
T ′

D

)∥∥∞ + O
(

D−N)
= S − ∥∥z(S)

∥∥∞ + O
(

D− N
2
)∣∣S − T ′

D

∣∣ + O
(

D−N)
= S − ∥∥z(S)

∥∥∞ + O
(

D−N)
(5.7)

for all sufficiently large D . Therefore, by (5.4) and (5.7), we have

T D = S − ∥∥z(S)
∥∥ + O

(
D− N

2 −1) (5.8)
∞
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for all sufficiently large D . Furthermore, by (P1), (3.5), and (3.8), we have

∥∥z(S) − eD S�v0
∥∥∞ = ∥∥eD(S−T )�g

∥∥∞ � ‖g‖∞ � D− N
2 −1,

and by (3.2) and (5.8), we obtain

T D = S − ∥∥eD S�v0
∥∥∞ + O

(
D− N

2 −1) = S − λ−p
∥∥eD S�ϕ

∥∥∞ + O
(

D− N
2 −1) (5.9)

for all sufficiently large D . Then it follows from (2.4) and (5.1) that

∥∥eD S�ϕ
∥∥∞ = (4π D S)−

N
2
[
M(ϕ) + O

(
D−1)]

as D → ∞. Thus this together with (5.9) gives (1.9). �
Next we prove (1.10), and complete the proof of Theorem 1.1.

Proof of (1.10). Without loss of generality, we can assume (5.1) again. Let A be a constant to be
chosen later such that A ∈ (0,1). Put sD = S − AD−1 and

w(x, τ ) = (
AD−1) 1

p−1 u
(
x, sD + AD−1τ

)
. (5.10)

Then w satisfies

∂τ w = A�w + w p in RN × (−1, τD), w(x,0) = A
1

p−1 D− 1
p−1 u(x, sD) in RN . (5.11)

Here τD is the blow-up time of w and

T D = sD + AD−1τD . (5.12)

In order to prove (1.10), we study the location of the maximal points of w at τ = τ∗ by using Propo-
sition 2.2, where

τ∗ = S‖w(0)‖∞ ∈ (0, τD). (5.13)

Put

ψD(x) = D
N
2

‖u(sD)‖∞ − u(x, sD)

‖u(sD)‖∞
= D

N
2

‖w(0)‖∞ − w(x,0)

‖w(0)‖∞
, εD = D− N

2 . (5.14)

Then we have

w(x,0) = ∥∥w(0)
∥∥∞

(
1 − εDψD(x)

)
. (5.15)

Since

ζ
(
sD + AD−1τ

) = (
AD−1)− 1

p−1 ζκ(τ ), κ p−1 = 1/(p − 1), (5.16)

by (5.10), applying Proposition 4.1, we have
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w(x, τ ) = ζκ(τ )

[
1 − A−1 D

1 − τ
z
(
x, sD + AD−1τ

) + O
(

D−N+ 4
3
)]− 1

p−1

(5.17)

for all (x, τ ) ∈ RN × (−1,0] and all sufficiently large D . This together with (3.6) with l = 0 implies

w(x,0) = κ
[
1 − A−1 Dz(x, sD)

]− 1
p−1 + O

(
D−N+ 4

3
)
, x ∈ RN , (5.18)

∥∥w(0)
∥∥∞ = κ

[
1 − A−1 D

∥∥z(sD)
∥∥∞

]− 1
p−1 + O

(
D−N+ 4

3
) = κ + o(1), (5.19)

for all sufficiently large D . In particular, since τ∗ = S‖w(0)‖∞ , we have

lim
D→∞τ∗ = Sκ = 1. (5.20)

By (3.6), (5.14), (5.18), and (5.19), we apply the mean value theorem, and have

ψD(x) = κ D
N
2 (1 − θD(x))−

p
p−1

(p − 1)‖w(0)‖∞
[

A−1 D
∥∥z(sD)

∥∥∞ − A−1 Dz(x, sD) + O
(

D−N+ 4
3
)]

= A−1 D
N
2 +1(1 + θ̃D(x))

p − 1

(∥∥z(sD)
∥∥∞ − z(x, sD)

) + O
(

D− N
2 + 4

3
)

(5.21)

for all x ∈ RN and all sufficiently large D , where θD and θ̃D are functions in RN such that ‖θD‖∞ =
O (D− N

2 +1) and ‖θ̃D‖∞ = O (D− N
2 +1). Then, since N � 3 and C(ϕ) = 0, by (3.21) and (5.21), we have

lim
D→∞ψD(0) = 0. (5.22)

Let δ > 0 and fix it. By (3.17) and (5.21), we see that there exists a positive constant c∗ , independent
of A, such that

inf|x|�δ
ψD(x) � c∗ A−1 (5.23)

for all sufficiently large D .
Put

ψ∗
D(x) = min

{
ψD(x), c∗ A−1} � 0, (5.24)

and let w∗ be the solution of

{
∂τ w = A�w + w p, x ∈ RN , τ > 0,

w(x,0) = ∥∥w(0)
∥∥∞

(
1 − εDψ∗

D(x)
)
, x ∈ RN .

(5.25)

Then, by (5.24), we have

0 <
∥∥w(0)

∥∥∞
(
1 − c∗ A−1εD

)
� w∗(x,0) �

∥∥w(0)
∥∥∞ (5.26)
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for all x ∈ RN and all sufficiently large D . Furthermore, by (5.15) and (5.24), we apply the comparison
principle to have

w(x, τ ) � w∗(x, τ ) in RN × [0, τ∗]. (5.27)

Next we study the location of the maximal points of w(τ∗) by using the profile of w∗(τ∗). For this
aim, we give the following two lemmas.

Lemma 5.1. There exist positive constants C and D1 such that

∥∥∇w∗(0)
∥∥∞ � CεD (5.28)

for all D > D1 .

Proof. By (3.7), (3.18), (3.19), and (5.1), we have

z
(
x, sD + AD−1τ

) − ∥∥z(sD)
∥∥∞

= [
z
(
x, sD + AD−1τ

) − z(x, sD )
] + [

z(x, sD) − z(0, sD)
] + [

z(0, sD) − ∥∥z(sD)
∥∥∞

]
= O

(
D− N

2
) · AD−1 + O

(
D− N

2 −1) · 2δ + O
(

D− N
2 −1) = O

(
D− N

2 −1) (5.29)

for all (x, τ ) ∈ B(0,2δ) × [−1,0] and all sufficiently large D . Put aD = A−1 D‖z(sD)‖∞ . Then, by (3.6),
we have limD→∞ aD = 0. Therefore, since

ζκ (τ )

[
1 − A−1 D

1 − τ

∥∥z(sD)
∥∥∞

]− 1
p−1

= ζκ (τ + aD),

ζ
(
sD + AD−1τ

)p−1 = A−1 D

(p − 1)(1 − τ )
= A−1 Dζκ(τ )p−1,

by (5.17) and (5.29), we have

w(x, τ ) = ζκ (τ )

[
1 − A−1 D

1 − τ

∥∥z(sD)
∥∥∞ + O

(
D− N

2
)]− 1

p−1

= ζκ (τ )

[
1 − A−1 D

1 − τ

∥∥z(sD)
∥∥∞

]− 1
p−1 (

1 + O
(

D− N
2
))− 1

p−1

= ζκ (τ + aD)
(
1 + O

(
D− N

2
)) = ζκ (τ + aD) + O

(
D− N

2
)

(5.30)

for all (x, τ ) ∈ B(0,2δ) × [−1,0] and all sufficiently large D .
Put

W (x, τ ) = D
N
2
[

w(x, τ ) − ζκ (τ + aD)
]
, H(x, τ ) = D

N
2
[

w(x, τ )p − ζκ (τ + aD)p]
. (5.31)

Then, by (5.30), we see that there exists a constant C1 such that

sup
−1<τ�0

∥∥W (τ )
∥∥

L∞(B(0,2δ))
� C1 (5.32)
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for all sufficiently large D . Furthermore, by (5.30) and (5.31), we see that there exists a positive
constant C2 such that

sup
−1<τ�0

∥∥H(τ )
∥∥

L∞(B(0,2δ))

= D
N
2 sup

−1<τ�0

∣∣ζκ (τ + aD)p(
1 + O

(
D− N

2
)) − ζκ(τ + aD)p

∣∣ � C2 (5.33)

for all sufficiently large D . On the other hand, by (5.11) and (5.31), we have

∂τ W − A�W = D
N
2
[

w p − ζκ (τ + aD)p] = H(x, τ ) (5.34)

for all (x, τ ) ∈ B(0,2δ) × [−1,0] and all sufficiently large D . Then, by (5.32) and (5.33), we apply the
parabolic regularity theorem (see for example [17, Theorem 11.1, Chapter III]) to (5.34), and see that
there exists a constant C3 such that

∣∣∇W (x, τ )
∣∣ � C3 in B(0, δ) ×

(
−1

2
,0

]
(5.35)

for all sufficiently large D . Then, since ψ∗
D(x) = c∗ A−1 outside the ball B(0, δ), by (5.14), (5.24), (5.25),

(5.31), and (5.35), we have

∥∥∇w∗(0)
∥∥∞ � εD

∥∥w(0)
∥∥∞‖∇ψD‖L∞(B(0,δ))

= ∥∥∇w(0)
∥∥

L∞(B(0,δ))
= D− N

2
∥∥∇W (0)

∥∥
L∞(B(0,δ))

� C3 D− N
2 = C3εD

for all sufficiently large D . Thus Lemma 5.1 follows. �
Lemma 5.2. Under a suitable choice of A ∈ (0,1), there exist positive constants C∗ and D2 such that

sup
0�τ�τ∗

(
eτ A�ψD

)
(0) � c∗ A−1

4
, (5.36)

inf
τ∗/2�τ�τ∗

inf|x|�δ

(
eτ A�ψ∗

D

)
(x) � c∗ A−1

2
, (5.37)

inf
τ∗/2�τ�τ∗

inf
x∈RN

(
eτ A�ψ∗

D

)
(x) � C−1∗ , (5.38)

sup
τ∗/2�τ�τ∗

sup
x∈RN

(
eτ A�w∗(0)

)
(x) � (1 − C∗εD)

∥∥w(0)
∥∥∞, (5.39)

for all D > D2 . Here τ∗ and c∗ are the constants given in (5.13) and (5.23), respectively.

Proof. We first prove inequality (5.36). Put

Z(x, τ ) = κ
[
1 − A−1 Dz

(
x, sD + AD−1τ

)]− 1
p−1 .

Then we have

∂τ Z − A�Z = −p A−1 D2 Z(x, τ )2p−1
∣∣∇z

(
x, sD + AD−1τ

)∣∣2
(5.40)
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in RN × [0, τ∗]. On the other hand, similarly to (5.21), by (3.6) with l = 0, (3.7), and (5.20), we see
that there exists a positive constant C1, independent of A, such that

sup
0�τ�τ∗

∥∥Z(τ ) − Z(0)
∥∥∞

� κ

p − 1
[1 − θ̂D ]− p

p−1 sup
0�τ�τ∗

∥∥A−1 Dz
(
sD + AD−1τ

) − A−1 Dz(sD)
∥∥∞

� C1 A−1 D · D− N
2 · AD−1τ∗ � 2C1 D− N

2 (5.41)

for all sufficiently large D , where θ̂D is a function in RN such that ‖θ̂D‖∞ = O (D− N
2 +1). Furthermore,

by (3.6) with l = 0, we have

lim
D→∞ sup

0�τ�τ∗

∥∥Z(τ ) − κ
∥∥∞ = 0,

and by (3.6) with l = 1, (5.20), and (5.40), we obtain

sup
0�τ�τ∗

∥∥Z(τ ) − eτ A� Z(0)
∥∥∞

= sup
0�τ�τ∗

∥∥∥∥∥−p A−1 D2

τ∫
0

e A(τ−s)� Z(s)2p−1
∣∣∇z

(
sD + AD−1s

)∣∣2
ds

∥∥∥∥∥∞

� D2

τ∗∫
0

∥∥Z(s)
∥∥2p−1

∞
∥∥∇z

(
sD + AD−1s

)∥∥2
∞ ds = O

(
D−N+1) (5.42)

for all sufficiently large D . Therefore, since N � 3, by (5.14), (5.18), (5.19), (5.41), and (5.42), we see
that there exist positive constants D A and C2 such that

sup
0�τ�τ∗

∥∥eτ A�ψD − ψD
∥∥∞ = sup

0�τ�τ∗

D
N
2

‖w(0)‖∞
∥∥eτ A�w(0) − w(0)

∥∥∞

= 1

‖w(0)‖∞
sup

0�τ�τ∗
D

N
2
∥∥eτ A� Z(0) − Z(0)

∥∥∞ + O
(

D− N
2 + 4

3
)

� 1

‖w(0)‖∞
sup

0�τ�τ∗
D

N
2
[∥∥eτ A� Z(0) − Z(τ )

∥∥∞ + ∥∥Z(τ ) − Z(0)
∥∥∞

]
+ O

(
D− N

2 + 4
3
)

� O
(

D− N
2 +1) + 2C1

‖w(0)‖∞
+ O

(
D− N

2 + 4
3
)
� C2 (5.43)

for all D > D A . Here C2 is independent of A. Then, by (5.22) and (5.43), taking sufficiently small A so
that A � (c∗C−1

2 )/8 if necessary, we have

sup
0�τ�τ∗

(
eτ A�ψD

)
(0) � ψD(0) + C2 � 2C2 � c∗ A−1

4

for all sufficiently large D , which implies inequality (5.36).
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Next we prove inequalities (5.37)–(5.39). Since ψ∗
D(x) = c∗ A−1 outside the ball B(0, δ) follows from

(5.23) and (5.24), we have

(
eτ A�ψ∗

D

)
(x) =

∫
RN

G(x − y, τ A)ψ∗
D(y)dy � c∗ A−1

∫
|y|�δ

G(x − y, τ A)dy (5.44)

for τ > 0. For any x ∈ B(0, δ), by (5.20) and (5.44), we see that there exists a constant C3 such that

inf
τ∗/2�τ�τ∗

inf|x|�δ

(
eτ A�ψ∗

D

)
(x) � c∗ A−1 inf

τ∗/2�τ�τ∗
inf|x|�δ

∫
|y|�δ

G(x − y, τ A)dy

� c∗ A−1 inf
τ∗/2�τ�τ∗

∫
|z|�2δ

G(z, τ A)dz � C3 (5.45)

for all sufficiently large D . Furthermore, since

Πx := {
x + y: y · x � 0, y ∈ RN} ⊂ {|y| � δ

}
for any x outside B(0, δ), by (5.44), we have

inf
τ∗/2�τ�τ∗

inf|x|�δ

(
eτ A�ψ∗

D

)
(x) � c∗ A−1 inf

τ∗/2�τ�τ∗

∫
Πx

G(x − y, τ A)dy = c∗ A−1

2
. (5.46)

Therefore, by (5.25), (5.45), and (5.46), we obtain inequalities (5.37) and (5.38), and have

sup
τ∗/2�τ�τ∗

sup
x∈RN

(
eτ A�w∗(0)

)
(x) �

(
1 − min

{
C3,

c∗ A−1

2

}
εD

)∥∥w(0)
∥∥∞

for all sufficiently large D . This implies inequality (5.39), which completes the proof of Lemma 5.2. �
Let A and C∗ be the positive constants given in Lemma 5.2. By (5.20) and (5.39), we have

sup
x∈RN

(
e(3/4)A�w∗(0)

)
(x) � sup

τ∗/2�τ�τ∗
sup
x∈RN

(
eτ A�w∗(0)

)
(x) � (1 − C∗εD)

∥∥w(0)
∥∥∞

for all sufficiently large D . Then, by (5.19), (5.20), (5.26), and (5.28), we can apply Proposition 2.2 to
the solution w∗ of (5.25) with Mε = ‖w(0)‖∞ and t∗ = 3/4 ∈ [0,1), and by (5.25), we obtain

lim
D→∞

∥∥ε 1
p−1

D w∗(τ∗) − κ
∥∥w(0)

∥∥ p
p−1
∞

[
ε−1

D

(∥∥w(0)
∥∥∞ − eτ∗ A�w∗(0)

)]− 1
p−1

∥∥∞

= lim
D→∞

∥∥ε 1
p−1

D w∗(τ∗) − κ
∥∥w(0)

∥∥∞
(
eτ∗ A�ψ∗

D

)− 1
p−1

∥∥∞ = 0. (5.47)

This together with (5.19), (5.27), and (5.38) implies

ε
1

p−1
D

∥∥w(τ∗)
∥∥∞ � ε

1
p−1

D

∥∥w∗(τ∗)
∥∥∞ � 1 (5.48)

for all sufficiently large D .
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Let η be a positive constant such that

κ2
(

c∗ A−1

2

)− 1
p−1

+ 2η < κ2
(

c∗ A−1

4
+ η

)− 1
p−1

− 2η. (5.49)

By (5.19), (5.37), and (5.47), we have

ε
1

p−1
D w∗(x, τ∗) � κ

(
κ + o(1)

)(
eτ∗ A�ψ∗

D

)
(x)−

1
p−1 + η � κ2

(
c∗ A−1

2

)− 1
p−1

+ 2η (5.50)

for all x ∈ RN with |x| � δ and all sufficiently large D . On the other hand, we put

w(x, τ ) = ((
eτ A�w(0)

)
(x)−(p−1) − (p − 1)τ

)− 1
p−1 ,

which is a subsolution of (5.11) in RN × (0, τD). By (5.15) and (5.36), we have

(
eτ∗ A�w(0)

)
(0)−(p−1) = ∥∥w(0)

∥∥−(p−1)

∞
[
1 − εD

(
eτ∗ A�ψD

)
(0)

]−(p−1)

= ∥∥w(0)
∥∥−(p−1)

∞
[
1 + (p − 1)εD

(
eτ∗ A�ψD

)
(0) + O

(
ε2

D

)]
for all sufficiently large D . This together with (1.7) implies

w(0, τ∗) = [(
eτ∗ A�w(0)

)
(0)−(p−1) − (p − 1)S‖w(0)‖∞

]− 1
p−1

= ε
− 1

p−1
D κ

∥∥w(0)
∥∥∞

[(
eτ∗ A�ψD

)
(0) + O (εD)

]− 1
p−1 (5.51)

for all sufficiently large D . Therefore, by (5.19), (5.36), (5.49), and (5.51), we apply the comparison
principle to have

ε
1

p−1
D w(0, τ∗) � ε

1
p−1

D w(0, τ∗) � κ
(
κ + o(1)

)[(
eτ∗ A�ψD

)
(0) + η

]− 1
p−1

� κ2
(

c∗ A−1

4
+ η

)− 1
p−1

− η � κ2
(

c∗ A−1

2

)− 1
p−1

+ 3η

> κ2
(

c∗ A−1

2

)− 1
p−1

(5.52)

for all sufficiently large D . Therefore, by (5.27), (5.49), (5.50), and (5.52), we obtain

ε
1

p−1
D sup

|x|�δ

w(x, τ∗) � ε
1

p−1
D sup

|x|�δ

w∗(x, τ∗)

� κ2
(

c∗ A−1

2

)− 1
p−1

+ 2η < κ2
(

c∗ A−1

4
+ η

)− 1
p−1

− 2η

� ε
1

p−1
D w(0, τ∗) − η

for all sufficiently large D . This yields
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H
(
ε

1
p−1

D w(τ∗),η
) ⊂ B(0, δ) (5.53)

for all sufficiently large D .
We are ready to complete the proof of (1.10). Put

w̃(x, τ ) = ε
1

p−1
D w(x, τ∗ + εDτ ). (5.54)

Then w̃ satisfies

⎧⎨
⎩

∂τ w̃ = AεD�w̃ + w̃ p in RN × [0, τ̃D),

w̃(x,0) = ε
1

p−1
D w(x, τ∗) in RN ,

(5.55)

where τ̃D = ε−1
D (τD − τ∗) is the blow-up time of w̃ . By (3.28), (5.10), (5.12), and (5.54), we have

∣∣w̃(x, τ )
∣∣ = ε

1
p−1

D

(
AD−1) 1

p−1
∣∣u(

x, sD + AD−1τ∗ + AD−1εDτ
)∣∣

� ε
1

p−1
D

(
AD−1) 1

p−1
(
T D − (

sD + AD−1τ∗ + AD−1εDτ
))− 1

p−1

= ε
1

p−1
D (τD − τ∗ − εDτ )

− 1
p−1 = (τ̃D − τ )

− 1
p−1 (5.56)

for all (x, τ ) ∈ RN × [0, τ̃D) and all sufficiently large D . Furthermore, by (5.48), (5.52), and (5.54), we
have

1 � ε
1

p−1
D w(0, τ∗) = w̃(0,0) �

∥∥w̃(0)
∥∥∞ = ε

1
p−1

D

∥∥w(τ∗)
∥∥∞ � 1 (5.57)

for all sufficiently large D . This together with the comparison principle yields

τ̃D � S‖w̃(0)‖∞ � 1 (5.58)

for all sufficiently large D . On the other hand, since

T D = sD + AD−1τ∗ + AD−1εD τ̃D , εD = D− N
2 , lim

D→∞
(

D−1εD
)D− N

2 = 1,

by (3.29), (5.10), (5.54), and (5.58), we have

∥∥∇ w̃(0)
∥∥∞ = ε

1
p−1

D

(
AD−1) 1

p−1
∥∥∇u

(
sD + AD−1τ∗

)∥∥∞

� ε
1

p−1
D

(
AD−1) 1

p−1
(
T D − (

sD + AD−1τ∗
))− p

p−1 −C3 D− N
2

D− N
2 − 1

2

= (
AD−1εD

) 1
p−1

(
AD−1εD τ̃D

)− p
p−1 −C3 D− N

2
D− N

2 − 1
2

�
(

D−1εD
)−1(

D−1εD
)−C3 D− N

2
D− N

2 − 1
2 � D

1
2 = ε

− 1
N

D

for all sufficiently large D , where C3 is a positive constant. This together with N � 3 implies that
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ε
1/2−α
D

∥∥∇ w̃(0)
∥∥∞ � 1 with α = 1

2
− 1

N
> 0 (5.59)

for all sufficiently large D . Therefore, since εD → 0 as D → ∞, by virtue of (5.56), (5.57), and (5.59),
we apply Proposition 2.3 with ϕε = w̃(0) to the solution w̃ of (5.55), and by (5.53), we see that

B D ⊂ H
(

w̃(0),η
) = H

(
ε

1
p−1

D w(τ∗),η
) ⊂ B(0, δ)

for all sufficiently large D . This implies

lim sup
D→∞

sup
{|x|: x ∈ B D

}
� δ.

By the arbitrariness of δ, we obtain (1.10), which completes the proof of Theorem 1.1. �
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