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where 9, =9/dt, D >0, p>1, N >3, » >0, and
@ e l®RY) NL'RY, (1 +x1)* dx). (13)

Problem (1.1) and (1.2) with (1.3) has a unique classical solution u in L>(RN x (0, T)) for some T > 0.
We denote by Tp the maximal existence time of the unique classical solution u of (1.1) and (1.2).
If Tp < oo, then

limsup sup |u(x, t)| = oo,
t—>Tp xeRN

and we call Tp the blow-up time of the solution u. We denote by Bp the blow-up set of the solu-
tion u, that is,

Bp = {x € RN: there exists a sequence {(xn, tn)} cRY x 0,Tp)

such that lim (x,, ty) = (x, Tp), lim |u(x,, tn)| = +oo].
n—o00 n—oo

In this paper we study the blow-up time and the location of the blow-up set of the solution u of (1.1)
and (1.2) for the case where D is sufficiently large, and reveal the relationship among the blow-up
time Tp, the location of the blow-up set Bp, and the large time behavior of the solutions for the heat
equation. Here we remark that the function v(x,t) = D~/®=Dy(x, D~1t) is a solution of

dv=Av+[v[P v inR¥x (0,DTp), v(x,00=D""YP Dy 0) inR". (14)

The blow-up set for a semilinear heat equation (1.1) has been studied intensively by many authors
since the work due to Weissler [23]. We refer to [2-12,14-16,18-20,22-27], and a survey [21], which
includes a considerable list of references for this topic. Generally speaking, the location of the blow-
up set is decided by given data such as the initial data and the boundary data and by the balance
between the diffusion and the nonlinear term. Consider the blow-up problem

du=DAu+ [ulP"lu, xef,t>0,

au

— =0, x€df2, t>0, (1.5)
av

ux,0) =¢(x), xe 2,

where 2 is a bounded smooth domain in RN, v is the exterior unit normal vector to 8£2, and ¢ is
a positive continuous function on £2. Then, if the constant D is sufficiently small, the location of the
blow-up set is decided mainly by the initial datum, and the solution u of (1.5) blows up only near
the maximum points of its initial datum (see [24]). This result also holds true for the case 2 =RV
(see Proposition 2.3) and for the case of the Dirichlet boundary condition under some additional
assumptions (see [2,5,9]). On the other hand, if D is sufficiently large, the location of the blow-up
set is influenced strongly by the effect of the diffusion driven from Laplacian A, and depends on the
large time behavior of the solutions of the heat equation. Indeed, the second author of this paper and
Yagisita in [16] proved that

~(-1
TD=(p—1)’1<|;2—|/¢(x)dx) +0(D7") asD— oo, (1.6)
2
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and that if D is sufficiently large, the solution of (1.5) blows up only near the set of maximum points
of the function Py¢, where |§2] is the Lebesgue measure of £2 and P, is the projection from L2(£2)
onto the second Neumann eigenspace (see also [12] and [15]). Let z be a solution of

ad
okz= Az in 2 x (0, 00), %z=0 on 452 x (0, c0), z(x,0) =¢(x) in $2.

Then, if Py¢ £ 0 in £2, then the set of the maximum points of Py¢ coincides with the limit of the
hot spots

Ix € 2: z(x,t) = maxz(y, t)]
yes

as t — oo. Therefore, for the problem (1.5) with a large constant D, we can find a strong connection
between the location of the blow-up set and the large time behavior of the hot spots for the heat
equation.

For the case 2 = RN, we have no eigenfunctions for Laplacian A, and cannot expect the same
results as in [16] even if D is sufficiently large. However we can propound the following problem:

for the case 2 =RV, if D is sufficiently large, is the location of the blow-up
(P) set for problem (1.5) determined mainly by the large time behavior of the hot
spots for the heat equation?

In this paper we study the location of the blow-up set for the problem (1.1)-(1.3) by using the large
time behavior of the solutions for the heat equation and of their hot spots, and give an affirmative
answer to problem (P).

We introduce some notation. Put B(x,r) = {y ¢ RN: |x — y| <1} for x € RN and r > 0. For any
feC®RY)NL®RN) and n > 0, we set

H(H)={xeRY: fo0 = sup f(n)],

yeRN

H(f.m)= {xeRN: fx) > sup f(y)—n]-
yeRN

Furthermore, for f € LY(RY, (1 + |x|) dx), we put
C(f):/xf(x)dx/ff(x)dx ifff(x)dx;éo.
RN RN RN

Here C(f) is the center of the mass for the function f. On the other hand, for any A > 0, we put

1 1 p-T A~ (=D
L) =Kk (Sy—t) P71, KZ(pj) ) S)= 1 (1.7)

Then ¢; = £, (t) is a solution of the ordinary differential equation ¢’ = ¢P with ¢(0) = A and S is the
blow-up time of ;.
Now we are ready to state the main result of this paper.
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Theorem 1.1. Let N > 3 and u be the solution of (1.1) and (1.2) under condition (1.3). Assume

M(p) := / @(x)dx > 0. (1.8)
RN
Then Tp < S; forany D > 0 and
S)—Tp=(47S,)"227"D 2 [M(@)+ 0(D")] asD — oo. (19)
Furthermore
lim sup{|x—C(¢)|: x€ Bp} =0. (1.10)
D—o0

By Theorem 1.1, we see that the solution u blows up only near the point C(¢) if D is sufficiently
large and M(p) > 0. We conjecture that Theorem 1.1 holds even if N < 2, however it is open. Indeed,
our argument fails in the proof of Proposition 4.1 if N < 2.

In the following remark, we discuss the relationship among the blow-up time Tp, the location of
the blow-up set Bp, and the large time behavior of the solutions for the heat equation and of their
hot spots.

Remark 1.1. (i) Assume conditions (1.3) and (1.8). Then the function

(") (x) = (4mt)~ 2 / e‘%w) dy (111)
RN

is a unique bounded classical solution of the heat equation with the initial datum ¢. Then
. N A _N
lim t2 (") (x) = (4)" 2 M(¢p)
t—o0
uniformly on any compact set in RN, Furthermore
li —C(p)|: xe H(e"*¢p)} =0,
Jim sup{|x - C(@)|: xe H(e¢)}

that is, the hot spots of e!2¢ tend to C(¢) as t — oo. See Lemma 2.2. For further details in the hot
spots for the heat equation on RN, see [1].

(ii) Consider the problem (1.1) and (1.2) under conditions (1.3) and (1.8). Then, by Theorem 1.1
and Remark 1.1(i), we see that, if D is sufficiently large, then the blow-up time and the location of
the blow-up set depend on the large time behavior of the solution of the heat equation e/*¢ and of
its hot spots, respectively (see also the proof of Theorem 1.1). This gives an answer of this paper to
problem (P).

Next we give some comments on the problem (1.1) and (1.2) for the case A =0.

Remark 1.2. Let u be a positive solution of (1.1) and (1.2) with A =0.

(i) Let p > 1+ 2/N and assume (1.3). If D is sufficiently large, then the solution u exists globally
in time and Tp = oco.

(ii) The results of Dickstein [6] imply that under suitable assumptions, the blow-up set consists of
only one point if D is sufficiently large. See also (1.4).
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(iii) Let 1 < p <1+ 2/N and assume (1.3). Then Tp < oo for D > 0 and limp_, Tp = oco. In the
proof of Theorem 1.1, it is important to obtain the profile of the solution just before the blow-up time.
However, since limp_, o Tp = oo, it seems difficult to study the profile of the solution just before the
blow-up time and to apply the arguments of this paper to the case A =0.

We explain the idea of proving Theorem 1.1. In order to study the location of the blow-up set Bp,
we study the profile of the solution u of (1.1) and (1.2) just before the blow-up time Tp. Indeed, for
any sufficiently small € > 0, the function

V(X t):= 61/(”_1)u(x, Tp — € +€t)

satisfies

av=DeAv+|v|P"lv inRVx(0,1), v(x 0 =e/P Vyx,Tp—¢€) inR'.

Then, by [9], if De is sufficiently small, under suitable assumptions on v(x, 0), we see that the func-
tion v blows up only near the maximum points of v(x, 0) (see also Proposition 2.3). Therefore we can
study the location of blow-up set Bp by using the profile of u(x, Tp — €).

Let D be a sufficiently large constant. In order to study the profile of the solution just before
the blow-up, we study the profile of the solution at the time S, — AD~! with A > 0 by use of
the comparison method. For any nonnegative bounded function ¢ in RN, it is well known that the
functions

1

p—1

t
ux,t) = (eDfA¢)(x)|:1 —(p—l)/||eDSA¢||Zolds:| :
0

1

ux,t) = ((e""2¢) =PV —(p—1)r) 7"

are a supersolution and a subsolution of Eq. (1.1) with the initial datum ¢, respectively. If the decay
rate of [|e'2¢| as t — oo is sufficiently large, for example, the dimension N is sufficiently large,
then functions & and u are useful for the study of the profile of the solution at S, — AD~!, however,
at least, for the cases N = 3,4,5, u is not enough for our study of the profile of the solution just
before the blow-up time. So we introduce the following function

1

U t:p, M) = ((eP2¢)x) PV — (p — DA +M)t) 7T, (112)

where M > 0. If M =0, U(x,t: ¢, M) =u(x,t) and I/ is a subsolution of (1.1). If

M>0 and inf ¢(x) >m >0

xeRN

for some constant m, then inf, g~ (eP2¢)(x) > m for t > 0, and we have

U =UP ((eP2¢) P (eP2¢) + 1+ M),

AU =UP (eDtAqb)_pA(eDtAqb) + [pu2p—1 (eDtAd))—ZP _ pup (eDtAd))_p_]“V(eDmd)) 2

’

and obtain

U — (DAU +UP) > UP (M — cuDUP 1|V (P2 ) ]%), (113)
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where c¢;; = p/m?P. This implies that ¢/ is a supersolution of (1.1) if { satisfies

cnDUP~|V (P2 ¢) [ < M. (1.14)

By using a short time behavior of the solution u, we choose a suitable constant M and construct
a supersolution /. Then we can obtain the profile of the solution u at the time S5 — AD™1/3 (see
Proposition 2.1 and Lemma 4.1). Furthermore, by using the profile of u(-, S, — AD~1/3), we con-
struct a supersolution ¢/ with a suitable choice of M, and obtain the profile of u(-, S, — AD*2/3)
(see Lemma 4.2). Repeating this argument again, we obtain the profile of the solution u at the time
S, — AD~1 (see Proposition 4.1). Then we follow the strategy in [16] and [25], and obtain the profile
of the solution u just before the blow-up time under a suitable choice of A. Finally we apply the
result of [9] (see Proposition 2.3), and complete the proof of Theorem 1.1. Our arguments heavily de-
pend on the behavior of the solution of the heat equation, and need more careful calculations than in
[16] because of the difference of the diffusion of A between bounded domains and RN.

The rest of this paper is organized as follows. In Section 2 we study the large time behavior of
the hot spots for the heat equation, and give two propositions, which are useful for the study of the
profile of the solutions of (1.1) and (1.2). Furthermore we recall one proposition on the blow-up set
of the solution of (1.1) with small diffusion. In Section 3 we study the short time behavior of the
solutions of (1.1) and (1.2), and give some global estimates of the solutions. Section 4 is devoted to
the study the profile of the solution at the time S, — AD~! with A > 0. In Section 5 we follow the
strategy in [16] and [25], and study the profile of the solution just before the blow-up time. Then
we can prove Theorem 1.1 by using propositions given in Section 2, which are related to the blow-up
problem with small diffusion.

2. Preliminary results

In this section we introduce some notation and recall some properties of the solution of the heat
equation. Furthermore we give three propositions on the blow-up problem for the semilinear heat
equation (1.1).

We first introduce some notation. For any q € [1, oo], we denote by | - || the usual norm of LIRN).
For any multi-index o = (a1, ..., an) € (NU{OHN, we put

N gl
ol=) o, al=aq!---apn!, 0 = ——
o] ; n 1 N » PN
G(x, t) = (Amt)y~N2e=I2/4t G (x,t) = (=DI¥G(x, t + 1) /.

For any sets A and X, let f = f(A,0) and h =h()\, o) be maps from A x X to (0, co). Then we say

fQ,0)<h@®, o)
for all A € A if, for any o € X, there exists a positive constant C such that f(1, o) < Ch(x, o) for all
A € A. Furthermore we say f(A,0) <h(A,0) forall A e Aif f(A,0)<h(A,0) and f(A,0) =h(X,0)
for all A € A.

2.1. Behavior of the solutions of the heat equation

In this subsection we recall some properties of e“¢, and give a lemma on the hot spots for the
heat equation. We first recall the following properties of ef2¢:
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(P1) forany 1<r<q<oo,l,meNU{0}, and ¢ € L"(RV),
N¢1_1 m
Jofvmetag, <72 TD 2 g, fort> o0,

In particular, if r =q, then ||etA¢>||q ll¢llg for t > 0;
(P2) for any ¢ € L'(RN, (1 + |x|) dx),

IV 5000 <t~ +R)/ +1xI)[¢(x)|dx fort>0andR > 0;

(P3) for any ¢ € L'RN, (1 + |x)¥ dx) with k>0,

f|x|"|em¢>(x)|dx</|x|"|¢(x)|dx+t%||¢||1 fort > 0.

N N
Properties (P1) and (P2) easily follow from (1.11). For property (P3), see Lemma 2.1 in [13]. Further-
more we have:

Lemma 2.1. Let ¢ € LR, (1 + |x|)? dx). Then

lim 2+
t—o00

Jor| <2

eA¢ — Z caGa(t)H =0, where ca:/y%)(y)dy. (21)
RN

Proof. Let ¢ € LI(RY, (1 + |x|)? dx). Put

vix,t) = (x) Z CaGu(x,1).

|| <2
Since v is a solution of the heat equation such that
/x"‘v(x,O)dx:O, lor| <2
RN
by Lemma 2.4 in [13], we have lim;_, £3+1 V()| o gny =0, and Lemma 2.1 follows. O

By properties (P1)-(P3) and Lemma 2.1, we have the following lemma on the large time behavior
of the hot spots for the heat equation.

Lemma 2.2. Assume conditions (1.3) and (1.8). Then, for any § > 0, there exists a positive constant T such that
_N_
(e 9) (0 < (" ¢) (C(g)) — dnM ()t~ 2182 (22)
forall (x,t) e RN x (T, oo) with |x — C(p)| > 8, where dy is a constant depending only on N. Furthermore

- . (AN
tl_l)rglosup{|x—C((p)|. xeH(e"¢p)}=0. (2.3)
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Proof. We can assume, without loss of generality, that C(¢) =0. Let § > 0 and € > 0. By (2.1)

t*%*)

have

(e DAY (0 = (4rt) " Te~ ‘L[M«p)— —/|y| @(y)dy + O (|x*t™ )} +of

X2 1
e [M«p) - / 2oy dy}
RN

N
= (4mt)?
|x |2 12
o F e ) o) (24)
for all (x,t) e RN x (2, c0). This implies that
_ N Ix|? |x|*
o (- ol )
[M«p) - / 191 w(y)dy] 0(2 5 1) 4o(t 27"
_N |x|?
= (4rt) M(@) 1—? ——/|Y| o(y)dy
+O(2x2 T ) 4 0(¢2 2 ) 4ot 2T
for all (x,t) € RN x (2, 00) with |x| < €t!/2. So we have
(e(f—l)A(p) (X) _ (e(t_])A(l))(O)
4ot (2.5)

N
4mt)” 2 N
= —%[M((p) +0(e?)]IxI*+0(e?t 2
t1/2_ Then, by (1.8) and (2.5), taking a sufficiently small € > 0

for all (x,t) e RN x (2, 00) with |x|
if necessary, we see that there exists a constant T such that

(e P2p) ) — (e“"V29)(0)
_N
G0 7 s (26)

N
(4mt)~ 2 2 _N_4 _N_4
<——M(p)é O(e“t 2 o(t™2 < -

g M@ 0T o2 16t
€t1/2, Furthermore, by (1.8) and (2.4), taking a sufficiently

for all (x,t) e RN x (T, c0) with § < |x| <

large T if necessary, we have
(e(t—l)A )(O)
| 2
t‘¥_1)

(€20)00 -
= @) I M(@) (e~ —1)+0(

(4mt)~2 )
et M(p)é (2.7)

-
VA

€

N
<@ty IM(p)(e” T —1)+O(t
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for all (x,t) e RN x (T, 0o) with |x| > et!/2. By (2.6) and (2.7), we have (2.2), which together with the
arbitrariness of § implies (2.3). Thus Lemma 2.2 follows. O

2.2. Blow-up for a semilinear heat equation

In this subsection we give two propositions, which are useful for the study of the profile of the
solutions of (1.1) and (1.2). Furthermore we recall one proposition on the blow-up set of the solution
of (1.1) with small diffusion.

We first give the following proposition, which is proved by use of the supersolution and the sub-
solution given in Section 1.

Proposition 2.1. Let u be the solution of

gu=DAu+[ulP'u, xeRV, t>0,

(2.8)
u(x,0)=>xp+¢p(x), xeR",
where N>1,p>1,D>0,Ap >0, and ¢p € C1(RN). Assume
sup D¥||¢pllc <00, sup D Veplle < 00, (2.9)
D>Dg D>Dg
0 < inf Ap < sup Ap < oo, (2.10)
D>Dg D>Dy

for some o« > 0, B > 1/2, and Dg > 0. For any y € (0,«) with 28 > 2y + 1 and any A > 0, put sp =
Sip — ADTY. Then there exists a positive constant D, such that, for any D > D, the solution u exists in
E:=RN x [0,sp] and

1

ux,t) = ((e®"2u(0)® PP —(p - 1)(1+ 0 (D~ 2FHY+D)) 77

.
T

=0, O[1 = (P = DA 5, ©OP (P2 gp) )+ 0(D))] 7T, (211)

[Vu, t)| =21, (0P (0 (D#) + 0(D~27~2)), (212)
in E, where 6 = min{2«, 28 — y — 1} and ¢/ = min{«@ — y, 28 — 2y —1}.

Proof. We first prove (2.11). Let ;1 be a positive constant to be chosen later. Put

Ux,t) :=U(x, t:u(0), uD 2+

1
—T

= ((eP"2u(0)x) =P~V — (p — 1)(1 + uD2HV )77 (213)

(see (1.12)). In what follows, we write zp(x, t) = (eP2¢p)(x) for simplicity. By (P1) and (2.9), we see
that

sup|zp(®) |, < llépllec < D2,
t>0

sup|[Vzp(©)] , = sup[[e?A V], < IVeplleo < D7, (214)
t>0 t>0
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for all D > Dg. On the other hand, by (1.7) and (2.10), we have

sup Ssp < sup Sy, < oo. (215)
D>Dg D>Do
Then, since
A+h~ P V=1—(p-Dh+0(h?), |l <1, (2.16)

by (1.7), (2.10), (2.14), (2.15), and the definition of o, we have

(eP2u(0)x) "7V — (p = 1)(1 + uD 2P+
= (o +20 )PV = (p — Dt + O (uD2HrH)
=ipP (1445 20 (x.0) 7V — (p— Dt + 0(uD )
=17 (1= (- DAp'zp (. t) + 0(D72)) = (p — 1)t + 0 (uD )
=P "= -1t) = (- DrPzpx, )+ 0((1+ D)
=0, P = (p— DAy’ (20(x. ) + 0((1+ WD ™))
for all (x,t) € E and all sufficiently large D. This together with (2.13) yields

1

G0 =G O[1 = (0 = DA 6 O (2o, ) + O ((1+ D)) 7T (217)
for all (x,t) € E and all sufficiently large D. Furthermore there holds o > y by 28 > 2y + 1, and since

o >y and

sup G, (OP =g, (sp)P ! =kPTTATIDY, (218)
0<t<sp

the inequalities (2.14) together with (2.10) yield
sup ApP 0, OP 2o, O] DT = 0(1),
(x,t)eE

sup ApP 8, (OPTIDTO < DTN =o(1), (219)
0<t<sp

for all sufficiently large D. Therefore, by (2.17), (2.18), and (2.19), we have

Ux,t) = &, (O(1+0(1)) <2« (A7'D7) P (2.20)

for all (x,t) € E and all sufficiently large D. Similarly to (2.17), putting

1

ux, t) :=U(x,t:u(0),0) = ((e®2u(@) PV —(p-1t) 77, (2.21)

we have

1

ux,t) =&, (O[1 = (p — DAL 4, OP(zp(x, 1) + 0(D7))] 7 (2.22)

for all (x,t) € E and all sufficiently large D.
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On the other hand, by (2.10), (2.14), and (2.20), we have

inf u(x,0)=1p+0(D™%) > Ap/2> Ding Ap/2 >0,
>Uo

xeRN

pla®|? | vePru©|?, = pllam | [vzp @) |2 < vD2EHrH,
Jsu DJEOIZ Ve u@l = sup PlEOIL [Va® L, <v

for all sufficiently large D, where v is a positive constant independent of . Put
U =CnV, Cm = p/m?P, m= inf Ap/2.
D>Dyg
Then we have

cnDE(x, )PV (P2 u(0) ()| < uD 2P+ inE
for all sufficiently large D, that is, there holds (1.14) for u in E. Therefore, by (1.13) and (2.13), we see
that the function u is a supersolution of (2.8) in E with u(0) = u(0). On the other hand, the function

u=U(x,t:u(0),0) is a subsolution of (2.8) in E with u(0) = u(0). Thus, by the comparison principle,
we have

u,t) <ux,t) <ux,t) inkE.
This together with (2.20) implies that the solution u exists in E. Furthermore, by (2.17) and (2.22),

we have (2.11).
Next we prove inequality (2.12). Put

vx, ) =0, O 7P (U 0 — 5,y (1),
Fs)=[1+sP" 11 +5),  fx.t)=[F(s)— F(0) — FOs]ls_, @p-tvimor

(See (1.7).) Then v satisfies

dv=DAV+ f(x,t), xeR', t>0, v(x,00=r,"pp(x), xeR", (2.23)
and
t
v(t):ABPZD(t)+/.eD(t’5)Af(s)ds, t>0. (2.24)
0

Furthermore, by (2.11) and (2.19), we have

_ 1
G OP v ) =[1— (0 — AP0, O N (zpx.6) + 0(D7))] 7" —1

1

=[1+0(D*)+0(D )] 7T -1

=0(D" ")+ 0(D°*)=0(D"") (2.25)

for all (x,t) € E and all sufficiently large D. On the other hand, since F € C%((—1, 00)), by (2.25),
we apply the Taylor theorem to have
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fx,t)= %F”(955)52| 0(D~2") (2.26)

s=0p (P TV (x0)

for all (x,t) € E and all sufficiently large D, where 05 € (0, 1). Therefore, by (P1), (2.10), (2.14), (2.15),
(2.24), and (2.26), we have

t
[Vvix, 6)| < AP |Vzp(x, D) +/|(VeD“—S>Af(s))(x)|ds
0

t
<D+ /(t ~972|f(5)]  ds<DF + D23
0
for all (x,t) € E and sufficiently large D. This implies inequality (2.12), and the proof of Proposition 2.1
is complete. O

Next we give the following proposition, which is used for the study of the profile of the solution
just before the blow-up time. The proof of Proposition 2.2 is given in [10] by the similar argument as
in Theorem 6 in [25] (see also Proposition 2.3 in [16]).

Proposition 2.2. Let N > 1, p > 1, €g > 0, and {M¢ }o<e<¢, C (0, 00) such that

0< inf M¢< sup Me < oo.
O<e<ep O<e<ep

Let {¢e }o<e<e, € C1(RN) and C be a constant such that
0<(1-CEMe <Pe(®) <Me,  |Voe(®)]| <Ce,

for all x € RN and all € € (0, €p). Assume that there exist constants t,, € [0, liminf._, o Sm.), Cx >0, and
€, > 0 such that

sup ("2 ) () < (1 — C.)Me, 0 <€ <6,

xRN

Let u be the solution of the problem

du=Au+uP, xeRV, t>0, ux 0)=¢c(x), xecRV,
and T the blow-up time of uc. Then Sy, < Te for € € (0, €,) and

1

p_ __1
lim €7 Tue(Swo) —ieMZ ' [e7! (M —e™elge)] 7T | =0,
where k is the constant given in (1.7).

Furthermore we recall the following proposition on the location of the blow-up set of the solution
of (1.1) for the case where D is sufficiently small. See Theorem 1.1 and Remark 1.2 in [9].
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Proposition 2.3. Let N > 1, p > 1, €9 > 0, and {¢c }o<c <¢, C C' (RN) be nonnegative functions such that

0< inf Jigelloo < sup [@elloc < o0.
O<e<ep 0<e<e€g

Assume that there exists a positive constant « such that

sup €!/2-|

O<e<eg

IV@elloo < 00.

Let u, be the solution of

du=ecAu+uP, xeRV t>0, ux,0) =@e(x) >0, xeRV,

and T¢ and B¢ be the blow-up time and the blow-up set of u., respectively. Assume

sup  sup (Te — )P V]uc ), < oo.
O<e<eg O<t<Te

Then, for any n > 0, there exists a positive constant €, such that

Be C {xeRN: 9e(®) > @elloo — 1}, € €(0,€,).
3. Short time behavior of the solution
Let T = S)1|¢ll/2 € (0, S,). In this section we study the profile of the solution of (1.1) at the
time t =T, and prove the inequality Tp < S,. In what follows, we put ¢(t) = ¢, (t) and S =S, for

simplicity.
Similarly to in the proof of Proposition 2.1, we put

vx.O=:O P -¢®),  fEO=[FE) = FO) = FOs]|_ qp1ywn 1)

where F(s) = |1+ 5s|P~1(1+5). Then v satisfies

v =DAV+ f(x,t), xeRY, t>0, (32)
v(x,0) =vo(x) =1"Pp(x), xeRV, '
and
t
v(t) = ePEAy () 4 / ePE9Af(5)yds, t>t >0. (3.3)
t/
Furthermore we put
T
z(t) =ePEDAY(T),  gx) = f (ePT=92£(5)) (x) ds. (34)

0
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Then, by (3.3) and (3.4), we have
z(t) = ePtAyg 4P DA g — 3 ~PeDtAy 4 DDA ¢ > T, (3.5)
We first give the following lemma on the behavior of z.

Lemma 3.1. Assume (1.3). Let T = Sy |¢| /2. Then, for any | € {0, 1, 2} and m € [0, 2], there exist positive
constants C and Dq such that

N+l

sup|Viz() |, <[ V'v(D],, <cD™ 7, (3.6)
t>T

|2(t1) — 2(t)]| , <CD ¥ |t — 2], 11,62 € [T, 00), (3.7)
lglloo <CD™37T, (3.8)
/ X™|g(x)|dx < CDZ T, (3.9)

RN
forall D > D;.

Proof. We first prove the inequality (3.6) for the case | =0. By (1.1), (1.2), (1.7), and (3.1), we apply
the comparison principle to have

[u® ] < CuOIe® =011 ®© <1, CO<1, COP v <1,

for all t € [0,T] and D > 0. Then, since F € C!(R), applying the mean value theorem, we see that
there exists a positive constant C; such that

|f(x, )| =|[F'(6ss)s — F'(0)s] yszm)p,lv\ < Crlvx, 0] (3.10)

for all (x,t) e RN x (0, T] and D > 0, where 6; € (0, 1). Furthermore, by (3.2) and (3.10), we apply the
comparison principle to have

[vx, )] < et (el vol)(x) < (eP*2pl) ),  (x,0) eRY x (0, T]. (3.11)

Therefore, by (P1) and (3.11), we have

[viol, < el Ivd],, < min{ll¢llco, (D% lell}, (312)
for all 0 <t < T. Then, by (P1), (3.4), and (3.12), we have

N
o) <|vh|_ <Dz
f;l;llzwlloo Iv(D ||

for all sufficiently large D, and obtain the inequality (3.6) for the case [ =0.
Next we prove the inequalities (3.8) and (3.9). By (3.12), we can take a sufficiently large constant L
so that

(0P vx, B)] < Ce (TP (DD gl < CE(TP'L 2 gl < (313)

1
2
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for all (x,t) e RN x [LD~1, T] and all sufficiently large D, where C5 is a positive constant independent
of L and D. Then, since F € C2((—1, 00)), by (3.12) and (3.13), we apply the Taylor theorem to have

|f(x,0)] = %|F“<éss>|s2| < TMPP Vv, o) < (DO~ 2 |vix, 1)

s=¢(OP~1v(x,b)

for all (x,t) e R¥ x [LD~1, T] and all sufficiently large D, where 6; € (0, 1). This together with (3.4),
(3.10), and (3.11) yields

LD! T
lg()] < / |(eP T2 F(s)) ()| ds + / |(ePT=92f(s)) (x| ds
0 LD-1
LD! T
< /(eD(T’S)A|v(s)|)(x)ds+ /(Ds)’%(eD(T’S)A\v(s)])(x)ds
0 Lp-1
LD™!
4[/ ds + / (Ds)‘fds}(mm)(x) 18 1) () (3.14)
0 LD-1

for all x e RN and all sufficiently large D. Properties (P1) and (P3) together with (3.14) imply (3.8)
and (3.9).
Next we prove the inequality (3.6) for the case [ =1, 2. By (P1), (3.3), (3.10), and (3.12), we have

[Vv© ] < [Ve”2vol,

t/2
+ 19250 ds+ / [V (€2 £5) | . ds
0 t/2
t/2
. _Ng1
<0 voll + [ (0e-9)"F £ ds
0
t
_1 N+1
+/(D(t—s)) 2| )] ds< D" gl (3.15)
t/2

for all T/2 <t < T and all sufficiently large D. Therefore, by (P1), (3.4), and (3.15), we have

vzl = DE-DAGy(Ty| < [Vv(T)|_ <D~ "%
f;g” 20| f;l;lle V(D <[VvD] 2 lelh

for all sufficiently large D, and obtain the inequality (3.6) for the case | = 1. Furthermore, by (3.1),
(3.13), and (3.15), we have

[VF00] = [F'©) = F O [ yp1y0 ¢ O [TV,

N+1

<P Vv <D™ T (316)
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for all (x,t) e RN x (T/2,T) and all sufficiently large D. Therefore, similarly to (3.15), by (P1), (3.3),
(3.15), and (3.16), we have

T
[Pum] < [9e2T50ua ] + [ 960792910
T/2
T
<D v+ [ (00 -9)vre]ds< 0t
T/2

for all sufficiently large D. This together with (P1) yields

_ _N_
sup[[ V20, = sup|e® TP AVE V() | < [VAV(D o < D72

for all sufficiently large D, and we obtain the inequality (3.6) for the case I = 2. Finally, since
8z=DAz in RN x (0, 00), the mean value theorem with (3.6) yields

N
2

|z(t1) — z(t2) | o, <sup|aez(®)]| o, It1 — tal = Dsup|| Az(t) ||  |t1 —t2] < D72 [t1 — ta]
t>T t>2T

for all t1,t; > T. So we have (3.7), and the proof of Lemma 3.1 is complete. O
Next we study the hot spots for the function z(t).

Lemma 3.2. Assume (1.3) and (1.8). Let T' > T = S; 1| ... /2 and R > 0. Then there exist positive constants
C and D, such that

2(x,1) < 2(C(),t) —CD~ 2~ if [x— C()| > R, (317)
|V20) | po.py <CD 271 (3.18)
|20, —2(C(@),t) <cD™5 T, (3.19)
forallt > T' and D > D5. In particular,
DIme sup{|x — C(@)|: x € H(z(1))} =0, (3.20)
glim, sup D" |2, — 2(Cp). t)| =o0. (3.21)

Proof. We can assume, without loss of generality, that C(vg) = C(¢) =0. Let T’ > T and R > 0. Then,
by Lemma 2.2, we see that, for any § > 0, there exists a positive constant Dg such that

(€22 v0) (x) < (€22 v)(0) — C182D~ 2! (3.22)

for all (x,t) € RN x (T’, 00) with |x| > 8 and all D > Dg. Here C; is a constant depending only on N
and M(vo) = 2~PM(p). Then, by (P1), (3.5), and (3.8), taking a sufficiently large L, we apply (3.22)
with § = L to have
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c
2(x,t) — 2(0,6) < —G1 12D 21 4+ D271 < —%LZD_%_l (3.23)

for all (x,t) € RN x (T’, co) with |x| > L and all sufficiently large D, where C; is a constant indepen-
dent of L. On the other hand, by (P2) and (3.9), we apply the mean value theorem to have

|(9D(t_T)Ag)(X) - (eD(t_T)Ag)(O)| < x| “VeD(t_T)AgHLw(B(O,lxl))

< (D@t —- T))_%_1|x|(1 + |x|)|: /(1 +1x1)|g)| dx]

N
2

<D (14 )’ (3.24)

for all t > T’ and all sufficiently large D. Then, by (3.5), (3.22) with § = R, and (3.24), we see that
there exists a constant C3 such that

2~—N_1 _N_3 2 Cq 2~-N_1q
z(x,t) —z(0,t) < —C1R*D™ 27" +C3D"272(1+1) <—7R D™ 2

for all (x,t) € RN x (T', 00) with R < |x| < L and all sufficiently large D. This together with (3.23)
yields (3.17), which together with the arbitrariness of R gives (3.20). Furthermore, by (P2), (3.5),
and (3.9), we have

||vz(t)||L°°(B(O,R)) < HveDm Vo ”LOO(B(O,R)) + ”VeD([_T)Ag”LOC(B(O,R))

=0((1+ R)D*%”)(/u + 1x1) | vo ()| dx + /(1 + 1x1)| g )| dx)

RN RN

<C3(R+1)D 271 (3.25)

for all t > T’ and all sufficiently large D, where Cs is a constant independent of R. Therefore we have
inequality (3.18). Moreover, by (3.17) and (3.25), we have

|z®©],, —20.6 = |zt) ”LDO(B(O,R)) —2(0,6) <R[ Vz(t) ||L°°(B(O,R)) <GRR+1)D727!

for all t > T’ and sufficiently large D. This gives (3.19). Furthermore we have

N+2
limsupsup D2 ||z(t)|| ., — 2(0,0)| < C3R(R+1).
D—oo t>=T’

This together with the arbitrariness of R implies (3.21), and the proof of Lemma 3.2 is complete. O

At the end of this section we prove Tp < S and give some estimates of the solution u and its
gradient.

Proposition 3.1. Assume the same conditions as in Theorem 1.1. Then

Tp<S (3.26)

for any D > 0. Furthermore there exist positive constants C, ¢, and D3 such that
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inf u(x,t) >0, (3.27)

xeRN

Ju®)|,, <(k+CD™ 3\ (Tp—t)” 5, (3.28)
_N

[Vu®],, <cp ¥ 3y —p7r P E (329)

forallT <t <Tpandall D> D3, where T = Sj 4| /2.

Proof. We first prove Tp < S for any D > 0. The proof is by contradiction. Assume Tp > S for some
D > 0. Let S’ € (0, S). Then, since

[u®|,=¢O+cO|vi)| <1

for all 0 <t < S/, similarly to in (3.11), we have

lvx, D] < |2 1)) )|
for all (x,t) e RN x (0, §']. This together with (1.3), (1.11), and (3.1) implies

Ju(s’ 2 lim u(x,S")=¢(S").

o> tim

Therefore, by the arbitrariness of S’ and (1.7), we have |u(S)|lc = oo, which contradicts Tp > S.
Therefore we have Tp < S for any D > 0.

Next, following the argument as in [8] and [14], we prove inequalities (3.27) and (3.28). By (3.1)
and (3.6), we have

u, T)=¢(T) +¢(MPvx,T) > ¢(T)/2>0 (3.30)

for all sufficiently large D. This together with the maximum principle implies (3.27). Furthermore,
by (3.1) and (3.6), we see that there exists a constant C; such that

N_ 1
2

[V'um | =¢MP|Viv(D)|  <CiD7272, 1e{1,2}, (3.31)

for all sufficiently large D. Let C3 be a constant such that C2(¢(T)/2)P > Cq, and put

Sp=1—CaD"2,  J(xt)=du—SpuP.

Then, by (1.1), (3.30), and (3.31), we have du(x, T) > 8pu(x, T)? for all x € RN and all sufficiently
large D, which implies J(x, T) >0 in RN, Furthermore J satisfies

d%J—DAJ—puP~'J=Dspp(p — DHuP?|Vul? >0 inRN x [T, Tp)

for all sufficiently large D. Therefore, applying the maximum principle, we have J >0 in RN x [T, Tp),
and see that d;u > §puP in RN x [T, Tp) for all sufficiently large D. This implies that

0<u@x.t)<((p—1dp)~ T (Tp— ) %—[K—FO( H](Tp -0 T

for all sufficiently large D, and we have inequality (3.28).
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Next we prove inequality (3.29). By (P1), (1.1), and (3.27), we have

[Vu® ], < Ve PRum],, +

t
/ VePE=92y ()P ds
T

t
<1vu] -+ [ur - vue| o
T

for all T <t < Tp. Then, in view of (3.28), there exists a positive constant C3 such that
t
|vu®], < [Vum| + (pxP~ + 3D %) /(TD —) | Vu@)| ds (332)
T

for all T <t < Tp and all sufficiently large D. Putting

t
-1 p _N
U(t):/(TD—s) [Vu(s)| ds. ap=-—=+4+CD"2>1,
p—1
T

by (1.7) and (3.32), we have

00’

d
(To =07 UM —apU(®) < [Vu(m||

and by (3.26), we obtain

d
L@ =0 U] < (T -0 [ Vu(D)| , < 57| Vu(D)|

oo

for all T <t < Tp and all sufficiently large D. This together with (3.26) and U(T) = 0 implies

(Tp —)*PU ) < S |[Vu(D)|| , < [Vu(D]| (333)

for all T <t < Tp and all sufficiently large D. Therefore, by (3.31)-(3.33), we obtain inequality (3.29),
and the proof of Proposition 3.1 is complete. O

4. Profile of the solution at the timet =S — AD!

In this section, by using Proposition 2.1 three times, we study the profile of the solution u of (1.1)
and (1.2) at t=S — AD~! with A > 0, and prove the following proposition.

Proposition 4.1. Assume the same conditions as in Theorem 1.1. Let A > 0 and sp = S — AD™'. Then there
exists a positive constant D, such that Tp > sp and

ux,t) =¢O[1—(p - D@ z(x, 1) + o(D—N+§)]*P]Tl (4.1)

forall (x,t) eRN x [S— AD—2/3 spland all D > D..
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In order to prove Proposition 4.1, we first study the profile of u(x, S — AD~1/3).

Lemma 4.1. Assume the same conditions as in Proposition 4.1. Let s}, = S — AD~1/3. Then there exists a
positive constant D1 such that Tp > s}) and

u(x, t) = ¢(O[1+cOP " (zx, ) + 0(D~N+3))], (4.2)
IVu(x, )] =¢®P0(D~272), (43)
forall (x,t) eRN x [T, sh]and all D > Dy, where T = S; ¢ /2

Proof. Put ¢p(x) =¢(T)Pv(x,T) and uq(x,t) = u(x,t+T). Then, by (3.1), the function u; is a solution
of (1.1) with

u(x,0) =¢(T) + ¢p(x) inR",
Furthermore, by (3.6), we have

N+1

l¢pllc <D™ 2,  [IVéplloo<D™ 2, (4.4)

Nz

for all sufficiently large D. Put « = N/2, B = (N + 1)/2, y =1/3, 0 = min{2«,28 — y — 1}, and
o’ =min{a — y,28 — 2y — 1}. Then, since

1
a>y, 28>2y+1, 0:N—§, o

—

N
‘=5 -3 Gm®=¢C+D. Sem=5-T,

applying Proposition 2.1 with Ap = ¢(T) to uq, we see Tp > s}) and have

ux,t)=u1(x,t —T)

1

=1 = (p— DM e (P D2p) 0 + 0 (D N3))] 7T, (45)

|Vu(x, t)] = |[Vur(x,t = T)|
N+1

=P (0(D~"F ) +0(D M) =¢mPo (DT, (46)

for all (x,t) € RN x [T, s}h] and all sufficiently large D. On the other hand, by (3.4), (3.6), and the
definition of ¢p, we have

{(T) P (ePCDAgp) (0 = z(x, t) = 0 (D™ ?) (47)

for all sufficiently large D. Therefore, since

sup (0P 1 =¢(sh)" " =0(D?),
T<t<sh

by (4.5) and (4.7), we have
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1

u(x, 0 =1 = (p— DEOP " (zx, ) + 0(D~N+3))] 7

=1+ cOP 2,0 + ¢ ©OP 0 (DN + ¢ (2P Do(DN)]

1

=cO[1+¢®P "z, 0) + P o (D N3)] (4.8)

for all (x,t) e RN x [T,s},] and all sufficiently large D. Therefore, by (4.6) and (4.8), we have (4.2)
and (4.3), and Lemma 4.1 follows. O

Next we put

2

_ 1 2 R 1 2 _ -1
2y, 1) =z(ny,sp+u’t),  ux(y.v)=prTu(uy,sp+p°t), w=A2DTs, (49)

[NE

and study the profile of up at T =1 — D~1/3, that is, the profile of the solution u at t =S — AD~2/3,
We remark that

9:z2=DAz, inRN x [0, 00), (4.10)
drup=DAuy +ub, yeRY, >0 (411)

Lemma 4.2. Assume the same conditions as in Proposition 4.1. Then there exists a positive constant D, such
that, for any D > D5, the function us exists in RN x [0, 1 — D~'/3] and there hold

ur(y,7) = ;w)[l + 128 (P 2y, 1)

D _ - _ _N+2
+ou e (P Vz(y, )2 + te(mP o (D N+3)], (412)
_N_1
|Vuz(y, 1) = ¢ (r)PO(D~273), (413)
inRN x [0,1—D"1/3].
Proof. By (3.6) and (4.9), we have
_N _N_2
sup|za(t)| , <D~ 2, sup | Vzy(1)|| , < psup| Vz)| < D273, (4.14)
>0 730 T
for all sufficiently large D. Since
£(sh) =we(ADTV) VT < iR, (415)

by (4.9) and (4.14), we apply Lemma 4.1 to have

=k[1+2(sh)" 22,0+ 0(D~N5) ] =«[1+ 0(D~7+3)], (4.16)
pi1 1 pEL 22 N1 N1
|(Vu2) (v, 0)| < wr T [ (V(sp) |, < Pt - PTDTETE D727, (417)
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for all y € RN and all sufficiently large D. Put ¢p(y) =u3(y,0) — «, that is,

uz(y,0) =« +ép(y). (418)
Then, by (4.16) and (4.17), we have

D-4+1 v — Vw0 D33 419
pplloo < . Vel = | Vi2(0)] , < (419)

for all sufficiently large D. Furthermore, by (P1), (4.10), (4.15), and (4.16), we have

(eP™2pp) (1) = k¢ (sh)? ' 22(y. 1) + O(D™N*3) =kPu 225 (y. 1) + O(DNHE)  (420)

for all (y,7) €RYN x (0, 00) and all sufficiently large D.
Put « =N/2-1/3, B=N/2+1/3, y =1/3, 0 = min{2«,28 — y — 1}, and ¢’ = min{« — y,
28 — 2y — 1}. Then, since

o>y, 28>2y +1, o=N-——, o =

by (4.18) and (4.19), we apply Proposition 2.1 with A=1 and Ap =k to u3, and have

1

ua(y, 7) = Ge(m)(1 = (p — Dk P ()P ("™ pp)(y) + O (DNF3))) 71

1

= (D)1= Jy, 1)) P, (4.21)

N_1 N
2

|Vu2(0)| = Ge(@P(0(D™273) + 0(DN*8)) = g (m)PO (D72 73), (4.22)

forall 0< 7 <S¢ —D~'3=1—-D"3 and all sufficiently large D. Then, since
p2=0(D"?) and ¢ (1-D73)P " =0(D'?),
by (4.14), (4.15), (4.20), and (4.21), we have
J. 1) = (= D P2 (0P (P2 gp) (v) + 0 (D))

=(p— Dt (P (u22(y, 1) + 0(D™NF3)) = e ()P 'O (D~2F3),

JO D= (p = D246 (122 25y, 1) + 4 (1)*P V0 (D~ 2+3) 0 (D NF3)

Wi

= (0~ D2 0 (2P V2a(y, 1) + Lo (r)P o (D),

J. 1 = 4e(@P710(D3)0 (D~ 3 H1) = g ()P To(DNE), (423)

for all (y,7) eRN x[0,1— D‘%] and all sufficiently large D. Therefore, since

A—h)y 71 =1+ Uy P
p—1 2(p—1)

sh*+0(h%),  |h <

’

N =

by (4.21) and (4.23), we obtain
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1
uz(y,T)ZCK(T)[l + pT]J(y’ D+3

p 2 3
o0 R+ 0 () )}

= ;K(r)[l + 020 (OP  (y, 1) + gu*“cK(r)Z“’*”zz(y, 7)?
T ()P o(D—N+§)] (4.24)

for all (y,7) €RN x[0,1— D~'/3] and all sufficiently large D. Thus, by (4.22) and (4.24), we have
(412) and (4.13), and the proof of Lemma 4.2 is complete. O

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Put

2

23(y,r):zz(vy,1—v2+vzr), U3(y,T):U1’*1uZ(Uy,l—U2+U2T), y=D"%. (4.25)

Then, by (4.10) and (4.11), we have

d:z3=DAz3 inRN x (0, 0), (4.26)
drus=DAus+uf, yeRY, t>0. (4.27)

By (4.14) and (4.25), we have

N _N_s
SL>|13||Z3(1:)||OO<D z, i;%“V@(r)”Oo<v§;%||sz(r)||oo<D 276, (4.28)

=

for all sufficiently large D. Since £, (1 —v2) = kv=%®=D and (uv)=2 = 0(D%/3), by (4.25) and (4.28),
we apply Lemma 4.2 to have

2

u3(y,0) =v7Tus(vy,1—1?)

2

=vpr-1.xp p—1|:1_|_M—2‘ 1
p_

: v 22 (vy,1-1?)

2
+ Bu_4~ (—] ) vz (vy, 1 - 1)2)2 + O(v‘zD‘NJf%)}
2 p—1
_ [ S S I L g 2 —N+1
_K[l—l—p_],u % 23(y,0)+2(p_1)2,u v 4z3(y,00°+0(D )
=k +0(D"2+3), (4.29)
p+1 1 p+1 _2p N_1 N_1
[Vus ()| =ve=T|Vuy(1-=D73)| <veT-v P TD"273 gD 275, (4.30)

for all sufficiently large D. On the other hand, by (4.26), we have

dr(23)% — DA(z3)*> = —2D|Vz3/?,

and by (P1) and (4.28), we obtain
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T
-2D / ePT94|vz; (s)|2 ds
0

sup |z3(r)® —e™P223(0)%| = sup
0<t<l1 O0<t<l1

o0
1

<2D/||VZ3(5)||ioas=o(D—N—%) (431)
0

for all sufficiently large D. Then, by (4.26), (4.29), and (4.31), we have

(T us@) ) = k| 1+ ——p 22z 0+ =L
p—1 ’ 2(p—1)?

=k[1+K(y,1)] (4.32)

—4])—423(3/’ .C)Z 40 (D—N+1)]

for all (y,7) €RN x (0,1) and all sufficiently large D. Then
. 1 o _
K(y,©)=L(y, 1)+ gL(y, )2+ 0(D"N*) withL(y,7) = pﬁl‘ 207223(y, 1),  (4.33)
and by (4.28) and (uv)~2 = 0(D?/), we obtain

L(y,T)=0(D"7+3), (4.34)
Ky, D*=Ly,0)*+o(D7N),  K(y,1)*=0o(D7N), (4.35)

for all (y,7) €RN x (0,1) and all sufficiently large D. Therefore, since

)

1
A+h)~ PV =1—(p-Dh+ SP(p - DRZ+o(R®),  |hI<

N =

by (1.7) and (4.32)-(4.35), we obtain
(€ Pu30) () PV —(p - D
=k P V(1+Ky, ) PV —p-11

1
= (0= [ 1= (= VK0P + 30~ VK. + 0K, D) | - = 1
=P - 1)[1 G 1)(L(y, )+ gL(y, 0%+ O(D*NH))

+ %p(p ~ (L, )* +0o(DNT) +0(D‘N+1)} —(p-Dr1

=(-D[1-@-DLy.)+0(D "] -p-1r
=(-D[1-pu %z, 0)+0D "] -(p-Dr
=4 PV —(p—u v 2z3(y, 1) + 0(D~NTT) (4.36)

for all (y,7) €RN x[0,1— D~1/3] and all sufficiently large D.
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Puta=N/2—-2/3, 8=N/2+1/6, and y =1/3. Then, since

o>y, 28 >2y +1, 26—y —1=N-—-1,

by (4.29), (4.30), and (4.36), applying Proposition 2.1 with A=1 and Ap =« to us3, we see that, for
any sufficiently large D, the function us exists in RN x [0,1 — D~1/3] and there holds

1

uz(y, 7) = (e 2u3(0)) ()" P~V — (p — 1)(1 4 0 (D~ 2+ +1)) ) 751

1

= (;‘K(r)’(P*U —(p-— 1)11*21)*223(3;, o)+ O(D7N+1)) =

1

=Lk (T)(l —(p- 1)M72v72§,( P z3(y,0) + O(Q(‘L’)””Df”“)) p—T

1

o _ N4
=4 (@1 =@ —Du2v24(@P 23y, 1) + 0(D~N*3)) TP (437)
in RN x [0,1 — D—1/3]. Therefore, since
2 2
u(x.§ —AD3(1= 1)) = P Tup( % 1= D731 = 7)) = (uv) P Tus((uv) X, 7).
2, S—AD 31— 1)) =z(u "%, 1= D3(1 = 1)) = z3((wv) "', 7),
_2 _ 2
¢(S=ADT5(1 — 1)) = (uv) 7T g (1),
for all T €[0,1— D~1/3], (4.37) implies (4.1). Thus Proposition 4.1 follows. O
5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Similarly to in Sections 3 and 4, we write ¢(t) = ¢, (t) and
S =S, for simplicity. We first prove (1.9), which gives the asymptotic behavior of the blow-up time
Tp as D — oo.

Proof of (1.9). We can assume, without loss of generality, that

C(p)=0. (5.1)

1
Let A=1, and put sp =S —D~! and w(x,7) =D~ 7 Tu(x,sp + D~ 17). Let op be the blow-up time
of w. Then

Tp=sp+D lop, (5.2)

and w satisfies

1
a:w=Aw+wP inR¥Yx(0,0p), w(x0)=D PTu(x,sp) inR'.

Then, since ¢(sp) = kDV/®P=V and xP~1 =1/(p — 1), by Proposition 4.1 with t =sp and A =1, we
have

1

|lw©], <«[1-D|z(sp)|,, +0(DN*5)] 7 (53)
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for all sufficiently large D. Then, by the comparison principle, we have op > S|w ()|, and by (1.7),
(3.7), and (5.3), we obtain

0D = Sjwoy = 1 - D|jz(sp) |, + 0(D~N*3)
>1-D|z(S)|, - D|z(sp) — 29|, + 0(DN*5)
=1-D[z)], +0(0°})
for all sufficiently large D. This together with (5.2) implies that
Tp=S—D"'+D lop 25— |z(5)|+0(D" 2" (5.4)

for all sufficiently large D.
On the other hand, since the function

1

u(x, ) := ((PD2u(m) "V — (p— e — 1) 7 (5.5)
is a subsolution of (1.1) in RN x (T, Tp), we apply the comparison principle to have
Tp < Tp, (5.6)
where T}, is the blow-up time of the function u, that is,
[ePTo=D2u(r)| PV — (p— 1)(T} - T) =0.
Then, by (1.7), (3.1), (3.4), and (3.6), we have

, 1 1 —(-1
Th =T+ = (M +eMP [T Doy )7

¢~

=1+ SO (1 e ()] )
()~ / ;
=T+ 5 = L) | +0(l2(Th) )

=5~ [2(Tp) | +0(D M) =s+0(D"2)
for all sufficiently large D. This together with (3.7) and (5.6) implies
Tp <S—z(Tp) [+ 0(D7")
<S = |29 +[|2(5) = 2(Tp) || . + O (D7)
=S—|z5)|.. +0(D"%)|s—Tp|+0(D7N)
=S—|z9|,+0(D7") (5.7)

for all sufficiently large D. Therefore, by (5.4) and (5.7), we have

To=5—|z(5)|,+0(D" %" (5.8)
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for all sufficiently large D. Furthermore, by (P1), (3.5), and (3.8), we have
|2(5) — P52 v = [ePC2g| . < liglloo < D727,
and by (3.2) and (5.8), we obtain
_ DSA N1y _ —p||,DSA N1
Tp=S—[eP*2vo| +0(D"27 ) =5s—a7P[e”%¢| +0(D"27") (5.9)
for all sufficiently large D. Then it follows from (2.4) and (5.1) that
_N _

[eP*2e]|,, = @rDS)"2[M(p)+0(D )]

as D — oo. Thus this together with (5.9) gives (1.9). O
Next we prove (1.10), and complete the proof of Theorem 1.1.

Proof of (1.10). Without loss of generality, we can assume (5.1) again. Let A be a constant to be
chosen later such that A € (0,1). Put sp =S — AD~! and

w(x,7) = (AD_l)I’ll u(x,sp + AD7'7). (5.10)
Then w satisfies
9,w=AAW+wP inRY x (=1,7p), w®x0)=AFTD #Tu(x,sp) inRY. (511)
Here tp is the blow-up time of w and
Tp=sp+AD '1p. (5.12)

In order to prove (1.10), we study the location of the maximal points of w at T = t, by using Propo-
sition 2.2, where

Ts = Sjw(0) € (0, D). (5.13)
Put
N [[u(sp)lloo — U(X, Sp) N [[w(0) oo — w(X, 0) _N

=D =D , ep=D"2. 5.14
L e Cwol. et B

Then we have
w(x,0)= w0 (1 —€ep¥p®). (5.15)

Since

¢(sp+AD'7) = (AD*l)’Plj;K(r), kP1=1/(p-1), (5.16)

by (5.10), applying Proposition 4.1, we have



Y. Fujishima, K. Ishige / J. Differential Equations 250 (2011) 2508-2543 2535

1

p—1

-1
Dx. sD+AD‘1t)+O(D_N+%)] (517)

A
w(x, r)zéx(r)[l ~7

for all (x,7) € RN x (—1,0] and all sufficiently large D. This together with (3.6) with [ =0 implies
-1 -4 —N+4 N
w(x,0)=«[1—-A""Dz(x,sp)] T+ 0(D""*3), xeRY, (518)

1

|lw©] =«[1=A"D|ztsp)| . ] 7 +0(DN3) =k +o(D), (5.19)
for all sufficiently large D. In particular, since T, = Sjw(0)|, We have
lim 7, =S, =1. (5.20)
D— o0

By (3.6), (5.14), (5.18), and (5.19), we apply the mean value theorem, and have

_P_

kD2 (1—0p(x) 71

— -1 _ a1 _N+4
Yp(x) = P —DIwO [A7'D|z(sp)||, — A"'Dz(x,sp) + 0 (D" *3)]
AIDEH (1 +dp () N4
= - (|zsp)|| o, — 2(x.5p)) + O(D~2+3) (5.21)

for all x € RN and all sufficiently large D, where 6p and &p are functions in RN such that ||6p e =
O(D—%-H) and ”éD oo = O(D—%-H). Then, since N > 3 and C((p) =0, by (321) and (521), we have

Jim yp(0)=o. (5.22)

Let § > 0 and fix it. By (3.17) and (5.21), we see that there exists a positive constant c,, independent
of A, such that

inf ¥p(x) >c,A7! 5.23
onf] Y (X) 2> s (5.23)
for all sufficiently large D.
Put
Y (%) = min{yp (), A1} >0, (5.24)
and let w* be the solution of
Irw=AAW + wP, xeRY, >0,
. N (5.25)
w(x,0) = |w©0)| (1 —epyp®), xeR".

Then, by (5.24), we have

0 < |wO]_(1-cA "ep) <w*(x,0) < |w(O)|| (5.26)
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for all x € RN and all sufficiently large D. Furthermore, by (5.15) and (5.24), we apply the comparison

principle to have

wx, 7) <w*(x, 1) inRN x [0, 7,].

(5.27)

Next we study the location of the maximal points of w(t,) by using the profile of w*(z,). For this

aim, we give the following two lemmas.

Lemma 5.1. There exist positive constants C and D such that
[vw* )], <Cep

forall D > Dy.

Proof. By (3.7), (3.18), (3.19), and (5.1), we have

z(x,sp + AD"'t) — || z(sp)|

= [z(x,sp + AD™'t) — z(x,sp)] + [2(x. sp) — 2(0, 5p)] + [2(0, 5p) — || 2(sD) | . ]

—o(D7%)-AD"+0(D" %) .25+0(D" 5  )=0(D ")

(5.28)

(5.29)

for all (x,T) € B(0,28) x [—1,0] and all sufficiently large D. Put ap = A~'D||z(sp)|lc. Then, by (3.6),

we have limp_, o, ap = 0. Therefore, since

1

A7'D T
s|1- 42l ] " = an
-7
—1_\p-1_ A'D a1 p—1
¢(sp+AD7'1) =0 -Dd-0 =A"'Dg ()P,

by (5.17) and (5.29), we have

__1
_ 5=

'D
2Lz, +0(0 )]

w(x,7) =;K(r>[1 -3

P—

1
— |1 = 2L zsp)]
1—1 00

1
1

._.‘

(1+0(D"2)) 7

= (T +ap)(140(DF)) =tu(z +ap) + 0(D7F)

for all (x, ) € B(0,28) x [—1,0] and all sufficiently large D.
Put

WX 1) =D?[wx 1) — tc(T +ap)],  HX ) =D?[w(x, 1)’ — & (1 +ap)P].

Then, by (5.30), we see that there exists a constant C; such that

w . <C
7ls<urp<0\| O e (80,25 < €1

(5.30)

(5.31)

(5.32)
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for all sufficiently large D. Furthermore, by (5.30) and (5.31), we see that there exists a positive
constant Cy such that

HO) |
_1s<qu<0|| (O] 1o (80,269
=D? sup |Gt +ap)?(1+0(D7%)) = Le(r +ap)?| < Ca (5:33)

~1<7<0

for all sufficiently large D. On the other hand, by (5.11) and (5.31), we have

8,W—AAW:Dg[wp—§K(r +ap)’]=H(x, 1) (5.34)
for all (x, T) € B(0,268) x [—1,0] and all sufficiently large D. Then, by (5.32) and (5.33), we apply the

parabolic regularity theorem (see for example [17, Theorem 11.1, Chapter III]) to (5.34), and see that
there exists a constant C3 such that

|[VW(x, 7)| <C3 inB(0,6) x (—% 0] (535)

for all sufficiently large D. Then, since ¥ (x) = c,A~1 outside the ball B(0, 8), by (5.14), (5.24), (5.25),
(5.31), and (5.35), we have

|vw*(0) ||Oo <ep|w(0) ||Oo||V1ﬁD||L°°(B(0,5))

= | VWO 130, =D [ VWO €077 = Csep

|L°°(B(0,5)) S

for all sufficiently large D. Thus Lemma 5.1 follows. O

Lemma 5.2. Under a suitable choice of A € (0, 1), there exist positive constants C, and D, such that

A—l
sup (e™*4yp)(0) < 22—, (5.36)
0T T 4
inf  inf (e”‘Aw*)(x)>£ (5.37)
T, 2<T<T, X|20 bier= '
inf  inf (e*%y3%)(x) > C 1, 5.38
r /29T xlerlllN(e V)00 > C, (538)
sup  sup (e™Aw*(0))(x) < (1 — Cyep) [w(0)] . (5.39)

T /2<T< T4 xeRN
forall D > Dj. Here 1, and c, are the constants given in (5.13) and (5.23), respectively.

Proof. We first prove inequality (5.36). Put

1

Z(x,7)=k[1—A"'Dz(x,sp + AD"'7)] 7T,

Then we have

0:Z — AAZ = —pA~'D?Z(x, 1)** ! |Vz(x,sp + AD'7)|? (5.40)
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in RN x [0, 7,]. On the other hand, similarly to (5.21), by (3.6) with [ =0, (3.7), and (5.20), we see
that there exists a positive constant Cq, independent of A, such that

VA —Z0
Ogggr*ll (=20,

p

<K [—dp] 71 -1 —1.\ _ a1
< pl" 7T sup ||A7'Dz(sp+AD " 't)— A" Dz(sp)|,
p—1 0< <7,

<CiA'D.D"%7 . AD 1, <2C;D"? (5.41)

for all sufficiently large D, where ép is a function in R such that ||0p e = O(D_%“). Furthermore,
by (3.6) with [ =0, we have

lim sup [Z(r)—«]|, =0,

D—oo 0< <y

and by (3.6) with [ =1, (5.20), and (5.40), we obtain

sup |Z(z) —e" 2z,

o<t
T
= sup —pA’]DZ/eA(T’S)AZ(s)ZP’]‘VZ(SD +AD’15)]2ds
0<T<Ts 0 o
T,
<07 [ |22 | 92lso + aD71S)[2, ds = 0 (0N ) (542)
0

for all sufficiently large D. Therefore, since N > 3, by (5.14), (5.18), (5.19), (5.41), and (5.42), we see
that there exist positive constants D4 and C, such that

TAA Dz TAA
- = - 0) — w(0
oS L o —vnlo= sup Gl WO —wO,

5 N, 4
=-———— sup D2[e"™*Z(0) -2 (0] +0(D"2"3
@i 022, D 702~ 20, + 0(D7275)

N
< Dz [|e"**Z(0) -z +zm) -z
WOl o2, D2 €520 — 2@ +]2(0) - 2O ]

+0(D"7+3)
_N 2Cy _N_, 4
<o(Db )4+ ——+0(D273)<C 5.43
( )+ Twois Ot )<C 643)

for all D > D4. Here C; is independent of A. Then, by (5.22) and (5.43), taking sufficiently small A so
that A < (C*C2_1)/8 if necessary, we have

c A1
sup (e"2yp)(0) < Yp(0) +C2 <2C < =
0<7< T, 4

for all sufficiently large D, which implies inequality (5.36).
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Next we prove inequalities (5.37)-(5.39). Since ¥}, (x) = c+A~1 outside the ball B(0, 8) follows from
(5.23) and (5.24), we have

(e”‘AxﬁZS)(X)=/G(X—y,tA)wiS(y)ﬂly2(:*%\‘1 / G(x—y,tA)dy (5.44)
RV lyl>s

for T > 0. For any x € B(0, ), by (5.20) and (5.44), we see that there exists a constant C3 such that

inf  inf (e"*2y%)(x) >c, A" inf  inf / Gx—y,TA)d
. /2<T<T, \x\ga( VD)) > T, /2<T<T, X6 * =y thdy
ly>

>c, A"l inf / G(z,TA)dz > C3 (5.45)
T /2K T Ty
|z|>28

for all sufficiently large D. Furthermore, since
My:={x+y:y-x>0, yeR"} c{lyl > 8}

for any x outside B(0, §), by (5.44), we have

c A1

5 (5.46)

inf inf (eT42y%)(x) > c,A”'  inf /Gx— ,TA)dy =
T, 2<T<T, |x|>a( Vh)® e, T, 2<T<T, x=y.7A)dy

Ty

Therefore, by (5.25), (5.45), and (5.46), we obtain inequalities (5.37) and (5.38), and have

-1
sup  sup (e"Aw*(0))(x) < (1 - min{Cg, CA }eD> [wo|
T /2<T< T4 xeRN 2

for all sufficiently large D. This implies inequality (5.39), which completes the proof of Lemma 5.2. O

Let A and C, be the positive constants given in Lemma 5.2. By (5.20) and (5.39), we have

sup (e¥/P42w* ()0 < sup  sup (€A wH(0)) (%) < (1 - Cuep) [w(O)]

xeRN To/2<T< Ty xeRN

for all sufficiently large D. Then, by (5.19), (5.20), (5.26), and (5.28), we can apply Proposition 2.2 to
the solution w* of (5.25) with M¢ = ||[w(0) ||« and t, =3/4 € [0, 1), and by (5.25), we obtain

. = b _ 1
Jim [leg™ w* (@) —k [w©| 27 [e5" (Jw @), —e™ 44w ©@)] 7T,
1 _ 1
= Jim €] " w* () k[ wO)] (e y5) T, =0. (547)
This together with (5.19), (5.27), and (5.38) implies

1 1
e wro | <eb T wrmo| <1 (5.48)

for all sufficiently large D.
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Let n be a positive constant such that

1 1

AT\ T Al e
K2<C*T> +277</<2<C*4 +77> — 2. (5.49)

By (5.19), (5.37), and (5.47), we have

1
1

_1 AT\ 75T
ep T wrx, 7)) <k (k +o(D) (€™ 2y ) (%) p1—1+n</<2<c*2 ) ’ +2n  (5.50)

for all x € RN with |x| > 8 and all sufficiently large D. On the other hand, we put

wx, 1) = (e w(0)x) PV —(p-11) 7T,

1
1
which is a subsolution of (5.11) in RN x (0, tp). By (5.15) and (5.36), we have

(ET*AAW(O))(O)_(I)_” _ “W(O) ”;O(P—l)[] —ep (er*AAwD)(O)]—(P—l)
= lw@ P [1+ (> = Dep (€™ *¥0) (@) + 0(e)]

for all sufficiently large D. This together with (1.7) implies

‘_

w(0,7) = [ w(©)0) PV — (p — DSjwo)e] "

1

__1
=€, kW) [(e™**¥p)(0) + O(ep)] 7 (5.51)

for all sufficiently large D. Therefore, by (5.19), (5.36), (5.49), and (5.51), we apply the comparison
principle to have

1 1

—_ — 1

€FTw(0,7) =€) w0, 7)) =k (k + o) [ (e yp)(0) +n] P
1 1

c AT “p T AT\ 7T
>:<2<*T+n> —n>/c2<*2 > +3n

1

AT\ TP T
K2<C*T> ! (5.52)

for all sufficiently large D. Therefore, by (5.27), (5.49), (5.50), and (5.52), we obtain

1 1

1 -1
€p sup w(x, T,) <€f sup wH(x, Ty)

x| =68 x| =8

1 1
AT\ T T c A1 e
</<2< *2 ) +217</<2< *4 +77) —2n

1
<ep w(0,T) -1

for all sufficiently large D. This yields
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H(el " w(t),n) C B(0,9) (5.53)

for all sufficiently large D.
We are ready to complete the proof of (1.10). Put

1
WX, T) = €5 WX, T + €pT). (5.54)
Then w satisfies

;W =Aep AW +wP  inRN x [0, 7p),
o (5.55)
W(x,0)=€) 'wx,7,) inRV,

where Tp = EBl(ID — T,) is the blow-up time of w. By (3.28), (5.10), (5.12), and (5.54), we have

1

|Wx, 7)| =€b " (AD™ )L1| (x,sp + AD"'7, + AD 'epT)|

1

<EF(AD*)L1(TD—(5D—|—AD T, +AD lept)) P

(Tp — T« —€pT) TP = (Tp—1) P~ T (5.56)

._.|

=€

O

for all (x,7) € RN x [0, Tp) and all sufficiently large D. Furthermore, by (5.48), (5.52), and (5.54), w
have

1

] —_—
1<€)" w0, 7)=w(0,0 < [WO)| =€) |wT)] <1 (5.57)
for all sufficiently large D. This together with the comparison principle yields

D 2 S| 7 1 (5.58)

for all sufficiently large D. On the other hand, since

Tp=sp+AD 't, + AD leptp, ep=D"2, Jim (Dlep)” ¥ =1,
— 00
by (3.29), (5.10), (5.54), and (5.58), we have
1
[9#©)],, =€ (AD~) 7T [ Vu(sp +AD7'z) |
1 _N
<€l (ADYFT(Tp — (sp + AD™'7,)) PP F p=ii
_N
2 _N_1
2 2

:(AD716 )%(AD ED‘L’D) pr1—GsD
N
2

—C3D™

< (D7"ep) (D "ep) D~

for all sufficiently large D, where C3 is a positive constant. This together with N > 3 implies that
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e V)|, <1 witha = % - % >0 (5-59)

for all sufficiently large D. Therefore, since €ep — 0 as D — oo, by virtue of (5.56), (5.57), and (5.59),
we apply Proposition 2.3 with ¢ = w(0) to the solution w of (5.55), and by (5.53), we see that

1
Bp C H(W(0),n) = H(e} ™" w(t),n) C B(0,8)

for all sufficiently large D. This implies

limsupsup{|x|: x€ Bp} <.
D—oo

By the arbitrariness of §, we obtain (1.10), which completes the proof of Theorem 1.1. O
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