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Abstract

We study the following nonlinear Schrödinger equation

iut = −�u + V (x)u − a|u|qu, (t, x) ∈R
1 ×R

2,

where a > 0, q ∈ (0,2), and V (x) is some type of trapping potential. For any fixed a > a∗ := ‖Q‖2
2, where

Q is the unique (up to translations) positive radial solution of �u − u + u3 = 0 in R
2, by directly using

constrained variational method and energy estimates we present a detailed analysis of the concentration and
symmetry breaking of standing waves for the above equation as q ↗ 2.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the concentration and symmetry breaking of standing waves for the
following nonlinear Schrödinger equation (NLS) with a trapping potential and an attractive non-
linearity
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iut = −�u + V (x)u − a|u|qu, (t, x) ∈ R
1 ×R

2, (1.1)

where a > 0, 0 < q < 2, and V (x) is a trapping potential. Eq. (1.1) with q = 2 arises in Bose–
Einstein condensates (BEC) as well as nonlinear optics, which has been studied widely in recent
years, see for examples, [6,9,18,23,28]. In fact, when q = 2 the above equation (1.1) is the so-
called mass critical NLS in R

2, so q = 2 is usually called a mass critical exponent for (1.1). This
paper is focused on the case where q approaches 2 from the left (q ↗ 2, in short), which is what
we mean by the almost mass critical NLS.

For (1.1), the standing waves are the solutions of (1.1) with the form: u(t, x) = eiωtϕω(x),
which implies that ϕω(x) satisfies the following elliptic partial differential equation

−�u + (V + ω)u − a|u|qu = 0 in R
2. (1.2)

When q = 2, (1.2) is also called the time-independent Gross–Pitaevskii (GP) equation of Bose–
Einstein condensates, where ω represents the chemical potential, V is an external potential, and
a is a coupling constant related to the number of bosons in a quantum system. Here a > 0
(resp. < 0) means that the BEC is attractive (resp. repulsive). In this paper, we consider only the
attractive case, i.e., a > 0. It is well known that a minimizer of the following Gross–Pitaevskii
(GP) energy functional

Eq(u) :=
∫

R2

(∣∣∇u(x)
∣∣2 + V (x)

∣∣u(x)
∣∣2)

dx − 2a

q + 2

∫

R2

∣∣u(x)
∣∣q+2

dx (1.3)

under the following constraint

∫

R2

u2 dx = 1 (1.4)

solves (1.2) for some Lagrange multiplier ω ∈R. Based on these observations, to seek the stand-
ing waves of (1.1) we need only to get solutions of (1.2), and this can be done by solving the
following constrained minimization problem associated with GP energy (1.3)

da(q) := inf
{u∈H,

∫
R2 u2 dx=1}

Eq(u), (1.5)

where H is defined by

H :=
{
u ∈ H 1(

R
2):

∫

R2

V (x)
∣∣u(x)

∣∣2
dx < ∞

}
. (1.6)

Here V (x) : R2 → R
+ is locally bounded and satisfies V (x) → ∞ as |x| → ∞. Without loss of

generality, by adding a suitable constant we may assume that

inf
2
V (x) = 0,
x∈R
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and infx∈R2 V (x) can be attained. Under this kind of conditions on V (x), the existence of ground
states of (1.2) was first studied by Rabinowitz in some general cases in [24].

Throughout this paper, we denote by ‖u‖2 the norm of any functions u ∈ L2(R2) and C

denotes a universal constant which may be different from place to place.
The earlier work related to the minimization problem (1.5) can be actually tracked back to

the papers [19,20,25,26,29–31] and the references therein. A simple scaling argument shows that
for the supercritical case, that is q > 2, (1.5) does not admit any minimizer for all a > 0. But,
in the subcritical case (i.e., 0 < q < 2), (1.5) admits at least one minimizer for any a > 0, see
e.g., [6,19,20]. Moreover, some qualitative properties, such as the uniqueness, concentration and
symmetry, of the minimizers of (1.5), for any fixed 0 < q < 2, were discussed as a → +∞ in [6,
23] and references therein. However, for the mass critical case (i.e., q = 2), from a physical point
of view (see, e.g., [3,4,27]), there exists a critical cold atom number below which BEC occurs,
and collapse occurs otherwise. Mathematically, this was proved very recently in [1,9]. Roughly
speaking, the authors proved in [1,9] that there exists a constant a∗ such that (1.5) admits at least
one minimizer if and only if a < a∗, where

a∗ := ‖Q‖2
2,

and Q is the unique (up to translations) radially symmetric positive solution of the following
scalar field equation [8,15,16]

�u − u + u3 = 0 in R
2, where u ∈ H 1(

R
2). (1.7)

Furthermore, if there are numbers pi > 0 and a constant C > 0 such that the trapping potential
V (x) satisfies

V (x) = h(x)

n∏
i=1

|x − xi |pi with C < h(x) < 1/C for all x ∈ R
2, (1.8)

the authors in [9] also studied the concentration and symmetry breaking of minimizers for (1.5),
provided that q = 2 and a ↗ a∗.

Motivated by the works mentioned above, in this paper we are interested in addressing the
limit behavior of minimizers for (1.5) when q ↗ 2 and a > a∗. Towards this purpose, we first
note from [33] that the following scalar field equation

�u − 2

q
u + 2

q
uq+1 = 0, where q ∈ (0,2] and u ∈ H 1(

R
2) (1.9)

admits, up to translations, a unique positive solution which is radially symmetric about the origin.
We denote this unique solution by φq = φq(|x|), and throughout the paper, we set

a∗
q := ‖φq‖q

2 .

Moreover, by [33] we have the following Gagliardo–Nirenberg inequality
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∫

R2

∣∣u(x)
∣∣q+2

dx � Cq

{∫

R2

∣∣∇u(x)
∣∣2

dx

} q
2
∫

R2

∣∣u(x)
∣∣2

dx, u ∈ H 1(
R

2), (1.10)

where the best constant Cq = q+2
2‖φq‖q

2
= q+2

2a∗
q

, and the above equality holds at u(x) = φq(|x|).
Note that

a∗
q → a∗ as q ↗ 2.

Therefore, for any fixed a > a∗ there exists a constant σ > 1, independent of q > 0, such that
a
a∗
q

> σ > 1 as q ↗ 2, which further implies that

(
a

a∗
q

) 1
2−q → +∞ as q ↗ 2. (1.11)

In view of the infinity limit in (1.11), the following main result of the present paper shows the
concentration behavior of minimizers for (1.5) as q ↗ 2.

Theorem 1.1. For any fixed a > a∗, assume that

V ∈ C1(
R

2), lim|x|→∞V (x) = ∞ and inf
x∈R2

V (x) = 0.

Let uq ∈ H be a non-negative minimizer of (1.5) with q ∈ (0,2). Then, for each sequence {qk}
with qk ↗ 2 as k → ∞, there exists a subsequence of {qk}, still denoted by {qk}, such that uqk

concentrates at a global minimum point y0 of V (x) in the following sense: for each large k,
uqk

has a unique global maximum point z̄k ∈ R
2, and satisfies

lim
k→∞

(
a

a∗
qk

)− 1
2−qk

uqk

((
a

a∗
qk

)− 1
2−qk

x + z̄k

)
= 1√

e‖Q‖2
Q

( |x|√
e

)
in H 1(

R
2), (1.12)

where z̄k → y0 as k → ∞.

Theorem 1.1 gives a detailed description of the behavior of the minimizers of (1.5) as q

approaches the critical exponent 2 from below. Roughly speaking, Theorem 1.1 shows that a
minimizer of (1.5) behaves like

uqk
(x) ≈

(
a

a∗
qk

) 1
2−qk 1√

e‖Q‖2
Q

( ( a
a∗
qk

)
1

2−qk (x − z̄k)

√
e

)
as qk ↗ 2.

The proof of Theorem 1.1 is based on precise energy estimates of the GP energy da(q). In fact,
we prove in Section 2 [Lemma 2.2] that

da(q) ≈ −2 − q

2

(
q

2

) q
2−q

(
a

a∗

) 2
2−q

as q ↗ 2,

q
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and therefore da(q) → −∞ as q ↗ 2 in view of (1.11). As a byproduct of the proof of Theo-
rem 1.1, we shall be able to provide in Lemma 2.1 the refined information (compared with those
obtained in [6]) on the minimum energy d̃a(q) as well as its minimizers, where d̃a(q) is defined
by

d̃a(q) = inf
{u∈H 1(R2),

∫
R2 u2 dx=1}

Ẽq(u),

and

Ẽq(u) :=
∫

R2

∣∣∇u(x)
∣∣2

dx − 2a

q + 2

∫

R2

∣∣u(x)
∣∣q+2

dx, u ∈ H 1(
R

2). (1.13)

Furthermore, we want to show that the concentration point y0 in Theorem 1.1 is located in
the flattest global minimum point of V (x). Towards this conclusion, we shall assume that the
trapping potential V (x) has n � 1 isolated minima, and that in their vicinity V (x) behaves like
a power of the distance from these points. More precisely, we shall assume that there exist n � 1
distinct points xi ∈ R

2 with V (xi) = 0, while V (x) > 0 otherwise. Moreover, there are numbers
pi > 0 such that

V (x) = O
(|x − xi |pi

)
near xi, where i = 1,2, . . . , n, (1.14)

and limx→xi

V (x)
|x−xi |pi

exists for all 1 � i � n.
Let p = max{p1, . . . , pn}, and let λi ∈ (0,∞] be given by

λi = lim
x→xi

V (x)

|x − xi |p . (1.15)

Define λ = min{λ1, . . . , λn} and let

Z := {xi : λi = λ} (1.16)

denote the locations of the flattest global minima of V (x). By the above notations, we have the
following result, which tells us some further information about the concentration point y0 given
by Theorem 1.1.

Theorem 1.2. Under the assumptions of Theorem 1.1 and let V (x) satisfy also the additional
condition (1.14), then the unique concentration point y0 obtained in Theorem 1.1 has the prop-
erties:

y0 ∈ Z and lim
k→∞|z̄k − y0|

(
a

a∗
qk

) 1
2−qk = 0. (1.17)

Remark 1.1. We should mention that if V (x) has some symmetry, for example

V (x) =
n∏

|x − xi |p with p > 0,
i=1
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and xi are arranged on the vertices of a regular polygon, Theorem 1.2 implies the symmetry
breaking occurring in the minimizers of (1.5) as q ↗ 2: there exists q∗ satisfying 0 < q∗ < 2
such that for any q∗ < q < 2, the GP functional (1.5) has (at least n different) non-negative
minimizers, each of which concentrates at a specific global minimum point xi . We note that the
symmetry breaking bifurcation for ground states for nonlinear Schrödinger or GP equations has
been studied in detail in the literature, see, e.g., [11,13,14].

The results of the paper can be extended to general space dimensions N different from 2, if
the exponent q in the last term of (1.3) is restricted to the interval (0, 4

N
), and the limit q ↗ 2 is

replaced by q ↗ 4
N

. We finally remark that the concentration phenomena have also been studied
elsewhere in different contexts. For instance, there is a considerable literature on the concentra-
tion phenomena of positive ground states of the elliptic equation

h2�u(x) − V (x)u(x) + up(x) = 0 in R
N (1.18)

as h → 0+, see [5,7,21,32] and references therein for more details.
This paper is organized as follows: Section 2 is devoted mainly to the proof of Theorem 2.3

on energy estimates of the minimizers for (1.5). We then use Theorem 2.3 to prove Theorem 1.1
in Section 3 by the blow up analysis, and then we prove Theorem 1.2 at the end of the section.

2. Energy estimates

The main purpose of this section is to establish Theorem 2.3, which addresses energy es-
timates of minimizers for (1.5). For any 0 < q < 2, let φq be the unique (up to translations)
radially symmetric positive solution of (1.9). It then follows directly from Lemma 8.1.2 in [6]
that φq satisfies

∫

R2

∣∣∇φq(x)
∣∣2

dx =
∫

R2

∣∣φq(x)
∣∣2

dx = 2

q + 2

∫

R2

∣∣φq(x)
∣∣q+2

dx. (2.1)

Moreover, one can obtain from [2] that there exist positive constants δ, C and R0, independent
of q > 0, such that for any |x| > R0,

∣∣φq(x)
∣∣ + ∣∣∇φq(x)

∣∣ � Ce−δ|x| for q ∈ [1,2]. (2.2)

Furthermore, a simple analysis shows that φq satisfies

φq(x) → Q(x) strongly in H 1(
R

2) and a∗
q := ‖φq‖q

2 → a∗ := ‖Q‖2
2 as q ↗ 2. (2.3)

We next denote Ẽq(u) the following energy functional without the potential

Ẽq(u) :=
∫

R2

∣∣∇u(x)
∣∣2

dx − 2a

q + 2

∫

R2

∣∣u(x)
∣∣q+2

dx, u ∈ H 1(
R

2), (2.4)

and consider the associated GP energy
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d̃a(q) = inf
{u∈H 1(R2),

∫
R2 u2 dx=1}

Ẽq(u). (2.5)

It is well known from Chapter 8 in [6] that if q ∈ (0,2), then there exists a unique (up to transla-
tions) positive minimizer for d̃a(q) at any a > 0. The following lemma gives refined information
on the minimum energy d̃a(q) as well as its minimizers.

Lemma 2.1. Let q ∈ (0,2) and φq be the unique radially symmetric positive solution of (1.9).
Then,

d̃a(q) = −2 − q

2

(
q

2

) q
2−q

(
a

a∗
q

) 2
2−q

, (2.6)

and the unique (up to translations) positive minimizer of d̃a(q) must be of the form

φ̃q(x) = τq

‖φq‖2
φq(τqx), where τq =

(
qa

2a∗
q

) 1
2−q

. (2.7)

Proof. By using the Gagliardo–Nirenberg inequality (1.10), it follows from (2.4) that

Ẽq(u) �
∫

R2

∣∣∇u(x)
∣∣2

dx − a

a∗
q

(∫

R2

∣∣∇u(x)
∣∣2

dx

) q
2

, for any u ∈ H 1(
R

2) and
∫

R2

u2 dx = 1.

Let

g(s) = s − a

a∗
q

s
q
2 for s ∈ [0,∞). (2.8)

We know that g(s) attains its minimum at s = (
qa
2a∗

q
)

2
2−q , i.e. s = τ 2

q , which then implies that

Ẽq(u) � g
(
τ 2
q

) = −2 − q

2

(
q

2

) q
2−q

(
a

a∗
q

) 2
2−q

.

This yields that

d̃a(q) � g
(
τ 2
q

) = −2 − q

2

(
q

2

) q
2−q

(
a

a∗
q

) 2
2−q

. (2.9)

On the other hand, we introduce the following trial function

ψt
q(x) = t

‖φq‖2
φq(tx) for t ∈ (0,∞),

and
∫

2 |ψt
q |2 dx ≡ 1 for all t ∈ (0,+∞). We then obtain from (2.1) that
R
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∫

R2

∣∣∇ψt
q

∣∣2
dx = t2

‖φq‖2
2

∫

R2

|∇φq |2 dx = t2,

and

∫

R2

∣∣ψt
q

∣∣q+2
dx = tq

‖φq‖q+2
2

∫

R2

|φq |q+2 dx = q + 2

2a∗
q

tq .

Hence

d̃a(q) � Ẽq

(
ψt

q

) = t2 − a

a∗
q

tq = g
(
t2), for any t ∈ (0,∞),

where g(·) is given by (2.8). Thus, we may take t = τq , that is,

d̃a(q) � g
(
τ 2
q

)
,

this and (2.9) then imply the estimate (2.6). Moreover, d̃a(q) is attained at φ̃q(x) = τq

‖φq‖2
φq(τqx),

and the proof is therefore done in view of the uniqueness (cf. Chapter 8 in [6]) of positive mini-
mizers for d̃a(q). �
Remark 2.1. For any fixed a > a∗, since a∗

q → a∗ as q ↗ 2, there exists a constant σ > 1,
independent of q > 0, such that a

a∗
q

> σ > 1 as q is sufficiently close to 2−. Therefore, we further

have

τq =
(

qa

2a∗
q

) 1
2−q → +∞ and d̃a(q) → −∞ as q ↗ 2. (2.10)

By applying Lemma 2.1, we are able to establish the following estimates.

Lemma 2.2. Let a > a∗ be fixed, and suppose that

V (x) ∈ L∞
loc

(
R

2), lim|x|→∞V (x) = ∞ and inf
x∈R2

V (x) = 0.

Then,

da(q) − d̃a(q) → 0 as q ↗ 2, (2.11)

and

∫

R2

V (x)
∣∣uq(x)

∣∣2
dx → 0 as q ↗ 2, (2.12)

where uq(x) is a positive minimizer of (1.5).
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Proof. By the definitions of d̃a(q) and da(q), it is easy to observe that

da(q) − d̃a(q) � 0. (2.13)

We next choose a suitable trial function to estimate the upper bound of da(q)− d̃a(q). For R > 0
fixed, let ϕR(x) ∈ C∞

0 (RN) be a cut-off function such that ϕR(x) ≡ 1 if x ∈ BR(0), ϕR(x) ≡ 0 if

x ∈ Bc
2R(0), and 0 � ϕR(x) � 1, |∇ϕ(x)| � C0

R
for any x ∈ B2R(0) \ BR(0). Set

wR,q(x) = AR,qw̃R,q(x) = AR,qϕR(x − x0)φ̃q(x − x0) with x0 ∈R
2, (2.14)

where φ̃q(x) defined in (2.7) is the unique (up to translations) positive minimizer of d̃a(q), and
AR,q > 0 is chosen so that ‖wR,q‖2

2 = 1. It is easy to calculate that

1 � A2
R,q = ‖φq‖2

2∫
R2 ϕ2

R( x
τq

)|φq(x)|2 dx
<

‖φq‖2
2∫

BRτq
|φq(x)|2 dx

,

where τq > 0 is as in (2.10). Since τq → ∞ as q ↗ 2 and φq(x) decays exponentially as
|x| → ∞, we then have

0 � A2
R,q − 1 �

∫
Bc

Rτq

|φq(x)|2 dx∫
BRτq

|φq(x)|2 dx
� CRτqe−2δRτq � Ce−δRτq as q ↗ 2,

where δ > 0 is as in (2.2). It hence follows from the above that

1 � A
q+2
R,q �

(
1 + Ce−δRτq

) q+2
2 � 1 + 4Ce−δRτq . (2.15)

In the following, one could take a special value of R, for instance R = 1.
Direct calculations show that

∣∣∣∣
∫

R2

∣∣∇φ̃q(x)
∣∣2

dx −
∫

R2

∣∣∇w̃R,q(x)
∣∣2

dx

∣∣∣∣

=
∣∣∣∣
∫

R2

|∇φ̃q |2 dx −
∫

R2

∣∣∇[
ϕR(x − x0)φ̃q(x − x0)

]∣∣2
dx

∣∣∣∣

=
∣∣∣∣
∫

R2

|∇φ̃q |2 dx −
∫

R2

(|∇ϕR|2|φ̃q |2 + |ϕR|2|∇φ̃q |2 + 2∇ϕRϕR∇φqφq

)
dx

∣∣∣∣

� C

R2

∫
Bc

R

∣∣φ̃q(x)
∣∣2

dx +
∫
Bc

R

∣∣∇φ̃q(x)
∣∣2

dx + 2C

R

∫
Bc

R

|∇φq ||φq |dx. (2.16)

Using (2.2), we obtain that



2088 Y. Guo et al. / J. Differential Equations 256 (2014) 2079–2100
C

R2

∫
Bc

R

∣∣φ̃q(x)
∣∣2

dx = C

R2‖φq‖2
2

∫
Bc

R

τ 2
q

∣∣φq(τqx)
∣∣2

dx

� C

R2

∫
Bc

Rτq

|φq |2 dx <
CRτq

R2
e−2δRτq � Ce−δRτq . (2.17)

Similarly,

∫
Bc

R

∣∣∇φ̃q(x)
∣∣2

dx = τ 2
q

‖φq‖2
2

∫
Bc

Rτq

∣∣∇φq(x)
∣∣2

dx � CRτ 3
q e−2δRτq � Ce−δRτq , (2.18)

and

2C

R

∫
Bc

R

|∇φq ||φq |dx � Ce−δRτq . (2.19)

It then follows from (2.16)–(2.19) that

∣∣∣∣
∫

R2

∣∣∇φ̃q(x)
∣∣2

dx −
∫

R2

∣∣∇w̃R,q(x)
∣∣2

dx

∣∣∣∣ � Ce−δRτq as q ↗ 2. (2.20)

One can also calculate that

∣∣∣∣
∫

R2

∣∣φ̃q(x)
∣∣q+2

dx −
∫

R2

∣∣w̃R,q(x)
∣∣q+2

dx

∣∣∣∣ �
∫
Bc

R

|φ̃|q+2 dx � Ce−δRτq . (2.21)

Moreover, we have

∫

R2

V (x)
∣∣wR,q(x)

∣∣2
dx = A2

R,q

‖φq‖2
2

∫
V

(
x

τq

+ x0

)
ϕ2

R

(
x

τq

)
φ2

q(x) dx,

which implies that

lim
q↗2

∫

R2

V (x)
∣∣wR,q(x)

∣∣2
dx = V (x0)

holds for almost every x0 ∈ R
2. Therefore, we choose x0 ∈R

2 such that V (x0) = 0, and it follows
from the above estimates that
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0 � da(q) − d̃a(q) � Eq

(
wR,q(x)

) − d̃a(q)

= Eq

(
AR,qw̃R,q(x)

) − Ẽq

(
φ̃q(x)

)
= (

Eq

(
AR,qw̃R,q(x)

) − Ẽq

(
w̃R,q(x)

)) + Ẽq

(
w̃R,q(x)

) − Ẽq

(
φ̃q(x)

)

�
(
A2

R,q − 1
)∫

R2

|∇w̃R,q |2 dx + 2a

q + 2

(
A

q+2
R,q − 1

)∫

R2

|w̃R,q |q+2 dx

+
∫

R2

V (x)
∣∣wR,q(x)

∣∣2
dx +

∣∣∣∣
∫

R2

|∇φ̃q |2 dx −
∫

R2

∣∣∇w̃R,q(x)
∣∣2

dx

∣∣∣∣

+ 2a

q + 2

∣∣∣∣
∫

R2

|φ̃q |q+2 dx −
∫

R2

∣∣w̃R,q(x)
∣∣q+2

dx

∣∣∣∣

� Ce−δRτq +
∫

R2

V (x)
∣∣wR,q(x)

∣∣2
dx → 0 as q ↗ 2, (2.22)

which then implies (2.11). By applying the estimate

∫

R2

V (x)
∣∣uq(x)

∣∣2
dx = da(q) − Ẽq

(
uq(x)

)
� da(q) − d̃a(q),

we finally conclude (2.12) in view of (2.11). �
Based on Lemmas 2.1 and 2.2, we can establish the following delicate estimates.

Theorem 2.3. Under the assumptions of Lemma 2.2, there exist two positive constants C1 and C2,
independent of q , such that

C1

(
a

a∗
q

) 2
2−q

�
∫

R2

|∇uq |2 dx � C2

(
a

a∗
q

) 2
2−q

as q ↗ 2,

C1

(
a

a∗
q

) 2
2−q

�
∫

R2

|uq |q+2 dx � C2

(
a

a∗
q

) 2
2−q

as q ↗ 2. (2.23)

Proof. By Remark 2.1 and Lemma 2.2, we have da(q) → −∞ as q ↗ 2, and also

∫

R2

|∇uq |2 dx <
2a

q + 2

∫

R2

|uq |q+2 dx. (2.24)

This estimate and the Gagliardo–Nirenberg inequality (1.10) yield that
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2a∗
q

q + 2

∫

R2

|uq |q+2 dx �
(∫

R2

|∇uq |2 dx

) q
2

<

(
2a

q + 2

∫

R2

|uq |q+2 dx

) q
2

,

which then implies that

∫

R2

|uq |q+2 dx <
q + 2

2a

(
a

a∗
q

) 2
2−q

� 2

a

(
a

a∗
q

) 2
2−q

.

This establishes the upper estimates of (2.23) in view of (2.24).
We address the lower estimates of (2.23) as follows. The proof of Lemma 2.1 implies that

d̃a(q) = Ẽq(φ̃q) = g(s0), s0 = τ 2
q =

(
q

2

) 2
2−q

(
a

a∗
q

) 2
2−q

,

where g(·) is defined as in (2.8). Since g(s) is strictly decreasing in s ∈ [0, s0], it follows that for
any α ∈ (0,1),

g(s0) < g(αs0) < 0 and γα := α(− lnα + 1) ∈ (0,1).

Moreover, direct calculations show that

0 � lim
q↗2

g(αs0)

g(s0)
= lim

q↗2

αs0 − a
a∗
q
(αs0)

q
2

s0 − a
a∗
q
s

q
2

0

= lim
q↗2

2α
q
2 − qα

2 − q
= γα < 1,

which hence implies that for any α ∈ (0,1),

0 > g(αs0) >
1 + γα

2
g(s0) = 1 + γα

2
d̃a(q) as q ↗ 2. (2.25)

We now claim that for any fixed 0 < α < 1, there holds

∫

R2

|∇uq |2 dx > αs0 as q ↗ 2. (2.26)

Indeed, if (2.26) is false, then there exists α0 ∈ (0,1), as well as a subsequence of {q}, still
denoted by {q}, such that

s1 :=
∫

R2

|∇uq |2 dx � α0s0 as q ↗ 2.

Consequently,
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da(q) = Eq(uq) �
∫

R2

|∇uq |2 dx − a

a∗
q

(∫

R2

|∇uq |2 dx

) q
2 = g(s1) � g(α0s0). (2.27)

Applying (2.25), (2.27) and Lemma 2.2, we then have

1 + γα0

2
d̃a(q) � da(q) � d̃a(q) + 1,

equivalently,

1 − γα0

2
d̃a(q) � −1.

This contradicts the fact that d̃a(q) → −∞ as q ↗ 2. Hence, (2.26) holds.
Therefore, we obtain the lower estimates of (2.23) by applying (2.24) and (2.26), and the

lemma is proved. �
3. Concentration and symmetry breaking

This section is devoted to proving Theorem 1.1 and Theorem 1.2 on the concentration and
symmetry breaking of minimizers for (1.5) as q ↗ 2, where a > a∗ is fixed. Towards this pur-
pose, we always denote by uq(x) a non-negative minimizer of (1.5). Set

εq := ε(q) =
(

a

a∗
q

)− 1
2−q

> 0, (3.1)

then εq → 0 by Remark 2.1. Define the L2(R2)-normalized function

w̃q(x) := εquq(εqx).

It then follows from Theorem 2.3 that there exist two positive constants C1 and C2, independent
of q , such that

C1 �
∫

R2

|∇w̃q |2 dx � C2 as q ↗ 2,

C1 �
∫

R2

|w̃q |q+2 dx � C2 as q ↗ 2. (3.2)

We now claim that there exist a sequence {yεq }, R0 > 0 and η > 0 such that

lim inf
εq→0

∫
B (y )

|w̃q |2 dx � η > 0. (3.3)
R0 εq
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In fact, if (3.3) is false. Then for any R > 0, there exists a sequence {w̃qk
}, where qk ↗ 2 as

k → ∞, such that

lim
k→∞ sup

y∈R2

∫
BR(y)

|w̃qk
|2 dx = 0.

By Lemma I.1 in [20] or Theorem 8.10 in [17], we then deduce from the above that w̃qk

k→ 0
in Lp(R2) for any 2 < p < ∞. This however contradicts (3.2), and the claim is therefore estab-
lished.

For the sequence {yεq } given by (3.3), set

wq(x) = w̃q(x + yεq ) = εquq(εqx + εqyεq ). (3.4)

Then (3.2) implies that wq(x) is uniformly bounded in H 1(R2) as q ↗ 2, and the estimate (3.3)
leads to

lim inf
εq→0

∫
BR0 (0)

|wq |2 dx � η > 0, (3.5)

which therefore implies that wq cannot vanish as q ↗ 2.

Lemma 3.1. Assume V (x) ∈ C1(R2) satisfies lim|x|→∞ V (x) = ∞ and infx∈R2 V (x) = 0. Then

{εqyεq } is bounded uniformly for q ↗ 2. Moreover, for any sequence {qk} with qk
k→ 2, there

exists a subsequence, still denoted by {qk}, such that zk := εkyεk

k→ y0, where εk := εqk
is given

by (3.1), and y0 ∈R
2 is a global minimum point of V (x), i.e. V (y0) = 0.

Proof. It follows from (2.12) and (3.4) that

∫

R2

V (x)
∣∣uq(x)

∣∣2
dx =

∫

R2

V (εqx + εqyεq )
∣∣wq(x)

∣∣2
dx → 0 as q ↗ 2. (3.6)

Suppose {εqyεq } is unbounded as q ↗ 2, i.e. εq → 0. Then there exists a subsequence, denoted
by {qn} with qn ↗ 2 as n → ∞, such that

εn := εqn → 0 and εn|yεn | → ∞ as n → ∞.

By the assumptions on V , there exists C0 > 0 such that V (x) > C0 if |x| is large sufficiently. We
then derive from (3.5) and Fatou’s Lemma that

lim
n→∞ inf

∫
2

V (εnx + εnyεn)
∣∣wqn(x)

∣∣2
dx �

∫
2

lim inf
n→∞ V (εnx + εnyεn)

∣∣wqn(x)
∣∣2

dx � ηC0 > 0,
R R
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which however contradicts (3.6). Thus, {εqyεq } is bounded uniformly for q ↗ 2. Moreover, for

any sequence {qk} with qk
k→ 2, there exists a convergent subsequence, still denoted by {qk},

such that zk := εkyεk

k→ y0 for some point y0 ∈ R
2.

Finally, using (3.5) and Fatou’s Lemma again, we know that

lim
k→∞ inf

∫

R2

V (εkx + εkyεk
)
∣∣wqk

(x)
∣∣2

dx � V (y0)

∫
BR0 (0)

lim
k→∞

∣∣wqk
(x)

∣∣2
dx � V (y0)η,

which, with (3.6), implies that V (y0) = 0, and the lemma is therefore proved. �
Since uq is a minimizer of (1.5), it satisfies the Euler–Lagrange equation

−�uq(x) + V (x)uq(x) = μquq(x) + au
q+1
q (x) in R

2, (3.7)

where μq ∈R is a Lagrange multiplier and satisfies

μq = da(q) − qa

q + 2

∫

R2

|uq |q+2 dx.

It then follows from Lemma 2.2 and (2.23) that there exist two positive constants C1 and C2,
independent of q , such that

−C2 < μqε2
q < −C1 as q ↗ 2.

By (3.1) and (3.7), wq(x) defined in (3.4) satisfies

−�wq(x) + ε2
qV (εqx + εqyεq )wq(x) = ε2

qμqwq(x) + a∗
qw

q+1
q (x) in R

2. (3.8)

Therefore, by passing to a subsequence if necessary, we can assume that, for some number β > 0,

μqk
ε2
k → −β2 < 0 and wk := wqk

⇀ w0 � 0 in H 1(
R

2) as qk ↗ 2,

for some w0 ∈ H 1(R2). By passing to the weak limit of (3.8), we deduce from Lemma 3.1 that
the non-negative function w0 satisfies

−�w(x) = −β2w(x) + a∗w3(x) in R
2. (3.9)

Furthermore, we infer from (3.5) that w0 �≡ 0 in R
2, and the strong maximum principle then

yields that w0 > 0 in R
2. By a simple rescaling, we thus conclude from the uniqueness (up to

translations) of positive solutions of (1.7) that

w0 = β
Q

(
β|x − x0|

)
for some x0 ∈R

2, (3.10)
‖Q‖2
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where ‖w0‖2
2 = 1. Note that ‖wk‖2 = 1. Then, wk converges to w0 strongly in L2(R2) and in

fact, strongly in Lp(R2) for any 2 � p < ∞ because of H 1(R2) boundedness. Furthermore,
since wk and w0 satisfy (3.8) and (3.9) respectively, standard elliptic regularity theory gives that
wk converges to w0 strongly in H 1(R2).

Proof of Theorem 1.1. Motivated by [9,32], we are now ready to complete the proof of Theo-
rem 1.1 by the following three steps.

Step 1: The decay property of uk := uqk
. For any sequence {qk}, let wk := wqk

� 0 be defined
by (3.4). The above analysis shows that there exists a subsequence, still denoted by {wk}, sat-

isfying (3.8) and wk
k→ w0 strongly in H 1(R2) for some positive function w0. Hence for any

α > 2,

∫
|x|�R

|wk|α dx → 0 as R → ∞ uniformly for large k. (3.11)

Since μqk
< 0, it follows from (3.8) that

−�wk − c(x)wk � 0, where c(x) = a∗
qk

w
qk

k (x).

By applying De Giorgi–Nash–Moser theory (see [10, Theorem 4.1]), we thus have

max
B1(ξ)

wk � C

( ∫
B2(ξ)

|wk|α dx

) 1
α

,

where ξ is an arbitrary point in R
2, and C is a constant depending only on the bound of

‖wk‖Lα(B2(ξ)). We hence deduce from (3.11) that

wk(x) → 0 as |x| → ∞ uniformly in k. (3.12)

Since wk satisfies (3.8), one can use the comparison principle as in [12] to compare wk with

Ce− β
2 |x|, which then shows that there exists a large constant R > 0, independent of k, such that

wk(x) � Ce− β
2 |x| for |x| > R as k → ∞. (3.13)

By Lemma 3.1, we therefore obtain from (3.13) that the subsequence

uk(x) := uqk
(x) = 1

εk

wk

(
x − zk

εk

)

decays uniformly to zero for x outside any fixed neighborhood of y0 as k → ∞, where εk = εqk
,

zk ∈R
2 is defined as in Lemma 3.1, and y0 ∈R

2 is a global minimum point of V (x).

Step 2: The detailed concentration behavior. Let z̄k be any local maximum point of uk . It then
follows from (3.7) that
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uk(z̄k) �
(−μqk

a

) 1
qk � Cε−1

k .

This estimate and the above decay property thus imply that z̄k → y0 as k → ∞. Set

w̄k = εkuk(εkx + z̄k), (3.14)

so that w̄k satisfies (3.2). It then follows from (3.7) that

−�w̄k(x) + ε2
kV (εkx + z̄k)w̄k(x) = ε2

kμqk
w̄k(x) + a∗

qk
w̄

qk+1
k (x) in R

2. (3.15)

The same argument as proving (3.9) yields that there exists a subsequence of {w̄k}, still denoted

by {w̄k}, such that w̄k
k→ w̄0 in H 1(R2) for some nonnegative function w̄0 � 0, where w̄0 satis-

fies (3.9) for some constant β > 0. We derive from (3.15) that

w̄k(0) �
(−ε2

kμqk

a∗
qk

) 1
qk �

(
β2

2a∗

) 1
2

as k → ∞, (3.16)

which implies that w̄0(0) � (
β2

2a∗ )
1
2 . Thus, the strong maximum principle yields that w̄0(x) > 0

in R
2. Since x = 0 is a critical point of w̄k for all k > 0, it is also a critical point of w̄0. We

therefore conclude from the uniqueness (up to translations) of positive radial solutions for (1.7)
that w̄0 is spherically symmetric about the origin, and

w̄0 = β

‖Q‖2
Q

(
β|x|) for some β > 0. (3.17)

One can deduce from the above that w̄k � (
β2

2a∗ )
1
2 at each local maximum point. Since w̄k

decays to zero uniformly in k as |x| → ∞, all local maximum points of w̄k stay in a finite ball

in R
2. Since w̄k

k→ w̄0 in C2
loc(R

2) and x = 0 is the only critical point of w̄0, all local maximum
points must approach the origin and hence stay in a small ball Bε(0) as k → ∞. One can take
ε small enough such that w̄′′

0(r) < 0 for 0 � r � ε. It then follows from Lemma 4.2 in [22] that
for large k, w̄k has no critical points other than the origin. This gives the uniqueness of local
maximum points for w̄k(x), which therefore implies that there exists a unique maximum point
z̄k for each {uk} and {z̄k} goes to a global minimum point of potential V (x) as k → ∞.

Step 3: The exact value of β defined in (3.17). Let {qk}, where qk ↗ 2 as k → ∞, be the subse-
quence obtained in Step 2, and denote uk := uqk

. Recall from Lemma 2.2 that

da(qk) = d̃a(qk) + o(1) = −2 − qk

2

(
qk

2

) qk
2−qk

ε−2
k + o(1) as k → ∞,

which yields that

lim
2

ε2
kda(qk) = − lim

(
qk

) qk
2−qk = −e−1. (3.18)
k→∞ 2 − qk k→∞ 2
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On the other hand,

da(qk) =
∫

R2

|∇uk|2 dx − 2a

qk + 2

∫

R2

|uk|qk+2 dx +
∫

R2

V (x)|uk|2 dx

= ε−2
k

[∫

R2

|∇w̄k|2 dx − 2a∗
qk

qk + 2

∫

R2

|w̄k|qk+2 dx

]
+

∫

R2

V (x)|uk|2 dx

� ε−2
k

[∫

R2

|∇w̄k|2 dx −
(∫

R2

|∇w̄k|2 dx

) qk
2
]
, (3.19)

where w̄k := w̄qk
is as in (3.14). Set β2

qk
:= ∫

R2 |∇w̄k|2 dx. Since w̄k(x)
k→ w̄0(x) strongly

in H 1(R2), we have

lim
k→∞β2

qk
= ‖∇w̄0‖2

2 = β2, (3.20)

where (2.1) is used. Let fk(t) = t − t
qk
2 , where t ∈ (0,∞). A simple analysis shows that fk(·)

attains its global minimum at the unique point tk := (
qk

2 )
2

2−qk , and also fk(tk) = − 2−qk

2 (
qk

2 )
qk

2−qk .
We hence deduce from (3.19) that

lim
k→∞

2

2 − qk

ε2
kda(qk) � lim

k→∞
2

2 − qk

fk

(
β2

k

)
� lim

k→∞
2

2 − qk

fk(tk) = −e−1,

which, with (3.18), leads to the limit

lim
k→∞fk

(
β2

k

)
/fk(tk) = 1.

We then obtain that

lim
k→∞β2

k = lim
k→∞ tk = e−1,

and therefore we have β = e− 1
2 by applying (3.20), which, together with (3.14) and (3.17)

give (1.12). We thus complete the proof of Theorem 1.1. �
Following the proof of Theorem 1.1, we next address Theorem 1.2 on the local properties of

concentration points. Under the assumption (1.14), we first denote

V̄i (x) = V (x)/|x − xi |pi , where i = 1, . . . , n,

so that the limit limx→xi
V̄i (x) = V̄i(xi) is assumed to exist for all i = 1, . . . , n.

Proof of Theorem 1.2. For convenience we still denote {qk} to be the subsequence obtained in
Theorem 1.1. Choose a point xi ∈ Z , where Z is defined by (1.16), and let
0
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wR,qk
(x) = AR,qk

ϕR(x − xi0)φ̃qk
(x − xi0)

be the trial function defined by (2.14). By (2.22), we know that

da(qk) − d̃a(qk)

� E
(
wR,qk

(x)
) − Ẽ

(
φ̃qk

(x − xi0)
)

�
∫

R2

V (x)
∣∣wR,qk

(x)
∣∣2

dx + Ce−δRτqk

�
A2

R,qk

τ
p
qk

‖φqk
‖2

2

∫
B2Rτqk

V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
(x) dx + Ce−δRτqk

= A2
R,qk

τ
p
qk

‖φqk
‖2

2

∫

R2

χB2Rτqk
(x)V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
(x) dx + Ce−δRτqk (3.21)

where τqk
> 0 satisfies τqk

= (
qk

2 )
1

2−qk
1
εk

in view of Lemma 2.1 and (3.1), and χB2Rτqk
is the char-

acteristic function of the set B2Rτqk
. Since φqk

(x) decays exponentially and φqk
→ Q strongly

in L2(R2), then,

χB2Rτqk
(x)V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
(x) � sup

B2R

V̄i0(x + xi0) · Ce−δ|x| ∈ L1(
R

2),

and

χB2Rτqk
(x)V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
(x) → V̄i0(xi0)|x|pQ2(x) a.e. R2 as k → ∞.

Noting that AR,qk
→ 1 as qk ↗ 2, we thus obtain from (3.21) and Lebesgue’s dominated conver-

gence theorem that

lim
k→∞

da(qk) − d̃a(qk)

ε
p
k

� lim
k→∞

(
qk

2

) −p
2−qk

[
A2

R,qk

‖φqk
‖2

2

∫

R2

χB2Rτqk
(x)V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
(x) dx + Cτ

p
qk

e−δRτqk

]

= e
p
2

‖Q‖2
2

lim
k→∞

∫

R2

χB2Rτqk
(x)V̄i0

(
x

τqk

+ xi0

)
|x|pφ2

qk
dx

= V̄i0(xi0)e
p
2

‖Q‖2
2

∫
2

|x|pQ2 dx. (3.22)
R
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On the other hand, following the proof of Theorem 1.1 we denote z̄k to be the unique global
maximum point of uk , and let w̄k be defined as in (3.14). Denote also y0 ∈ R

2 to be the limit of
z̄k as k → ∞. Since V (y0) = 0, then there exists an xj = y0 for some 1 � j � n. We claim that

{ z̄k−xj

εk
} is bounded in R

2. Indeed, if there exists a subsequence, still denoted by {qk}, such that

| z̄k−xj

εk
| → ∞ as k → ∞, it then follows from Fatou’s Lemma that, for any C > 0 sufficiently

large,

lim
k→∞

da(qk) − d̃a(qk)

ε
pj

k

� lim
k→∞

∫

R2

V̄j (εkx + z̄k)

∣∣∣∣x + z̄k − xj

εk

∣∣∣∣
pj

w̄2
k dx

�
∫

R2

lim
k→∞ V̄j (εkx + z̄k)

∣∣∣∣x + z̄k − xj

εk

∣∣∣∣
pj

w̄2
k dx � CV̄j (xj ), (3.23)

which however contradicts (3.22) owing to pj � p = max{p1, . . . , pn}, and the claim is therefore
true. Consequently, there exists a subsequence, still denoted by {qk}, such that

z̄k − xj

εk

→ z̄0 for some z̄0 ∈R
2. (3.24)

Since Q is a radial decreasing function and decays exponentially as |x| → ∞, we then deduce
that

lim
k→∞

da(qk) − d̃a(qk)

ε
pj

k

� lim
k→∞

∫

R2

V̄j (εkx + z̄k)

∣∣∣∣x + z̄k − xj

εk

∣∣∣∣
pj

w̄2
k dx

� V̄j (xj )

∫

R2

|x + z̄0|pj w̄2
0 dx

= V̄j (xj )e
pj
2

‖Q‖2
2

∫

R2

∣∣∣∣x + z̄0√
e

∣∣∣∣
pj

Q2 dx

� V̄j (xj )e
pj
2

‖Q‖2
2

∫

R2

|x|pj Q2 dx, (3.25)

where w̄0 > 0 is as in (3.17), and “=” in the last inequality of (3.25) holds if and only if z̄0 =
(0,0).

Applying (3.22) and (3.25), it is not difficult to see that, for k large enough, there exists
some cj > 0 such that ε

p
k � cj ε

pj

k , which implies pj � p since εk → 0 as k → ∞. However,
p = max{p1, . . . , pn}, then pj = p. Putting now pj = p in (3.25), and using again (3.22), we
can find that V̄j (xj ) � V̄i0(xi0), which then means that V̄j (xj ) = V̄i0(xi0) since V̄j (xj ) � V̄i0(xi0)

for xi0 ∈ Z by the definition of Z . Hence, xj = y0 ∈ Z must be the flattest global minimum point
of V (x). Based on these facts, using (3.22) and (3.25) we see that (3.25) is essentially an equality,
therefore z̄0 = (0,0) and (1.17) holds. The proof of Theorem 1.2 is completed. �
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