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Abstract

In this paper, we are interested in entire, non-trivial, non-negative solutions and/or entire positive solu-
tions to the simplest models of polyharmonic equations with power-type nonlinearity
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�mu = ±uα in Rn

with n � 1, m � 1, and α ∈ R. We aim to study the existence and non-existence of such classical solutions 
to the above equations in the full range of the constants n, m and α. Remarkably, we are able to provide 
necessary and sufficient conditions on the exponent α to guarantee the existence of such solutions in Rn. 
Finally, we identify all the situations where any entire non-trivial, non-negative classical solution must be 
positive everywhere.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in the existence and non-existence results for the following 
equations

�mu = ±uα in the whole Euclidean space Rn, (1.1)

where n, m � 1, and α ∈ R is a parameter. It is easy to see that equations (1.1) can be rewritten 
in the form

(−�)mu = ±uα.
11622
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However, we intend to keep rather the notation �m instead of (−�)m for the convenience of 
presentation.

Among others, one basic reason that we are interested in such equations is that (1.1) are 
the simplest models of polyharmonic equations with power-type nonlinearity. In the literature, 
equations of the form (1.1) have attracted much attention in various mathematical directions, 
including the existence and non-existence results, the multiplicity, the regularity, the stability 
of solutions, the asymptotic behaviors at infinity of entire solutions, as well as Liouville-type 
results, etc. Since there is a huge number of works related to equations of the form (1.1), it is 
impossible for us to cover and mention all works and results even if there are some closely related 
to our work. However, among many references in the literature, we would like to refer the reader 
to the monograph [12] for further motivations and results.

The exponent α here can take any value in R. Regarding the nonlinearity uα, it is usually 
called superlinear, sublinear, or singular respectively if α > 1, α ∈ (0, 1), or α < 0. As we can 
imagine, the existence of solutions to (1.1) strongly depends on the range of the exponent α, on 
the dimension n, and on the fact that m is even or odd.

It is well known that the semilinear polyharmonic equations arise in many physics phenom-
ena. For example, several particular cases of (1.1) have their origins such as the elasticity, the 
equilibrium states for thin films, the modeling of electrostatic actuations, etc.

The equations (1.1) have also their root in conformal geometry. The equation

−�u = k(x)u
n+2
n−2

with n � 3 is closely related to the famous Yamabe problem and the prescribing scalar curvature 
problem. The geometric aspect of higher order cases m � 2 is related the problem of prescrib-
ing Q-curvature on Riemannian manifolds. Loosely speaking, given a Riemannian manifold 
(Mn, g) of dimension n, we denote by P g

m the GJMS operator of order m, constructed by Gra-
ham, Jenne, Mason and Sparling in the celebrated work [15]. The prescribing Q-curvature prob-
lem asks us to look for a positive solution u to the following partial differential equation on Mn

P
g
2m(u) = Q(x)u

n+2m
n−2m .

Under conformal projection or as the limit equation of blow-up analysis, we are often led to 
understand the problems like

(−�)mu = ±u
n+2m
n−2m

in Rn, so a special case of (1.1).
If the second order case m = 1 is well understood, the situation of polyharmonic problems 

m � 2 is much less clear. For example, as far as we know, we cannot find exhaustive results 
on the existence or non-existence of positive solutions to (1.1) for all exponents α ∈ R. To be 
clear, by solutions in this paper, we mean the classical solutions. Our main purpose here is to 
give a complete answer to this question, that is, to establish the existence or the non-existence of 
positive solutions to (1.1) for any m, n � 1, and α ∈ R. We will handle also the case of non-trivial 
non-negative solutions when α � 0, with the natural convention 00 = 1.

In other words, we will find the necessary and sufficient conditions on the exponent α to con-
firm the non-existence, i.e. the Liouville-type results for positive solutions with real exponents 
α; and the Liouville-type results for non-negative solutions in Rn provided α � 0. Such results 
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are sometimes called optimal Liouville-type theorems. The reason to consider separately the two 
classes of solutions is due to the lack of the strong maximum principle for high order elliptic 
operators, when m � 2.

In recent years, the Liouville property has emerged as an important subject in the analysis 
of nonlinear partial differential equations. In particular, Poláčik, Quittner and Souplet [31,32]
developed a general method to derive universal pointwise estimates of local solutions from 
Liouville-type results. Their approach is based on rescaling arguments combined with a key 
doubling property, which is different from the classical rescaling method of Gidas and Spruck 
[14]. It turns out that one can obtain from Liouville-type theorems a variety of results on quali-
tative properties of solutions, such as a priori estimates, universal bounds, universal singularity 
and decay estimates, etc. For this reason, we expect to see many applications of Liouville-type 
theorems obtained here.

Before closing this section, we would like to mention the outline of the paper. The next sec-
tion is devoted to the statement of our main results, which consist of two theorems. Theorem 2.1
concerns the solvability of (1.1) with a negative sign, that is �mu = −uα , while Theorem 2.2
concerns solutions to �mu = uα . The proofs of Theorems 2.1 and 2.2 are presented in Sec-
tion 4, where we used several important approaches, including a priori integral estimates derived 
for local solutions, interpolation inequalities, the comparison principle for radial solutions, the 
derivation of sub/super polyharmonic properties and the Moser’s iteration. In the last section, we 
identify all the situations where an entire non-trivial, non-negative solution must be positive, by 
proving Propositions 2.1 and 2.2.

2. Statement of main results

2.1. Some known results

Let us start by reviewing some well-known results concerning the existence and non-existence 
of solutions to the problems (1.1). We recall the Sobolev exponent

pS(n,m) =
⎧⎨
⎩

n + 2m

n − 2m
if n � 2m + 1,

∞ if n � 2m.

(2.1)

The first known result is for positive solutions to (1.1) in the singular case α < 0.

Proposition A. Let m � 2 be an integer and n � 3. Assume α < − 1
m−1 . Then (1.1) always pos-

sesses positive solutions.

Proposition A was proved by Kusano, Naito and Swanson via the Schauder–Tychonoff fixed-
point theorem. More precisely, as a special case of Theorem 1 in [18], if n � 3 and

∞∫
0

t (1 + t2m−2)αdt < ∞, (2.2)

then (1.1) possesses infinitely many positive radial solutions satisfying the following growth 
condition
11624
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C1(1 + |x|2m−2) � u(x) � C2(1 + |x|2m−2) in Rn,

where C1 and C2 are positive constants. It is obvious that the integral in (2.2) is finite when 
α < − 1

m−1 .

Remark 2.1. We stress that the restriction on dimension n � 3 in Proposition A is necessary for 
problem �mu = −uα . This is because the equation does not have any solution when n � 2; see 
the Proposition 4.1 below for the non-existence result.

Next we collect some known results for the equation

(−�)mu = uα in Rn, (2.3)

in the superlinear case α > 1. These results can be summarized as follows.

Proposition B. Let m be a positive integer. We have the following claims:

(i) If 1 < α < pS(n, m), then the problem (−�)mu = uα has no non-trivial non-negative solu-
tion in Rn.

(ii) If n > 2m and α � pS(n, m), then the problem (−�)mu = uα possesses positive radial 
solutions in Rn.

Let us now comment on Proposition B. Part (i) is commonly known as the subcritical case. 
From the definition of the Sobolev critical exponent we know that pS(n, m) is finite if n > 2m. 
In this setting, the second order case, namely m = 1, was first established by Gidas and Spruck in 
[13] via the technique of nonlinear integral estimates and the Bochner formula. Chen and Li gave 
a different proof in [5] by using the moving plane method combined with the Kelvin transform.

For higher order cases, Lin resolved in [21] the case m = 2 and it was finally generalized by 
Wei and Xu in [35] for any m � 2 via the argument of moving planes. For the remaining case 
n � 2m and with arbitrary m, the non-existence result (i) can be deduced from the method of 
rescaled test-function [24]; and also from the method of representation formula as presented in 
[4].

Now we turn to the Part (ii). The case m = 1 can be proved easily by applying the Pohozaev 
identity [30] with radial solutions on balls, or it can be deduced from the shooting argument [16]. 
In addition, if α = pS(n, 1), the critical exponent, it was showed by Caffarelli, Gidas and Spruck 
in [3] that any positive solution to

−�u = u
n+2
n−2 in Rn

with n � 3 is radially symmetric up to translation, and it is unique up to dilation.
The above classification was extended to the case of biharmonic equation by Lin [21] and 

to the general case m � 2 by Wei and Xu [35]. More precisely, it was shown in [35] that any 
positive solution u to

(−�)mu = u
n+2m
n−2m in Rn

with n > 2m � 2 is of the following form
11625
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u(x) =
(

2λ

1 + λ2|x − x0|2
) n−2m

2

for some x0 ∈ Rn, λ > 0.

Let us now turn to the supercritical case, namely α > pS(n, m). When m = 1, the existence 
of positive solutions to (2.3) was obtained by Ni in [26, Theorem 4.5]. For the higher order case, 
namely m � 2, the existence of positive solutions to (2.3) was shown by Liu, Guo and Zhang in 
[22, Theorem 1.1]. They used a combination of the shooting method together with degree theory 
and the Pohozaev identity.

However, it becomes evident from the detailed description mentioned above that after putting 
together all the known results in the literature, the knowledge on this class of equations still 
appears quite fragmentary. Our aim in this paper is to consider all the situations m � 2, n � 1
and α ∈ R, and determine whether positive or non-negative solutions of (1.1) exist.

For the sake of transparent presentation, we shall present our results in two different subcases 
according to the sign of the right-hand side. We will also see that the range of α insuring the 
existence of solutions to equations (1.1) strongly depends on the parity of m.

2.2. Exhaustive results for �mu = −uα in Rn

As mentioned above, the results depend on the parity of m, it is more convenient to split the 
study for two equations:

�2ku = −uα in Rn (P−
2k)

and

�2k−1u = −uα in Rn, (P−
2k−1)

where k is a positive integer. For (P−
2k), as far as we know, there are many results which are 

limited to the case k = 1, i.e. for the biharmonic equation

�2u = −uα in Rn. (2.4)

Here, the non-existence of positive solutions to (2.4) with α ∈ [−1, 0] was first proved by Choi 
and Xu in [7, Theorem 1.1] for dimension n = 3. This result was extended to all dimensions by 
Lai and Ye in [19, Theorem 1.3]. On the other hand, Proposition A, see also [23, Theorem 3.1], 
ensures the existence of positive solutions for any α < −1.

For the problem (P−
2k−1), when k = 1, it is worth noticing that the class of positive solutions 

coincides with the one of non-trivial non-negative solutions, due to the strong maximum princi-
ple. For k = 1, the non-existence of positive solution when α � 1 is well known, see for instance 
the results in [8, Theorem 2.7] and [1]; while the situations α > 1 was fully settled in [13]. 
Recently, it was proved in [9] that

�3u = −uα in R3

has no positive solution if α ∈ [− 1
2 , 0).

We give here a complete answer to the question of existence for �mu = −uα . For conve-
nience, we use the convention that − 1 = −∞ when m = 1. Our first result reads as follows:
m−1
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Theorem 2.1. Let m be a positive integer. Then we have the following claims:

(i) The problem �mu = −uα possesses a positive solution if and only if either n � 3 and α <

− 1
m−1 or m is odd and α � pS(n, m).

(ii) The problem �mu = −uα with α � 0 has a non-trivial non-negative solution if and only if 
m is odd and α � pS(n, m).

The existence of positive or non-trivial non-negative solution to �mu = −uα can be easily 
summarized in Table 1.

Table 1
Existence results for problem �mu = −uα in Rn .

α < − 1
m−1 − 1

m−1 � α < 0 0 � α � 1 α > 1

u > 0
n � 2

NO NO NO NO
Proposition 4.1 Proposition 4.1 Proposition 4.1 Proposition 4.1

u > 0
n � 3

YES NO
NO
Propositions 4.1
and 4.3

YES
iff m is odd and 
α � pS(n, m)

Propositions B and 4.4

Proposition A Proposition 4.2

u � 0

Recall that we are concerned with classical solutions, then for α < 0, there is no proper non-
negative solution, out of positive solutions. That’s the reason of the above gray cells.

As the equation (P−
2k−1) with α � pS(n, m) always admits positive solutions, hence non-

trivial, non-negative solution. A natural question for (P−
2k−1) is that whether or not there is non-

trivial, non-negative but not positive solution, the following maximum type result indicates that 
such solution does not exist.

Proposition 2.1. Let m � 1 and α > 1. Then any non-trivial, non-negative solution to the equa-
tion �mu = −uα in Rn must be positive everywhere.

Clearly, our contributions in Theorem 2.1 are multifold:

• By determining the sign of �m−1u with Lemma 3.3, we show quickly the non-existence of 
positive solution to �mu = −uα in Rn with n = 1, 2 for any α ∈ R; see Proposition 4.1.

• For any m � 1 and n � 3, we obtain the non-existence of positive solution in the range 
α ∈ [− 1

m−1 , 1]; see Propositions 4.2 and 4.3.
• We obtain the non-existence of non-trivial, non-negative solution in the range α ∈ [0, ∞) for 

the equation (P−
2k); see Propositions 4.3 and 4.4.

The proof of the non-existence in the singular case α ∈ [− 1
m−1 , 0) with n � 3 relies on the 

convexity of the function t �→ tα and comparison principle. In the superlinear case α > 1 and 
for the equation (P−

2k), we made use of the integral estimate and a Liouville type result; see 
Lemma 3.4.

However, the case α ∈ [0, 1] is significantly more delicate despite the fact that a non-existence 
result in the case m = 1 is already known. For example, among others, Mitidieri and Pohozaev 
used the standard rescaled test-function method to obtain the non-existence result in [24, section 
12].
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For arbitrary m, it seems that many well-known approaches, such as the classic rescaled test-
function method [24], the moving plane technique [5], the argument of maximum principle [1], 
the representation formula method [4], or the derivation technique of super/sub polyharmonic 
property [21,35,6,25], cannot be applicable.

Our proof in the sublinear case is inspired by the idea of Serrin and Zou [33] and Souplet 
[34], it is based on the integral estimates and Moser’s iteration method; see the proof of Proposi-
tion 4.3.

2.3. Exhaustive results for �mu = uα in Rn

We give here a complete answer to the question of existence for (1.1) with the plus sign. Our 
second result reads as follows:

Theorem 2.2. Let m be a positive integer. Then we have the following claims.

(i) The problem �mu = uα possesses a positive solution if and only if either α � 1 or m is even 
and α � pS(n, m).

(ii) The problem �mu = uα with α � 0 has a non-trivial non-negative solution if and only if 
either 0 � α � 1 or m is even and α � pS(n, m).

The results of Theorem 2.2 are summarized in Table 2.

Table 2
Existence results for the problem �mu = uα in Rn.

α < 0 0 � α � 1 1 < α

u > 0
YES

YES
Proposition 4.5

YES
iff m is even and 
α � pS(n, m)

Propositions B and 4.4

Proposition 4.5

u � 0

As before, we will split our study into two equations according to the parity of m, that is,

�2ku = uα in Rn (P+
2k)

and

�2k−1u = uα in Rn, (P+
2k−1)

where k is a positive integer. Our contributions are twofold here:

• We give a unified proof of the existence of positive solutions for all α � 1; see Proposi-
tion 4.5.

• We prove the non-existence of non-trivial, non-negative solutions for (P+
2k−1) with any α > 1; 

see Proposition 4.4.

In the second order case, it is well known that the problem �u = uα in Rn has no positive 
solution if α > 1, but it possesses a positive one if α � 1. More precisely, the non-existence for 
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the superlinear case α > 1 is a consequence of the so-called Keller–Osserman criteria developed 
by Keller [17] and Osserman [28]. Their theory can be employed to show that the equation 
�u = uα admits no non-trivial, non-negative, entire solution whenever α > 1, see also [2, Lemma 
2].

When α � 1, the existence of radial solutions can be easily obtained by the monotonicity of 
u(r). We note that for m � 2, we can also apply Proposition A to obtain the existence of solutions 
to (P+

2k) and (P−
2k) for α < − 1

m−1 .
Similarly to the question raised for (P−

2k−1), we can ask here if the set of non-trivial, non-
negative solutions and the set of positive solutions coincide. We provide a complete answer as 
follows.

Proposition 2.2. Let m be a positive integer and α � 0. Then the equation �mu = uα possesses 
entire, non-trivial, non-negative but not strictly positive solution in Rn if and only if

α ∈ [0,1] and (α,m) �= (1,1).

In other words, if either α > 1 or (α, m) = (1, 1), then any entire, non-trivial, non-negative 
solution to �mu = uα must be positive everywhere.

Before closing this section, we would like to comment on Propositions 2.1 and 2.2. From our 
point of view, these results can be regarded as maximum principle results. As far as we know, 
similar results do exist in the literature, however, with some limitations, see for example [4].

3. Preliminaries

In what follows, the notation �iu stands for u when i = 0. The notation Br is always under-
stood as the open ball Br(0) centered at the origin with radius r . When u is a radial function, 
instead of writing u(x), we also use the notation u(r). Throughout the paper, we also use the 
notation u(r) to denote the spherical average of u centered at the origin on the sphere ∂Br , the 
boundary of the ball Br , that is

u(r) = 1

|∂Br |
∫

∂Br

udσ.

Spherical averaging has some nice properties such as it enjoys

u(r) = 1

|∂B1|
∫

∂B1

u(rω)dσω

and the following identity

�u = �u

for any C2-function u. This simply follows from �u = r1−n(rn−1u′)′ and the following
11629
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u′(r) = 1

|∂B1|
∫

∂B1

ω · ∇u(rω)dσω = 1

|∂B1|rn−1

∫
Br

�udx = 1

rn−1

r∫
0

sn−1�u(s)ds.

Throughout the paper, the symbol C denotes a generic positive constant whose value could be 
different from one line to another.

Here are some basic results, which will be useful for our analysis.

Lemma 3.1. Let m � 1 and v1, v2 : BR → I ⊂ R be two C2m radial functions verifying

�mv1 � f (v1), �mv2 � f (v2) in BR

and

�iv1(0) � �iv2(0), ∀ 0 � i � m − 1.

If f is non-decreasing in I , then v1 � v2 in BR . In other words, v1(r) � v2(r) for all r ∈ [0, R).

The above comparison principle is a special form of more general well-known results; see for 
instance [11, Proposition A.2] or [20, Remark 2.3]. An easy consequence of the above compari-
son principle is the following pointwise estimate.

Lemma 3.2. Let u be in C2m(Rn) satisfying �mu � 0 in Rn, then we have

u(r) � u(0) +
m−1∑
i=1

�iu(0)r2i∏
1�k�i [2k(n + 2k − 2)]

, ∀ r � 0. (3.1)

Proof. Let � be the radial function defined by

�(r) := u(0) +
m−1∑
i=1

�iu(0)r2i∏
1�k�i [2k(n + 2k − 2)]

.

Using �u = �u, we deduce by induction that �mu = �mu. There hold then

�m� ≡ 0 � �mu = �mu in Rn

and

�i�(0) = �iu(0) = �iu(0) for any 0 � i � m − 1.

Applying Lemma 3.1 with f ≡ 0, there holds u � � in Rn. �
By an elementary computation involving the Gamma function, it is easy to verify that

∏
[2k(n + 2k − 2)] = 22pp!	

(
p + n

2

)/
	
(n

2

)
, ∀ p,n ∈ N∗.
1�k�p
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Therefore, the right hand side of (3.1) is nothing but the main part of classical Pizzetti’s expansion 
formula in [29]; see also Equation (8) in Nicolesco’s paper [27]. In Pizzetti’s formula, there is 
a last term involving �mu. We can remark that if �mu � 0 in Rn, then the remained term in 
Pizzetti’s formula is non-positive, which implies then (3.1). Nevertheless, our proof of (3.1) is 
simple and constructive.

The following result is a simple but important fact of our approach.

Lemma 3.3. Let m � 1. Then we have the following claims:

(i) If u be a positive function satisfying �mu < 0 in Rn, then �m−1u > 0 in Rn.
(ii) If u be a non-negative function satisfying �mu � 0 in Rn, then �m−1u � 0 in Rn.

Proof. Consider first the claim (ii). Set w = �m−1u, suppose that there is some x0 ∈ Rn such that 
w(x0) < 0. By a translation, we may assume that x0 = 0. Moreover, it follows from Lemma 3.2
that u satisfies the estimate (3.1). As �m−1u(0) < 0, there holds u(r) < 0 for r large enough. 
This is impossible because u is non-negative in Rn. The point (ii) holds true.

Now we consider (i). Set again w = �m−1u, we have w � 0 in Rn by (ii). If w vanishes at 
some x1 ∈ Rn, then w attains its minimum at x1. However, this contradicts the fact that �w(x1) <
0, we are done. �

It is worth noting that without the non-negativity of u, in general, the result of Lemma 3.3
does not hold. For example, it was shown in [11, Lemma 7.8] that there are infinitely many entire 
radial solutions to �2k+1u = −eu for which �2ku changes sign.

The following Liouville type result is a crucial step in the proof of Proposition 4.4.

Lemma 3.4. Assume that u is a C2m non-negative function in Rn, verifying (−�)mu � 0 in Rn

and ∫
BR

udx = o(Rn) as R → ∞. (3.2)

Then u ≡ 0 in Rn.

Proof. Let vk = (−�)ku, for 0 � k � m. We shall prove by backward induction on k that

vk � 0 in Rn (3.3)

for k = m, m − 1, . . . , 0. It is obvious that (3.3) is true for k = m. Suppose now (3.3) is true for 
j + 1 � k � m with some j � 0, we shall show that vj � 0 in Rn. Depending on the parity of j , 
we have two possible cases.

Case 1: j is odd. As �j+1u = vj+1 � 0, Lemma 3.3 (ii) gives vj � 0.

Case 2: j is even. We will prove vj � 0. By way of contradiction, assume that there exists some 
x0 ∈ Rn such that vj (x0) > 0. Up to a translation, we may further assume that x0 = 0. Then

�vj = �vj = −vj+1 � 0 in Rn.
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From this we have v′
j (r) � 0 for any r � 0, hence

vj (r) � vj (0) = vj (0) > 0.

Let ψ be a smooth, radial, cut-off function satisfying 0 � ψ � 1 and

ψ(x) =
{

0 if |x| � 2,

1 if |x| � 1.
(3.4)

On one hand, for any R > 0, we can estimate

∫
Rn

vj (x)ψ
( x

R

)
dx �

∫
BR

vj (x)dx = C

R∫
0

vj (r)r
n−1dr � CRnvj (0). (3.5)

On the other hand, there holds∫
Rn

vj (x)ψ
( x

R

)
dx =

∫
Rn

(−�)ju(x)ψ
( x

R

)
dx

= R−2j

∫
Rn

u(x)(−�)jψ
( x

R

)
dx

� CR−2j

∫
B2R

u(x)dx.

(3.6)

Putting (3.5) and (3.6) together gives

0 < vj (0) � CR−2j−n

∫
B2R

u(x)dx.

Now letting R → ∞ and using (3.2) we meet a contradiction. Hence, we get vj � 0 in Rn. 
Therefore, by the induction principle, (3.3) is true as claimed. Taking k = 0 in (3.3), we have 
u � 0 in Rn, hence u ≡ 0 in Rn. �

The last result in this subsection is a classical interpolation-type estimate, which plays an 
important role in our proof of the non-existence result for �mu = −uα with 0 < α < 1; see the 
proof of Proposition 4.3.

Lemma 3.5. Let m be a positive integer. Let z be a function in W 2m,�(B2R) for some � > 1. Then 
for any exponent 1 < q < ∞ such that

1

q
� 1

�
− 2m

n
, (3.7)

there holds
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(∫
BR

zqdx
)1/q

� CR
n
q
+2m− n

�

( ∫
B2R

|�mz|�dx
)1/� + CR

n
q
−n

∫
B2R

zdx,

where C = C(m, n, �, q).

Proof. By the dilation w(x) = z(Rx), we obtain

∫
BR

zqdx = Rn

∫
B1

wqdx,

∫
B2R

zdx = Rn

∫
B2

wdx,

and ∫
B2R

|�mz|�dx = R−2m�+n

∫
B2

|�mw|�dx.

From these identities, the desired inequality is equivalent to

‖w‖Lq(B1) � C‖�mw‖L�(B2)
+ C‖w‖L1(B2)

for w ∈ W 2m,�(B2). However, this follows from (3.7) and standard elliptic estimate; see for 
instance [12, Theorem 2.20]. The lemma is proved. �
4. Proof of the main results

This section is devoted to the proof of our main results. We prove some Liouville type re-
sults in subsections 4.1 and 4.2, while some existence results are proved in subsection 4.3. It is 
worth noticing that for each case in Tables 1 and 2, we have already included the name of the 
main proposition yielding the result in the case. Therefore, there is no need to write a proof for 
Theorems 2.1 and 2.2.

4.1. Non-existence results for �mu = −uα

This subsection is devoted to the non-existence results in Theorem 2.1, and we do not consider 
specially the situations under applications of Propositions A and B.

4.1.1. For dimensions 1 and 2
Let us start with the case n � 2 and this corresponds to the second and fifth rows in Table 1. 

We will prove that in dimensions one and two, the equation

�mu = −uα in Rn (4.1)

has no positive solution for any α ∈ R; and has no non-trivial, non-negative solution for any 
α � 0. In fact, these claims are trivial consequences of the following result.

Proposition 4.1. Let m be a positive integer and n � 2. If u is a non-negative C2m-function 
verifying �mu � 0 in Rn, then �mu ≡ 0 in Rn.
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Proof. As �mu � 0 in Rn, Lemma 3.3 (ii) shows that �m−1u =: w � 0. This means that w is 
a non-negative, super-harmonic function in Rn. It is well known that such w must be constant 
in Rn if n � 2; see [10, Theorem 3.1] for the case n = 2. Hence, we must have �mu = �w = 0
everywhere. �
4.1.2. For α < 0

Here we prove the non-existence of positive solution to (4.1) for n � 3 and suitable α < 0

Proposition 4.2. Let n � 3. Then the equation (4.1) has no positive solution for any α ∈
[− 1

m−1 , 0) if m > 1; and for any α < 0 if m = 1.

Proof. Assume that n � 3, m � 1, and α ∈ [− 1
m−1 , 0] ∩ R. By way of contradiction, suppose 

that u is a positive solution to (4.1). Using Lemma 3.2, we have

u(r) � u(0) +
m−1∑
i=1

�iu(0)r2l∏
1�k�i[2k(n + 2k − 2)] ∀ r � 0.

Hence, there exists a constant C > 0 such that

u(r) � Cr2(m−1) for any r � 1.

Set w = �m−1u. By Lemma 3.3 (i), there holds w > 0. Moreover, as the map t �→ tα is convex 
in (0, ∞) when α � 0, Jensen’s inequality implies

−�w = uα � uα in Rn,

so that

−(
rn−1w′(r)

)′ � rn−1uα(r) � Crn−1+2(m−1)α, ∀ r � 1.

Integrating over (1, r), taking into account n � 3 and (m − 1)α � −1, there holds

w′(1) − rn−1w′(r) � Cr2(m−1)α+n − C.

Therefore,

w′(r) � −Cr2(m−1)α+1 + Cr−n+1, ∀ r � 1. (4.2)

Depending on the size of α, there are two cases:

Case 1: If α ∈ (− 1
m−1 , 0), then integrating (4.2) over [1, r] gives

w(r) − w(1) � −Cr2(m−1)α+2 + C, ∀ r � 1.

We have then w(r) → −∞ as r → ∞, which is a contradiction with w > 0.
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Case 2: If α = − 1
m−1 , then integrating of (4.2) over [1, r] gives

w(r) − w(1) � −C

r∫
1

r−1dr +
r∫

1

Cr−n+1dr = −C ln r + C,

which also implies that w(r) → −∞ as r → ∞. We reach again a contradiction. �
4.1.3. For 0 � α � 1

Now we turn to the case of non-negative, sublinear α. The following non-existence result is 
one of the main contributions of this paper.

Proposition 4.3. For any n � 1, m � 1, and α ∈ [0, 1], the equation (4.1) has no non-trivial, 
non-negative solution.

Proof. In view of Proposition 4.1, it suffices to consider the case n � 3. Depending on the size 
of α, we consider two possible cases. When α = 0, the equation (4.1) becomes

�mu ≡ −1,

therefore the non-existence of entire, non-negative solution in Rn is a direct consequence of 
Lemma 3.2, since there exists C > 0 such that u + Cr2m is polyharmonic, whose average grows 
at most as r2m−2.

From now on, we only consider α ∈ (0, 1]. For convenience, we divide the proof into three 
steps.

Step 1. Suppose that u is a non-trivial, non-negative solution to �mu = −uα in Rn. By 
Lemma 3.2, we have

u(R) � CR2(m−1) for R � 1.

Hence ∫
B2R

udx =: F(R) � CRn+2(m−1) for any R � 1. (4.3)

Here C is a constant independent of R. Note that to get the estimate (4.3) we only use the sign 
of �mu. Now via the rescaled test-function argument we fully use the equation �mu = −uα to 
estimate F(R) from below; see (4.5). Let ψ be a smooth cut-off function satisfying 0 � ψ � 1
and (3.4). For any R > 0, let

φR(x) = ψ2m+1
( x

R

)
.

It is not hard to verify the pointwise estimate

�m(ψ2m+1) � Cψ
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for some constant C > 0. Therefore, we can estimate

|�mφR(x)| = R−2m
∣∣∣�m(ψ2m+1)

( x

R

)∣∣∣ � CR−2mψ
( x

R

)
= CR−2mφ

1/(2m+1)
R (x). (4.4)

Hence ∫
Rn

uαφRdx = −
∫

Rn

�muφRdx = −
∫

Rn

u�mφRdx � CR−2m

∫
Rn

uφ
1/(2m+1)
R dx.

This yields

∫
BR

uαdx � CR−2mF(R), ∀ R > 0. (4.5)

Now we further examine F . In view of (4.3), the function F has at most algebraic growth at 
infinity. Therefore, it must be doubling along a sequence Ri → ∞. We turn this observation into 
a claim as follows

∃ M > 0 and Ri → ∞ such that F(2Ri) � MF(Ri) ∀ i. (4.6)

Indeed, assume that (4.6) is false. Let us fix M0 > 2n+2m−2, then there exists R0 > 0 such that

F(2R) � M0F(R), ∀ R � R0. (4.7)

Let R1 � 1 be sufficiently large verifying F(R1) > 0, such a R1 exists since u is non-trivial. 
Denote R∗ := max{R1, R0}. Iterating (4.7) and thanks to (4.3), we arrive at, for any i,

Mi
0F(R∗) � F(2iR∗) � C(2iR∗)n+2m−2,

that is

(
M0

2n+2m−2

)i

� CRn+2m−2∗
F(R∗)

∀ i.

But this is just impossible if i is large enough by the choice of M0. So the claim (4.6) holds true. 
We are now ready to prove the result for α ∈ (0, 1]. The two cases α = 1 and 0 < α < 1 must be 
considered separately.

Step 2. Consider first the case α = 1. It follows from (4.5) with R = 2Ri and (4.6) that

F(Ri) � CR−2m
i F (2Ri) � CMR−2m

i F (Ri), ∀ i.

Therefore F(Ri) = 0 for i large enough because Ri → ∞, which is a contradiction since u is 
non-trivial.

Step 3. Here we handle the case α ∈ (0, 1). The idea of our proof in this case is as follows. First, 
the integral F(R) can be estimated by interpolating between
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‖uα‖L1(B2R) and ‖uq‖L1(B2R)

with q > 1 large; see (4.11). Second, ‖uα‖L1(B2R) is estimated by (4.5) in terms of R−2mF(R). 
Moreover, we will estimate ‖uq‖L1(B2R) by suitable powers of R, through a Moser type iteration 
procedure starting with (4.3) for q = 1. This will eventually lead, along a doubling sequence 
R = Ri mentioned in (4.6), to a control of F(R) by a power of R which turns out to be negative; 
see (4.12). Hence, there holds u ≡ 0 by sending Ri → ∞.

We now proceed with the details. Let (qh) be the sequence defined as follows

q0 = 1,
1

qh

= α

qh−1
− 2m

n
, h = 1,2, ...

By induction, we can compute qh explicitly as

1

qh

= αh − 2m(1 − αh)

n(1 − α)
whenever qh is well defined.

Obviously, the sequence (q−1
h ) is decreasing since α ∈ (0, 1), and there exists a unique integer 

j∗ � 0 such that

1

qj∗+1
� 0 < qj∗ .

We will estimate ‖u‖Lqh(BR) successively. First, for all 0 � h � j∗ and R � 1, we claim that

(∫
BR

uqhdx
)1/qh

� CR(n+2m−2)αh

. (4.8)

The inequality (4.8) for h = 0 follows from (4.3). Assume that (4.8) is true up to h − 1 with 
h � j∗. Using the equation �mu = −uα , Lemma 3.5, and (4.3), we get that

(∫
BR

uqhdx
)1/qh

� CR
n
qh

+2m− nα
qh−1

( ∫
B2R

|�mu| qh−1
α dx

) α
qh−1 + CR

n
qh

−n
∫

B2R

udx

� CR
n
qh

+2m−n( 1
qh

+ 2m
n

)
( ∫
B2R

uqh−1dx
) α

qh−1 + CR
n
qh

+2(m−1)

= C
( ∫
B2R

uqh−1dx
) α

qh−1 + CR
n
qh

+2(m−1)
.

(4.9)

Thanks to the induction hypothesis on ‖u‖Lqh−1(BR), for any R � 1, it follows from (4.9) that

(∫
uqhdx

)1/qh

� C
( ∫

uqh−1dx
) α

qh−1 + CR
n
qh

+2(m−1)
BR B2R
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= CR(n+2m−2)αh + CR
n
qh

+2(m−1)

� CR(n+2m−2)αh

.

For the last line, we have used

(n + 2m − 2)αh −
( n

qh

+ 2m − 2
)

= (1 − αh)
[ 2m

1 − α
− 2(m − 1)

]
> 0

to absorb the term R
n
qh

+2(m−1)
into the term R(n+2m−2)αh

. Hence the claim (4.8) holds true for 
all h � j∗ and R � 1. Furthermore, by the definition of j∗, there holds

α

qj∗
− 2m

n
� 0.

Therefore, for any q > 1, the condition (3.7) is always fulfilled with � = qj∗/α. Applying 
Lemma 3.5, (4.8) with h = j∗, the expression of qj∗ and (4.3), we get

(∫
BR

uqdx
)1/q

� CR
n
q
+2m− nα

qj∗
( ∫
B2R

|�mu|
qj∗
α dx

) α
qj∗ + CR

n
q
−n

∫
B2R

udx

� CR
n
q
+2m− nα

qj∗
( ∫
B2R

uqj∗ dx
) α

qj∗ + CR
n
q
+2(m−1)

� CR
n
q
+2m− nα

qj∗ R(n+2m−2)αj∗+1 + CR
n
q
+2(m−1)

= CR
n
q
−2αj∗+1+2m 1−αj∗+2

1−α + CR
n
q
+2(m−1)

� CR
n
q
−2αj∗+1+2m 1−αj∗+2

1−α .

(4.10)

Keep in mind that α < 1 < q , we can estimate F(R) by using ‖uα‖L1(B2R) and ‖uq‖L1(B2R). Let

a = α
q − 1

q − α
∈ [0,1), p = q − α

q − 1
> 1

and apply Hölder’s inequality with help from (4.5) to obtain

F(R) =
∫

B2R

udx �
( ∫
B2R

uapdx
) 1

p
( ∫
B2R

u
(1−a)

p
p−1 dx

) p−1
p

=
( ∫
B2R

uαdx
) q−1

q−α
( ∫
B2R

uqdx
) 1−α

q−α

� C
[
R−2mF(2R)

] q−1
q−α

( ∫
B2R

uqdx
) 1−α

q−α
.

(4.11)
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Now we apply (4.11) for the sequence (Ri) satisfying the doubling property (4.6) to get

F(Ri) � CR
− 2m(q−1)

q−α

i F (Ri)
q−1
q−α

( ∫
B2Ri

uqdx
) 1−α

q−α
.

Combining the above estimate with (4.10), we get

F(Ri) � CR
− 2m(q−1)

1−α

i

∫
B2Ri

uqdx

� CR
− 2m(q−1)

1−α

i (2Ri)
n+[−2αj∗+1+2m 1−αj∗+2

1−α

]
q

= C(2Ri)
2m

1−α
+n−( 2mα

1−α
+2

)
αj∗+1q .

(4.12)

We fix q > 1 large enough such that

2m

1 − α
+ n −

( 2mα

1 − α
+ 2

)
αj∗+1q < 0.

Then the estimate (4.12) implies that F(Ri) → 0 as i → ∞. Immediately, this is a contradiction 
because u is non-trivial. �
4.2. Non-existence results for (−�)mu = −uα with α > 1

In this subsection, we consider non-negative classical solutions of

(−�)mu = −uα in Rn (4.13)

under the restriction α > 1. This corresponds to the last column of Tables 1 and 2.

Proposition 4.4. For any n � 1, m � 1, and α > 1, the equation (4.13) has no non-trivial, non-
negative solution.

Proof. Assume that u is a non-negative solution in Rn of (4.13) with α > 1. We first derive an 
integral estimate of u over BR . Let ψ be a smooth, radial, cut-off function satisfying 0 � ψ � 1
and (3.4). For any R > 0, let

φR(x) = ψp(R−1x)

with p = 2mα
α−1 > 2m. As for (4.4), the pointwise estimate

|�m(ψp)| � Cψp−2m

holds for some constant C > 0. Hence, we eventually have

|�mφR(x)| � CR−2mψp−2m
( x

R

)
= CR−2mφ

1/α
R (x).
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Therefore, similar to the estimate after (4.4), we obtain the following

∫
Rn

uαφRdx = −
∫

Rn

u(−�)mφRdx � CR−2m

∫
Rn

uφ
1/α
R dx. (4.14)

Using Hölder’s inequality and noting the support of φR,

∫
Rn

uφ
1/α
R dx � CR

n(α−1)
α

(∫
Rn

uα φRdx
)1/α

. (4.15)

Putting together (4.14) and (4.15), we arrive at

∫
BR

udx �
∫

Rn

uφ
1/α
R dx � CRn− 2m

α−1 .

Now applying Lemma 3.4, we deduce that u ≡ 0 in Rn. �
4.3. Existence results for �mu = uα

This subsection is devoted to the existence results for the equation

�mu = uα in Rn (4.16)

under the condition α � 1, in other words, we do not consider the situations under applications 
of Propositions A and B.

Proposition 4.5. For any positive integers m, n and α � 1, the equation (4.16) has infinitely 
many positive, radial solutions.

Proof. We look for radial solutions of (4.16). To this purpose, consider the following initial value 
problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�mu(r) = uα(r) in [0,R),

u(0) = 1,

�iu(0) = ai > 0, 1 � i � m − 1,

(�iu)′(0) = 0, 0 � i � m − 1.

(4.17)

Clearly, using standard ODE theory, (4.17) has a unique positive solution in a maximal interval 
[0, Rmax). To get an entire solution to (4.16), we need only to prove that Rmax = ∞. To do this, 
we will construct suitable entire sub- and super-solutions to (4.17), then apply the comparison 
principle. Indeed, let

u∗(r) ≡ 1.
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Trivially, u∗ is a sub-solution to (4.17) and �iu∗(0) � �iu(0) for any 0 � i � m − 1. Hence

u(r) � 1 = u∗(r) in [0,Rmax)

by Lemma 3.1 with f ≡ 0, which is clearly non-decreasing. Now we turn our attention to the 
existence of a super-solution u∗(r). Let

v(r) = er2/2.

It is not hard to see that

�kv(r) = Pk(r)e
r2/2

for some function Pk . A direct computation yields that

Pk+1(r) = (r2 + n)Pk + 2rP ′
k(r) + �Pk(r) ∀ k � 0, r � 0.

As P0 ≡ 1, by induction, we can readily prove that each Pk is a polynomial whose coefficients 
are natural numbers and deg(Pk) = 2k. Because

Pk+1(0) = nPk(0) + �Pk(0) = nPk(0) + nP ′′
k (0)

we can easily see that Pk(0) � 1 for all k. Now we let

u∗(r) = λv(r)

with λ = max(1, a1, . . . am−1) � 1. It follows that

�mu∗(r) = λPm(r)er2/2 � λPm(0)er2/2 � λer2/2, ∀ r � 0 (4.18)

and

�iu∗(0) = λPi(0) � λ � �iu(0) for 0 � i � m − 1.

There are two possibilities:

Case 1: α ∈ [0, 1]. In this case, (4.18) yields

�mu∗(r) � λαeαr2/2 = u∗(r)α for r � 0.

Therefore, u∗ is indeed a super-solution to (4.17). Then we can apply Lemma 3.1 with f (t) = tα

in R+ to get that u(r) � u∗(r) in [0, Rmax).

Case 2: α < 0. In this case, on one hand, (4.18) yields �mu∗ � 1. On the other hand, we have 
already shown that u � 1 in [0, Rmax), which immediately yields

1 � uα = �mu in BRmax .
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Therefore, this time applying Lemma 3.1 with f ≡ 1, now there holds u(r) � u∗(r) in [0, Rmax).

Combining two cases, whenever α � 1 we can always conclude that u∗ � u � u∗ in BRmax , 
where u∗ and u∗ are smooth positive functions in Rn constructed above. As u is locally uni-
formly bounded, we can obtain the local boundedness of all derivatives of u up to order 2m − 1
by successive integrations; see [11, Proposition A.2]. This readily implies that Rmax = ∞ as 
claimed.

The infinity of solutions can be obtained by choosing different values of ai if m � 2; or at 
least by the natural scaling of the equation (4.16). �
Remark 4.1. If n � 2, then we can also put solutions of lower dimensions in Rn to get infinitely 
many non radial solutions to (4.16) with α � 1. Similar remark goes to the equation (4.1) when 
n � 4.

5. Maximum principle type results

This section is devoted to proofs of Propositions 2.1 and 2.2. We use an elementary property 
for non-negative super-polynharmonic radial functions.

Lemma 5.1. Let m � 1. Assume that w is non-trivial, non-negative, radial function such that

(−�)mw � 0 in Rn.

Then, either w(0) > 0 or limr→∞ w(r) = ∞.

Proof. Let m = 1, if w is non-negative, non-trivial, and −�w � 0, then the strong maximum 
principle yields w(0) > 0. Suppose that the conclusion is true up to some positive integer m, we 
consider now w such that

(−�)m+1w � 0 in Rn.

We have two cases:

Case 1: If m +1 is odd, then by using Lemma 3.3 (ii), there holds �mw � 0, namely (−�)mw �
0 in Rn. From this we get the result by induction hypothesis.

Case 2: If m +1 is even, then we have �m+1w � 0, which means that �mw(r) is non-decreasing 
in r . Therefore, there exists

lim
r→∞�mw(r) = � ∈ R ∪ {∞}.

If � > 0, then we readily have limr→∞ w(r) = ∞ by comparison principle. If � � 0, then there 
holds �mw � 0 everywhere, namely (−�)mw � 0 in Rn. Again we conclude with the induction 
hypothesis.

Combining the above two cases, we are done. �
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5.1. A maximum principle type result for �mu = −uα

We are now in a position to prove Proposition 2.1. Let u be a non-trivial, non-negative solution 
to �mu = −uα . In view of Theorem 2.1 we are limited to the case where m is odd with α �
pS(n, m) > 1.

By way of contradiction, suppose that u(x0) = 0 for x0 ∈ Rn, without loss of generality, we 
can assume that x0 = 0. Following the proof of Proposition 4.4, there holds∫

BR

udx � CRn− 2m
α−1 . (5.1)

Taking the average over spheres, we get u(0) = 0, and more importantly

�mu = −uα � 0 in Rn.

Since u is non-trivial and non-negative, so is u. As u(0) = 0 and m is odd, applying Lemma 5.1, 
we get limr→∞ u(r) = ∞, which contradicts with (5.1) if R → ∞. �
5.2. A maximum principle type result for �mu = uα

Now we consider �mu = uα with α � 0. We prove Proposition 2.2. In view of Theorem 2.2, 
we are limited to the case either 0 � α � 1; or m is even and α � pS(n, m).

Firstly, for the case 0 � α � 1 and m � 2, we can construct easily non-trivial non-negative 
radial solutions with u(0) = 0. Indeed, consider the similar initial value problem to (4.17) where 
we choose

u(0) = 0, �u(0) = a1 > 0, �iu(0) = ai � 0, i = 2, . . . ,m − 1,

and

(�iu)′(0) = 0, i = 0, . . . ,m − 1.

Then we get a global solution which is non-trivial because it verifies

u(r) � u∗(r) := a1

2n
r2 in Rn.

Another easy fact is that when α ∈ [0, 1) and m � 1. As 2m
1−α

� 2m, there exists C > 0 depending 

on m, n, and α such that Cr
2m

1−α is an entire classical solution for �mu = uα in Rn. Remark that 
the function r

2m
1−α belongs to C2m(Rn).

Consider now the case α > 1 and m is even. The proof, based on a contradiction argument, 
is very similar to the �mu = −uα case with m odd. Let u be a non-trivial non-negative solution 
verifying u(0) = 0, then the estimate (5.1) remains valid. As (−�)mu � 0 in Rn and u(0) = 0, 
by Lemma 5.1, limr→∞ u(r) = ∞, which is impossible seeing (5.1).

It remains to consider m = α = 1. Suppose that a classical non-negative solution to �u = u

exists in Rn, and u(x0) = 0. We can assume that x0 = 0. Clearly, u is still a classical solution to 
the same equation, hence u(r) is nondecreasing. By direct integration
11643



Q.A. Ngô, V.H. Nguyen, Q.H. Phan et al. Journal of Differential Equations 269 (2020) 11621–11645
u′(r) = r1−n

r∫
0

sn−1u(s)ds � r

n
u(r), ∀ r � 0.

From this, the Gronwall inequality yields

u(r) � u(0) exp
( r2

2n

)
,

hence u � 0 as u(0) = 0. We immediately have u ≡ 0 in Rn, so is u, which is absurd. This 
completes our proof. �
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