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Abstract

In the hyper-viscous Navier—Stokes equations of incompressible flow, the operator
A =—4 1is replaced by A,,, =aAd*+ bA for real numbers o,a,b with «>1 and b>0.
We treat here the case ¢>0 and equip 4 (and hence A,,;) with periodic boundary
conditions over a rectangular solid Q< R". For initial data in L”(Q) with a>n/(2p) +1/2
we establish local existence and uniqueness of strong solutions, generalizing a result
of Giga/Miyakawa for o =1 and b =0. Specializing to the case p =2, which
holds a particular physical relevance in terms of the total energy of the system, it is
somewhat interesting to note that the condition a>n/4+1/2 is sufficient also to
establish global existence of these unique regular solutions and uniform higher-order
bounds. For the borderline case « = n/4 + 1/2 we generalize standard existing (for n = 3)
“folklore” results and use energy techniques and Gronwall’s inequality to obtain first
a time-dependent H*-bound, and then convert to a time-independent global exponential H*-
bound. This is to be expected, given that uniform bounds already exist for n =2,0 =1
([6, pp. 78-79]), and the folklore bounds already suggest that the o>n/4+ 1/2 cases
for n>=3 should behave as well as the n = 2 case. What is slightly less expected is that the n>3
cases are easier to prove and give better bounds, e.g. the uniform bound for n>3 depends
on the square of the data in the exponential rather than the fourth power for n = 2.
More significantly, for «>n/4 + 1/2 we use our own entirely semigroup techniques to obtain
uniform global bounds which bootstrap directly from the uniform L2-estimate and are
algebraic in terms of the uniform L?-bounds on the initial and forcing data. The integer
powers on the square of the data increase without bound as o | n/4 4+ 1/2, thus “anticipating”
the exponential bound in the borderline case o =n/4 4 1/2. We prove our results for the
case a =1 and b =0; the general case with ¢>0 and >0 can be recovered by using
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norm-equivalence. We note that the hyperviscous Navier—Stokes equations have both physical
and numerical application.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The Navier—Stokes equations with hyper-viscosity consist of the standard Navier—
Stokes equations of incompressible viscous flow, but with 4 = —4 replaced by
Ayap = aA* + bA for a real number a>1 and b=0:

uy=—Ayqpu— (u-Viu—Vp+yg (1.1a)

divu = 0. (1.1b)

System (1.1) with o>1 and a =1,b =0 has been used by numerical analysts
as a substitute model for the standard case o = 1; the hyper-viscosity is
used to counteract microscopic artificial effects of discretization [3.4,12,14].
In these works hyper-viscosity is generally referred to as hyperdissipation.
Orders of dissipation as high or higher than o =2 have typically been used,
while preserving the overall behavior of the flow. The case A4,,, for 5>0
has significant physical meaning; see, e.g. [5] for a discussion of regimes
where various choices of @« and b have validity. For >0 the norm ||4,,pv||, is
equivalent to the norm ||4,0||, where 4, = (—4)" = A*. We will state and prove our
results below for the case A, ., = Ay; because of the norm-equivalence with a>0 it
will be seen that our results can be easily adapted to hold for the full case 4, ., for
a,b>0. This case has been referred to as enhanced dissipation in some works (see
e.g. [17]).

Recent theoretical studies of (1.1) with 4, ,, = A, include a local existence result
on R? for initial data in L*(R?) [18] and a folklore result for f =0 that global
existence of regular solutions holds over R* (with e.g. H'-initial data) when o> 5/4; a
proof of this global result appears in [11], whose main purpose is to estimate the
Hausdorff dimension of the singular set for 1<wa<5/4. Global existence and
regularity in R® for the crucial borderline case « = 5/4 and g = 0 has only very
recently been obtained [16]. The proofs of both global results follow the standard
“energy”’ method, i.e., multiplying both sides of (1.2) by 4%u for some power  and
integrating by parts. They are the natural generalization of the standard n = 2 result.
Both proofs apply equally well on a three-dimensional rectangular solid Q with
periodic boundary conditions.

Before introducing our main results, we first place (1.1) in the same standard
mathematical setting used to study (1.1) in the case « = 1. Let P be the self-adjoint
projection onto the solenoidal vectors; thus if H, = PL*(Q), we have that L*(Q) =
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H,® H}. Applying P to both sides of (1.1), and setting / = Pg, we obtain the initial-
value problem

Uy =—Agu—Plu-Viu+f, (1.2a)

u(x,0) = up(x). (1.2b)

We have noted that for 4 = —A4 equipped with periodic boundary conditions P
commutes with 4, and hence P commutes with 4, by the functional calculus. System
(1.2) is the version of (1.1) we will study below. We will sketch how an appropriate
version of (1.2) might be handled when A is equipped with other boundary
conditions in our concluding remarks. We note also that in treating (1.2) with
periodic boundary conditions, we are assuming the usual transformation (which can
be absorbed into f) that results when moding out the constant-vectors; under this
transformation 4 has a positive first eigenvalue 4;.

Part of what we will do here is to recover the global existence result for n = 3 and
with o> 5/4 in the periodic boundary condition case for general n and a>n/4 4+ 1/2.
We will treat the solution of (1.2) as a trajectory in a Banach space, and also show
local existence for a wide class of singular initial data in L”(Q) for a>=n/(2p) + 1/2.
Note that for the particularly physically relevant case p =2 the “magic
number” a>n/4+ 1/2 appears again. For a>n/4+1/2 we show in fact that
global existence easily follows from the local L*-existence result by standard
principles of ODE theory, and we will use semigroup methods to establish
global higher-order bounds uniform in both x and ¢ that only depend algebraically
on powers of the data. Unique to our proof is that we will be able to bootstrap
directly from a uniform L?-bound. For & = n/4 + 1/2 we obtain uniform H*-bounds
that depend exponentially on the square of the data. This will be done in two
steps: First, we generalize and slightly improve the time-dependent Gronwall-type
H'-bound of [16] to an H*bound that holds in any dimension n>3 for « =
n/4 + 1/2. It will hold also for nonzero /" and will be seen as a natural extension of
the standard n = 2 result (see e.g. [17]). But in fact for n>=3 (and > 1) the proof is
slightly easier than the n = 2 result, and, it turns out for technical reasons that the
bound is better for n>3 than for n = 2 in that its dependence is on the square of the
data in the exponential, rather than the fourth power. The second step will be to use
the fact that 4 (and A4,) has a positive nonzero first eigenvalue (in the periodic-
boundary-condition case) to convert the time-dependent bound to a uniform bound.
This is a natural extension of the n = 2 uniform bound (see e.g. [6, pp.78-79]) and it
is probably the case that the proof in [6] can be modified to work here. Nonetheless,
our method for this uniform bound has the same starting point as the » = 2 bound in
[6] and has some similarities but is otherwise independent of that proof. In
particular, it is a direct proof, and does not rely on a proof by contradiction.
Meanwhile, as the algebraic powers on the (square of the) data for a>n/4+1/2
increase to infinity as o|n/4+41/2, we will see that the a>n/4+1/2 cases
“anticipate” the o = n/4 + 1/2 bound.
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To illustrate our basic viewpoint, we briefly sketch some highlights of the
semigroup method applied to (1.2) for « = 1. Fujita and Kato [7] treated the case of a
bounded domain in R? or R? with zero boundary conditions and used the semigroup
method to express (1.2) for o = 1 as an integral equation using the variation-of-
parameters formula. They obtained local existence of strong solutions, and
demonstrated global existence for dimension » =2 and for small enough initial
(and forcing) data in dimension #n = 3, as Ladyzhenskaya had (see e.g. [13]), but they
also demonstrated that the semigroup method could allow for more singular initial
data than the energy method; in particular they could allow uy(x) = u(x,0) to be in
PL*(Q) for n=2 and PH'?(Q) for n = 3. A number of authors extended these
semigroup results (for « = 1) to allow for PL7-initial data in any dimension #; in fact
P is a well-defined bounded operator on PLP(Q) for 1<p<oo; see e.g. [10].
Miyakawa [15], Von Wahl [19], and Weissler [21] obtained local existence of strong
solutions for initial data in L?(Q) provided that p>n (Weissler’s result is on a half-
space.) Giga and Miyakawa [10] extended these results to the case p>n on a
bounded domain Q with zero boundary conditions. They also obtained global
solutions for small enough data. A simple proof for Q = R" and p>n appears in [1]
and related applications of similar techniques appear in [2]; the work in [1] was
primarily influenced by the work in [20], and the work in [2] was likewise influenced

by [10,21].
It should be noted that these results also hold in the case of Q a rectangular solid
with periodic boundary conditions. Here the Stokes operator 4 = —PA reduces to

A= —A, and the first eigenvalue of A is strictly positive, thus the domain of A4%/?
embeds into H*(Q), so that all of the technique and estimates used in [10] still apply.

In our first main result we extend the results of [10] (as applicable to the periodic-
boundary-condition case) to the case of A, = A* for all real a>1. We will
demonstrate the local existence of strong solutions in PL?(Q) provided that
a=n/(2p) + 1/2. When o = 1 we recover the Giga and Miyakawa results. But when
o> 1 we can take lower values of p. In particular we can allow p = 2 provided that

a=n/4+1/2. (1.3)

The standard energy estimate will still hold, but with 4'/? replaced by A?. In
particular the LZ?-norm of the solution does not blow up in finite time; see e.g. (1.7)
below.

Theorems 1-5 below will establish the basic local and global existence results. In
Section 4 we will then show how to establish higher-order uniform bounds for the
solution u for p =2 and a>n/4+ 1/2 (in particular for o>5/4 when n =3 and
p = 2). Our basic assumption on f is that £ : [0, o0 ) — L*(Q) is continuous, and for
strong solutions we assume as in [10] that f is locally Hélder continuous in ¢ of order
0>0; we also assume sup,-, ||f(?)||, is finite, with suitable conditions added for
estimates on Afu for f>1. For uniform bounds we assume f is uniformly locally
Holder continuous, that is, the Holder constant that works for a given ball of radius
R about zero works for the ball of radius R about any #,€ R.
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As in [10,21], in fact, Theorem 1 below will not only handle Z”-initial data but will
also handle initial data in the distributional spaces PW~2"4(Q) for appropriate
choices of g. The norm on PW~2"4(Q) we take to be |[v]|_,, , = |4 "v|lq. The proof
of Theorem 1 will combine elements of the proofs in [10,21] and will generalize them
to the case a>1.

Theorem 1. Let A7f: [0, c0) — LP(Q) be continuous and suppose the initial data uy(x)
satisfies uge PW=27(Q) such that

az=n/(2p) +1/2+y. (1.4)
Then (1.1) has a unique mild solution ue C([0, T); PW=2(Q)) for some T >0.

By mild solution we mean a solution of the usual variation-of-parameters integral
equation corresponding to (1.2). We seek strong solutions of (1.2) in the case y = 0 in
(1.4), since we are especially interested in the case (1.3) where p = 2 by the above
remarks. As in [10] we require for this that f(¢) is locally Hélder continuous of order
0>0. Thus for each T there exists a constant K7 such that

£ (01) —f )|, <Krlo — o, 0<t, n<T. (15)
With these conditions we now state our basic result on local strong solutions:

Theorem 2. Let f satisfy (1.5) for some 6 >0 and suppose uye PLF (Q) such that (1.4)
holds with y = 0. Then the unique mild solution given by Theorem 1 is a strong solution

of (1.2).
Our basic global existence result is now easy to state as the following:

Theorem 3. Let f and uy be as in Theorem 2, such that p =2 and (1.3) holds, let
4y = (M), and suppose there is a constant L such that

sup WDl <L. (1.6)

Then the local strong solution of (1.2) is a global solution of (1.2) satisfying

lu(O)lly < e |uo|, + 2, 'L (1.7)

for all t=0.

Our next theorems develope higher-order uniform bounds for our solutions u
when p = 2; we start with the case of equality in (1.3), i.e., « = n/4 + 1/2. Here and

in what follows u; = |juo||, + 2, 'L.
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Theorem 4. Let oo =n/4+ 1/2. For every ¢>0 there exists a ty>¢ such that for
e<t<ty we have that

4% ()| |5 < [|| 4u(2)| + toL?) exp(toMa[ U + to4; ' 7)) (1.8)
and for ty<t< oo we have that

14 2u(n)|R<[U3 + 2L7] exp(2M[ U} + 24, L)). (1.9)

Next we treat the case a>n/4 + 1/2; here we obtain bounds that only depend
algebraically the data, in particular primarily on integer powers of Uy.

Theorem 5. Assume o.>n/4 + 1/2. Then if f is sufficiently regular we have that for
each >0 there exists for every f>0 an integer mg and a constant C;;ﬁ such that for

e<I< 0

|4 u(n)3<C;

mﬁ(UL)"’ﬁ. (1.10)

For f#>1/2 the method of proof for Theorem 5 will give a method to bootstrap
higher-order bounds from (1.8) and (1.9) for the case & = n/4 + 1/2. The constant
Cj;qﬂ depends on the usual calculational constants, such as Sobolev constants,
constants of analyticity, etc. The power my is rather intricately determined, and so
we leave its exposition to the details of the proof. Theorem 1 will be proven in
Section 3; Theorems 2—5 will be established in Section 4.

2. Preliminaries

We first recall some basic facts about e 4 and e ™. It is well-known that 4
generates an analytic semigroup on all the L”-spaces, 1 <p< oo, and it is easy to see
that the same holds for 4, by the functional calculus, i.e., for >0, there exists a
constant ¢,(= ¢,(f)) such that for all >0

e

<t Pl (2.1)
for all ve I7(Q). Moreover, for p = 2 we have the decay estimate
lle™“olly<[folle™ (2.2)

for all =0, where A; is the first eigenvalue of 4. Note that (2.2) holds with 4

replaced by 4, if A, is replaced by (41)*. A companion result to (2.1), used here and
in [10,18], is that

1 B B,—t4, —
ltlfl(’)l || Aye " vl|, = 0. (2.3)
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This can be proven from (2.1) by first noting that if ve D(4F)

: ] p —tA, 1 BI|,—tAy g : B ,—tAy B _
lim /[ Aye”oll, = lim le™ " (AGo)ll, < lim £l oll [l 45el], = 0. (2.4)

For ve PLP(Q) we use the fact that D(A4%)~PLP(Q) is dense in PLP(Q) and then
note that (2.1) is a uniform estimate.

A key estimate that we will use was developed in [10] for the Stokes operator, and
holds as well for 4 here, since the main fact used about the Stokes operator for zero
boundary conditions is that it has the same Sobolev embedding properties as 4 =
—A. It says that for a constant § such that 0<5<1/2 +n(1 — p~!)/2 there exists a
constant M; such that

142G ), < Ml1A%, 4w 23

provided that 64+ 0+p>=n/(2p)+1/2,0,p>0,p+6>1/2. Here My} = M,(5,0,p,p).
Estimate (2.5) is proven using the Sobolev embedding properties of 4 and the
Sobolev inequalities. These facts also are used to prove the following estimate,
which also uses the Leibniz rule and the fact that P is a bounded operator on the
L7-spaces for 1 <p< oo. The estimate asserts the existence of a constant Kz such
that for f>1/2and n=3

47712 P (v - Vo)ll; ) < Kyl AP0l 5. (2.6)
A proof of (2.6) appears in [2, Lemma 3.1].

We complete our discussion of preliminary results by noting the fact that for
¢,de(0,1)

‘ I
/0 (t—s) s ds= tl_"_d/o (1 —5)"sds. (2.7)

Equality (2.7) is proven by a simple scaling argument and is used in both
[10,20].

3. Proof of Theorem 1
We recall that W~=7(Q) (in particular PW~2*(Q)) has the norm
16l pasy = 16l gy, = 14774, (3.1)
and set
E ={veC([0,T;D(477))nC((0, T;: D(4"))| sup |47 (u(1) — G(1))l|, <M,

0<T<T
sup 1074 (u(1) - G(1)]], <N}, (3.2)

0<t<T
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where T, M, N are constants to be chosen later, 6 will satisfy the conditions of (2.5),
(y+0)/a<1, and

G(t) = e uy + /te(’mf(s) ds. (3.3)
0

Here we are abusing notation somewhat in that we are letting D(A4”) represent what
is actually D(4”)nPLP(Q) for various B. We assume that upe D(477) and that
feC([0,00); D(A77)) with

sglg ||A’""f(t)||p =L,,<o. (3.4)
>

E is a nontrivial complete metric space provided that E is nonempty. We show in fact
that Ge E:

t
A7 GO, < |4 "uoll, +/0 |le™ =441 (s)]], dis
< A "wl|, + TL,,
=M, (3.5)

—t4,

where we have used the fact that e is a contraction on the I”7-spaces; moreover,

using (2.1) and 4 = (Aa)l/a7

[4°G(D)]], < 14" Te (A o),

t
+ / 4776094 (4777 ()], ds
0

< A" (AT ),

t
b [ (= A o) ds
0
< |4 e (A Tug) ||,
o[l = (p+0) /o) 0HO2L (3.6)
and thus
sup (T2 A°G(r)||, < sup AT 4MTeT A (4 g)|,
0<I<T <t<T
+ 700 1 — (p 4 0) /o] 'Ly,
=N. (3.7)

Note that N is not only finite but limr o N = 0 by (2.3).
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In the usual manner we define a map S on E by

(Sv)(1) = G(1) + /0 e~ =94 p(o(s) - Vo(s)) ds (3.8)

and our goal will be to show that for 7" (and hence N) small enough S will be a
contraction on E. We begin by estimating the metric on the difference Sv — Sw for
v,we E; we assume that y and 0 = p satisfy the conditions of (2.5).

1477 [(Sv) (1) = (Sw) (D],
' 57;'67([73')Ax
< /0 |4

t
<%MQA0—9**me%wwmuw%m+wA%mmﬂw—wmAm, (3.9)

p[||A"5P(v —w)- Vo], + |A=°P(w - V(v — w))||,] ds

where we have used (2.1), and 4 = (Az)l/ *. (We are suppressing the dependence of
v,w on s for notational convenience.) Now |\A9v\|p: ||A9+""(A‘"’v)||P and so
st/%| 4%, <N by the definition of E. Using this on the right-hand side of

(3.9), and introducing another factor of s(’*7)/* we have that

1477[(Sv) (1) = (Sw) (D],

t
<2C[,M1N/ (1 — 5)" O N/ 20m [0/ 40(p — w)|| | ds.  (3.10)
0

I,

We use (3.9) and (3.10) in two ways: First, if we set w = 0 on the right-hand side of
(3.9) and replace (Sw)(¢) by G(¢) on the left-hand side, then by introducing the factor
of s20+7)/% a5 before, we get a correct estimate that

1477 [(Sv) (1) = G,

t «
<%MQ/0—@*“W%*”WMMMWMA%mVﬁ
0
t
<c¢,MN? / (1 — )"0 /2g=200) % g
0
I
= ¢, My N?¢'~(0+20+7)/x / (1 — )@ N/2g=2040)/2 g (3.11)

0

Here we have used (2.7). We want the power of ¢ in (3.11) to be nonnegative, while
0, 0, and y are maximized. This forces 6 + 20 + y<a. With this restriction, and
setting the integral in the last line of (3.11) equal to C, = C,(9,y,0), we have that

sup_[|477[(Sv)(1) — G(0))l|, < (¢pM1C,)N*. (3.12)

0<r<T
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Now the “natural” metric on E is given by

p(v,w) = sup [|477[v(1) = w(r)]]l,

0<t<T

+ sup_ (A o(e) — w(o)]l]

0<t<T

- (3.13)

Returning to (3.10), using (3.13), and using (2.7) as in the last line of (3.11), we have
that

sup ||477[(Sv)(2) = (Sw)(@)]l], < (2¢, M1 C)Np(v, w). (3.14)

0<t<T

With (3.12) and (3.14), we are about halfway through our contraction-mapping
argument.

If we let 6 play the role of —y in the second and third lines of (3.9), we
have that

14°1(Sv)(1) = (Sw)(D)]Il,

t
—(0+40) /o
<M, /0 (0= ) OO (0 — w)]|, || 4%]],

+ ||A9w\|p||A9(v —w)||,] ds. (3.15)

I,

Letting w = 0 in (3.15), introducing the factor s*(’+")/* and replacing (Sw)(¢) by G(¢)
as before, we have that

14°[(Sv)(1) = G(n)]ll,

t
<M, / (1 — 5) " OO 2000 20002 40| 1 dis
0

t
<c, M N? / (1 — 5)~ OO 22040/ g (3.16)
0
Using (2.7) and the restriction J + 20 + y = a, we have that
14°[(S0) (1) = Gl

1
<cp]\41]\[22(7(644))/5{/ (1 o S)7(6+6)/05S72(0+‘/)/o< ds
0

= ¢, MiN*t~ 02, (5,0,,a). (3.17)
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Setting C,.; = Ci(6,0,7, ), and multiplying both sides of (3.17) by #%+7)/* we have
that

sup "/ 4°[(Sv)(1) — G(0)]l|

0<i<T

<e,MN?C, ;. (3.18)

P

Returning to (3.15), and mindful of how we used (2.7) and the factor s—2(+7)/* to
obtain (3.18), we have, similarly to (3.10) and (3.14), that

14°[(Sv)(8) = (Sw)(D)]l],

t
<2, M\N / (1 — )" OHOEgm20N 2 [0F0/2)| 40 — )| ] ds
0

<2¢, MiNt= /% C, p(v, w) (3.19)
and thus
sup 1" 4%(Sv) (1) = (Sw) (0],
0<I<T
<2¢,MINC, 1p(v,w). (3.20)

To complete our contraction-mapping argument, we first select 7' (and hence N) so
that S maps E to E. From (3.12), we see that we need

(¢,M;C,)N* <M (3.21)
and from (3.18) we need

(¢,M;Cy1)N*<N (3.22)
or

(cpMCy )N <. (3.23)

Adding (3.14) and (3.20), we have that for C,, = C, + C,,; and for any v,we E
p(Sv, Sw) < (2¢, M Cy2)Np(v, w). (3.24)

Thus, in addition to conditions (3.21) and (3.23) imposed on N, we also need, for S
to be a contraction on E, that

(2¢,M,C,)N<1. (3.25)

Since N |0 as T'| 0, we see that (3.21), (3.23), and (3.25) will be satisfied if 7" is chosen
small enough. For such a T', S is indeed a contraction map on the metric space E,
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thus there is a unique fixed point u€ E such that Su = u, i.e.,
!
u(t) = G(1) + / e~ =4 P(u(s) - Vu(s)) ds. (3.26)
0

Recalling the definition of G from (3.3), we see that u is a mild solution of (1.2), and
this proves Theorem 1.

4. Proofs of Theorems 2—5 and higher-order global bounds
Let H= A"'2Pdiv, then by [10, Lemma 2.1] H is a bounded operator on
PL*(Q) = X,. Note that, since V - u = 0 for ue X», P(u - Vu) = A'?H(u®u), where
diviu®u) = (div(uu), div(uu), div(usu)). Let B, = ||H||,. We first prove by a
different method a special case of Theorem 1 in the case n=3,p =2,0>5/4. It
will be clear how to generalize this and the bootstrap arguments to follow to the
general case p =2 and a>n/4 + 1/2. We now let
E ={veC([0, T]; X2)[||o(2) = G(1)l[, < M}. (4.1)
We let S be defined by (3.8) and set M = supy.,<7 ||G(?)|],, T to be chosen later. In

particular we first choose T so that S: E— E. We note that H commutes with 4, and
let K, be a Sobolev constant such that ||v||, <K||43/*v||,. Then

1(Sv)(2) — G(1)|], < /Ot |4'2e I H (v @ )|, ds
= [mare e
< B [ |4 w0 ds
=B, /0 I || 434 =94 4314 (v @ )|, ds
< By /OI(Z — )@ 43 ||, ds
< B.K, /()t(t—s)s/(4“)||v®v||1 ds
< B:Kioy /t(z — )7 1p)2 ds

0

5 -1
SBZKIQM{I—@} T1-5/), (4.2)
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We want the last line of (4.2) to be less than or equal to M, or

—1
BzchzM[l - 43} T(1-3/04) < (4.3)
oL

and we thus choose T accordingly; note that 1 — 5/(4e) >0 since o> 5/4. Similarly,

1(Se)(0) — (Sw(D)]l
t
<BiKica [ (=97 @ 0 —w)+ (0= w) @]l ds
0
<BKic ! . 5/(4x) _ _ d
<B K o(t ) ||UH2HU wlly + (v = wl[,[|wl], ds
5 —1
<32K102M[1—@] T34 p (0, w) (4.4)

and so S will be a contraction on E if T is also chosen so that

5 -1
BzchzM{ld =5/ <1, (4.5)

Note that the choice of T to satisfy (4.5) works for (4.3). This re-proves Theorem 1 in
the case n = 3,p = 2,0>5/4; the method of proof will be useful later.

We now bootstrap to get regularity for the solution u. We use a method that will
work on any interval of existence [0, 7] on which we have a bound M given that
[lu(?)||, <M on [0, T]. The calculations are similar to (4.2), but we in this case also

factor e (79)4: = [¢~(=)/214:]% For B to be chosen later and 7, = 1,/2, we have that
t
14 (u(r) — G(1))]],< / [l =02 g2 =24 H (u @ )| s
0
t
< / | 412 P (@ )|, s
0

t
<B / o9 || 45148 =)/ 4314y @ )|, i
0

t —7,(t1—5)
(5/4+P)/a . e~
<2 BZKICZ/O ([ _ )(5/4+ﬁ Ja ||M||2 ds
25/4+ﬁ/1B2K162M / st
= B2K1 C CmﬁM . (46)

That C,p is finite is guaranteed provided that 5/4 + <o, or 0<f<a — 5/4. Set
By = {(e— 5/4) for fixed positive {<1. We can get a bound M} on |[4%u(t)||, on



J. Avrin | J. Differential Equations 190 (2003) 330-351 343

each [¢, 00) by noting ||AP1u(?)||, <||4P (u(t) — G(1))||, + [|4Pu(?)]|,, use (4.6), and
estimate ||4%1 G(1)][, (see e.g. (4.8) below). To get a bound on ||APu(t)||, for B> B,
we first treat the cases ff<3/4. Proceeding inductively, we suppose we have the
bound HAﬁ"u(t)Hngzn on [¢, 0). Then, proceeding in a manner similar to (4.6),
setting p, = 3/(3 — 4p,) (the reason for our temporary initial restriction <3/4) and
v, =3/4—2p,if p,<2and y, =0 if p,>2 (using the fact that we are on a bounded
domain), and letting K> and Kj be constants so that [[477v|,< Ka|[v[|, and
||v\|2pn<K3||A/‘"v||27 we have for some J, to be chosen later that for e<r< oo and
C, = 2Butdut1/247,)/m

1
[ AP0 (1) — G0, < Bz/ e%(H)||A/z,,+o,1+1/2+~/,,ef[(ffs)/2]Aquvn(u®u)||2 ds
e~ Va(1=9)

2
stz | Hlap, 45

t
< 2Bt 205 g ke /
€ (l — S)

o (t=9)
Brrort 1/247,)

t
< CnBzK2K3cz/ s ||Aﬁ””(s)||§ ds
3 — S

eiryi‘y

oo
& 2
< GB KoKy (M ) /0 S

=GB K Kze,Cyp, (M}}”)z- (4.7)

For this to work we need, if y,>0, f,+0,+1/2+7y,=p,+,+5/4-20, =
5/4—p,+d<a, or 5/4—p,+,<a=5/4+ (x—5/4), or o,<(o—5/4)+p,.
Since f; <o — 5/4, this will hold if J, =, + f,. If y, =0 we need 5, + 5, <o —
1/2, and note that « — 1/2>3/4. So we can set f§,.| = f8,, + 6, = 2f8, + f3;, as long as
Bni1<3/4. Thus p, =3f,, 5 =1, etc., so that f, = (2" — 1)p,. Note that from
(4.6) we have that there exists a constant Cj such that Mj < Ci(M?). Thus from
(4.7) we see that there is a constant C such that My <CM 2 We continue this
process until we obtain a bound M} with 1/2<f,,<3/4; we now bootstrap bounds
of higher order than 1/2 from M EW. We suppose inductively that for f>1/2 we have
a bound M} on ||Au(1)|,,e<t<T, then we calculate |47 (u(z) — G(1))[|,, 6 to be
chosen later. We now let K4 be a Sobolev constant so that |\u||2<K4||A1/4u||3/2, and
we employ (2.6). We also modify (3.26) to start at t = ¢. We have that for e<¢<T

t
147 (u(t) = G() Il < / T AP TR P )| ds

&

t
< K4/ 677“075)||A1/4+ﬂ+0€7[<t73>/2]/1“P(u . Vu)||3/2 ds

t
< K4/ 6_7“<Z_S)||A3/4+ﬁ+0€_[(t_5)/2]’4"Aﬁ_l/zp(u A Vu)||3/2 dS

&
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efya(,is)

(l _ S)(3/4+ﬂ+0>/a”

efya(ffx)
([ _ S)(3/4+/5+('))/(X

t
< 2OHBO R e / AP P(u ) |3), ds

t
< 2(3/4+/3+9>/°‘K4K/f63/2/ |4 u(s)|]3 ds

e (i)

t
< 2(3/4+5+0)/u £)2 T (3/41 840/
< 2 K4K[}C3/2(qu) i (l _ S>(3/4+ﬁ+0)/“ ds

= KuKpes pCl g o (M) (4.8)
This will work provided that 3/4 + f + 6 <o, but since f<o — 5/4, we have that
3/4+p+0<3/4+0a—5/44+0=0a—1/2+0. Thus (4.8) works if & — 1/2 + 0<a,
or < 1/2. Thus we can bootstrap on [e, T| for f>1/2 using (4.8) in jumps of e.g.

0 = 1/4. To complete the argument and obtain bounds on ||4%u(¢)||, for various B,
we note that

4P u()[|, <l 4" (u(t) = GO)ll, + |47 G(1)]],

and so we only need estimates on ||4*G(?)||,.
Note that if f<o = 5/4, we simply estimate as follows:

t
147 G(0)]], < [[47e uo +/ [|4Pe =41 (1) dis ) ds
0
t
< ot |uoll +/0 (1= 5) (1 (5)]] ds]
< et P uolly + [1 = p/a) " THPL (4.9)
so that on [¢, T
147 G() ||, < eale " uoll, + [1 = p/o] ' T PIoL] (4.10)
and the integrals work out since fj/a<1.

For f=a=5/4 (e.g. to get strong solutions) we first write Aje (")4f(s) =
AyeAf (1) + Aye )4 (f(s) — f(1)). Let K7 be as in (1.5), i.e., a constant such
that ||/ (s) — f(1)||<Kr|s — 1|°, on [0, T], then

[[Aze™ 4 (f () = £ (1)1
f (s) =/ (@l

Krls — 1

(6]
t—s

(&)
(t—s)
= oKy (1 —5)°"! (4.11)

N

—~
~—

<
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which is integrable on [0, 7]; meanwhile [j A,e™ =4 (1) ds = — [ Le™4f (1) ds =
f(t) — e“=f(¢) which is in L*(Q). (Higher-order estimates require further regularity
on f, as will be detailed below.)

We thus have enough to obtain Theorem 2 in the case n = 3,p = 2,a>5/4. For
this same case but with o = 5/4, we note from (2.5) with 0 = p that we need 6 +
20=n/(2p)+1/2 =3/4+1/2 = 5/4. Taking equality in the above, we need o +
20 = oo = 5/4, which is satisfied if 6 = 1/4 and 6 = 1/2. This also satisfies 0 = p =0
and p + 6 = 0+ 6>1/2. Thus ||4%u(?)||, for p = 1/2 is bounded already by t2/°N
on any [¢, T], T asin Theorem I, and we can use the above estimates to bootstrap
from there, treating G(¢) as before. Thus Theorem 2 is established for n =3, p =2,
and o >5/4; the other cases follow similarly.

We now establish (1.7), and then use it to obtain Theorem 3, in the case n =
3, p=2, and «>5/4. The point is that, as we have seen, all of our higher-order
estimates can be bootstrapped from a bound on the L?>-norm of u in this case.

We will use a semigroup approach, and then compare this with what can be
obtained by the more standard energy method. Let [0, T') be an interval of existence
for u (e.g. a maximal one) and consider the operator B,(f) = —A, — P(u(t) - V). For
each ¢ B,(t) satisfies, for ve D(B,(t)) n PL*(Q),

(Bu(t)v,v) = — (4av,0) — (P(u- Vv),v)
= — (44v,v) — (u- Vo, Pv)
— — (A0,0) — (u- Vo,0)
= — (A, v) + ((divu)v,v)
= — (4uv,0)
< — Aq(v,0) (4.12)
for A, = (41)% as before 1, is the first eigenvalue of A4,. Thus if U(t,s)

is the fundamental solution for the (time-dependant) operator B,(f), then U
satisfies

1U(2,5)0ll, <ol [ e~ (4.13)

for all ve PL*(Q). In particular the solution u satisfies the integral equation

u(t) = U(r, 0)uy + / Ut )/ (5) ds (4.14)
0
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and thus from (4.13)
(D), < [[U(2,0)uoll +/0r||U(l’S)f(S)||z ds
< flaalle =+ [ 7o) ds
< |uol|e™™ + L/OreM’S) ds

»
< ||u0||e’i“t+L/ e ds

0
< [[uolle ™" + (4.) 'L, (4.15)

which is (1.7). Now, a similar result can be obtained using an energy method similar
to (4.16) below: multiply both sides of (1.2) by u and take inner-products. Modifying
the standard energy-inequality proof slightly, we use Poincare’s inequality and
replace (Ayu,u) by —J,||u|3 on the right-hand side, combine appropriately with the
term y||u||§7 for some constant y <4, coming from estimating (f’, u), and then use the
standard variation-of-parameters method for solving the resulting linear first-order
differential inequality. We get a similar bound as in (1.7), but with squares on the
norms.

If [0, T') is a maximal interval of existence, then the methods used in the special-
case proof of Theorem 1 we employed at the beginning of this section for o> 5/4 can
be adapted, in standard fashion, to use the estimate (1.7) to show that u is uniformly
continuous on [0, T]. Thus if T< oo u can be extended uniquely to [0, 7], and the
local existence proof then extends u to a solution on [0, T + T7] for some 7' >0. This
contradicts the maximality of T, thus we must have T'= oo, and global existence of
strong solutions now follows, since out bootstrap estimates for 4%u in this case apply
on any interval of existence. Hence we can replace M in the bootstrap estimates by
U = |luo||, + 4, 'L. This proves Theorem 3 in the case a>5/4,n =3,p = 2. For
arbitrary n similar methods can be used. For higher-order regularity on (0, c0), we
just need additional assumptions on f; we see from earlier arguments that to get
estimate on ||A%*2u(t)||,, we need that A%f(¢) is locally Hélder continuous of order &
for some 6>0 as a map from [0, 0) to PL*(Q), in addition to requiring that
sup,sg ||4%f(¢)||,< 0. We remark that, as earlier shown, all of our bootstrap
estimates for «>5/4 on ||4%u(?)||, are uniform in time for 0<f<a = 5/4 on any
interval of existence [¢, T], in particular on [¢, o], for each ¢>0, ie., for each
>0 sup, ., ||Aﬁu(t)||2<MZ for some (finite) constant M}, if f is sufficiently
regular. Since all of these estimates bootstrap from the bound (1.7), M’ i depends on
positive integer powers of |[ug||, and L = sup,., ||f(?)|,., For 0<f<a=5/4, we
need no further assumptions on f. For $>5/4, we need that 4#~%/*f is uniformly
locally Holder continuous, as defined in the introduction, i.e., the constant K7 in
(1.5) can work on any translated ball (fp — T, 7+ T).
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We now recover and improve the folklore result that gives a global, although time-
dependent, bound on ||4'2u(t)||, for n=3,p = 2,0 = 5/4. In fact we will recover
this as a special case of a result for p =2 and arbitrary n=3 for « =n/4 +1/2.
(Later we will obtain from this a time-independent bound.) First we recover the

standard energy estimate modified for o> 1. From (1.2) we have in the usual way
that

s Al@IE< = 1472ul[3 + (f,u)

= — |4 ul[3 + (47*f, 47 u)
/2,112 1 —a/2 112 1 /2,112
< A+ AR 2 1Al

1, 1
= — S I2ul} 5 14~ (4.16)

Multiplying both sides of (4.15) by 2 and integrating from 0 to ¢ we obtain
t t
1+ [ P B ds< il + [ 147 @1)

To get a bound on ||4*/?u(¢)||, we take the inner-product of both sides of (1.2)
with 4%u. We will use Holder’s inequality and the Sobolev inequalities. In particular
there is a constant M, such that [[Vull, = [|4"ul|,<M,||A*/*ull,, where
g=(2n)/(n—2(x—1)). Note « =n/4+1/2 and n=3, so «a=5/4>1. Now |P(u-
Vu), Au)| = |(u- Vu, PA"u)| = |(u - Vu, A*u)| <||u- Vul|,||4A%u||,, while [|ot -
Vull, <|Jull,,||[Vul|,, and we will want 2s = ¢, so that 2r = n/(« — 1). There is a
constant Mj such that ||ul|,, < M3||4%/?ul|, provided that 2r = (2n)/(n — 2o). But in
fact n/(a — 1) = (2n)/(n — 2a) if « = n/4 + 1/2. Thus we have that

Ld

S AU = = (A%, Aw) = (P(u - V), A%) + (f, Au)

1 1
2 2 2
< =l A%ully A+ Nl Vall || A%l + 5 112 + 5 [147ull3

N

1 1 1 1
= Sl + 5 - Tl 5 1473+ 5 11111

1 1
<5 Il Iull + 5 113

— N

1
4 2
<—M22M32||A“/2M||2+§|lf|\z. (4.18)

[\
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We multiply both sides of (4.18) by 2, set My = M3M?, think of ||4*/%ul|; as
||A%/2ul[5||A*/?ul|5, and integrate from 0 to r:

t
14 2u()| B < [|A°‘/2uo||§+ / |v<s>||§ds}

t
+/ M| 47 u(s)|[5]| 4 u(s)||> ds. (4.19)
0
Thus on the interval [0, 7] we have by Gronwall, (4.19), and (4.17) that

T t
el (1l + [ B s|exo( [ allaus) )
T
<[l + [ wreiza

<ep( [ Il + [ 14 rolar ) (420)

Inequality (4.20) shows that the H*-norm of u does not blow up in finite time;
it is thus clear that global existence now follows in the borderline case
p=2,0=n/4+1/2. In fact, as noted above, Theorem 1 gives that ||4'%u(7)]|,
exists and is bounded by /") N on the existence interval (0, T]. Bootstrap
regularity from the beginning of this section then gives the existence of
A*?u on (0, T). We can construct an alternative existence proof for solutions in
H* along the lines of the arguments used at the beginning of this section with initial
data 4**u(t,) for some t, in (0, 7], which gives us the machinery to contradict the
finiteness of any 7 in a maximal interval of existence [0, T]. Thus for p =2 and
a=n/4+1/2, we have a global strong solution u(z), which will still satisfy (1.7) for
all >0.

We now use the time-dependent bound (4.20) to obtain a global uniform (time-

independent) bound on ||4*/2u(r)||,. Neglecting the term |[u(7)||5 on the left-hand
side of (4.17) and dividing both sides by ¢, we obtain

L[ 1 R
o [ s ol 4 [0

1 1
<;|\u0|\§+TL2. (4.21)
Lo

Set t = Ty = 1 to obtain

2

1
L
/ 42| ds < [Juo]|2 + (4.22)
0

Z.
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Note that the right-hand side of (4.22) only depends on ||ug||, and L. By the mean-
value theorem for integrals there exists a 7€ (0, 1) such that
2 ) L
147 2u(t0) 15 = [luol |3 + = (4.23)
For a given £>0, replace ||A%/2u(0)|[3 in (4.20) by ||4%/2u(e)||3, thus (4.20) gives a
bound

14 2u(0)] [ < C(1| A" ute) 5. 70) (4.24)

for e<<r<19; set Iy = [g, to].

Now if Up = |jup||, + 4; 'L, then |[u(o)|], < Uy by (1.7). Replacing ||uo||5 by U? in
(4.21), we re-calculate in (4.21) and (4.22), thinking of (1.2) with initial data u(¢),
using the semigroup property of solutions. This gives the fact that

2

1
L
/0 ||A%u| |3 ds< U + ; (4.25)

Lo

whenever (1.2) has initial data bounded by Uj;.

Now consider the interval [tg, 7o + 2] = I;. We can use (4.20) to obtain a bound
C(||4**u(ty)]|,,2). But by (4.25) there exists a ¢, in the interval [tg + 1,7 + 2] such
that ||A%2u(1,)||3 = U2 + 2, 'L2. Now consider the interval I, = [t,, 7, + 2]. We have
from (4.20) that

|4*u()]], < C(U? + 2;'L*,2) (4.26)

for ¢ <t<t;+2. Also, there exists a time #, in [f;+ 1,71 +2] such that
|4%/u(t2)|5 = U? + 4, ' L? by considering (1.2) with initial data u(z,), noting that
[lu(t1)||, < UL, and using (4.25). We set Iy = [t2, t, + 2] and continue in this fashion,
obtaining a sequence #, and intervals I, = [t,_1, ¢, + 2]. Since #, >, + 1, we have
that #,— co. On Iy we have the bound (4.24) for [|4*u(t)||,, on I, we have the
bound C(U? + 2;'L?,2), and for I, with n>2 we have that ||4*/?u(t)||, is bounded
by (4.26) as well. Since [0, c0) is covered by the union of the I,, we thus get a global
bound for ||4%?u(t)||, for all £=0. We now simplify these bounds to see explicitly the
exponential dependence on the data. For e l; we have from (4.20) that

4" ()| E <147 u(e)| |3 + t0L?] exp(to Ma[ U7 + to2; ' L7)). (4.27)
For tel, for n>1 we have from (4.20) and (4.26) that
147 2u(0)|5<[U7 + 2L exp(2Ma[ U7 + 27 L%)), (4.28)

where we have majorized 7 in the integrals by 7y in (4.27) and by 2 in (4.28), since
|[Io| <t and |I,| = 2 for n>=1. As noted in the introduction, this result generalizes the
uniform bound for dimension # =2 and o« =1 found in [6] to the case n>=3 and
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o =n/4+ 1/2;in fact, (4.28) details how the exponential only depends on the square
of the data; as noted in the introduction, the n = 2 case needs a fourth power (see ¢.g.
[6, pp. 78-79)).

5. Concluding remarks

The argument at the end of Section 4 seems necessary to obtain global higher-
order bounds for p = 2,0 = n/4 + 1/2; we do not see how to bootstrap directly from
(1.7) using semigroup methods. This is because N |0 as 7' | 0, but not uniformly with
respect to the L?>-bound. At the same time, we do not see how to obtain better
bounds using the energy method. Meanwhile the case a>n/4 + 1/2 in fact seems
unique in its ability to allow for the obtaining of algebraic bounds, i.e., if a bound on
||[4%u(?)||, has been obtained via bootstrapping from 8 = 8, + B, + --- + fB,, we see
from (4.7) and (4.8) that there is a constant Cy,, such that || 4Pu(7)||, < Cp, M*" where

we can take M = U = ||ug||, + A, L. This becomes especially dramatic in the case
n=3 and o =2, which appears both in numerical usage [14] and in physical
application [5]. Here we can take f = 1/2 in (4.6), since 1/2<2 —5/4 =3/4, and
thus obtain a constant C,, such that [|4'/2u(1)||, < Cy2(UL).

To apply these methods to other boundary conditions, we illustrate a possible
procedure for, e.g., zero Dirichlet boundary conditions. Here the Stokes operator for
oa=11s PA, since P does not commute with 4 in this case. The operator P4 was
shown to be analytic on all the 17 -spaces, 1 <p < o0, and to imbed properly into the
Sobolev spaces in a series of articles by Giga [8,9]. One would have to prove these
facts also for 4, now defined to be P(—4)", which appears possible by appropriate
modification of the arguments in [8,9]. More delicate arguments would have to be
employed, such as more rigorous use of the boundedness of the operator 4~ /2P div
on PI7(Q),1<p< oo, but this also seems quite possible; we may address this in a
future paper.
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