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Abstract

In the hyper-viscous Navier–Stokes equations of incompressible flow, the operator

A ¼ �D is replaced by Aa;a;b � aAa þ bA for real numbers a; a; b with aX1 and bX0:

We treat here the case a40 and equip A (and hence Aa;a;b) with periodic boundary

conditions over a rectangular solid OCRn: For initial data in LpðOÞ with aXn=ð2pÞ þ 1=2
we establish local existence and uniqueness of strong solutions, generalizing a result

of Giga/Miyakawa for a ¼ 1 and b ¼ 0: Specializing to the case p ¼ 2; which

holds a particular physical relevance in terms of the total energy of the system, it is

somewhat interesting to note that the condition aXn=4þ 1=2 is sufficient also to

establish global existence of these unique regular solutions and uniform higher-order

bounds. For the borderline case a ¼ n=4þ 1=2 we generalize standard existing (for n ¼ 3)

‘‘folklore’’ results and use energy techniques and Gronwall’s inequality to obtain first

a time-dependent Ha-bound, and then convert to a time-independent global exponential Ha-

bound. This is to be expected, given that uniform bounds already exist for n ¼ 2; a ¼ 1

([6, pp. 78–79]), and the folklore bounds already suggest that the aXn=4þ 1=2 cases

for nX3 should behave as well as the n ¼ 2 case. What is slightly less expected is that the nX3

cases are easier to prove and give better bounds, e.g. the uniform bound for nX3 depends

on the square of the data in the exponential rather than the fourth power for n ¼ 2:
More significantly, for a4n=4þ 1=2 we use our own entirely semigroup techniques to obtain

uniform global bounds which bootstrap directly from the uniform L2-estimate and are

algebraic in terms of the uniform L2-bounds on the initial and forcing data. The integer

powers on the square of the data increase without bound as akn=4þ 1=2; thus ‘‘anticipating’’
the exponential bound in the borderline case a ¼ n=4þ 1=2: We prove our results for the

case a ¼ 1 and b ¼ 0; the general case with a40 and bX0 can be recovered by using
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norm-equivalence. We note that the hyperviscous Navier–Stokes equations have both physical

and numerical application.
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1. Introduction

The Navier–Stokes equations with hyper-viscosity consist of the standard Navier–
Stokes equations of incompressible viscous flow, but with A � �D replaced by
Aa;a;b � aAa þ bA for a real number aX1 and bX0:

ut ¼ �Aa;a;bu � ðu � rÞu �rp þ g ð1:1aÞ

div u ¼ 0: ð1:1bÞ

System (1.1) with a41 and a ¼ 1; b ¼ 0 has been used by numerical analysts
as a substitute model for the standard case a ¼ 1; the hyper-viscosity is
used to counteract microscopic artificial effects of discretization [3,4,12,14].
In these works hyper-viscosity is generally referred to as hyperdissipation.
Orders of dissipation as high or higher than a ¼ 2 have typically been used,
while preserving the overall behavior of the flow. The case Aa;a;b for b40

has significant physical meaning; see, e.g. [5] for a discussion of regimes
where various choices of a and b have validity. For a40 the norm jjAa;a;bvjj2 is

equivalent to the norm jjAavjj2 where Aa � ð�DÞa ¼ Aa: We will state and prove our

results below for the case Aa;a;b ¼ Aa; because of the norm-equivalence with a40 it

will be seen that our results can be easily adapted to hold for the full case Aa;a;b for

a; b40: This case has been referred to as enhanced dissipation in some works (see
e.g. [17]).

Recent theoretical studies of (1.1) with Aa;a;b ¼ Aa include a local existence result

on R2 for initial data in L2ðR2Þ [18] and a folklore result for f ¼ 0 that global

existence of regular solutions holds over R3 (with e.g. H1-initial data) when a45=4; a
proof of this global result appears in [11], whose main purpose is to estimate the
Hausdorff dimension of the singular set for 1oao5=4: Global existence and

regularity in R3 for the crucial borderline case a ¼ 5=4 and g ¼ 0 has only very
recently been obtained [16]. The proofs of both global results follow the standard

‘‘energy’’ method, i.e., multiplying both sides of (1.2) by Abu for some power b and
integrating by parts. They are the natural generalization of the standard n ¼ 2 result.
Both proofs apply equally well on a three-dimensional rectangular solid O with
periodic boundary conditions.

Before introducing our main results, we first place (1.1) in the same standard
mathematical setting used to study (1.1) in the case a ¼ 1: Let P be the self-adjoint

projection onto the solenoidal vectors; thus if Hs ¼ PL2ðOÞ; we have that L2ðOÞ ¼
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Hs"H>
s : Applying P to both sides of (1.1), and setting f ¼ Pg; we obtain the initial-

value problem

ut ¼ �Aau � Pðu � rÞu þ f ; ð1:2aÞ

uðx; 0Þ ¼ u0ðxÞ: ð1:2bÞ

We have noted that for A ¼ �D equipped with periodic boundary conditions P

commutes with A; and hence P commutes with Aa by the functional calculus. System
(1.2) is the version of (1.1) we will study below. We will sketch how an appropriate
version of (1.2) might be handled when A is equipped with other boundary
conditions in our concluding remarks. We note also that in treating (1.2) with
periodic boundary conditions, we are assuming the usual transformation (which can
be absorbed into f ) that results when moding out the constant-vectors; under this
transformation A has a positive first eigenvalue l1:

Part of what we will do here is to recover the global existence result for n ¼ 3 and
with aX5=4 in the periodic boundary condition case for general n and aXn=4þ 1=2:
We will treat the solution of (1.2) as a trajectory in a Banach space, and also show
local existence for a wide class of singular initial data in LpðOÞ for aXn=ð2pÞ þ 1=2:
Note that for the particularly physically relevant case p ¼ 2 the ‘‘magic
number’’ aXn=4þ 1=2 appears again. For a4n=4þ 1=2 we show in fact that

global existence easily follows from the local L2-existence result by standard
principles of ODE theory, and we will use semigroup methods to establish
global higher-order bounds uniform in both x and t that only depend algebraically
on powers of the data. Unique to our proof is that we will be able to bootstrap

directly from a uniform L2-bound. For a ¼ n=4þ 1=2 we obtain uniform Ha-bounds
that depend exponentially on the square of the data. This will be done in two
steps: First, we generalize and slightly improve the time-dependent Gronwall-type

H1-bound of [16] to an Ha-bound that holds in any dimension nX3 for a ¼
n=4þ 1=2: It will hold also for nonzero f and will be seen as a natural extension of
the standard n ¼ 2 result (see e.g. [17]). But in fact for nX3 (and a41) the proof is
slightly easier than the n ¼ 2 result, and, it turns out for technical reasons that the
bound is better for nX3 than for n ¼ 2 in that its dependence is on the square of the
data in the exponential, rather than the fourth power. The second step will be to use
the fact that A (and Aa) has a positive nonzero first eigenvalue (in the periodic-
boundary-condition case) to convert the time-dependent bound to a uniform bound.
This is a natural extension of the n ¼ 2 uniform bound (see e.g. [6, pp.78–79]) and it
is probably the case that the proof in [6] can be modified to work here. Nonetheless,
our method for this uniform bound has the same starting point as the n ¼ 2 bound in
[6] and has some similarities but is otherwise independent of that proof. In
particular, it is a direct proof, and does not rely on a proof by contradiction.
Meanwhile, as the algebraic powers on the (square of the) data for a4n=4þ 1=2
increase to infinity as akn=4þ 1=2; we will see that the a4n=4þ 1=2 cases
‘‘anticipate’’ the a ¼ n=4þ 1=2 bound.
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To illustrate our basic viewpoint, we briefly sketch some highlights of the
semigroup method applied to (1.2) for a ¼ 1: Fujita and Kato [7] treated the case of a

bounded domain in R2 or R3 with zero boundary conditions and used the semigroup
method to express (1.2) for a ¼ 1 as an integral equation using the variation-of-
parameters formula. They obtained local existence of strong solutions, and
demonstrated global existence for dimension n ¼ 2 and for small enough initial
(and forcing) data in dimension n ¼ 3; as Ladyzhenskaya had (see e.g. [13]), but they
also demonstrated that the semigroup method could allow for more singular initial
data than the energy method; in particular they could allow u0ðxÞ � uðx; 0Þ to be in

PL2ðOÞ for n ¼ 2 and PH1=2ðOÞ for n ¼ 3: A number of authors extended these
semigroup results (for a ¼ 1Þ to allow for PLp-initial data in any dimension n; in fact

P is a well-defined bounded operator on PLPðOÞ for 1opoN; see e.g. [10].
Miyakawa [15], Von Wahl [19], and Weissler [21] obtained local existence of strong
solutions for initial data in LpðOÞ provided that p4n (Weissler’s result is on a half-
space.) Giga and Miyakawa [10] extended these results to the case pXn on a
bounded domain O with zero boundary conditions. They also obtained global
solutions for small enough data. A simple proof for O ¼ Rn and p4n appears in [1]
and related applications of similar techniques appear in [2]; the work in [1] was
primarily influenced by the work in [20], and the work in [2] was likewise influenced
by [10,21].

It should be noted that these results also hold in the case of O a rectangular solid
with periodic boundary conditions. Here the Stokes operator A ¼ �PD reduces to

A ¼ �D; and the first eigenvalue of A is strictly positive, thus the domain of Aa=2

embeds into HaðOÞ; so that all of the technique and estimates used in [10] still apply.
In our first main result we extend the results of [10] (as applicable to the periodic-

boundary-condition case) to the case of Aa � Aa for all real aX1: We will
demonstrate the local existence of strong solutions in PLpðOÞ provided that
aXn=ð2pÞ þ 1=2: When a ¼ 1 we recover the Giga and Miyakawa results. But when
a41 we can take lower values of p: In particular we can allow p ¼ 2 provided that

aXn=4þ 1=2: ð1:3Þ

The standard energy estimate will still hold, but with A1=2 replaced by A
1=2
a : In

particular the L2-norm of the solution does not blow up in finite time; see e.g. (1.7)
below.

Theorems 1–5 below will establish the basic local and global existence results. In
Section 4 we will then show how to establish higher-order uniform bounds for the
solution u for p ¼ 2 and aXn=4þ 1=2 (in particular for aX5=4 when n ¼ 3 and

p ¼ 2Þ: Our basic assumption on f is that f : ½0;NÞ-L2ðOÞ is continuous, and for
strong solutions we assume as in [10] that f is locally Hölder continuous in t of order
d40; we also assume suptX0 jjf ðtÞjj2 is finite, with suitable conditions added for

estimates on Ab
au for b41: For uniform bounds we assume f is uniformly locally

Hölder continuous, that is, the Hölder constant that works for a given ball of radius
R about zero works for the ball of radius R about any t0AR:
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As in [10,21], in fact, Theorem 1 below will not only handle Lp-initial data but will

also handle initial data in the distributional spaces PW�2g;qðOÞ for appropriate

choices of q: The norm on PW�2g;qðOÞ we take to be jjvjj�2g;q ¼ jjA�gvjjq: The proof
of Theorem 1 will combine elements of the proofs in [10,21] and will generalize them
to the case aX1:

Theorem 1. Let A�gf : ½0;NÞ-LpðOÞ be continuous and suppose the initial data u0ðxÞ
satisfies u0APW�2g;pðOÞ such that

aXn=ð2pÞ þ 1=2þ g: ð1:4Þ

Then (1.1) has a unique mild solution uACð½0;T �;PW�2g;pðOÞÞ for some T40:

By mild solution we mean a solution of the usual variation-of-parameters integral
equation corresponding to (1.2). We seek strong solutions of (1.2) in the case g ¼ 0 in
(1.4), since we are especially interested in the case (1.3) where p ¼ 2 by the above
remarks. As in [10] we require for this that f ðtÞ is locally Hölder continuous of order
d40: Thus for each T there exists a constant KT such that

jjf ðt1Þ � f ðt2ÞjjppKT jt1 � t2jd; 0pt1; t2pT : ð1:5Þ

With these conditions we now state our basic result on local strong solutions:

Theorem 2. Let f satisfy (1.5) for some d40 and suppose u0APLpðOÞ such that (1.4)
holds with g ¼ 0: Then the unique mild solution given by Theorem 1 is a strong solution

of (1.2).

Our basic global existence result is now easy to state as the following:

Theorem 3. Let f and u0 be as in Theorem 2, such that p ¼ 2 and (1.3) holds, let

la � ðl1Þa; and suppose there is a constant L such that

sup
tX0

jjf ðtÞjj2pL: ð1:6Þ

Then the local strong solution of (1.2) is a global solution of (1.2) satisfying

jjuðtÞjj2pe�latjju0jj2 þ l�1
a L ð1:7Þ

for all tX0:

Our next theorems develope higher-order uniform bounds for our solutions u

when p ¼ 2; we start with the case of equality in (1.3), i.e., a ¼ n=4þ 1=2: Here and

in what follows uL � jju0jj2 þ l�1
a L:
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Theorem 4. Let a ¼ n=4þ 1=2: For every e40 there exists a t04e such that for

eptpt0 we have that

jjAa=2uðtÞjj22p½jjAa=2uðeÞjj22 þ t0L2� expðt0M4½U2
L þ t0l

�1
a L2�Þ ð1:8Þ

and for t0ptoN we have that

jjAa=2uðtÞjj22p½U2
L þ 2L2� expð2M4½U2

L þ 2l�1
a L2�Þ: ð1:9Þ

Next we treat the case a4n=4þ 1=2; here we obtain bounds that only depend
algebraically the data, in particular primarily on integer powers of UL:

Theorem 5. Assume a4n=4þ 1=2: Then if f is sufficiently regular we have that for

each e40 there exists for every b40 an integer mb and a constant Ce
mb

such that for

eptoN

jjAbuðtÞjj22pCe
mb
ðULÞmb : ð1:10Þ

For b41=2 the method of proof for Theorem 5 will give a method to bootstrap
higher-order bounds from (1.8) and (1.9) for the case a ¼ n=4þ 1=2: The constant
Ce

mb
depends on the usual calculational constants, such as Sobolev constants,

constants of analyticity, etc. The power mb is rather intricately determined, and so

we leave its exposition to the details of the proof. Theorem 1 will be proven in
Section 3; Theorems 2–5 will be established in Section 4.

2. Preliminaries

We first recall some basic facts about e�tA and e�tAa : It is well-known that A

generates an analytic semigroup on all the LP-spaces, 1ppoN; and it is easy to see
that the same holds for Aa by the functional calculus, i.e., for b40; there exists a
constant cpð¼ cpðbÞÞ such that for all t40

jjAb
ae�tAavjjppcpt�bjjvjjp ð2:1Þ

for all vALpðOÞ: Moreover, for p ¼ 2 we have the decay estimate

jje�tAvjj2pjjvjj2e�l1t ð2:2Þ

for all tX0; where l1 is the first eigenvalue of A: Note that (2.2) holds with A

replaced by Aa if l1 is replaced by ðl1Þa: A companion result to (2.1), used here and
in [10,18], is that

lim
tk0

tbjjAb
ae�tAavjjp ¼ 0: ð2:3Þ
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This can be proven from (2.1) by first noting that if vADðAb
aÞ

lim
tk0

tbjjAb
ae�tAavjjp ¼ lim

tk0
tbjje�tAaðAb

avÞjjpp lim
tk0

tbjje�tAavjjpjjAb
avjjp ¼ 0: ð2:4Þ

For vAPLpðOÞ we use the fact that DðAb
aÞ-PLPðOÞ is dense in PLPðOÞ and then

note that (2.1) is a uniform estimate.
A key estimate that we will use was developed in [10] for the Stokes operator, and

holds as well for A here, since the main fact used about the Stokes operator for zero
boundary conditions is that it has the same Sobolev embedding properties as A ¼
�D: It says that for a constant d such that 0pdo1=2þ nð1� p�1Þ=2 there exists a
constant M1 such that

jjA�dPðv � rwÞjjppM1jjAyvjjpjjArwjjp ð2:5Þ

provided that dþyþrXn=ð2pÞþ1=2; y; r40; rþd41=2: Here M1 ¼ M1ðd; y; r; pÞ:
Estimate (2.5) is proven using the Sobolev embedding properties of A and the
Sobolev inequalities. These facts also are used to prove the following estimate,
which also uses the Leibniz rule and the fact that P is a bounded operator on the
Lp-spaces for 1opoN: The estimate asserts the existence of a constant Kb such

that for b41=2 and n ¼ 3

jjAb�1=2Pðv � rvÞjj3=2pKbjjAbvjj22: ð2:6Þ

A proof of (2.6) appears in [2, Lemma 3.1].
We complete our discussion of preliminary results by noting the fact that for

c; dAð0; 1Þ
Z t

0

ðt � sÞ�c
s�d ds ¼ t1�c�d

Z 1

0

ð1� sÞ�c
s�d ds: ð2:7Þ

Equality (2.7) is proven by a simple scaling argument and is used in both
[10,20].

3. Proof of Theorem 1

We recall that W�2g;pðOÞ (in particular PW�2g;pðOÞ) has the norm

jjvjjDðA�gÞ ¼ jjvjj�2g;p ¼ jjA�gvjjp ð3:1Þ

and set

E ¼fvACð½0;T �;DðA�gÞÞ-Cðð0;T �;DðAyÞÞj sup
0pTpT

jjA�gðvðtÞ � GðtÞÞjjppM;

sup
0otpT

tðyþgÞ=ajjAyðvðtÞ � GðtÞjjppNg; ð3:2Þ
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where T ;M;N are constants to be chosen later, y will satisfy the conditions of (2.5),
ðgþ yÞ=ao1; and

GðtÞ ¼ e�tAu0 þ
Z t

0

e�ðt�sÞAf ðsÞ ds: ð3:3Þ

Here we are abusing notation somewhat in that we are letting DðAbÞ represent what
is actually DðAbÞ-PLpðOÞ for various b: We assume that u0ADðA�gÞ and that
fACð½0;NÞ;DðA�gÞÞ with

sup
tX0

jjA�gf ðtÞjjp � Lg;poN: ð3:4Þ

E is a nontrivial complete metric space provided that E is nonempty. We show in fact
that GAE:

jjA�gGðtÞjjpp jjA�gu0jjp þ
Z t

0

jje�ðt�sÞAaA�gf ðsÞjjp ds

p jjA�gu0jjp þ TLg;p

�M; ð3:5Þ

where we have used the fact that e�tAa is a contraction on the Lp-spaces; moreover,

using (2.1) and A ¼ ðAaÞ1=a;

jjAyGðtÞjjpp jjAyþge�tAaðA�gu0Þjjp

þ
Z t

0

jjAyþge�ðt�sÞAaðA�gf ðsÞÞjjp ds

p jjAyþge�tAaðA�gu0Þjjp

þ cp

Z t

0

ðt � sÞ�ðgþyÞ=ajjA�gf ðsÞjjp ds

p jjAyþge�tAðA�gu0Þjjp

þ cp½1� ðgþ yÞ=a��1
t1�ðgþyÞ=aLg;p ð3:6Þ

and thus

sup
0ptpT

tðyþgÞ=ajjAyGðtÞjjpp sup
0ptpT

tðyþgÞ=ajjAyþge�tAaðA�gu0Þjjp

þ T1�ðgþyÞ=acp½1� ðgþ yÞ=a��1
Lg;p

�N: ð3:7Þ

Note that N is not only finite but limTk0 N ¼ 0 by (2.3).
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In the usual manner we define a map S on E by

ðSvÞðtÞ ¼ GðtÞ þ
Z t

0

e�ðt�sÞAaPðvðsÞ � rvðsÞÞ ds ð3:8Þ

and our goal will be to show that for T (and hence N) small enough S will be a
contraction on E: We begin by estimating the metric on the difference Sv � Sw for
v;wAE; we assume that g and y ¼ r satisfy the conditions of (2.5).

jjA�g½ðSvÞðtÞ � ðSwÞðtÞ�jjp

p
Z t

0

jjAd�ge�ðt�sÞAa jjp½jjA�dPðv � wÞ � rvjjp þ jjA�dPðw � rðv � wÞÞjjp� ds

pcpM1

Z t

0

ðt � sÞ�ðd�gÞ=a½jjAyðv � wÞjjpjjAyvjjp þ jjAywjjpjjAyðv � wÞjjp� ds; ð3:9Þ

where we have used (2.1), and A ¼ ðAaÞ1=a: (We are suppressing the dependence of

v;w on s for notational convenience.) Now jjAyvjjp ¼ jjAyþgðA�gvÞjjp and so

sðyþgÞ=ajjAyvjjppN by the definition of E: Using this on the right-hand side of

(3.9), and introducing another factor of sðyþgÞ=a; we have that

jjA�g½ðSvÞðtÞ � ðSwÞðtÞ�jjp

p2cpM1N

Z t

0

ðt � sÞ�ðd�gÞ=a
s�2ðyþgÞ=a½sðyþgÞ=ajjAyðv � wÞjjp� ds: ð3:10Þ

We use (3.9) and (3.10) in two ways: First, if we set w ¼ 0 on the right-hand side of
(3.9) and replace ðSwÞðtÞ by GðtÞ on the left-hand side, then by introducing the factor

of s2ðyþgÞ=a as before, we get a correct estimate that

jjA�g½ðSvÞðtÞ � GðtÞ�jjp

pcpM1

Z t

0

ðt � sÞ�ðd�gÞ=a
s�2ðyþgÞ=aðsðyþgÞ=ajjAyvjjpÞ

2
ds

pcpM1N2

Z t

0

ðt � sÞ�ðd�gÞ=a
s�2ðyþgÞ=a ds

¼ cpM1N2t1�ðdþ2yþgÞ=a
Z 1

0

ð1� sÞ�ðd�gÞ=a
s�2ðyþgÞ=a ds: ð3:11Þ

Here we have used (2.7). We want the power of t in (3.11) to be nonnegative, while
d; y; and g are maximized. This forces dþ 2yþ gpa: With this restriction, and
setting the integral in the last line of (3.11) equal to Ca ¼ Caðd; g; yÞ; we have that

sup
0ptpT

jjA�g½ðSvÞðtÞ � GðtÞ�jjppðcpM1CaÞN2: ð3:12Þ
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Now the ‘‘natural’’ metric on E is given by

rðv;wÞ ¼ sup
0ptpT

jjA�g½vðtÞ � wðtÞ�jjp

þ sup
0otpT

tðyþgÞ=ajjAy½vðtÞ � wðtÞ�jjp: ð3:13Þ

Returning to (3.10), using (3.13), and using (2.7) as in the last line of (3.11), we have
that

sup
0ptpT

jjA�g½ðSvÞðtÞ � ðSwÞðtÞ�jjppð2cpM1CaÞNrðv;wÞ: ð3:14Þ

With (3.12) and (3.14), we are about halfway through our contraction-mapping
argument.

If we let y play the role of �g in the second and third lines of (3.9), we
have that

jjAy½ðSvÞðtÞ � ðSwÞðtÞ�jjp

pcpM1

Z t

0

ðt � sÞ�ðdþyÞ=a½jjAyðv � wÞjjpjjAyvjjp

þ jjAywjjpjjAyðv � wÞjjp� ds: ð3:15Þ

Letting w ¼ 0 in (3.15), introducing the factor s2ðyþgÞ=a; and replacing ðSwÞðtÞ by GðtÞ
as before, we have that

jjAy½ðSvÞðtÞ � GðtÞ�jjp

pcpM1

Z t

0

ðt � sÞ�ðdþyÞ=a
s�2ðyþgÞ=a½sðyþgÞ=ajjAyvjjp�

2
ds

pcpM1N2

Z t

0

ðt � sÞ�ðdþyÞ=a
s�2ðyþgÞ=a ds: ð3:16Þ

Using (2.7) and the restriction dþ 2yþ g ¼ a; we have that

jjAy½ðSvÞðtÞ � GðtÞ�jjp

pcpM1N
2t�ðdþyÞ=a

Z 1

0

ð1� sÞ�ðdþyÞ=a
s�2ðyþgÞ=a ds

� cpM1N
2t�ðdþyÞ=aC1ðd; y; g; aÞ: ð3:17Þ
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Setting Ca;1 ¼ C1ðd; y; g; aÞ; and multiplying both sides of (3.17) by tðyþgÞ=a; we have

that

sup
0ptpT

tðyþgÞ=ajjAy½ðSvÞðtÞ � GðtÞ�jjp

pcpM1N2Ca;1: ð3:18Þ

Returning to (3.15), and mindful of how we used (2.7) and the factor s�2ðyþgÞ=a to
obtain (3.18), we have, similarly to (3.10) and (3.14), that

jjAy½ðSvÞðtÞ � ðSwÞðtÞ�jjp

p2cpM1N

Z t

0

ðt � sÞ�ðdþyÞ=a
s�2ðyþgÞ=a½sðyþgÞ=ajjAyðv � wÞjjp� ds

p2cpM1Nt�ðyþgÞ=aCa;1rðv;wÞ ð3:19Þ

and thus

sup
0ptpT

tðyþgÞ=ajjAy½ðSvÞðtÞ � ðSwÞðtÞ�jjp

p2cpM1NCa;1rðv;wÞ: ð3:20Þ

To complete our contraction-mapping argument, we first select T (and hence N) so
that S maps E to E: From (3.12), we see that we need

ðcpM1CaÞN2pM ð3:21Þ

and from (3.18) we need

ðcpM1Ca;1ÞN2pN ð3:22Þ

or

ðcpM1Ca;1ÞNp1: ð3:23Þ

Adding (3.14) and (3.20), we have that for Ca;2 � Ca þ Ca;1 and for any v;wAE

rðSv;SwÞpð2cpM1Ca;2ÞNrðv;wÞ: ð3:24Þ

Thus, in addition to conditions (3.21) and (3.23) imposed on N; we also need, for S

to be a contraction on E; that

ð2cpM1Ca;2ÞNo1: ð3:25Þ

Since Nk0 as Tk0; we see that (3.21), (3.23), and (3.25) will be satisfied if T is chosen
small enough. For such a T ; S is indeed a contraction map on the metric space E;
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thus there is a unique fixed point uAE such that Su ¼ u; i.e.,

uðtÞ ¼ GðtÞ þ
Z t

0

e�ðt�sÞAaPðuðsÞ � ruðsÞÞ ds: ð3:26Þ

Recalling the definition of G from (3.3), we see that u is a mild solution of (1.2), and
this proves Theorem 1.

4. Proofs of Theorems 2–5 and higher-order global bounds

Let H ¼ A�1=2P div; then by [10, Lemma 2.1] H is a bounded operator on

PL2ðOÞ ¼ X2: Note that, since r � u ¼ 0 for uAX2;Pðu � ruÞ ¼ A1=2Hðu#uÞ; where
divðu#uÞ ¼ ðdivðu1uÞ; divðu2uÞ; divðu3uÞÞ: Let B2 ¼ jjHjj2: We first prove by a

different method a special case of Theorem 1 in the case n ¼ 3; p ¼ 2; a45=4: It
will be clear how to generalize this and the bootstrap arguments to follow to the
general case p ¼ 2 and a4n=4þ 1=2: We now let

E ¼ fvACð½0;T �;X2ÞjjjvðtÞ � GðtÞjj2pMg: ð4:1Þ

We let S be defined by (3.8) and set M ¼ sup0ptpT jjGðtÞjj2; T to be chosen later. In

particular we first choose T so that S : E-E: We note that H commutes with A; and

let K1 be a Sobolev constant such that jjvjj2pK1jjA3=4vjj1: Then

jjðSvÞðtÞ � GðtÞjj2p
Z t

0

jjA1=2e�ðt�sÞAaHðv#vÞjj2 ds

¼
Z t

0

jjH½A1=2e�ðt�sÞAaðv#vÞjj2 ds

pB2

Z t

0

jjA1=2e�ðt�sÞAaðv#vÞjj2 ds

¼B2

Z t

0

jjA5=4e�ðt�sÞAaA�3=4ðv#vÞjj2 ds

pB2c2

Z t

0

ðt � sÞ�5=ð4aÞjjA�3=4v#vjj2 ds

pB2K1

Z t

0

ðt � sÞ�5=ð4aÞjjv#vjj1 ds

pB2K1c2

Z t

0

ðt � sÞ�5=ð4aÞjjvjj22 ds

pB2K1c2M2 1� 5

4a

� ��1

T ð1�5=ð4aÞÞ: ð4:2Þ
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We want the last line of (4.2) to be less than or equal to M; or

B2K1c2M 1� 5

4a

� ��1

T ð1�5=ð4aÞÞp1 ð4:3Þ

and we thus choose T accordingly; note that 1� 5=ð4aÞ40 since a45=4: Similarly,

jjðSvÞðtÞ � ðSwðtÞÞjj2

pB2K1c2

Z t

0

ðt � sÞ�5=ð4aÞjjv#ðv � wÞ þ ðv � wÞ#wjj1 ds

pB2K1c2

Z t

0

ðt � sÞ�5=ð4aÞjjvjj2jjv � wjj2 þ jjv � wjj2jjwjj2 ds

pB2K1c2M 1� 5

4a

� ��1

T ð1�5=ð4aÞÞrðv;wÞ ð4:4Þ

and so S will be a contraction on E if T is also chosen so that

B2K1c2M 1� 5

4a

� ��1

T ð1�5=ð4aÞÞo1: ð4:5Þ

Note that the choice of T to satisfy (4.5) works for (4.3). This re-proves Theorem 1 in
the case n ¼ 3; p ¼ 2; a45=4; the method of proof will be useful later.

We now bootstrap to get regularity for the solution u: We use a method that will
work on any interval of existence ½0;T � on which we have a bound M given that
jjuðtÞjj2pM on ½0;T �: The calculations are similar to (4.2), but we in this case also

factor e�ðt�sÞAa ¼ ½e�½ðt�sÞ=2�Aa �2: For b to be chosen later and ga ¼ la=2; we have that

jjAbðuðtÞ � GðtÞÞjj2p
Z t

0

jje�½ðt�sÞ=2�AaA1=2þbe�½ðt�sÞ=2�AaHðu#uÞjj2 ds

p
Z t

0

e�gaðt�sÞjjA1=2þbe�½ðt�sÞ=2�AaHðu#uÞjj2 ds

pB2

Z t

0

e�gaðt�sÞjjA5=4þbe�½ðt�sÞ=2�AaA�3=4ðu#uÞjj2 ds

p 2ð5=4þbÞ=aB2K1c2

Z t

0

e�gaðt�sÞ

ðt � sÞð5=4þbÞ=a jjujj
2
2 ds

p 2ð5=4þbÞ=aB2K1c2M
2

Z
N

0

e�gas

sð5=4þbÞ=a ds

�B2K1c2Ca;bM2: ð4:6Þ

That Ca;b is finite is guaranteed provided that 5=4þ boa; or 0oboa� 5=4: Set

b1 ¼ zða� 5=4Þ for fixed positive zo1: We can get a bound Me
b1

on jjAb1uðtÞjj2 on
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each ½e;NÞ by noting jjAb1uðtÞjj2pjjAb1ðuðtÞ � GðtÞÞjj2 þ jjAb1uðtÞjj2; use (4.6), and

estimate jjAb1GðtÞjj2 (see e.g. (4.8) below). To get a bound on jjAbuðtÞjj2 for b4b1;
we first treat the cases bo3=4: Proceeding inductively, we suppose we have the

bound jjAbn uðtÞjj2pMe
bn

on ½e;NÞ: Then, proceeding in a manner similar to (4.6),

setting pn ¼ 3=ð3� 4bnÞ (the reason for our temporary initial restriction bo3=4Þ and
gn ¼ 3=4� 2bn if pno2 and gn ¼ 0 if pnX2 (using the fact that we are on a bounded
domain), and letting K2 and K3 be constants so that jjA�gn vjj2p K2jjvjjpn

and

jjvjj2pn
pK3jjAbn vjj2; we have for some dn to be chosen later that for eptoN and

Cn ¼ 2ðbnþdnþ1=2þgnÞ=a

jjAbnþdnðuðtÞ � GðtÞÞjj2pB2

Z t

e
e�gaðt�sÞjjAbnþdnþ1=2þgn e�½ðt�sÞ=2�AaA�gnðu#uÞjj2 ds

p 2ðbnþdnþ1=2þgnÞ=aB2K2c2

Z t

e

e�gaðt�sÞ

ðt � sÞðbnþdnþ1=2þgnÞ=a
jjujj22pn

ds

pCnB2K2K3c2

Z t

e

e�gaðt�sÞ

ðt � sÞðbnþdnþ1=2þgnÞ=a
jjAbn uðsÞjj22 ds

pCnB2K2K3c2ðMe
bn
Þ2
Z

N

0

e�gas

sðbnþdnþ1=2þgnÞ=a
ds

�CnB2K2K3c2Ca;bn
ðMe

bn
Þ2: ð4:7Þ

For this to work we need, if gn40; bn þ dn þ 1=2þ gn ¼ bn þ dn þ 5=4� 2bn ¼
5=4� bn þ dnoa; or 5=4� bn þ dnoa ¼ 5=4þ ða� 5=4Þ; or dnoða� 5=4Þ þ bn:
Since b1oa� 5=4; this will hold if dn ¼ b1 þ bn: If gn ¼ 0 we need bn þ dnoa�
1=2; and note that a� 1=243=4: So we can set bnþ1 ¼ bn þ dn ¼ 2bn þ b1; as long as
bnþ1o3=4: Thus b2 ¼ 3b1; b3 ¼ 7b1; etc., so that bn ¼ ð2n � 1Þb1: Note that from

(4.6) we have that there exists a constant Ce
1 such that Me

b1
pCe

1ðM2Þ: Thus from

(4.7) we see that there is a constant Ce
n such that Me

bn
pCe

nM2n: We continue this

process until we obtain a bound Me
bm

with 1=2obmo3=4; we now bootstrap bounds

of higher order than 1=2 from Me
bm
: We suppose inductively that for b41=2 we have

a bound Me
b on jjAbuðtÞjj2; eptoT ; then we calculate jjAbþyðuðtÞ � GðtÞÞjj2; y to be

chosen later. We now let K4 be a Sobolev constant so that jjujj2pK4jjA1=4ujj3=2; and
we employ (2.6). We also modify (3.26) to start at t ¼ e: We have that for eptpT

jjAbþyðuðtÞ � GðtÞÞjj2p
Z t

e
e�gaðt�sÞjjAbþye�½ðt�sÞ=2�AaPðu � ruÞjj2 ds

pK4

Z t

e
e�gaðt�sÞjjA1=4þbþye�½ðt�sÞ=2�AaPðu � ruÞjj3=2 ds

pK4

Z t

e
e�gaðt�sÞjjA3=4þbþye�½ðt�sÞ=2�AaAb�1=2Pðu � ruÞjj3=2 ds
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p 2ð3=4þbþyÞ=aK4c3=2

Z t

e

e�gaðt�sÞ

ðt � sÞð3=4þbþyÞ=ajjA
b�1=2Pðu � ruÞjj3=2 ds

p 2ð3=4þbþyÞ=aK4Kbc3=2

Z t

e

e�gaðt�sÞ

ðt � sÞð3=4þbþyÞ=a jjA
buðsÞjj22 ds

p 2ð3=4þbþyÞ=aK4Kbc3=2ðMe
aÞ

2

Z t

e

e�gaðt�sÞ

ðt � sÞð3=4þbþyÞ=a ds

�K4Kbc3=2C
e
a;b;yðMe

bÞ
2: ð4:8Þ

This will work provided that 3=4þ bþ yoa; but since boa� 5=4; we have that
3=4þ bþ yo3=4þ a� 5=4þ y ¼ a� 1=2þ y: Thus (4.8) works if a� 1=2þ yoa;
or yo1=2: Thus we can bootstrap on ½e;T � for b41=2 using (4.8) in jumps of e.g.

y ¼ 1=4: To complete the argument and obtain bounds on jjAbuðtÞjj2 for various b;
we note that

jjAbuðtÞjj2pjjAbðuðtÞ � GðtÞÞjj2 þ jjAbGðtÞjj2;

and so we only need estimates on jjAbGðtÞjj2:
Note that if boa ¼ 5=4; we simply estimate as follows:

jjAbGðtÞjj2p jjAbe�tAau0jj2 þ
Z t

0

jjAbe�ðt�sÞAaf ðtÞ dsjj2 ds

p c2½t�b=ajju0jj2 þ
Z t

0

ðt � sÞ�b=ajjf ðsÞjj2 ds�

p c2½t�b=ajju0jj2 þ ½1� b=a��1
T1�b=aL� ð4:9Þ

so that on ½e;T �

jjAbGðtÞjj2pc2½eb=ajju0jj2 þ ½1� b=a��1
T1�b=aL� ð4:10Þ

and the integrals work out since b=ao1:

For b ¼ a ¼ 5=4 (e.g. to get strong solutions) we first write Aae�ðt�sÞAaf ðsÞ ¼
Aae�ðt�sÞAa f ðtÞ þ Aae�ðt�sÞAaðf ðsÞ � f ðtÞÞ: Let KT be as in (1.5), i.e., a constant such

that jjf ðsÞ � f ðtÞjjpKT js � tjd; on ½0;T �; then

jjAae
�ðt�sÞAaðf ðsÞ � f ðtÞÞjj2

p
c2

ðt � sÞ jjf ðsÞ � f ðtÞjj2

p
c2

ðt � sÞ KT js � tjd

¼ c2KTðt � sÞd�1 ð4:11Þ
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which is integrable on ½0;T �; meanwhile
R t

0 Aae
�ðt�sÞAaf ðtÞ ds ¼ �

R t

0
d
ds

e�sAa f ðtÞ ds ¼
f ðtÞ � etAaf ðtÞ which is in L2ðOÞ: (Higher-order estimates require further regularity
on f ; as will be detailed below.)

We thus have enough to obtain Theorem 2 in the case n ¼ 3; p ¼ 2; a45=4: For
this same case but with a ¼ 5=4; we note from (2.5) with y ¼ r that we need dþ
2yXn=ð2pÞ þ 1=2 ¼ 3=4þ 1=2 ¼ 5=4: Taking equality in the above, we need dþ
2y ¼ a ¼ 5=4; which is satisfied if d ¼ 1=4 and y ¼ 1=2: This also satisfies y ¼ rX0

and rþ d ¼ yþ d41=2: Thus jjAbuðtÞjj2 for b ¼ 1=2 is bounded already by t�2=5N

on any ½e;T �; T as in Theorem 1, and we can use the above estimates to bootstrap
from there, treating GðtÞ as before. Thus Theorem 2 is established for n ¼ 3; p ¼ 2;
and aX5=4; the other cases follow similarly.

We now establish (1.7), and then use it to obtain Theorem 3, in the case n ¼
3; p ¼ 2; and a45=4: The point is that, as we have seen, all of our higher-order

estimates can be bootstrapped from a bound on the L2-norm of u in this case.
We will use a semigroup approach, and then compare this with what can be

obtained by the more standard energy method. Let ½0;TÞ be an interval of existence
for u (e.g. a maximal one) and consider the operator BaðtÞ ¼ �Aa � PðuðtÞ � rÞ: For
each t BaðtÞ satisfies, for vADðBaðtÞÞ-PL2ðOÞ;

ðBaðtÞv; vÞ ¼ � ðAav; vÞ � ðPðu � rvÞ; vÞ

¼ � ðAav; vÞ � ðu � rv;PvÞ

¼ � ðAav; vÞ � ðu � rv; vÞ

¼ � ðAav; vÞ þ ððdiv uÞv; vÞ

¼ � ðAav; vÞ

p � laðv; vÞ ð4:12Þ

for la ¼ l1ð Þa; as before la is the first eigenvalue of Aa: Thus if Uðt; sÞ
is the fundamental solution for the (time-dependant) operator BaðtÞ; then U

satisfies

jjUðt; sÞvjj2pjjvjj2e�laðt�sÞ ð4:13Þ

for all vAPL2ðOÞ: In particular the solution u satisfies the integral equation

uðtÞ ¼ Uðt; 0Þu0 þ
Z t

0

Uðt; sÞf ðsÞ ds ð4:14Þ
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and thus from (4.13)

jjuðtÞjj2p jjUðt; 0Þu0jj2 þ
Z t

0

jjUðt; sÞf ðsÞjj2 ds

p jju0jje�lat þ
Z t

0

jjf ðsÞjj2e�laðt�sÞ ds

p jju0jje�lat þ L

Z t

0

e�laðt�sÞ ds

p jju0jje�lat þ L

Z
N

0

e�las ds

p jju0jje�lat þ ðlaÞ�1
L; ð4:15Þ

which is (1.7). Now, a similar result can be obtained using an energy method similar
to (4.16) below: multiply both sides of (1.2) by u and take inner-products. Modifying
the standard energy-inequality proof slightly, we use Poincare’s inequality and

replace ðAau; uÞ by �lajjujj22 on the right-hand side, combine appropriately with the

term gjjujj22; for some constant gola coming from estimating ðf ; uÞ; and then use the

standard variation-of-parameters method for solving the resulting linear first-order
differential inequality. We get a similar bound as in (1.7), but with squares on the
norms.

If ½0;TÞ is a maximal interval of existence, then the methods used in the special-
case proof of Theorem 1 we employed at the beginning of this section for a45=4 can
be adapted, in standard fashion, to use the estimate (1.7) to show that u is uniformly
continuous on ½0;T �: Thus if ToN u can be extended uniquely to ½0;T �; and the
local existence proof then extends u to a solution on ½0;T þ T1� for some T140: This
contradicts the maximality of T ; thus we must have T ¼ N; and global existence of

strong solutions now follows, since out bootstrap estimates for Abu in this case apply
on any interval of existence. Hence we can replace M in the bootstrap estimates by

UL ¼ jju0jj2 þ l�1
a L: This proves Theorem 3 in the case a45=4; n ¼ 3; p ¼ 2: For

arbitrary n similar methods can be used. For higher-order regularity on ð0;NÞ; we
just need additional assumptions on f ; we see from earlier arguments that to get

estimate on jjAbþ2uðtÞjj2; we need that Abf ðtÞ is locally Hölder continuous of order d
for some d40 as a map from ½0;NÞ to PL2ðOÞ; in addition to requiring that

suptX0 jjAbf ðtÞjj2oN: We remark that, as earlier shown, all of our bootstrap

estimates for a45=4 on jjAbuðtÞjj2 are uniform in time for 0pboa ¼ 5=4 on any

interval of existence ½e;T �; in particular on ½e;N�; for each e40; i.e., for each

b40 supepto0 jjAbuðtÞjj2pMe
b for some (finite) constant Me

b; if f is sufficiently

regular. Since all of these estimates bootstrap from the bound (1.7), Me
b depends on

positive integer powers of jju0jj2 and L ¼ suptX0 jjf ðtÞjj2: For 0pboa ¼ 5=4; we

need no further assumptions on f : For bX5=4; we need that Ab�5=4f is uniformly
locally Hölder continuous, as defined in the introduction, i.e., the constant KT in
(1.5) can work on any translated ball ðt0 � T ; t0 þ TÞ:
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We now recover and improve the folklore result that gives a global, although time-

dependent, bound on jjA1=2uðtÞjj2 for n ¼ 3; p ¼ 2; a ¼ 5=4: In fact we will recover

this as a special case of a result for p ¼ 2 and arbitrary nX3 for a ¼ n=4þ 1=2:
(Later we will obtain from this a time-independent bound.) First we recover the
standard energy estimate modified for a41: From (1.2) we have in the usual way
that

1

2

d

dt
jjuðtÞjj22p � jjAa=2ujj22 þ ðf ; uÞ

¼ � jjAa=2ujj22 þ ðA�a=2f ;Aa=2uÞ

p � jjAa=2ujj22 þ
1

2
jjA�a=2f jj22 þ

1

2
jjAa=2ujj22

¼ � 1

2
jjAa=2ujj22 þ

1

2
jjA�a=2f jj22: ð4:16Þ

Multiplying both sides of (4.15) by 2 and integrating from 0 to t we obtain

jjuðtÞjj22 þ
Z t

0

jjAa=2uðsÞjj22 dspjju0jj22 þ
Z t

0

jjA�a=2f ðsÞjj22 ds: ð4:17Þ

To get a bound on jjAa=2uðtÞjj2 we take the inner-product of both sides of (1.2)

with Aau: We will use Hölder’s inequality and the Sobolev inequalities. In particular

there is a constant M2 such that jjrujjq ¼ jjA1=2ujjqpM2jjAa=2ujj2; where

q ¼ ð2nÞ=ðn � 2ða� 1ÞÞ: Note a ¼ n=4þ 1=2 and nX3; so aX5=441: Now jPðu �
ruÞ;AauÞj ¼ jðu � ru;PAauÞj ¼ jðu � ru;AauÞjpjju � rujj2jjAaujj2; while jju �
rujj2pjjujj2rjjrujj2s and we will want 2s ¼ q; so that 2r ¼ n=ða� 1Þ: There is a

constant M3 such that jjujj2rpM3jjAa=2ujj2 provided that 2r ¼ ð2nÞ=ðn � 2aÞ: But in
fact n=ða� 1Þ ¼ ð2nÞ=ðn � 2aÞ if a ¼ n=4þ 1=2: Thus we have that

1

2

d

dt
jjAa=2uðtÞjj22 ¼ � ðAau;AauÞ � ðPðu � ruÞ;AauÞ þ ðf ;AauÞ

p � jjAaujj22 þ jju � rujj2jjAaujj2 þ
1

2
jjf jj22 þ

1

2
jjAaujj22

p � 1

2
jjAaujj22 þ

1

2
jju � rujj22 þ

1

2
jjAaujj22 þ

1

2
jjf jj22

p
1

2
jjujj22rjjrujj22s þ

1

2
jjf jj22

p
1

2
M2

2M2
3 jjAa=2ujj42 þ

1

2
jjf jj22: ð4:18Þ
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We multiply both sides of (4.18) by 2, set M4 � M2
2M2

3 ; think of jjAa=2ujj42 as

jjAa=2ujj22jjAa=2ujj22; and integrate from 0 to t:

jjAa=2uðtÞjj22p jjAa=2u0jj22 þ
Z t

0

jjf ðsÞjj22 ds

� �

þ
Z t

0

M4jjAa=2uðsÞjj22jjAa=2uðsÞjj22 ds: ð4:19Þ

Thus on the interval ½0;T � we have by Gronwall, (4.19), and (4.17) that

jjAa=2uðtÞjj22p jjAa=2u0jj22 þ
Z T

0

jjf ðsÞjj22 ds

� �
exp

Z t

0

M4jjAa=2uðsÞjj22 ds

� �

p jjAa=2u0jj22 þ
Z T

0

jjf ðsÞjj22 ds

� �

� exp

Z t

0

M4 jju0jj22 þ
Z s

0

jjA�a=2f ðrÞjj22dr

� �� �
: ð4:20Þ

Inequality (4.20) shows that the Ha-norm of u does not blow up in finite time;
it is thus clear that global existence now follows in the borderline case

p ¼ 2; a ¼ n=4þ 1=2: In fact, as noted above, Theorem 1 gives that jjA1=2uðtÞjj2
exists and is bounded by t�1=ð2aÞN on the existence interval ð0;T �: Bootstrap
regularity from the beginning of this section then gives the existence of

Aa=2u on ð0;T �: We can construct an alternative existence proof for solutions in
Ha along the lines of the arguments used at the beginning of this section with initial

data Aa=2uðt0Þ for some t0 in ð0;T �; which gives us the machinery to contradict the
finiteness of any T in a maximal interval of existence ½0;T �: Thus for p ¼ 2 and
aXn=4þ 1=2; we have a global strong solution uðtÞ; which will still satisfy (1.7) for
all t40:

We now use the time-dependent bound (4.20) to obtain a global uniform (time-

independent) bound on jjAa=2uðtÞjj2: Neglecting the term jjuðtÞjj22 on the left-hand

side of (4.17) and dividing both sides by t; we obtain

1

t

Z t

0

jjAa=2ujj22 dsp
1

t
jju0jj22 þ

1

t

Z t

0

jjA�a=2f ðsÞjj22 ds

p
1

t
jju0jj22 þ

1

la
L2: ð4:21Þ

Set t ¼ T0 ¼ 1 to obtain

Z 1

0

jjAa=2ujj22 dspjju0jj22 þ
L2

la
: ð4:22Þ
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Note that the right-hand side of (4.22) only depends on jju0jj2 and L: By the mean-

value theorem for integrals there exists a t0Að0; 1Þ such that

jjAa=2uðt0Þjj22 ¼ jju0jj22 þ
L2

la
: ð4:23Þ

For a given e40; replace jjAa=2uð0Þjj22 in (4.20) by jjAa=2uðeÞjj22; thus (4.20) gives a
bound

jjAa=2uðtÞjj22pCðjjAa=2uðeÞjj22; t0Þ ð4:24Þ

for eptpt0; set I0 ¼ ½e; t0�:
Now if UL ¼ jju0jj2 þ l�1

a L; then jjuðt0Þjj2pUL by (1.7). Replacing jju0jj22 by U2
L in

(4.21), we re-calculate in (4.21) and (4.22), thinking of (1.2) with initial data uðt0Þ;
using the semigroup property of solutions. This gives the fact that

Z 1

0

jjAa=2ujj22 dspU2
L þ L2

la
ð4:25Þ

whenever (1.2) has initial data bounded by UL:
Now consider the interval ½t0; t0 þ 2� ¼ I1: We can use (4.20) to obtain a bound

CðjjAa=2uðt0Þjj2; 2Þ: But by (4.25) there exists a t1 in the interval ½t0 þ 1; t0 þ 2� such
that jjAa=2uðt1Þjj22 ¼ U2

L þ l�1
a L2: Now consider the interval I2 ¼ ½t1; t1 þ 2�: We have

from (4.20) that

jjAa=2uðtÞjj2pCðU2
L þ l�1

a L2; 2Þ ð4:26Þ

for t1ptpt1 þ 2: Also, there exists a time t2 in ½t1 þ 1; t1 þ 2� such that

jjAa=2uðt2Þjj22 ¼ U2
L þ l�1

a L2 by considering (1.2) with initial data uðt1Þ; noting that

jjuðt1Þjj2pUL; and using (4.25). We set I3 ¼ ½t2; t2 þ 2� and continue in this fashion,

obtaining a sequence tn and intervals In ¼ ½tn�1; tn�1 þ 2�: Since tnXtn�1 þ 1; we have

that tn-N: On I0 we have the bound (4.24) for jjAa=2uðtÞjj2; on I1 we have the

bound CðU2
L þ l�1

a L2; 2Þ; and for In with nX2 we have that jjAa=2uðtÞjj2 is bounded
by (4.26) as well. Since ½0;NÞ is covered by the union of the In; we thus get a global

bound for jjAa=2uðtÞjj2 for all tX0:We now simplify these bounds to see explicitly the

exponential dependence on the data. For tAI0 we have from (4.20) that

jjAa=2uðtÞjj22p½jjAa=2uðeÞjj22 þ t0L2� expðt0M4½U2
L þ t0l

�1
a L2�Þ: ð4:27Þ

For tAIn for nX1 we have from (4.20) and (4.26) that

jjAa=2uðtÞjj22p½U2
L þ 2L2� expð2M4½U2

L þ 2l�1
a L2�Þ; ð4:28Þ

where we have majorized t in the integrals by t0 in (4.27) and by 2 in (4.28), since
jI0jpt0 and jInj ¼ 2 for nX1: As noted in the introduction, this result generalizes the
uniform bound for dimension n ¼ 2 and a ¼ 1 found in [6] to the case nX3 and
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a ¼ n=4þ 1=2; in fact, (4.28) details how the exponential only depends on the square
of the data; as noted in the introduction, the n ¼ 2 case needs a fourth power (see e.g.
[6, pp. 78–79]).

5. Concluding remarks

The argument at the end of Section 4 seems necessary to obtain global higher-
order bounds for p ¼ 2; a ¼ n=4þ 1=2; we do not see how to bootstrap directly from
(1.7) using semigroup methods. This is because Nk0 as Tk0; but not uniformly with

respect to the L2-bound. At the same time, we do not see how to obtain better
bounds using the energy method. Meanwhile the case a4n=4þ 1=2 in fact seems
unique in its ability to allow for the obtaining of algebraic bounds, i.e., if a bound on

jjAbuðtÞjj2 has been obtained via bootstrapping from b ¼ b1 þ b2 þ?þ bn; we see

from (4.7) and (4.8) that there is a constant Cb;n such that jjAbuðtÞjj2pCb;nM2n where

we can take M ¼ UL ¼ jju0jj2 þ l�1
a L: This becomes especially dramatic in the case

n ¼ 3 and a ¼ 2; which appears both in numerical usage [14] and in physical
application [5]. Here we can take b ¼ 1=2 in (4.6), since 1=2o2� 5=4 ¼ 3=4; and

thus obtain a constant C1=2 such that jjA1=2uðtÞjj2pC1=2ðULÞ2:
To apply these methods to other boundary conditions, we illustrate a possible

procedure for, e.g., zero Dirichlet boundary conditions. Here the Stokes operator for
a ¼ 1 is PA; since P does not commute with A in this case. The operator PA was
shown to be analytic on all the Lp -spaces, 1opoN; and to imbed properly into the
Sobolev spaces in a series of articles by Giga [8,9]. One would have to prove these

facts also for Aa now defined to be Pð�DÞa; which appears possible by appropriate
modification of the arguments in [8,9]. More delicate arguments would have to be

employed, such as more rigorous use of the boundedness of the operator A�1=2P div

on PLpðOÞ; 1opoN; but this also seems quite possible; we may address this in a
future paper.
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