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Abstract

In this paper we introduce the hyperbolic mean curvature flow and prove that the corresponding system
of partial differential equations is strictly hyperbolic, and based on this, we show that this flow admits a
unique short-time smooth solution and possesses the nonlinear stability defined on the Euclidean space
with dimension larger than 4. We derive nonlinear wave equations satisfied by some geometric quantities
related to the hyperbolic mean curvature flow. Moreover, we also discuss the relation between the equations
for hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space—time.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Classical differential geometry is on the study of curved spaces and shapes, in which the time
in general does not play a role. However, in the last few decades, mathematicians have made
great strides in understanding shapes that evolve in time. There are many processes by which
a curve or surface or manifold can evolve, among them two successful examples are the mean
curvature flow and the Ricci flow. For the Ricci flow, there are many deep and outstanding works,
for example, it can be used to successfully solve the Poincaré conjecture and geometrization
conjectures. In this paper we will focus on the mean curvature flow.
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It is well known that the mean curvature flow is related on the motion of surfaces or mani-
folds. Much more well-known motion of surfaces are those equating the velocity % with some
scalar multiple of the normal of the surface. The scalar can be the curvature, mean curvature or
the inverse of the mean curvature with suitable sign attached. This is the traditional mean cur-
vature flow. For the traditional mean curvature flow, a beautiful theory has been developed by
Hamilton, Huisken and other researchers (e.g., [4,6,10]), and some important applications have
been obtained, for example, Huisken and Ilmanen developed a theory of weak solutions of the
inverse mean curvature flow and used it to prove successfully the Riemannian Penrose inequality
(see [11]).

A natural problem is as follows: in the above argument if we replace the velocity ”fi—)f by the
acceleration ‘227}2(, what happens? In fact, Yau in [15] has suggested the following equation related
to a vibrating membrane or the motion of a surface

X

where H is the mean curvature and the 7 is the unit inner normal vector of the surface, and
pointed out that very little about the global time behavior of the hypersurfaces (see page 242
in [15]). Indeed, according to the authors’ knowledge, up to now only a few of the results on
this aspect have been known: a hyperbolic theory for the evolution of the plane curves has been
developed by Gurtin and Podio-Guidugli [5], and some applications to the crystal interfaces have
been obtained (see [14]).

Here we would like to point out that the traditional mean curvature flow equation is parabolic,
however Eq. (1.1) is hyperbolic (see Section 2 for the details). Therefore, in this sense, we name
Eq. (1.1) as the hyperbolic version of mean curvature flow, or hyperbolic mean curvature flow.
Analogous to our recent work [13], in which we introduced and studied the hyperbolic version
of the Ricci flow—the hyperbolic geometric flow, in this paper we will investigate the hyperbolic
mean curvature flow.

The paper is organized as follows. In Section 2, we introduce the hyperbolic mean curvature
flow and give the short-time existence theorem. In Section 3, we construct some exact solutions
to the hyperbolic mean curvature flow, these solutions play an important role in applied fields.
Section 4 is devoted to the study on the nonlinear stability of the hyperbolic mean curvature
flow defined on the Euclidean space with the dimension larger than 4. In Section 5, we derive
the nonlinear wave equations satisfied by some geometric quantities of the hypersurface X (-, t),
these equations show the wave character of the curvatures. In Section 6, we illustrate the rela-
tions between the hyperbolic mean curvature flow and the equations for extremal surfaces in the
Minkowski space R1-".

2. Hyperbolic mean curvature flow

Let .# be an n-dimensional smooth manifold and

X(,1): M — R
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be a one-parameter family of smooth hypersurface immersions in R**!. We say that it is a
solution of the hyperbolic mean curvature flow if

2

3 R
S X D=H(x.0i(x.0), Vxed. V>0, 2.1)

where H (x,t) is the mean curvature of X (x,t) and 7 (x, t) is the unit inner normal vector on

X(Lett) g ={gij} and A = {h; j} be the induced metric and the second fundamental form on .# in

a local coordinate system {x'} (1 <i < n), respectively. Thus, the mean curvature H (x, t) reads
H =g"h; e

Recall that the Gauss—Weingarten relations

0X
axm’

X L 0X _ on

I .. e Im
axigxs — U gxk +hijn, xJ

=—hjg
Thus, we have

CED ¢ L 0X

axiox/ i gxk

AnggijViVszgij< >=gijhijﬁ=Hﬁ.

So the hyperbolic mean curvature flow equation (2.1) can be equivalently rewritten as

X _a x=g"f'( 3.2X.—r.k8_x>. (2.2)
ar2 & axigxs U gxk
Noting
?X 89X
Fz]; =g“(m, W)’
we get

2 2 2
R TI ST k,( e ¢ ax)ax 23

R Bl Bl
012 ax'ox/ dxiox/’ 9x! ) axk

It is easy to see that Eq. (2.3) is not strictly hyperbolic. Therefore, instead of considering Eq. (2.3)
we will follow a trick of DeTurck [3] by modifying the flow through a diffeomorphism of .#,
under which (2.3) turns out to be strictly hyperbolic, so that we can apply the standard theory of
hyperbolic equations.

Suppose X(x, 1) is a solution of Eq. (2.1) (equivalently, (2.2)) and ¢; : # — A is a family
of diffeomorphisms of .Z . Let

X(x,0) =@ X(x,1),

where ¢ is the pull-back operator of ¢,. We now want to find the evolution equation for the
metric X (x,1).
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Denote
— —_ 1 2 n
y(x, t) —§0t(x) - {y (-xvt)v y (xs t)» ey Yy (xs t)}
in local coordinates, and define y(x, t) = ¢;(x) by the following initial value problem

32)’ Y ik
ke axk( 8/ (I =T 1)): (2.4)

y¥(x,0)=x% y/(x,0)=0,

where ffl is the connection corresponding to the initial metric g;; (x). Since

K 0" ayP axk Ay axk 92y
L= T 9T avr Lo T 593 907 9al
T8 axd axt ayv dy® dxJax

the initial value problem (2.4) can be rewritten as

a2 axiox!  axJ ax! Pr gxk !

y(x,00=x% y¥(x,00=0

82yoz _gjl< aZyoc 8y/3 dy” o ay® ~k>
(2.5)

Obviously, (2.5) is an initial value problem for a strictly hyperbolic system.
On the other hand, noting

R X X 4
AgX =gV, VX = “ﬁ( F”)

Ay2ayP  yr P

_ud 0 (0Xaxl\ aX ax!
axk axt \ 9y« \ axi 9yP axi gyv P
q 0%X g 3% dyP ax 3% 90X (ri dx! aZyV>

axkoxd T8 WW@Byaayﬂ_g axi \"K 9y xkaxl

=g"ViVIX = A X,
we have

X %X 9yY oy 32X ayf  9*X X 9%y

92 9y@ayP ar or | otayP or | 912 | ay* 972

32X 9y* ayP 32X 0yP . 0X 0xk 92y~

Y LA g 20 )
8y°‘8yﬁ at ot atayP ot + A +8xk dy® 912

02X 9y ayf 5 32X 0yP
ay*ayP ot ot atayP ot

X -
=Xt g (k- ) +
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axk

Ay2ayP ar ot atdyP ar

ST SR P L S A e 4
ax'ox/ 0x

GED¢ ek 0X 0K 0y ayf 32X oyP

— olJ

axioxs & Tigxk T ayaayB ar ot | “oroyP or

By the standard theory of hyperbolic equations (see [7]), we have the following result.

Theorem 2.1 (Local existences and uniqueness). Let .4 be an n-dimensional smooth compact
manifold, and Xo be a smooth hypersurface immersion of 4 into R"T'. Then there exists a
constant T > 0 such that the initial value problem

2
%X(x, t)=H(x,Hn(x,t),

! ox (2.6)
X|i=0 = Xo(x), W(x,t) =X1(x)

t=0

has a unique smooth solution X (x,t) on M x [0,T), where X(x) is a smooth vector-valued
Sfunction on A .

3. Exact solutions

In order to understand further the hyperbolic mean curvature flow, in this section we investi-
gate some exact solutions. These exact solutions play an important role in applied fields. To do
so, we first consider the following initial value problem for an ordinary differential equation

1
rtl__;a (31)
r(0)=rop>0, r/(0)=ry.

For this initial value problem, we have the following lemma.

Lemma 3.1. For arbitrary initial data ro > 0, if the initial velocity ri < 0, then the solution
r = r(t) decreases and attains its zero point at time ty (in particular, when r1 = 0, we have

to =,/ 5r0); if the initial velocity is positive, then the solution r increases first and then decreases

and attains its zero point in a finite time t.

Proof. The proof is similar to the arguments in [14]. The following discussion is divided into
two cases.

Case I. The initial velocity is nonpositive, i.e., r; < 0.
We argue by contradiction. Let us assume that (¢) > O for all time ¢ > 0. Then r;; < 0 and

r+(t) < r:(0) =ry <0 for ¢ > 0. Hence there exists a time 7y such that r (zp) = O (see Fig. 1). This
is a contradiction.
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Fig. 1. 1 0.

Moreover, for the case r; = 0, we can derive the explicit expression for #y according to
Eq. (3.1). Multiplying both side of r;; = —% by r, integrating, applying the initial condition

r;(0) < 0 and r(#p) = 0, integrating once again yields

where u = /In 2. Thus we obtain
. [
=./—ro.
0 570
Case II. The initial velocity is positive, i.e., 1 > 0.

By (3.1), we obtain
2lnr 4 2Inrg + 1.

2
ry =—

Then we have

[N

r<ezry.

2
,
. . . . T
If r increases for all time, i.e., r; > O for all time ¢, we have ro < r < e?2 rg and —% <ry <

2
_ . .
—e 2 ri Thus, the curve r; can be bounded by two straight lines r; = —%t +r; and r; =

NS

r

—%e‘ t 4 r1. On the other hand, r; is a convex function since
It
(o) = > = 0.
-
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0 to\ t

Fig. 2.r1 > 0.

Therefore, r; will change sign and becomes negative at certain finite time, this contradicts to the
hypothesis that r is always increasing. Thus, in this case, r increases first and then decreases and
attains its zero point in a finite time (see Fig. 2). The proof is finished. O

In what follows, we are interested in some exact solutions of hyperbolic mean curvature flow
(2.1).

Example 1. Consider a family of spheres
X(x,t) =r(t)(cosacos B, cosasin 8, sinw), (3.2)

where o € [-7, 71, B €0, 27].
Clearly, the induced metric and the second fundamental form are, respectively,

g =r% g =r’cos’a, g12=¢g1=0
and
h“:r, h22:rcoszot, hu:hzl:().
The mean curvature is
2
H=-.
r
On the other hand, the Christoffel symbols read
Flll = F112 =0, F212 =cosua sina,
2 ) 2 sino
Iy =15 =0, Ip=———.
Thus, we obtain from (2.1) or (2.2) that

Iyp = ——. (33)
r
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By Lemma 3.1, it can be easily observed that, for arbitrary »(0) > 0, if r,(0) < 0, the evolving
sphere will shrink to a point; if r,(0) > 0, the evolving sphere will expand first and then shrink
to a point.

In fact, this phenomena can also be interpreted by physical principles. From (3.2), we have

X (x,t) =r¢(t)(cosacos B, cosa sin B, sin o) 3.4

and
X (x,t) =ry(t)(cosacos B, cosa sin B, sinw). 3.5)
By (3.3) and (3.5), the direction of acceleration is always the same as the inner normal vector.
Thus, due to (3.4), if r;(0) < 0, i.e., the initial velocity direction is the same as inner normal
vector, then evolving sphere will shrink to a point; if 7,(0) > 0, i.e., the initial velocity direction
is opposite to inner normal vector, then the evolving sphere will expand first and then shrink to a

point.

Example 2. We now consider an exact solution with axial symmetry. In other words, we focus
on the cylinder solution for the hyperbolic mean curvature flow which takes the following form

X(x,1)=(r(t)cosa, r(t) sina, p),

where « € [0, 2], p € [0, pol.
Obviously, the induced metric and the second fundamental form read, respectively,

gn=r2 gn=1, g12=g21=0
and
hip=r, ha =0, hi2 =hy1 =0.

The mean curvature is

Moreover, the Christoffel symbols are
ri=0, Vi jk=12.
Then, we obtain from (2.1) or (2.2) that

1

ryp =——.
r

By Lemma 3.1, it can be easily found that the evolving cylinder will always shrink to a straight
line for arbitrary pg > 0, »(0) > 0 and r,(0).
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4. Nonlinear stability

In this section, we consider the nonlinear stability of the hyperbolic mean curvature flow
defined on the Euclidean space with the dimension larger than 4.

Let .# be an n-dimensional (n > 4) complete Riemannian manifold. Given the hypersurfaces
X1(x) and X, (x) on .#, we consider the following initial value problem

2
3_2X(x, t) = H(x, t);i(x9 t)v
ot 4.1)

D¢
X(x,0) =Xo(x) +eX1(x), E(x, 0) =eX5(x),

where ¢ > 0 is a small parameter.
A coordinate chart (x!, ..., x") on a Riemannian manifold (.#, g) is called harmonic if

Ax) =0 (j=1,...,n).

DeTurck [3] showed that a coordinate function x* is harmonic if and only if

o 92xk o oxk .
k__ jij_ =& o Jijpl 2t pkgij ok
Ax=¢g axioxs ¢ L oxl 8T T =0

He also proved the following theorem on the existence of harmonic coordinates.

Lemma 4.1. Let the metric g on a Riemannian manifold (.4, g) be of class C** (for k > 1)
(resp. C®) in a local coordinate chart about some point p. Then there is a neighborhood of p
in which harmonic coordinates exist, these new coordinates being Ck*1-% (resp. C®) functions
of the original coordinates. Moreover, all harmonic coordinate charts defined near p have this
regularity.

By Lemma 4.1 and Theorem 2.1, we can choose the harmonic coordinates around a fixed
point p € .# and for a fixed time ¢ € R™. Then the hyperbolic mean curvature flow (2.2) can be
equivalent by written as

X . °X

a2 & axiox

Definition 4.1. X((x) possesses the (locally) nonlinear stability with respect to (X (x), X2(x)),
if there exists a positive constant &g = 9(X1(x), X2(x)) such that, for any ¢ € (0, go], the initial
value problem (4.1) has a unique (local) smooth solution X (x, 7).

Xo(x) is said to be (locally) nonlinear stable if it possesses the (locally) nonlinear stability
with respect to arbitrary X (x) and X5 (x).

Theorem 4.1. Xo(x) = (x!,x2,...,x",0) (n > 4) is nonlinearly stable.
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Proof. Choose the harmonic coordinates around a fixed point p € .# and for a fixed time
t € R*. Then Eq. (4.1) can be written as

92 92X
—Xx,t)=g"V ———,
g X =8

ox 4.2)
X(x,0) = Xox) +eX1(x), E(x, 0) =eX5(x).

Define Y (x, 1) = (y', ..., y", y"T1) in the following way
X(x,t)=Xox)+Y(x,1).

Then for small Y (x, t), we have

X 00X ayl 9y

and

. ay'
g =8 — 2 = 2 =i+ O (IP). 44)
where

5 = I, i=jGj=1,...,n),
TTl0 i#jGj=1n),

(Y 3y _’Saypayp
Y=\ oxi ox _p—l axi axJ’
ayP
= (p=L12,....n+1; g=1,2,...,n).
X

Eq. (4.2) can be rewritten as

2

d ooyl 0y Y
V()= (5'-/ - -yt 0(||x||2))

axioxi’

5 -
ot ox! dax/ (4.5)

Y
Y(x,0) =eX1(x), E(x, 0) =eX5(x).
Define

T\ axk T axkax!

) m=1,....n+1; k,1=1,...,n),

then for all p we have
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2yP  3ryP dyl  ay' 2y?
+(——— +0(||,\||2))

32 oxioxt oxi  oxi axioxt
82yp 202
= —— + O(||IA]7).
dx'ox! * (” I )

By the well-known result on the global existence for nonlinear wave equations (e.g., see [2,7,
12]), there exists a unique global smooth solution ¥ = Y (x, t) for the Cauchy problem (4.5).
Thus, the proof is completed. O
5. Evolution of metric and curvatures

From the evolution equation (2.1) for the hyperbolic mean curvature flow, we can derive the
evolution equations for some geometric quantities of the hypersurface X (-, ), these equations

will play an important role in the future study on the hyperbolic mean curvature flow.

Lemma 5.1. Under the hyperbolic mean curvature flow, the following identities hold

Ahij =ViV;H + Hhijjg"hyj — 1A hij, (5.1)
AlAF =2g" g/ hy ViV H +2|VA]* + 2H tr(A%) — 21A 1%, (5.2)

where
|A|2 = gijgklhikhjl, tl"(A3) = gijgklgmnhikhlmhnj-
Lemma 5.1 can be found in Zhu [16].

Theorem 5.1. Under the hyperbolic mean curvature flow, it holds that

3%gij ?xX X
— 2Hh:: +2 L —— ), 5.3
ar2 it <8t8x’ atax1> (>-3)
3% OH OX | (. 92X
— =—g"——+g"(n, -
02 dxt dx/ 0t ox!
WTELS 32X \ 9X L (X X \ax  9°X 5.4)
X e —_— —, - | — — - .
& \oxi aroxt ) oxk * ¢ \oxl" aroxi ) oxk  oroxi

and

3%h; } 5 i (- X \(. %X
o2 :Ah,-j—ZHh,-lhmjgm—i-IAl hij+g h,‘j(l’l, 3t3xk><n’ 8t3xl>

ok /. 92x
-2 n,——|. (5.5)
ot dtdxk




384 C.-L. He et al. / J. Differential Equations 246 (2009) 373-390

Proof. With the aids of the definitions of the metric, the second fundamental form and the
Gauss—Weingarten relations, we can give a complete proof of Theorem 5.1. In fact, by the defi-
nition of the metric, we have

g 9% [aX 93X GED GIND ¢ GRS GENIED ¢ X X
= \7—7 1=\ " — +2 — sy T + P "
a2 ar2 \ oxi’ 9xJ or2oxi’ 9xJ 9rdxt’ 9rdx/ axi’ 9r2oxJ
( )8X ‘o 92X 92X N X ()
T \axi dxJ 9rdxi’ 9rdx/ axt’axf

X 09X %X 92X X X
=H(—hag" =, = | +2( —, )+ H ==, —hjg!
( "8 okl 3x-/>+ (8t8x’ 8t8x-/>+ (axl k8" 5T

92X 92X >

=—2Hh;j +2 , .
i+ (8t8x’ dtox/

This gives the proof of (5.3).
On the other hand,

on _ (on 8X\ ;; 90X L X\ ;09X
- = —,—,g—,:— n,—.g—.,
at at  ox! ax/ aroxt dxJ

then

3% on 97X\ ;08X (. X\ ;09X

— =\ 18—\, 518 —

012 at’ dtdx! 0x/ 9r20x! 0xJ

X\ i adgw X (. X\ %X
- jl__ Sl -
+(”’ ataxi)g 8 Tor ax 8 (" ataxi>azax1

(- 92X\ (X 9*X \3X /. O hiny ) g1 2%
—88 Btaxk ax!’ drdxt ) axJ o W )87 2

N 32X %X X (X ?X \10X (. 2°X ) ;; X
-2 = —  — )= —(n, . -
g 919xk” 9xl axk aroxt ) |oxi ataxt ) oraxi

8t8x’>
GOH OX . 9*X 1\ %X
:—g — — g n, - -
dxt 9xJ atoxt ) otdx
i 32X X X IPYALS 32X \ax
187 5 )| Gianr o oxi " drax! ) | oxk”

This proves (5.4).
By virtue of

dhi; 8 (. X an 32X . X
—— = \n,— V1V =\ -y +|n,—-,
Jat Jat dx'ox/ dt dx'dx/ dtoxtox/

we have



C.-L. He et al. / J. Differential Equations 246 (2009) 373-390 385
3Ph;; (9% °X s an 33X e a*x
— = — =, T s T n, ————
312 32 9xigxJ 9t 9tdxiox 3t29xi9xJ
af9H 3X  3%X af - X\ (%X X
:—g T 7y _g n, k) : 7
axk 9x!’ axidx/ atoxk J\ arax!’ axioxi
L 9%x X %X X %X X %X
+gpqgkl n? _9— +2 —’— _1f
dtoxP ax!’ 9roxq x4’ 3rdx! axk’ 9xioxi
5ok X \[ax  ¥X (i 32 ()
— n, —, T n, —— n
& atoxk )\ ax!’ 9roxioxi xiaxi
9H 92X X 92X 92X EED'¢
=——rk_oMpmly — = V= — ) —o¥p; (71, — )5, ——
oxk i T8 (" 8t8xk><8x’" azaxl> &M\ " Braxk J\" Braxd
v orapt (7 GED ¢ X %X Lo X 32X
i\ n PYE a0 a.n ]
0\ graxr )|\ oxl” droxa ax?’ 919x!
L OX \/0X 92X ark s a2x
—2gk11“-"-’ n,—— ||| —, —2—Y{(#,
& atox* )\ ax!’ 9toxm ot ataxk
92X 92X 9 (0H X
28K 7, i, i, — | —i — Hhjpg"' —
T8 ”(” 8t3xk><n 8t8xl>+(n 3x’<8x/n Tk8 gy

L9%X O\ (. 92X ork /  92x
:Vl-VjH—thkgklhi1+gklhij<n )( >—2 U(n )

araxk J\"" araxl ar \"" droxk

Using (5.1), we obtain

9%hij L 97X\ (. %X
——% = Ahij —2Hg" hih ji + | AP hij + 84 hij (n > ( )

a2 *aroxk )\ drox
ory (. 92X
) A
a1 <" azaxk)

This proves (5.5). Thus, the proof of Theorem 5.1 is completed. O

Theorem 5.2. Under the hyperbolic mean curvature flow,

92H o 12X 9%Xx Lo%X \ /. %X
st (3 ) 5 5 ) )

o1 919xk" 919x! *oroxk )\ droxl
ark RED'¢ o 0gpg 08 w108kl Ohij
— Dol 2 —>’ +2 ik jp lqh” I"I_kl_z ik jl 98kl U’ 5.6

& o <” 8t3xk> § 8T8 hij T T2 50

92 92X 92X

— AP = A(A]?) = 2|VAPZ +2|A1* +2|A%gP (7 i

ar2| I (IA17) = 2IVAI" 4+ 2|A* +2|A|° g 7, aracr )\ Broxa

+2gii gkl Ohix dhji 8™ g/ g h dgmn Nk

at ot ar ot
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o %X 9%X 38 g 08
— 4glmgin klh'/’l‘ i 2l rq mnl’lh
§ 87 & Nk J’(ataxm azaxn) or ar K
. . y ary 32X
2gIP o4 kl jn kp lg — 4ol klh' ik -" ) 57
x (2877g"1g" + 878 g M) —4gV g hj— = oo 5.7)
Proof. Noting
g g =8,
we get
dg" — ikl I8kl
ot T
328ij — 94ikoip old 08pq 08ki —gik jzazgkl
at2 at ot 9tz -

By a direct calculation, we have

8’H _ 9%g  0g" dhi g 3%,
ar2 a2 Y ar ot 972
ik ip 1qg98pq 08k 3% gu o 08w Ohii .. 0%hy;
=(2 ik ,jp lq ~oPq ik jI T Skl hii —2 ik jl J + ol J
<g 8 o0 Tor a2 ) T8 T Ty 12
ik j 98 pq 98k ik 1108k Ohij
-2 ik _jp lqh,_ rq ) ik jl J
& 88Ty ar ot

?X  9°X
ikgilp, | —2HRg +2( =2, 22
B [ 4+ 2\ Graxk Broxd

y 22X X\ O (L 97X
|V H — Hhih ool kp. A7, n, —2—(x,
e [ v ks &N Gk )\ Broad or \"" Broxk

o %X %X _o%X \ /. %X
:AH+H|A|2—2g’kgjlhij(—,—)+Hgkl(n, >(n, )

otdxk’ drax! ardxk drdx!
;0T 32X g0 g Ol
Sy ik I 8pq 98kl ik j1 98kl ONij
2gikgip glap, ZEPL TEK o ik o jl TEKL TTHJ
ot ( 8t8xk>+ 888 T T & %ot or

This is nothing but the desired (5.6).
On the other hand, by the definition of |A |2 and the formula (5.2), a direct calculation gives

dgli ggk
at ot
ot ot

lahikh

lhzkhjz +2—— o il

92 agl/
—|A>=2 h-h-+8— k
8l2| | azg ik jl Btg

+ zgijgkl

8g dg m in0°8
—2<2g”" e 31;q ar;m —g’mg]"—atrznn M hixh ji
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8gmn 8gpq i in 08mn klahik
+2 im _jn _kp lqh h _ QolMgin h
8§ 8 &8 Nik 9 o1 8 8 “or & Tor jl
U kI ahlk 8/’1]1

ot ot

. 92X\ (. %X ary (. #9°x
+ gP%h | n, n, -2 n,
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08 pq 08
nq kIl 509 mnh' h
8 Tor Tar K

N X 9°X
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=4g™g/Pg
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ary 32X 1 Ohig dh
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This proves (5.7). O

6. Relations between hyperbolic mean curvature flow and the equations for extremal
surfaces in the Minkowski space R1-"

In this section, we study the relations between the hyperbolic mean curvature flow and the
equations for extremal surfaces in the Minkowski space R,

Let v = (vg, v1, ..., v,) be a position vector of a point in the (1 4 n)-dimensional Minkowski
space R!”. The scalar product of two vectors v and w = (wq, Wi, ..., wy) is

n
(v.w) = —vowo + Y _ viw;.
i=l1
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The Lorentz metric of R!" reads
” .
ds* = —dt* + Z(dx’)z.
i=1

A massless n-dimensional surface moving in (1 4 n)-dimensional Minkowski space can be
defined by letting its action be proportional to the (1 4 n)-dimensional volume swept out in the
Minkowski space. It is a natural generalization of the massless string theory, and it is interesting
in its own right, as an example in which geometry, classical relativity and quantum mechanics
are deeply connected. Hoppe et al. [1,8] and Huang and Kong [9] have obtained some interesting
results about it.

We are interested in the following motion of an n-dimensional Riemannian manifold in R!-"!
with the following parameter

(t,xl,...,x”)—>)?:(I,X(t,xl,...,x”)), 6.1)
where (x',...,x") € .# and X (-, 1) be a positive vector of a point in the Minkowski space
R+ The induced Lorentz metric reads

50 = 14 0X 09X

gOO_ 81‘ ) 8[ )

. . X 0X o

80i = §i0 = E,W , G j=1,...,n). (6.2)

A X 0X
&= 8= Gar g

By the variational method or by vanishing mean curvature of the sub-manifold .#, we can
obtain the following equation for the motion of .# in the Minkowski space R!"+!

N PX L, 09X
aaf _ sap Y ) =
8V, VgX =g (8x°‘3xﬁ Ip aw) =0, (6.3)
where o, 8 =0, 1, ..., n. Itis convenient to fix the parametrization partially (see Bordemann and
Hoppe [1]) by requiring
. (X 09X\ 0 6.4)
80i = &8i0 = 9 o) " .
It is easy to see that Eq. (6.3) is equivalent to the following system
32X 39X (xR 1) %X 09X _o ©5)
o2 o ) 8N draxt axi ) T '
?X . X L 0X 5 1 X X\ X
— + g —— T (X - 1) - —— . — | —
a2 oxtoxJ T axk IX2—1\ 0¢2" ar ) ot

Y GED QD¢ 0X il X X X _, 66)
 \oraxl” ot Joxk T8 \roxi oxi ) ot — :
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where

|X|2= &E
! at’ ot )

‘We observe that, when % — 0, the limit of Eq. (6.5) reads

VLD GD:¢
ij . — | =0, 6.7
g <8t8x’ axf) ©7
ie.,
3
> det(g;;) = 0. (6.8)

Moreover, Eq. (2.2) is nothing but the limit of Eq. (6.6) as % approaches to zero.
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