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In this paper we study the generalized BO–ZK equation in two
space dimensions

ut + upux + αH uxx + εuxyy = 0.

We review the existence theory for solitary waves and prove that
they are nonlinearly unstable if p belongs to the range 4/3 < p < 4.
We also establish Strichartz-type estimates.
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1. Introduction

This paper is concerned with instability properties of solitary wave solutions for the two-
dimensional generalized Benjamin–Ono–Zakharov–Kuznetsov equation (BO–ZK henceforth),

ut + upux + αH uxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+. (1)

It is a continuation of our previous paper [13]. Here p > 0 is a real constant, the constant ε measures
the transverse dispersion effects and is normalized to ±1, the constant α is a real parameter and H
is the Hilbert transform defined by
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H u(x, y, t) = p.v.
1

π

∫
R

u(z, y, t)

x − z
dz,

where p.v. denotes the Cauchy principal value. When p = 1, Eq. (1) appears in electromigration and
the interaction of a nanoconductor with the surrounding medium [18,24], by considering Benjamin–
Ono dispersive term with the anisotropic effects included via weak dispersion of ZK-type. As far as
we know, Eq. (1) was recently derived in [24], where from the physical viewpoint the existence of
solitary waves was studied.

Several physical situations in two dimensions are described by generalizations of well-known one-
dimensional equations. The most known and studied ones are the KP and ZK equations, which are
generalizations of the KdV equation. In our case, Eq. (1) is a generalization of the one-dimensional
generalized Benjamin–Ono equation (see also [12]).

The generalized Benjamin–Ono equation,

ut + upux + αH uxx = 0, x ∈ R, t ∈ R+

has been extensively studied by several authors considering both the initial value problem and the
nonlinear stability of solitary waves. The initial value problem has been studied, recently, for instance
in [7,20,22,30,34,38], whereas the issue of existence and stability of solitary waves has been studied
in [1–3]. On the other hand, the Zakharov–Kuznetsov equation

ut + upux + αuxxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+,

is less studied. Indeed, as far as we know the only results concerning the existence and nonlinear
stability of solitary waves was given in [9] and the well-posedness was studied in [16] (for p = 1)
and [25] (for p = 2).

In our study, we make use of the conserved quantities F and E , where

F (u) = 1

2

∫
R2

u2 dx dy

and

E(u) = 1

2

∫
R2

(
εu2

y − αuH ux − 2

(p + 1)(p + 2)
up+2)dx dy.

Our main goal in the present paper is to investigate the instability property of solitary wave so-
lutions for (1). We point out that existence and stability of solitary waves for (1) were addressed
in [13].

In order to describe our results, the space Z shall denote the closure of C∞
0 (R2) for the norm

‖ϕ‖2
Z = ‖ϕ‖2

L2(R2)
+ ‖ϕy‖2

L2(R2)
+ ∥∥D1/2

x ϕ
∥∥2

L2(R2)
, (2)

where D1/2
x ϕ denotes the fractional derivative of order 1/2 with respect to x, defined via Fourier

transform by
̂
D1/2

x ϕ(ξ1, ξ2) = |ξ1|1/2ϕ̂(ξ1, ξ2).
The solitary waves we are interested in are of the form u(x, y, t) = ϕc(x − ct, y), where u ∈ Z and

c �= 0 is the wave speed; so, by substituting this form of u in (1) and integrating once, we see that
ϕ = ϕc must satisfy

−cϕ + 1
ϕp+1 + αH ϕx + εϕyy = 0. (3)
p + 1
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In [13], by using the concentration-compactness principle of Lions [26,27], we proved that solitary
waves do exist if αc,αε < 0 and 0 < p < 4. Moreover, by using the Cazenave and Lions approach
(see [8]), we proved that solitary waves are stable for 0 < p < 4/3; so that we left the range 4/3 �
p < 4. Here we try to fulfill the left range. Actually, by using the adapted method put forward the
KdV equation in [6] we are able to show that solitary waves are unstable for 4/3 < p < 4. Our ideas
are based in [5] (see also [11,28,35]). However, to bound the classical Lyapunov functional we use
similar arguments as the ones in [36]. Indeed, by combining Strichartz estimates and the fact that our
solitary waves belong to the special space Lr

y L1
x , 1 � r � ∞, we are able to show the boundedness of

the Lyapunov functional.
Note that the value p = 4/3 is critical in the sense that solitary waves are stable for 0 < p < 4/3

and unstable for 4/3 < p < 4. This is essentially because of the following: it is well known that in the
study of stability/instability of solitary waves, the function

d(c) = E(ϕc) + cF (ϕc) (4)

takes an important role and it is expected that the solitary wave ϕc is stable if d′′(c) > 0 and unstable
if d′′(c) < 0. In the present paper, we are able to show that

d′′(c) =
(

2

p
− 3

2

)
c( 2

p − 5
2 )F (ψ),

where ψ is given below (see (7)). Therefore, we have

• d′′(c) > 0 if and only if p < 4/3,
• d′′(c) < 0 if and only if p > 4/3.

In the case p = 4/3 (that for d′′(c) = 0) we do not know if the solitary waves are stable or not.

Notation and preliminaries. Throughout this paper we shall refer to Eq. (1) as BO–ZK equation. The
exponent p in (1) will be a rational number of the form p = k/m, where m is odd and m and k are
relatively prime. Function f̂ denotes the Fourier transform of f = f (x, y), defined as

f̂ (ξ1, ξ2) =
∫
R2

e−i(xξ1+yξ2) f (x, y)dx dy.

If a function f ∈ Lr = Lr(R2), its usual norm is written as ‖ f ‖Lr and if f ∈ Lq
y Lr

x(R
2), its norm is

denoted by ‖ f ‖Lq
y Lr

x
:= ‖‖ f (·, y)‖Lr

x
‖Lq

y
. If no confusion is caused we denote

∫
R2 f dx dy simply by∫

R2 f . The linear space C∞
0 (R2) is the usual set of real-valued C∞-functions having compact support

in R2. For any s ∈ R, space Hs := Hs(R2) denotes the usual isotropic Sobolev space. Let s1, s2 ∈ R.
We define the anisotropic Sobolev spaces Hs1,s2 := Hs1,s2 (R2) to be the set of all distributions f such
that

‖ f ‖2
Hs1,s2 =

∫
R2

(
1 + ξ2

1

)s1
(
1 + ξ2

2

)s2
∣∣ f̂ (ξ1, ξ2)

∣∣2
dξ1 dξ2 < ∞.

We also define the fractional Sobolev–Liouville spaces H (s1,s2)
p := H(s1,s2)

p (R2), 1 � p < ∞, to be the
set of all functions f ∈ L p(R2) such that

‖ f ‖
H

(s1,s2)
p

= ‖ f ‖L p(R2) +
2∑∥∥Dsi

xi
f
∥∥

L p(R2)
< ∞,
i=1
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where Dsi
xi

f denotes the Bessel derivative of order si with respect to xi (see e.g. [23,29]). For short,

we denote H(k)
p (R2) as the space H(k,k)

p (R2) and H(s1,s2)(R2) as p = 2. Note that H(s) = Hs .

Remark 1.1. Observe that Z = H1/2,0(R2) ∩ H0,1(R2) = H(1/2,1)(R2).

It is easy to see that for a � 0,

(
1 + x2)a �

(
1 + (x − y)2)a(

1 + y2)a
,

and

(
1 + x2)a �

(
1 + (x − y)2)a + (

1 + y2)a
.

So,

Remark 1.2. Let 2 � p < ∞. If 1 − 2
p � s � min{s1, s2}, then the following embedding are continuous

Hs1+s2
(
R2) ↪→ Hs1,s2

(
R2) ↪→ Hs(R2) ↪→ Lp(

R2).
Theorem 1 in [23] (see also [31,32]) and Remark 1.2 imply the following embedding of Z in

L p(R2):

Z ↪→ Lp(
R2), for all p ∈ [2,6]. (5)

See also [33].

2. Preliminaries and review

In this section we review the existence results of solitary waves for (1) and recall some of their
decay and regularity properties (for the proofs see [13]). We also establish Strichartz-type estimates,
which are used to prove our instability result.

Here and throughout, by a solitary wave we mean a solution of (1) of the form u(x, y, t) = ϕc(x −
ct, y), c �= 0, with ϕc ∈ Z . Thus, ϕ = ϕc satisfies the following equation:

−cϕ + 1

p + 1
ϕp+1 + αH ϕx + εϕyy = 0. (6)

We note that the wave speed c can be normalized to ±1, since the scale change

ψ(x, y) = |c|−1/pϕ

(
x

|c| ,
y√|c|

)
, (7)

transforms (6) in ϕ , into the same in ψ , but with |c| = 1.
In [13] (see also [14]), we obtained the existence of our solitary waves by considering the con-

strained minimization problem

Iλ = inf

{
I(u); u ∈ Z ,

∫
2

up+2 dx dy = λ

}
, (8)
R
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for a suitable choice of λ = λ∗ > 0, where

I(u) = 1

2

∫
R2

(
u2 + uH ux + u2

y

)
dx dy.

where we have assumed αε, cα < 0 and without losing generality we take α = −1, c = 1 and ε = 1.
For the sake of completeness we summarize the results we need here in the next theorem.

Theorem 2.1. Let αε, cα < 0 and 0 < p < 4. Then, Eq. (6) admits a nontrivial solitary wave ϕc ∈ Z . More-
over, such waves satisfy the following:

(i) tend to zero at infinity;
(ii) decay exponentially in the y-direction and algebraically in the x-direction;

(iii) are cylindrically symmetric in the transverse direction y and in the propagation direction x, that is,
ϕc(x, y) = ϕc(|x|, |y|), for all (x, y) ∈ R2;

(iv) belong to Lr
y L1

x , for any 1 � r � ∞;
(v) are ground states, that is, they minimize the action

Sc(u) = E(u) + cF (u) (9)

among all solutions of (6);
(vi) let

K(u) = 1

2

∫
R2

(
cu2 + u2

y

)
dx dy − 1

(p + 1)(p + 2)

∫
R2

up+2 dx dy, (10)

then, K(ϕc) = 0 and

inf

{
K(u), u ∈ Z , u �= 0,

∫
R2

uH ∂xu dx dy =
∫
R2

ϕcH ∂xϕc dx dy

}
= 0.

To prove (ii) we used similar arguments as those ones introduced in [4]. We prove (iii) by using
the Steiner symmetrization theory (see e.g. [19]). To show (v) and (vi) we adapted the arguments
in [10] (for details see [13]).

Other concerning issue is to care about the local existence of the initial value problem associated
to the BO–ZK equation (1). The following theorem is sufficient for our purposes and can be proved by
using the parabolic regularization theory (see e.g. [17]).

Theorem 2.2. Let s > 2. Then for any u0 ∈ Hs(R2), there exist T = T (‖u0‖Hs ) > 0 and a unique solution
u ∈ C([0, T ); Hs(R2)) of Eq. (1) with u(0) = u0 and u(t) depends on u0 continuously in the Hs-norm. In
addition, u(t) satisfies E(u(t)) = E(u0), F (u(t)) = F (u0), for all t ∈ [0, T ).

Improvement of Theorem 2.2 will appear somewhere else (see [15]).
To finish this section, we consider the linear initial value problem associated to the BO–ZK equa-

tion, {
ut + αHuxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R,

u(x, y,0) = u (x, y).
(11)
0
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The solution of (11) is given by the unitary group {U (t)}∞t=−∞ such that

u(t) = U (t)u0(x, y) =
∫
R2

ei(t(αξ |ξ |+εξη2)+xξ+yη)û0(ξ,η)dξ dη = Ĩt ∗ u0(x, y), (12)

where

Ĩt(x, y) =
∫
R2

ei(t(αξ |ξ |+εξη2)+xξ+yη) dξ dη. (13)

Next we shall prove a Strichartz-type estimate for solution (12). We follow arguments as in [25]. Let
us begin by establishing the following estimate for the oscillatory integral (13).

Lemma 2.3. Let 0 � δ < 1/2, α,ε ∈ R and α,ε �= 0. Then

It(x, y) :=
∫
R2

|ξ |δei(t(αξ |ξ |+εξη2)+xξ+yη) dξ dη

satisfies

∣∣It(x, y)
∣∣ � C

|t|(3+2δ)/4
,

where C > 0 is a constant independent of (x, y) ∈ R2 .

Proof. We assume ε < 0 since the case ε > 0 can be handled by symmetry. We first observe that∫
R2

|ξ |δei(t(αξ |ξ |+εξη2)+xξ+yη) dξ dη = lim
a→∞ lim

b→∞

∫
R2

|ξ |δei(t(αξ |ξ |+εξη2)+xξ+yη)1a(ξ)1b(η)dξ dη

in the distributional sense, where 1a(ξ) and 1b(η) denote the characteristic function of the sets
{ξ : |ξ | � a} and {η: |η| � b}, respectively.

Next, by using that ∫
R

ei(εtξη2+yη) dη = π1/2

|εtξ |1/2
e−i y2

4εtξ ei π
4 sgn(εtξ),

we have∫
R2

|ξ |δei(t(αξ |ξ |+εξη2)+xξ+yη) dξ dη = π1/2

|εt|−1/2
lim

a→∞

∫
R

|ξ |δ−1/2ei(αtξ |ξ |+xξ− y2

4εtξ + π
4 sgn(εtξ))1a(ξ)dξ.

Let us show that the integral

Jt(x, y) = π1/2

|εt|1/2

∫
|ξ |δ−1/2ei(αtξ |ξ |+xξ− y2

4εtξ + π
4 sgn(εtξ))1a(ξ)dξ (14)
R
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is uniformly bounded by |t|−(3+2δ)/4 with respect to a ∈ [0,∞) and (x, y) ∈ R2. Without loss of gen-
erality we assume t > 0. The proof for t < 0 is similar. We note that it is sufficient to prove that

∣∣ J1(x, y)
∣∣ � C, (15)

where C is independent of x, y and a ∈ (0,∞). Indeed, using (15) and the change of variable, η2 = tξ2,
we obtain that

Jt(x, y) = π1/2

|ε|1/2
t−(3+2δ)/4

∫
R

|η|δ−1/2ei(αη|η|+(t−1/2x)ξ− (y2/t1/2)
4εη + π

4 sgn(εη))1̃a(η)dη,

for some constant ã > 0. Since the constant in (15) does not depend on x, y and a > 0, we obtain∣∣ Jt(x, y)
∣∣ � Ct−(3+2δ)/4,

which is our statement.
To prove (15), we first consider ζ ∈ C∞

0 (R), with ζ ≡ 1 for |ξ | � 1 and ζ ≡ 0 for |ξ | > 2 and write

J1(x, y) = C

∫
R

|ξ |δ−1/2ei(αξ |ξ |+xξ− y2

4εξ
+ π

4 sgn(εξ))1a(ξ)ζ(ξ)dξ

+ C

∫
R

|ξ |δ−1/2ei(αξ |ξ |+xξ− y2

4εξ
+ π

4 sgn(εξ))1a(ξ)
(
1 − ζ(ξ)

)
dξ

= J 1
1(x, y) + J 2

1(x, y).

Since 0 � δ < 1/2, it is clear that

∣∣ J 1
1(x, y)

∣∣ � C . (16)

To estimate J 2
1 , we put ρ(ξ) = αξ |ξ | + xξ − y2/4εξ and φ(ξ) = |ξ |δ−1/2ei π

4 sgn(εξ)1a(ξ)(1 − ζ(ξ)).
Observe that the function ρ is smooth on the support of φ. Moreover, φ ∈ L∞ , φ′ ∈ L1 and |ρ ′′(ξ)| �
2|α|. Hence, Van der Corput’s lemma (see [37]) implies that

∣∣ J 2
1(x, y)

∣∣ � C . (17)

Combining (16) and (17), inequality (15) then follows. This completes the proof of the lemma. �
Lemma 2.4. Let 0 � δ < 1/2 and 0 � θ � 1. Then,

∥∥Dθδ
x U (t) f

∥∥
L p

xy
� c|t|− θ(3+2δ)

4 ‖ f ‖
L p′

xy
, (18)

where 1
p + 1

p′ = 1, p = 2
1−θ

.

Proof. Inequality (18) follows using Lemma 2.3, Plancherel’s identity and Stein’s interpolation theo-
rem (see e.g. [37]). �



3188 A. Esfahani, A. Pastor / J. Differential Equations 247 (2009) 3181–3201
Corollary 2.5. Let 1/p + 1/p′ = 1 and p′ ∈ [1,2]. Then,∥∥U (t) f
∥∥

L p
xy

� c|t|−3/4(1/p′−1/p)‖ f ‖
L p′

xy
.

Proof. The proof follows immediately from Lemma 2.4 and Riesz–Thorin’s Theorem (see e.g. [37]). �
Proposition 2.6. Let 0 � δ < 1/2 and 0 � θ � 1. Then the group {U (t)}∞t=−∞ satisfies

∥∥Dθδ/2
x U (t) f

∥∥
Lq

t L p
xy

� c‖ f ‖L2
xy

, (19)∥∥∥∥∥Dθδ
x

∞∫
−∞

U (t − t′)g(·, t′)dt′
∥∥∥∥∥

Lq
t L p

xy

� c‖g‖
Lq′

t L p′
xy

, (20)

∥∥∥∥∥Dθδ
x

∞∫
−∞

U (t)g(·, t)dt

∥∥∥∥∥
L2

xy

� c‖g‖
Lq′

t L p′
xy

, (21)

where 1
p + 1

p′ = 1
q + 1

q′ = 1, p = 2
1−θ

and 2
q = θ(3+2δ)

4 .

Proof. The proof follows from standard arguments. Indeed, first one shows that the three inequalities
are equivalent. The main ingredient is the Stein–Thomas argument. Thus it is enough to establish
for instance the estimate (20). To obtain (20) we use Lemma 2.4 and the Hardy–Littlewood–Sobolev
theorem (see e.g. [21]). �
Remark 2.7. Actually, to prove our instability result we just use Lemma 2.4, but Proposition 2.6 is
used to prove our well-posedness result in [15].

3. Instability

We start this section by defining our notion of orbital stability.

Definition 3.1. Let ϕc be a solitary wave solution of (1). We say that ϕc is orbitally (or nonlinearly)
stable if for all η > 0, there is a δ > 0 such that for any u0 ∈ Hs(R2), s > 2, with ‖u0 − ϕc‖Z � δ, the
corresponding solution u(t) of (1) with u(0) = u0 satisfies

sup
t�0

inf
r∈R2

∥∥u(t) − ϕc(· − r)
∥∥

Z � η.

Otherwise, we say that ϕc is nonlinearly unstable.

Our instability theorem reads as follows:

Theorem 3.2 (Instability). Let 4/3 < p < 4 and ϕc be a corresponding solitary wave given by Theorem 2.1.
Then ϕc is unstable with regard to the flow of the BO–ZK equation (1).

For the sake of clearness, before proving Theorem 3.2, let us briefly recall the strategy to prove
an instability result (see also [5,6,36]). The first step is to construct a curve ω �→ χω passing through
ϕc at ω = c on which the L2-norm is constant (that is, F (χω) = F (ϕc) for all ω) and the energy
functional E has a local maximum at ω = c; this, however, implies that, under the hypotheses of
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Theorem 3.2, ϕc is a critical point of E subject to constant values of F . The second step is to con-
struct, taking into account the aforementioned curve, a Lyapunov functional A(u(t)) such that, for u
in a tubular neighborhood of the orbit generated by the solitary wave ϕc , it has the first derivative
(with respect to t) bounded from below by a strictly positive constant; this usually is proved taking
advantage of the Hamiltonian structure of the equation and constructing some suitable vector fields.
The final step is then to show that such a functional turns out to be bounded by a function of the
form g(t) = C(1 + tν), 0 < ν < 1; this often is proved using Strichartz-type estimates.

We show each one of the steps above in a couple of lemmas. From now on, ϕc will denote a
solitary wave given by Theorem 2.1 and without loss of generality we assume α = −1, ε = 1 and
c > 0.

First we note that from (6), ϕc is a critical point of the functional E + cF , that is

E ′(ϕc) + cF ′(ϕc) = 0. (22)

Thus, taking the derivative with respect to c in (4), from (22), we obtain

d′(c) = F (ϕc) = c( 2
p − 3

2 )F (ψ),

where ψ is given in (7). Another differentiation with respect to c yields

d′′(c) =
(

2

p
− 3

2

)
c( 2

p − 5
2 )F (ψ).

Therefore, d′′(c) < 0 if and only if p > 4/3.
Next lemma characterizes function d in terms of the action Sc .

Lemma 3.3. Let d be as defined in (4). Then,

d(c) = inf
{

Sc(u); u ∈ Z ,
∥∥D1/2

x u
∥∥

L2 = ∥∥D1/2
x ϕc

∥∥
L2

}
,

where Sc(u) = E(u) + cF (u) is defined in (9).

Proof. We first note that

K(u) = Sc(u) − 1

2

∫
R2

∣∣D1/2
x u

∣∣2
dx dy,

where K is defined in (10). From Theorem 2.1(vi), we have that K(ϕc) = 0. So,

Sc(ϕc) = 1

2

∫
R2

∣∣D1/2
x u

∣∣2
dx dy

and

inf
{

Sc(u); u ∈ Z ,
∥∥D1/2

x u
∥∥

L2 = ∥∥D1/2
x ϕc

∥∥
L2

}
= inf

{
K(u); u ∈ Z ,

∥∥D1/2
x u

∥∥
L2 = ∥∥D1/2

x ϕc
∥∥

L2

} + 1

2

∫
2

∣∣D1/2
x u

∣∣2
dx dy
R
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= 1

2

∫
R2

∣∣D1/2
x u

∣∣2
dx dy = Sc(ϕc) = d(c),

where in the third equality we used Theorem 2.1(vi). This proves the lemma. �
Lemma 3.4. Let ϕ = ϕc be a solitary wave given in Theorem 2.1. Then, for ε > 0 and any C2-curve
u : (−ε, ε) → Z such that u(0) = ϕ and F (u(s)) = F (ϕ) for s ∈ (−ε, ε), it follows that

d2

ds2
E
(
u(s)

)∣∣∣
s=0

= 〈(
E ′′(ϕ) + cF ′′(ϕ)

)
y0, y0

〉
, (23)

where y0 = u′(0).

Proof. The proof is quite general and does not take any advantage of the structure of functionals E
and F (see e.g. [5] or [39]). Indeed, differentiating E along the curve u(s), we obtain

d

ds
E
(
u(s)

) =
〈

E ′(u(s)
)
,

du

ds

〉
.

Another differentiation with respect to s yields

d2

ds2
E
(
u(s)

) =
〈

E ′′(u(s)
)du

ds
,

du

ds

〉
+

〈
E ′(u(s)

)
,

d2u

ds2

〉
. (24)

Analogously,

d2

ds2
F

(
u(s)

) =
〈
F ′′(u(s)

)du

ds
,

du

ds

〉
+

〈
F ′(u(s)

)
,

d2u

ds2

〉
. (25)

But, since F (u(s)) = F (ϕ) we have d2

ds2 F (u(s)) = 0. Thus multiplying (25) by c, adding to (24),
evaluating the obtained equation at s = 0 and using (22) we obtain (23). �

Next, for a fixed c > 0, we introduce the smooth curve ω ∈ (0,∞) �→ χω given by

χω(x, y) = ϕω

(
x

σ 2(ω)
,

y

σ(ω)

)
, (26)

where

σ 3(ω) = F (ϕc)

F (ϕω)
. (27)

The next lemma brings us some useful properties of the curve defined in (26)–(27), when d′′(c) < 0.

Lemma 3.5. Let c > 0 be fixed and assume d′′(c) < 0. Then,

(i) F (χω) = F (ϕc);

(ii) d2

dω2 E(χω)|ω=c � d′′(c);

(iii) E(χω) < E(ϕc) for ω �= c and ω near c.
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Proof. Part (i) follows immediately from (26)–(27), without assuming d′′(c) < 0. To prove part (ii), we
first observe that

E(χω) + ωF (χω) = σ(ω)

2

∫
R2

[
(∂yϕω)2 + ϕωH ∂xϕω

] − σ 3(ω)

C(p)

∫
R2

ϕ
p+2
ω + ω

σ 3(ω)

2

∫
R2

ϕ2
ω (28)

where C(p) = (p + 1)(p + 2). Differentiating both sides with respect to ω and evaluating at ω = c, we
obtain〈

E ′(ϕc) + cF ′(ϕc),
d

dω
χω

∣∣∣∣
ω=c

〉
= σ ′(c)

2

∫
R2

[
(∂yϕc)

2 + ϕcH ∂xϕc
] + 1

2

d

dω

( ∫
R2

[
(∂yϕω)2 + ϕωH ∂xϕω

])∣∣∣∣
ω=c

− 3σ ′(c)

C(p)

∫
R2

ϕ
p+2
c

− 1

C(p)

d

dω

( ∫
R2

ϕ
p+2
ω

)∣∣∣∣
ω=c

+ 3

2
cσ ′(c)

∫
R2

ϕ2
c + c

2

d

dω

(∫
R2

ϕ2
ω

)∣∣∣∣
ω=c

(29)

where we have used that σ(c) = 1. Observe that

d

dω

(
1

2

∫
R2

[
(∂yϕω)2 + ϕωH ∂xϕω

] − 1

C(p)

∫
R2

ϕ
p+2
ω + c

2

∫
R2

ϕ2
ω

)∣∣∣∣
ω=c

= d

dω

(
E(ϕω) + cF (ϕω)

)∣∣∣
ω=c

=
〈

E ′(ϕc) + cF ′(ϕc),
d

dω
ϕω

∣∣∣∣
ω=c

〉
(30)

Therefore, from (22), (29) and (30), we deduce that

σ ′(c)

2

∫
R2

[
(∂yϕc)

2 + ϕcH ∂xϕc
] − 3σ ′(c)

C(p)

∫
R2

ϕ
p+2
c + 3

2
cσ ′(c)

∫
R2

ϕ2
c = 0

or

3σ ′(c)

[
1

6

∫
R2

[
(∂yϕc)

2 + ϕcH ∂xϕc
] − 1

C(p)

∫
R2

ϕ
p+2
c + c

2

∫
R2

ϕ2
c

]
= 0.

Thus, from the definition of d(c), we conclude that

3σ ′(c)

[
d(c) − 1

3

∫
R2

[
(∂yϕc)

2 + ϕcH ∂xϕc
]] = 0. (31)

Now, differentiating (27) with respect to ω and using that d′(ω) = F (ϕω), we obtain

σ ′(ω) = −σ(ω)

3
F (ϕω)−1 d

dω

(
F (ϕω)

) = −1

3

F (ϕc)
1/3

F (ϕ )4/3
d′′(ω).
ω
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Evaluating at ω = c, we get

σ ′(c) = −1

3

1

F (ϕc)
d′′(c) = −1

3

d′′(c)

d′(c)
> 0. (32)

Hence, it turns out from (31) that

d(c) = 1

3

∫
R2

[
(∂yϕc)

2 + ϕcH ∂xϕc
]
. (33)

Since c > 0 is fixed but arbitrary, it follows that (33) holds for all c > 0.
From (28) and (33) we see that

E(χω) + ωF (χω) = σ 3(ω)

[
1

2σ 2(ω)

∫
R2

[
(∂yϕω)2 + ϕωH ∂xϕω

] − 1

C(p)

∫
R2

ϕ
p+2
ω + ω

2

∫
R2

ϕ2
ω

]

= σ 3(ω)

[(
1

2σ 2(ω)
− 1

2

)∫
R2

[
(∂yϕω)2 + ϕωH ∂xϕω

] + d(ω)

]

= 1

2
d(ω)

(
3σ(ω) − σ 3(ω)

)
.

Differentiate twice this last equation with respect to ω to get

d2

dω2

(
E(χω) + ωF (χω)

) = 1

2
d′′(ω)

(
3σ(ω) − σ 3(ω)

) + 3d′(ω)
(
σ ′(ω) − σ 2(ω)σ ′(ω)

)
+ 1

2
d(ω)

(
3σ ′′(ω) − 6σ(ω)σ ′(ω)2 − 3σ 2(ω)σ ′′(ω)

)
.

Evaluating at ω = c and taking into account that σ(c) = 1, we obtain

d2

dω2

(
E(χω) + ωF (χω)

)∣∣∣
ω=c

= d′′(c) − 3σ ′(c)2d(c) < d′′(c). (34)

But since F (χω) = F (ϕc), we have

d2

dω2

(
ωF (χω)

)∣∣∣
ω=c

= 0.

So, part (ii) follows from (34). Finally, to prove (iii), we note that from (i) and (22)

d

dω

(
E(χω)

)∣∣∣
ω=c

= d

dω

(
E(χω) + cF (χω)

)∣∣∣
ω=c

=
〈

E ′(ϕc) + cF ′(ϕc),
d

dω
χω

∣∣∣∣
ω=c

〉
= 0.

Therefore, (iii) follows from (ii). This completes the proof of the lemma. �
Lemma 3.6. Let c > 0 be fixed and assume d′′(c) < 0. Then,

(i) 〈(E ′′(ϕc) + cF ′′(ϕc))y0, y0〉 � d′′(c);
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(ii) 〈F ′(ϕc), y0〉 = ∫
R2 ϕc y0 = 0;

(iii)
∫

R2 D1/2
x ϕc D1/2

x y0 > 0, where y0 = d
dωχω|ω=c .

Proof. For s near c define u(s) = χc+s . It is easy to see that u(s) satisfies the hypotheses of
Lemma 3.4; hence part (i) follows from Lemmas 3.4 and 3.5(ii).

Since F (χω) = F (ϕc), differentiating with respect to ω and evaluating at ω = c leads to

0 = d

dω
F (χω)

∣∣∣
ω=c

=
〈
F ′(ϕc),

d

dω
χω

∣∣∣∣
ω=c

〉
,

which proves part (ii). To prove (iii), we first differentiate the formula∥∥D1/2
x χω

∥∥2
L2 = σ(ω)

∥∥D1/2
x ϕω

∥∥2
L2

with respect to ω and evaluate at ω = c to see that

2
∫
R2

D1/2
x ϕc D1/2

x y0 = σ ′(c)

∫
R2

∣∣D1/2
x ϕc

∣∣2 + d

dω

( ∫
R2

∣∣D1/2
x ϕω

∣∣2
)∣∣∣∣

ω=c
. (35)

But, since d(ω) = 1
2

∫
R2 |D1/2

x ϕω|2, we obtain

d

dω

( ∫
R2

∣∣D1/2
x ϕω

∣∣2
)∣∣∣∣

ω=c
= 2d′(c).

Thus, from (35),

2
∫
R2

D1/2
x ϕc D1/2

x y0 = σ ′(c)

∫
R2

∣∣D1/2
x ϕc

∣∣2 + 2d′(c) (36)

and then (iii) follows from (32) and (36), because d′(c) = F (ϕc) > 0. This completes the proof of the
lemma. �

From now on, we denote

y0 = d

dω
χω

∣∣∣
ω=c

, (37)

where χω is given in (26). We also denote the tubular neighborhoods of the orbit generated by a
solitary wave by

Uε =
{

u ∈ Z ; inf
r∈R2

∥∥u − ϕc(· − r)
∥∥

Z < ε
}

and

U s
ε = {u ∈ Uε; u is y-cylindrically symmetric},

where ε > 0 is arbitrary.
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Lemma 3.7. Fix c > 0 and let ϕc be a solitary wave given in Theorem 2.1. Then, there exist an ε > 0 and a
C1-map η : Uε → R2 such that for all u ∈ Uε and r ∈ R2 ,

(i) 〈u(· + η(u)), ∂xϕc〉 = 〈u(· + η(u)), ∂yϕc〉 = 0;

(ii) η(u(· + r)) = η(u) − r;

(iii) moreover, if u ∈ U s
ε then η(u) = (η0(u),0), where

η′
0(u) = ∂xϕc(· − η(u))

〈u, ∂2
x ϕc(· − η(u))〉 . (38)

Proof. The proof of this lemma is well known. In fact, one defines F : Z × R2 → R2 by

F (u, η) =
∫
R2

u
(
(x, y) + η

)∇ϕc(x, y)dx dy,

where η = (η1, η2). Then, taking into account that ϕc is cylindrically symmetric (see Theorem 2.1),
one can apply the Implicit Function Theorem to conclude the statements. For details we refer the
reader to [5, Lemma 3.5] or [28, Lemma 3.8]. �

We continue by defining for u ∈ U s
ε the map:

B(u) = y0
(· − β(t), ·) − 〈

y0
(· − β(t), ·), u

〉
∂xη

′
0(u)

= y0
(· − β(t), ·) − 〈y0(· − β(t), ·), u〉

〈u, ∂2
x ϕc(· − β(t), ·)〉∂

2
x ϕc

(· − β(t), ·), (39)

where β(t) = η0(u(·, t)) and y0 is defined in (37).
In order to prove some suitable properties of the vector field B , we observe the following:

Lemma 3.8. Let y0 be as in (37). Then, y0 ∈ Z .

Proof. Since for some constants βc , γc and κc , y0 expresses as

y0 = βcϕc + γcx∂xϕc + κc y∂yϕc,

one shows easily that y0 ∈ Z , provided that x∂xϕc and y∂yϕc are in Z . We multiply successively (6)
by x2∂2

x ϕc , y2∂2
yϕc , add the obtained identities, to get after several integrations by parts∫

R2

x2((∂xϕc)
2 + (

∂2
xyϕc

)2) +
∫
R2

(
y2(∂yϕc)

2 + [
∂y(y∂yϕc)

]2)
+

∫
R2

[(
D1/2

x (x∂xϕc)
)2 + (

D1/2
x (y∂yϕc)

)2]
= ‖ϕc‖2

Z − 4

C(p)

∫
R2

ϕ
p+2
c +

∫
R2

(
x2(∂xϕc)

2 + y2(∂yϕc)
2)ϕp

c , (40)

where C(p) = (p + 1)(p + 2). Consider the right-hand side in (40). The first two terms are bounded.
On the other hand, since ϕc → 0 as |(x, y)| → ∞ (see Theorem 2.1(i)), there exists R > 0 such that
r � R implies |ϕp

c (x, y)| � 1
2 for |(x, y)| � r. Thus for the last term in (40), we obtain that
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∫
R2

(
x2(∂xϕc)

2 + y2(∂yϕc)
2)ϕp

c � C R + 1

2

∫
R2

[
x2(∂xϕc)

2 + y2(∂yϕc)
2],

where C R is a constant depending only on R . Therefore, (40) implies that y0 ∈ Z . �
Now we can prove the following properties of B .

Lemma 3.9. For any small ε > 0, the mapping B is a C1-function from U s
ε into Z . In addition, the following

statements hold:

(i) B(ϕc) = y0;
(ii) 〈B(u), u〉 = 0, for all u ∈ U s

ε ;
(iii) B commutes with translations.

Proof. From Lemma 3.8 and the definition of B we immediately see that B(u) ∈ Z . To prove parts
(ii)–(iii) and to see the smoothness of B one proceeds for instance as in Lemma 3.6 of [5]. Part (i)
follows clearly from Lemma 3.6(ii). �
Lemma 3.10. Let B the mapping defined in (39). Then, for any ε > 0 small and u ∈ U s

ε , there exists a solution,
say uλ = R(λ, u), of the initial value problem

{
duλ

dλ
= B(uλ),

u0 = u,

and a positive number λ0 = λ0(u) such that

(i) R(·, u) is a C1-function for |λ| < λ0;
(ii) R(λ, ·) commutes with translations;

(iii) F (R(λ, u)) is independent of λ;
(iv) ∂

∂λ
R(λ,ϕc)|λ=0 = y0 .

Proof. See e.g. [5, Lemma 3.7]. �
Lemma 3.11. Fix c > 0 and suppose d′′(c) < 0. Let ϕc be a solitary wave given in Theorem 2.1. Then there is a
small enough ε > 0 such that for any u ∈ U s

ε which is not a translate of ϕc and satisfies F (u) = F (ϕc), there
is a λ = λ(u) ∈ (−ε, ε) such that

E(ϕc) < E(u) + λ
〈
E ′(u), B(u)

〉
. (41)

Proof. Let uλ be the smooth curve defined in Lemma 3.10 corresponding to a fixed u ∈ U s
ε . Since

u0 = u, it is easy to see that

∂2

∂λ2
E(uλ)

∣∣∣
λ=0

=
〈

E ′′(u)
duλ

dλ
,

duλ

dλ

〉∣∣∣∣
λ=0

+
〈

E ′(u),
d2uλ

dλ2

〉∣∣∣∣
λ=0

. (42)

Also, from Lemma 3.10(iii), we obtain

0 = ∂2

∂λ2
F (uλ)

∣∣∣
λ=0

=
〈
F ′′(u)

duλ

dλ
,

duλ

dλ

〉∣∣∣∣ +
〈
F ′(u),

d2uλ

dλ2

〉∣∣∣∣ . (43)

λ=0 λ=0
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Multiplying (43) by c and adding with (42), we deduce

∂2

∂λ2
E(uλ)

∣∣∣
λ=0

=
〈(

E ′′(u) + cF ′′(u)
)duλ

dλ
,

duλ

dλ

〉∣∣∣∣
λ=0

+
〈(

E ′(u) + cF ′(u)
)
,

d2uλ

dλ2

〉∣∣∣∣
λ=0

. (44)

Now, if we take u to be ϕc , (44) implies that

∂2

∂λ2
E(ϕc) = 〈(

E ′′(ϕc) + cF ′′(ϕc)
)

y0, y0
〉
, (45)

where we have used (22) and Lemma 3.10(iv). By Lemma 3.6(i), the right-hand side of (45) is negative.
Hence for u ∈ U s

ε near ϕc , it must be the case that

∂2

∂λ2
E(uλ)

∣∣∣
λ=0

< 0,

where uλ is the solution in Lemma 3.10 with u0 = u. Thus, the Taylor expansion yields

E(uλ) < E(u) + λ
〈
E ′(u), B(u)

〉
, (46)

for u ∈ U s
ε near ϕc and λ near zero.

Since d′′(c) < 0, if we consider again the curve uλ starting at ϕc , we obtain by Lemma 3.6(iii) that

d

dλ

∥∥D1/2
x uλ

∥∥2
L2

∣∣∣
λ=0

= 2
∫
R2

D1/2
x ϕc D1/2

x y0 > 0. (47)

Next for u near ϕc and λ near zero, we define the function

Γ (λ, u) = ∥∥D1/2
x uλ

∥∥2
L2 ,

where uλ is given by Lemma 3.10. Since Γ (0,ϕc) = ‖D1/2
x ϕc‖2

L2 and (47) holds, by the Implicit Func-
tion Theorem there exists λ = λ(u) > 0 such that

∥∥D1/2
x ϕc

∥∥2
L2 = Γ (0,ϕc) = Γ

(
λ(u), u

) = ∥∥D1/2
x uλ(u)

∥∥2
L2 . (48)

Therefore, from Lemma 3.3 and (48) it is inferred that

E(uλ) + cF (uλ) � d(c) = E(ϕc) + cF (ϕc). (49)

Finally, since F (uλ) = F (ϕc), from (49) we obtain E(uλ) � E(ϕc). Going back to (46) we prove the
lemma. �
Lemma 3.12. Let c > 0 and ϕc be a corresponding solitary wave given in Theorem 2.1. Assume d′′(c) < 0.
Then, the quantity 〈

E ′(χω), B(χω)
〉

changes sign as ω passes through c, where χω is given in (26).
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Proof. We first note that from Lemma 3.5 and (26), if we take u to be χω , then u satisfies the
hypotheses of Lemma 3.11. Thus, from Lemmas 3.5(iii) and 3.11, we get

λ(χω)
〈
E ′(χω), B(χω)

〉
> 0, ω �= c.

Hence, to prove the lemma, it suffices to show that the function ω �→ λ(χω) changes sign as ω passes
through c. But, from (48), ∥∥D1/2

x R
(
λ(χω),χω

)∥∥2
L2 = ∥∥D1/2

x ϕc
∥∥2

L2 . (50)

Differentiating (50) with respect to ω leads to∫
R2

D1/2
x R

(
λ(χω),χω

)
D1/2

x

(
∂ R

∂λ

dλ

dω
+ ∂ R

∂χω

∂χω

∂ω

)
= 0.

Evaluating at ω = c and λ = 0, we obtain∫
R2

D1/2
x ϕc D1/2

x y0

(
dλ

dω

∣∣∣∣
ω=c

+ 1

)
= 0.

So, using Lemma 3.6(iii), we see that

dλ

dω

∣∣∣∣
ω=c

= −1. (51)

Since λ(χc) = λ(ϕc) = 0, (51) implies the desired. �
Now we are able to show our main result.

Proof of Theorem 3.2. We start by taking ε > 0 small enough as in Lemma 3.7 and let U s
ε be the

corresponding tubular neighborhood. We assume that there exists a cylindrically symmetric data
u0 ∈ Hs ∩ L∞

y L1
x , s > 2, close to χω (in the Z -norm) for ω near c such that F (u0) = F (χω) (see Re-

mark 3.15 below). Moreover from Lemma 3.12 we may assume E(u0) < E(ϕc) and 〈E ′(u0), B(u0)〉 > 0.
Since u0 ∈ Hs , s > 2, from Theorem 2.2, there exist a T ∗ > 0 and a solution u ∈ C([0, T ∗); Hs) which
solves (1) with u(0) = u0. Let T ∗ be the maximum time for which u ∈ C([0, T ∗);Z ). Note that since
u0 belongs to U s

ε so belongs u(t), t ∈ [0, T ], T � T ∗ (since BO–ZK is invariant from y to −y). We want
to show that T < +∞ which means that u(t) eventually leaves U s

ε (here we conjecture that T ∗ < ∞
implies that lim supt→T ∗ ‖u(t)‖Z = +∞).

Before continuing the proof, we show the following two lemmas.

Lemma 3.13. Let u0 and u(t) be as in the preceding paragraph and assume Mu0 ∈ L1 , where M ≡
ε∂2

y + αH ∂x. Then ∥∥∂−1
x u(t)

∥∥
L∞

xy
� c

(
1 + t1/4),

where

∂−1
x u(t) =

x∫
−∞

u(r, y, t)dr.
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Proof. We consider the corresponding integral equation for u(t):

u(t) = U (t)u0 − 1

p + 1

t∫
0

U (t − τ )∂xup+1 dτ ,

where {U (t)}∞t=−∞ is the unitary group representing the solution of the linear problem

{
ut + M∂xu = 0,

u(x, y,0) = u0(x, y).

Thus, we can write

∂−1
x u(t) = ∂−1

x U (t)u0 − 1

p + 1

t∫
0

U (t − τ )up+1 dτ ≡ ∂−1
x z(t) − �(t). (52)

On the other hand, we can rewrite z(t) = U (t)u0 as

z(t) = u0 −
t∫

0

M∂xz(τ ) dτ = u0 − ∂x

t∫
0

U (τ )Mu0 dτ .

So,

∂−1
x z(t) = ∂−1

x u0 −
t∫

0

U (τ )Mu0 dτ . (53)

Since u0 ∈ L∞
y L1

x , we obtain

∣∣∂−1
x u0

∣∣ �
x∫

−∞

∣∣u0(r, y)
∣∣dr �

∞∫
−∞

∣∣u0(r, y)
∣∣dr � ‖u0‖L∞

y L1
x
. (54)

Also, from Lemma 2.4 (with δ = 0 and θ = 1), we get

∣∣∣∣∣
t∫

0

U (τ )Mu0 dτ

∣∣∣∣∣ �
t∫

0

∥∥U (τ )Mu0
∥∥

L∞ dτ � ct1/4‖Mu0‖L1 . (55)

Hence, from (53)–(55), we deduce

∣∣∂−1
x z(t)

∣∣ � c
(
1 + t1/4), (56)

where c is a constant depending on ‖Mu0‖L1 and ‖u0‖L∞L1 .

y x
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It just remains to estimate �(t). Note that another application of Lemma 2.4 yields

∣∣�(t)
∣∣ � c

t∫
0

∥∥U (t − τ )up+1
∥∥

L∞ dτ � c

t∫
0

(t − τ )−3/4‖u‖p+1
Lp+1 dτ .

Thus, the embedding H1(R2) ↪→ Lr(R2), 2 � r < ∞, implies

∣∣�(t)
∣∣ � c sup

t∈[0,T ∗)

∥∥u(t)
∥∥p+1

H1

t∫
0

(t − τ )−3/4 dτ = ct1/4, (57)

where c is a constant depending on supt∈[0,T ∗) ‖u(t)‖p+1
H1 . Gathering (52), (56) and (57) the proof is

completed. �
Lemma 3.14. Let y0 be as given in (37). Then, y0 ∈ L1 .

Proof. First note that

ϕc = 1

p + 1
K ∗ ϕ

p+1
c ,

where K̂ (ξ,η) = 1
c−α|ξ |+η2 . Now, using that for p � 1 the kernel K satisfies:

(i) |x|s1 |y|s2∂x K ∈ L p(R2), for any s1 < 3 − 1
p , 2s1 + s2 � 5 − 3

p ,

(ii) |x|s1 |y|s2∂y K ∈ L p(R2), for any s1 < 2 − 1
p , 2s1 + s2 � 4 − 3

p ,

one can complete the proof following similar arguments as the ones in Corollary 4.20 of [13]. �
Now we turn our attention to complete the proof of Theorem 3.2 (see also [11]). Define the Lya-

punov function

A(t) = A
(
u(t)

) := −
∫
R2

y0
(
x − β(t), y

)
∂−1

x u(x, y, t)dx dy,

where β(t) = η0(u(t)) and η0 is given in Lemma 3.7. From Holder’s inequality and Lemmas 3.13
and 3.14, we have

∣∣A(t)
∣∣ � ‖y0‖L1

∥∥∂−1
x u(y)

∥∥
L∞ � c

(
1 + t1/4). (58)

On the other hand, using that BO–ZK equation can be written as a Hamiltonian system in the form

du

dt
= ∂x E ′(u),

we see from the definition of B that
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d

dt
A(t) =

〈
y0

(· − β(t), ·), ∂−1
x

du

dt

〉
+

〈
η′

0

(
u(t)

)
,

du

dt

〉〈
∂x y0

(· − β(t), ·), ∂−1
x u(t)

〉
= 〈

y0
(· − β(t), ·), E ′(u(t)

)〉 − 〈
∂xη

′
0

(
u(t)

)
, E ′(u(t)

)〉〈
y0

(· − β(t), ·), u(t)
〉

= 〈
E ′(u(t)

)
, B

(
u(t)

)〉
.

Since E is a conserved quantity, using Lemma 3.11 and our assumptions, we obtain that

λ
(
u(t)

)〈
E ′(u(t)

)
, B

(
u(t)

)〉
> E(ϕc) − E

(
u(t)

) = E(ϕc) − E(u0) =: C0 > 0. (59)

So, from the fact that 〈E ′(u0), B(u0)〉 > 0 we deduce that λ(u(t)) > 0, 0 � t � T , and since λ(ϕc) = 0
we may choose (if necessary) ε > 0 small enough such that |λ(u(t))| < 1 as long as u(t) ∈ U s

ε . There-
fore, from (59), we have for 0 � t � T ,

0 < C0 <
∣∣〈E ′(u(t)

)
, B

(
u(t)

)〉∣∣ =
∣∣∣∣ d

dt
A(t)

∣∣∣∣. (60)

As a consequence of (58) and (60) we deduce that T is necessarily finite, i.e., u(t) must exit U s
ε in a

finite time. This proves the theorem.

Remark 3.15. If it happens that p is an integer then we can take u0 to be χω for ω near c.
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