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1. Introduction

We begin with the classical Lyapunov inequality for the second-order scalar linear differential
equation

x′′(t) + q(t)x(t) = 0, (1.1)
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where the potential q : R → R is piecewise continuous or locally Lebesgue integrable. There are sev-
eral equivalent statements for the Lyapunov inequality of Eq. (1.1).

The first one is as follows. Suppose that Eq. (1.1) admits a non-zero solution x(t) such that x(a) =
x(b) = 0 for some a,b ∈ R with a < b. Lyapunov [19] asserted that the potential q satisfies the so-
called Lyapunov inequality

b∫
a

q+(t)dt >
4

b − a
. (1.2)

Moreover, inequality (1.2) is optimal. Here and in the sequel,

q+(t) := max
{

q(t),0
}
, t ∈ R.

The second statement is as follows. Consider the Dirichlet eigenvalue problem

x′′ + (
λ + q(t)

)
x = 0 for t ∈ [a,b], x(a) = x(b) = 0.

It is well known that the problem has a sequence of eigenvalues λ1(q) < λ2(q) < · · · < λn(q) < · · ·
such that limn→∞ λn(q) = +∞. The Lyapunov inequality can be restated as

b∫
a

q+(t)dt � 4

b − a
⇒ λ1(q) > 0. (1.3)

See [36]. Note that the condition in (1.3) is complementary to the Lyapunov inequality (1.2).
The third statement is as follows. Suppose that q(t) is T -periodic for some T > 0. Then the Hill

equation (1.1) is stable in the sense of Lyapunov (see Definition 4.1) if

T∫
0

q(t)dt > 0, (1.4)

T∫
0

q+(t)dt � 4

T
. (1.5)

See also [36]. Note that condition (1.5) is complementary to inequality (1.2).
Lyapunov inequality (1.2) and Lyapunov stability criterion (1.4)–(1.5) have been generalized to a

great extent, especially to higher-order linear scalar equations and linear Hamiltonian systems. See
the survey article by Cheng [5] and papers [2–4,7,10]. Note that these results are involved of the L1

norms of potentials q. Some extensions using L p norms of q, 1 < p � ∞, have been given in [32,36].
Lyapunov inequalities are fundamental in many applications to linear and nonlinear problems [5].

Some recent works are as follows. For example, from Lyapunov inequalities, one can deduce an explicit
characterization for the non-degeneracy of linear systems [16,20,32,34] and give sufficient conditions
on maximum and anti-maximum principles for linear equations [1,35]. Based on the non-degeneracy
of linear problems, Lyapunov inequalities can be applied to the uniqueness and multiplicity of solu-
tions of nonlinear and even superlinear boundary value problems [16,34]. Furthermore, these inequal-
ities have applications in estimates of rotation numbers of Hill’s equations [6], ellipticity of linear
conservative systems [6,12] and stability of periodic solutions of nonlinear conservative systems [6]
with the help of Moser’s twist theorem [26].
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In this paper, we will consider general linear Hamiltonian system

u′(t) = J H(t)u(t), u ∈ R
2n, (1.6)

where

J =
(

0 In

−In 0

)

is the standard symplectic matrix and

H(t) =
(

C(t) A�(t)

A(t) B(t)

)
: R → R

2n×2n,

is a symmetric matrix-valued function which is locally Lebesgue integrable. Here A, B, C : R → R
n×n

and B�(t) ≡ B(t), C�(t) ≡ C(t). With the choice of A(t) ≡ 0 and B(t) ≡ In , (1.6) is reduced to the
second-order Hamiltonian system

x′′(t) + C(t)x(t) = 0, x ∈ R
n, (1.7)

where C : R → R
n×n is symmetric and locally Lebesgue integrable.

In papers [23–25], Reid considered generalization of Lyapunov inequality (1.2) to system (1.6) by
using the Green functions. The results are particularly good for system (1.7). However, as Green func-
tions depend on matrices A(t), B(t) and C(t) in an implicit way, it is not easy to deduce explicit
conditions.

The main results of this paper are as follows. For general dimensions, when B(t) is semi-positive
definite, if system (1.6) admits some solution u(t) = (x(t), y(t)), where x(t), y(t) ∈ R

n , such that

x(a) = x(b) = 0, x|[a,b] 
= 0, (1.8)

we will derive several Lyapunov inequalities expressed explicitly using A, B, C . For precise statements,
see Theorems 2.1 and 2.4 of Section 2. One simpler version is that H satisfies the following inequality

‖B‖L1[a,b]‖C‖L1[a,b] exp
(‖A‖L1[a,b]

)
� 4.

See Remark 2.5. This is a matrix form of inequality (1.2). Examples in Section 2.3 show that these
inequalities have unified and generalized many known Lyapunov inequalities for systems.

In Section 3, for the case n = 1, we will establish the connection between these Lyapunov inequali-
ties and estimates of eigenvalues of one-dimensional stationary Dirac operators in relativistic quantum
theory [18, Chapter 7]. Roughly speaking, complimentary to the Lyapunov inequalities, 0 must be be-
tween the zeroth and the first eigenvalues. For details, see Theorem 3.6. Such an explanation for
Lyapunov inequalities from the point of view of eigenvalues is different from the preceding works
like [5]. In the obtention of these results, we will extensively apply the homotopy technique as did
in [33].

In Section 4, we consider planar linear Hamiltonian systems (1.6) which are periodic in time,
i.e., n = 1 and H(t + T ) ≡ H(t). Based on the Lyapunov inequalities in Section 2, we will give some
new stability criterion. See Theorem 4.7. This new criterion has completely extended several known
stability criteria in [11,12,15,29]. Moreover, it has also overcome some typical disadvantages in the
preceding works. See the remarks at the end of the paper.
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2. Lyapunov inequalities for linear Hamiltonian systems

In this section, we will establish some new Lyapunov type inequalities for Hamiltonian systems
(1.6) and (1.7).

2.1. Vectors, matrices, norms and measures

For x ∈ R
n and A ∈ R

n×n (the space of real n × n matrices),

|x| := (
x�x

)1/2
, |A| := max

x∈Rn,|x|=1
|Ax|

are respectively the Euclidean norm of vectors and the matrix norm of matrices. One has

|Ax| � |A||x|, x ∈ R
n.

Denote by R
n×n
s the space of all symmetric real n ×n matrices. We say that C ∈ R

n×n
s is semi-positive

definite, written as C � 0, if x�Cx � 0 for all x ∈ R
n . For C, C∗ ∈ R

n×n
s , we write C∗ � C if C∗ −

C � 0. If C ∈ R
n×n
s is semi-positive, one has a unique square root C1/2 ∈ R

n×n
s such that C1/2 � 0 and

(C1/2)2 = C .
Some elementary inequalities are as follows. Let C ∈ R

n×n
s . Then for any C∗ ∈ R

n×n
s with C∗ � C ,

one has the following inequality

x�Cx �
∣∣C∗∣∣|x|2, x ∈ R

n, (2.1)

because

x�Cx � x�C∗x � |x| · ∣∣C∗x
∣∣ � |x| · ∣∣C∗∣∣|x| = ∣∣C∗∣∣|x|2.

Let P ∈ R
n×n and Q ∈ R

n×n
s with Q � 0. Then

|P Q x| � ∣∣Q 1/2 P� P Q 1/2
∣∣1/2(

x� Q x
)1/2

, x ∈ R
n, (2.2)

because

|P Q x|2 = x� Q P� P Q x

= (
Q 1/2x

)�
Q 1/2 P� P Q 1/2(Q 1/2x

)
�

∣∣Q 1/2x
∣∣ · ∣∣Q 1/2 P� P Q 1/2

∣∣ · ∣∣Q 1/2x
∣∣

= ∣∣Q 1/2 P� P Q 1/2
∣∣ · (Q 1/2x

)�
Q 1/2x

= ∣∣Q 1/2 P� P Q 1/2
∣∣ · x� Q x.

For an integrable vector-valued function z : [a,b] → R
n or an integrable matrix-valued function

D : [a,b] → R
n×n , the L1 norms on [a,b] are respectively
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‖z‖L1[a,b] :=
b∫

a

∣∣z(t)∣∣dt,

‖D‖L1[a,b] :=
b∫

a

∣∣D(t)
∣∣dt.

One has then

∣∣∣∣∣
b∫

a

f (t)dt

∣∣∣∣∣ � ‖ f ‖L1[a,b], (2.3)

where f (t) is either a vector-valued or a matrix-valued function.
For A ∈ R

n×n , the matrix measure [28] is defined as

μ(A) = lim
θ→0

θ−1(|In + θ A| − 1
) ∈ R.

One has from [9, p. 41]

μ(A) = λmax
((

A + A�)
/2

)
� |A|, A ∈ R

n×n, (2.4)

where λmax(D) denotes the largest eigenvalue of a matrix D .
Let A : R → R

n×n be a locally integrable matrix-valued function. Denote by M A(t, t0) the funda-
mental matrix solution of the following system

X ′ = A(t)X, X(t0) = In.

From [9] and [27, Lemma 2.3], one has the following estimates on M A(t, t0)

∣∣M A(t, t0)
∣∣ � exp

( t∫
t0

μ
(+A(s)

)
ds

)
, t � t0, (2.5)

∣∣M A(t0, t)
∣∣ � exp

( t∫
t0

μ
(−A(s)

)
ds

)
, t � t0. (2.6)

2.2. Lyapunov inequalities

We consider the first-order Hamiltonian system (1.6). By writing u = (x, y), where x, y ∈ R
n , sys-

tem (1.6) takes the form

x′(t) = A(t)x(t) + B(t)y(t), y′(t) = −C(t)x(t) − A�(t)y(t). (2.7)

In order to establish Lyapunov inequalities, we always assume for system (1.6) that

B(t) � 0 for t ∈ R. (B0)
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Denote

ζ(t) :=
t∫

a

∣∣B(τ )
∣∣exp

(
2

t∫
τ

μ
(+A(s)

)
ds

)
dτ , (2.8)

η(t) :=
b∫

t

∣∣B(τ )
∣∣exp

(
2

τ∫
t

μ
(−A(s)

)
ds

)
dτ . (2.9)

Theorem 2.1. Suppose that (B0) is satisfied. If system (1.6) has solutions satisfying (1.8) on the interval [a,b],
then for any function C∗ ∈ L1

loc(R,R
n×n
s ) such that

C∗(t) � C(t) ∀t ∈ R, (2.10)

one has the following inequality

b∫
a

ζ(t)η(t)

ζ(t) + η(t)

∣∣C∗(t)
∣∣dt � 1. (2.11)

Proof. At first let us notice that any solution (x(t), y(t)) of (2.7) satisfies the following equality

(
x�(t)y(t)

)′ ≡ y�(t)B(t)y(t) − x�(t)C(t)x(t). (2.12)

Step 1. Suppose that (x(t), y(t)) is a solution of (2.7) satisfying (1.8). By integrating (2.12) from a
to b and taking into account that x(a) = x(b) = 0, one has

b∫
a

x�(t)C(t)x(t)dt =
b∫

a

y�(t)B(t)y(t)dt.

Moreover, as B(t) is semi-positive definite, one has

y�(t)B(t)y(t) � 0, t ∈ [a,b].

If

y�(t)B(t)y(t) = 0 a.e. t ∈ [a,b],

one would have

B(t)y(t) = 0 a.e. t ∈ [a,b],

because B(t) is semi-positive definite. Thus the first equation of (2.7) would read as

x′(t) = A(t)x(t).
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Since x(a) = 0, x(t) ≡ 0, a contradiction with (1.8). Hence we have proved

b∫
a

x�(t)C(t)x(t)dt =
b∫

a

y�(t)B(t)y(t)dt > 0. (2.13)

We remark that, if Eq. (1.6) admits solutions satisfying (1.8), one sees from (2.13) that B|[a,b] 
≡ 0.
Consequently, ξ(t) + η(t) > 0 for all t ∈ [a,b] and the left-hand side of (2.11) is meaningful.

Step 2. Let us consider the first equation of (2.7) as an inhomogeneous equation for x(t). Then

x(t) = M A(t, t0)x(t0) +
t∫

t0

M A(t, τ )B(τ )y(τ )dτ .

Taking t0 = a and t0 = b respectively and considering that x(a) = x(b) = 0, we get

x(t) = +
t∫

a

M A(t, τ )B(τ )y(τ )dτ , (2.14)

x(t) = −
b∫

t

M A(t, τ )B(τ )y(τ )dτ . (2.15)

For a � τ � t � b, with the choice of P = In and Q = B(τ ), we have from (2.2) and (2.5)

∣∣M A(t, τ )B(τ )y(τ )
∣∣ �

∣∣M A(t, τ )
∣∣ · ∣∣B(τ )y(τ )

∣∣
� exp

( t∫
τ

μ
(

A(s)
)

ds

)
· ∣∣B(τ )

∣∣1/2(
y�(τ )B(τ )y(τ )

)1/2

= ∣∣B(τ )
∣∣1/2

exp

( t∫
τ

μ
(

A(s)
)

ds

)
· (y�(τ )B(τ )y(τ )

)1/2
.

With the help of the Cauchy–Schwartz inequality, (2.3) and (2.14) imply

∣∣x(t)∣∣2 �
t∫

a

∣∣B(τ )
∣∣exp

(
2

t∫
τ

μ
(

A(s)
)

ds

)
dτ ·

t∫
a

y�(τ )B(τ )y(τ )dτ

= ζ(t) ·
t∫

a

y�(τ )B(τ )y(τ )dτ , t ∈ [a,b], (2.16)

where ζ(t) is as in (2.8). Similarly, by letting η(t) be as in (2.9), it follows from (2.6) and (2.15) that

∣∣x(t)∣∣2 � η(t) ·
b∫

y�(τ )B(τ )y(τ )dτ , t ∈ [a,b]. (2.17)
t
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Step 3. From (2.16) and (2.17), we have

t∫
a

y�(τ )B(τ )y(τ )dτ � |x(t)|2
ζ(t)

,

b∫
t

y�(τ )B(τ )y(τ )dτ � |x(t)|2
η(t)

.

Thus

b∫
a

y�(τ )B(τ )y(τ )dτ � ζ(t) + η(t)

ζ(t)η(t)

∣∣x(t)∣∣2
, t ∈ [a,b].

That is,

∣∣x(t)∣∣2 � ζ(t)η(t)

ζ(t) + η(t)

b∫
a

y�(τ )B(τ )y(τ )dτ , t ∈ [a,b].

Note that this is also true even when ζ(t) = 0 or η(t) = 0. Now we have

b∫
a

∣∣C∗(t)
∣∣∣∣x(t)∣∣2

dt �
b∫

a

ζ(t)η(t)

ζ(t) + η(t)

∣∣C∗(t)
∣∣dt ·

b∫
a

y�(τ )B(τ )y(τ )dτ

�
b∫

a

ζ(t)η(t)

ζ(t) + η(t)

∣∣C∗(t)
∣∣dt ·

b∫
a

∣∣C∗(τ )
∣∣∣∣x(τ )

∣∣2
dτ . (2.18)

From (2.1), (2.10) and (2.13), one has

b∫
a

∣∣C∗(t)
∣∣∣∣x(t)∣∣2

dt �
b∫

a

x�(t)C(t)x(t)dt =
b∫

a

y�(t)B(t)y(t)dt > 0. (2.19)

Thus inequality (2.11) follows simply from (2.18) and (2.19). �
The following inequalities (2.20) are also useful in our applications.

Lemma 2.2. Suppose that H(t) and C∗(t) are as in Theorem 2.1. Then there exists c ∈ (a,b) such that

c∫
a

ζ(t)
∣∣C∗(t)

∣∣dt =
b∫

c

η(t)
∣∣C∗(t)

∣∣dt � 1. (2.20)

Proof. Let c ∈ (a,b) be such that

c∫
ζ(t)

∣∣C∗(t)
∣∣dt =

b∫
η(t)

∣∣C∗(t)
∣∣ =: m0.
a c
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We have from (2.16)

∣∣C∗(t)
∣∣∣∣x(t)∣∣2 � ζ(t)

∣∣C∗(t)
∣∣ ·

c∫
a

y�(τ )B(τ )y(τ )dτ , t ∈ [a, c].

Integrating this inequality from a to c, we obtain

c∫
a

∣∣C∗(t)
∣∣∣∣x(t)∣∣2

dt � m0

c∫
a

y�(τ )B(τ )y(τ )dτ .

Similarly, we can obtain from (2.17)

b∫
c

∣∣C∗(t)
∣∣∣∣x(t)∣∣2

dt � m0

b∫
c

y�(τ )B(τ )y(τ )dτ .

These yield

b∫
a

∣∣C∗(t)
∣∣∣∣x(t)∣∣2

dt � m0

b∫
a

y�(t)B(t)y(t)dt.

By using fact (2.19), we obtain m0 � 1 which is (2.20). �
Remark 2.3. To make a comparison with the classical Lyapunov inequality, for C = (ci j(t)), one can
take C∗(t) in Theorem 2.1 and Lemma 2.2 as

C+(t) = 1

2

{
C(t) + [

C(t)C�(t)
]1/2}

,

or

C+(t) :=

⎛
⎜⎜⎜⎜⎝

c+
11(t) c12(t) · · · c1n(t)

c21(t) c+
22(t) · · · c2n(t)

...
...

. . .
...

cn1(t) cn2(t) · · · c+
nn(t)

⎞
⎟⎟⎟⎟⎠ ,

because both C+(t) and C+(t) satisfy condition (2.10) (see [25]).

Let us derive some useful consequences from Theorem 2.1. For a matrix-valued function H ∈
L1([a,b],R

2n×2n
s ), define

N (H) = N[a,b](H) := ‖B‖L1[a,b]
∥∥C+∥∥

L1[a,b] exp
(‖A‖L1[a,b]

)
. (2.21)

This is a nonlinear functional, which can be considered as a measurement for the size of H . For H = 0,
one has N (0) = 0.
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Note that inequalities (2.11) and (2.20) are, in general, not strict. Let us impose the following
stronger hypothesis

B(t) � 0 and B(t) 
= 0 ∀t ∈ R. (B1)

Theorem 2.4.

(i) Suppose that (B0) is satisfied. If system (1.6) has solutions satisfying (1.8) on the interval [a,b], then H(t)
satisfies the following inequality

N[a,b](H) � 4. (2.22)

(ii) In case (B0) is replaced by (B1), inequality (2.22) is strict, i.e.

N[a,b](H) > 4. (2.23)

Proof. (i) With the choice of C∗(t) = C+(t) in Theorem 2.1 and Lemma 2.2, let c ∈ (a,b) be as
in (2.20). For a � τ � t � c, we have from (2.4)

exp

(
2

t∫
τ

μ
(

A(s)
)

ds

)
� exp

(
2

t∫
τ

∣∣A(s)
∣∣ ds

)
� exp

(
2

c∫
a

∣∣A(s)
∣∣ ds

)
=: A1.

By (2.8), we have

ζ(t) � A1

t∫
a

∣∣B(τ )
∣∣ dτ � A1

c∫
a

∣∣B(τ )
∣∣dτ , t ∈ [a, c). (2.24)

Now (2.20) and (2.24) imply

1 �
c∫

a

ζ(t)
∣∣C+(t)

∣∣ dt � A1

c∫
a

∣∣C+(t)
∣∣dt ·

c∫
a

∣∣B(t)
∣∣dt.

That is,

c∫
a

∣∣C+(t)
∣∣ dt ·

c∫
a

∣∣B(t)
∣∣dt � A−1

1 . (2.25)

Similarly, we have

b∫
c

∣∣C+(t)
∣∣ dt ·

b∫
c

∣∣B(t)
∣∣dt � A−1

2 , A2 := exp

(
2

b∫
c

∣∣A(s)
∣∣ ds

)
. (2.26)

We will exploit the elementary inequality

x2

+ y2

� 4xy, x, y,α,β ∈ (0,∞), α + β = 1.

α β
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By denoting

α =
∫ c

a

∣∣B(t)
∣∣dt

‖B‖L1[a,b]
, β =

∫ b
c

∣∣B(t)
∣∣dt

‖B‖L1[a,b]
,

we have from (2.25) and (2.26)

‖B‖L1[a,b]
∥∥C+∥∥

L1[a,b] = ‖B‖L1[a,b]

( c∫
a

∣∣C+(t)
∣∣dt +

b∫
c

∣∣C+(t)
∣∣dt

)

�
A−1

1

α
+ A−1

2

β

� 4A−1/2
1 A−1/2

2

= 4 exp
(−‖A‖L1[a,b]

)
. (2.27)

This is the desired inequality (2.22).
(ii) Note that

∫ b
a |C+(t)|dt > 0. If H(t) satisfies (B1), then inequality (2.24) is strict. In this case, at

least one of (2.25) and (2.26) must be strict. Consequently, (2.27) is strict and we have (2.23). �
Remark 2.5. In the definition (2.21) for N (H) and inequalities (2.22) and (2.23), C+(t) can be replaced
by any C∗(t) satisfying (2.10). Theorem 2.4 asserts that if system (1.6) admits solutions satisfying (1.8),
then the Hamiltonian H(t) will be big enough.

We show by an example that hypothesis (B1) is necessary to obtain strict inequalities.

Example 2.6. Let n = 1, A(t) = 0 and

B(t) =
{

β, t ∈ [0,1) ∪ (2,3],
0, t ∈ [1,2], C(t) =

{
0, t ∈ [0,1) ∪ (2,3],
γ , t ∈ [1,2],

where β,γ > 0 and βγ = 2. Define

x(t) =
⎧⎨
⎩

βt, t ∈ [0,1),

β, t ∈ [1,2],
β(3 − t), t ∈ (2,3],

y(t) =
⎧⎨
⎩

1, t ∈ [0,1),

3 − 2t, t ∈ [1,2],
−1, t ∈ (2,3].

Then (x(t), y(t)) satisfies (2.7) on the interval [0,3]. Note that x(t) satisfies x(0) = x(3) = 0. On the
other hand, one has N[0,3](H) = 4. �

As corollaries of Theorems 2.1 and 2.4, we can obtain the following results for second-order Hamil-
tonian systems (1.7).

Theorem 2.7. If system (1.7) has a solution x(t) satisfying (1.8) on the interval [a,b], then

b∫
(t − a)(b − t)

∣∣C+(t)
∣∣dt > b − a, (2.28)
a
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b∫
a

(t − a)(b − t)
∣∣C+(t)

∣∣dt > b − a, (2.29)

(b − a)‖C+‖L1[a,b] > 4, (2.30)

(b − a)
∥∥C+∥∥

L1[a,b] > 4. (2.31)

Proof. System (1.7) corresponds to (2.7) with the choice of A(t) ≡ 0 and B(t) ≡ In . In this case, ζ(t) =
t − a, η(t) = b − t , and N (H) = (b − a)‖C+‖L1[a,b] or N (H) = (b − a)‖C+‖L1[a,b] . Thus (2.28)–(2.31)
follow from (2.11) and (2.23). For this case, it is possible to show that (2.28) and (2.29) are strict. �
Remark 2.8. Inequalities (2.11), (2.22) and (2.23) will be referred to Lyapunov inequalities for first-
order Hamiltonian systems (1.6), while inequalities (2.28)–(2.31) will be referred to Lyapunov inequal-
ities for second-order Hamiltonian systems (1.7).

2.3. Comparisons with known results

We give only a few comparisons with some known Lyapunov inequalities.

Example 2.9. Consider the scalar equation (1.1). In this case, n = 1 and result (2.31) is just the classical
Lyapunov inequality (1.2), while (2.29) yields

b∫
a

(t − a)(b − t)q+(t)dt > b − a, (2.32)

which is just the improvement of (1.2) given in Hartman [13]. �
Example 2.10. Consider the second-order Hamiltonian system (1.7). Applying [25, Theorem 2.1] to this
system, one can obtain

b∫
a

(t − a)(b − t) · Tr
[
C+(t)

]
dt > b − a. (2.33)

It is easy to see that inequality (2.28) is better than (2.33) because Tr[C+(t)] � |C+(t)|. �
To give further examples, let us improve Theorem 2.1 when A(t) is constant.

Proposition 2.11. Suppose that A(t) ≡ A and B(t) satisfies (B0). If system (1.6) has solutions (x(t), y(t))
satisfying (1.8) on the interval [a,b], then for any C∗ ∈ L1

loc(R,R
n×n
s ) such that

C∗(t) � 0 and C∗(t) � C(t) ∀t ∈ R,

one has the following inequality

b∫ ∫ t
a ξ(t, τ )dτ · ∫ b

t ξ(t, τ )dτ∫ b
a ξ(t, τ )dτ

dt � 1, (2.34)
a
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where

ξ(t, τ ) := ∣∣(B(τ )
)1/2

e(t−τ )A�
C∗(t)e(t−τ )A(

B(τ )
)1/2∣∣. (2.35)

Proof. Since A(t) ≡ A, one has M A(t, τ ) = e(t−τ )A . It follows from (2.14) and (2.15) that

x(t) = +
t∫

a

e(t−τ )A B(τ )y(τ )dτ , (2.36)

x(t) = −
b∫

t

e(t−τ )A B(τ )y(τ )dτ . (2.37)

Since C∗(t) � 0, one can define

D(t, τ ) := (
C∗(t)

)1/2
e(t−τ )A B(τ ).

By (2.36), one has

(
C∗(t)

)1/2
x(t) =

t∫
a

D(t, τ )y(τ )dτ .

With the choice of P = (C∗(t))1/2e(t−τ )A and Q = B(τ ) in (2.2), one has

Q 1/2 P� P Q 1/2 = (
B(τ )

)1/2
e(t−τ )A�

C∗(t)e(t−τ )A(
B(τ )

)1/2
.

Using ξ(t, τ ) in (2.35), we obtain from (2.2)

∣∣D(t, τ )y(τ )
∣∣ �

(
ξ(t, τ )

)1/2 · (y�(τ )B(τ )y(τ )
)1/2

.

By (2.3), we have

x�(t)C∗(t)x(t) = ∣∣(C∗(t)
)1/2

x(t)
∣∣2

�
( t∫

a

∣∣D(t, τ )y(τ )
∣∣ dτ

)2

�
( t∫

a

(
ξ(t, τ )

)1/2 · (y�(τ )B(τ )y(τ )
)1/2

dτ

)2

�
t∫
ξ(t, τ )dτ ·

t∫
y�(τ )B(τ )y(τ )dτ , a � t � b, (2.38)
a a
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following from the Cauchy–Schwartz inequality. Similarly, it follows from (2.2) and (2.37) that

x�(t)C∗(t)x(t) �
b∫

t

ξ(t, τ )dτ ·
b∫

t

y�(τ )B(τ )y(τ )dτ , a � t � b. (2.39)

Arguing as in the last step of the proof of Theorem 2.1, it follows from (2.38) and (2.39) that

x�(t)C∗(t)x(t) �
∫ t

a ξ(t, τ )dτ · ∫ b
t ξ(t, τ )dτ∫ b

a ξ(t, τ )dτ
·

b∫
a

y�(τ )B(τ )y(τ )dτ , a � t � b.

Integrating it from a to b, we obtain

b∫
a

x�(t)C∗(t)x(t)dt �
b∫

a

∫ t
a ξ(t, τ )dτ · ∫ b

t ξ(t, τ )dτ∫ b
a ξ(t, τ )dτ

dt ·
b∫

a

y�(τ )B(τ )y(τ )dτ .

By using (2.19) again, we obtain (2.34). �
Example 2.12. Consider the following scalar 2n-order linear differential equation

(−1)n+1u(2n)(t) + q(t)u(t) = 0. (2.40)

In case n = 2, Eq. (2.40) is the beam equation. Suppose that Eq. (2.40) has a real solution u(t) satisfy-
ing

u(i)(a) = u(i)(b) = 0 for i = 0,1, . . . ,n − 1, u|[a,b] 
= 0. (2.41)

Lerin [17] gave the following extension of the Lyapunov inequality (1.2)

b∫
a

q+(t)dt >
42n−1(2n − 1)((n − 1)!)2

(b − a)2n−1
.

Later, Das and Vatsala [10] obtained the following improvement

b∫
a

(t − a)2n−1(b − t)2n−1q+(t)dt > (2n − 1)
(
(n − 1)!)2

(b − a)2n−1, (2.42)

which corresponds to inequality (2.32) for Eq. (1.1).
To see this, by setting

xi(t) = u(i−1)(t), yi(t) = (−1)n+iu(2n−i)(t), i = 1,2, . . . ,n,

A(t) ≡ A =

⎛
⎜⎜⎜⎝

0 1
. . .

. . .

0 1

⎞
⎟⎟⎟⎠ ,
0
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B(t) ≡ B = diag(0,0, . . . ,0,1), C(t) = diag
(
q(t),0, . . . ,0

)
,

Eq. (2.40) is equivalent to Hamiltonian system (2.7). Moreover, condition (2.41) is transformed into
(1.8) for x(t) = (x1(t), . . . , xn(t))� . Let us choose C∗(t) in Proposition 2.11 as C∗(t) ≡ C+(t). It is easy
to see that

ξ(t, τ ) = ∣∣B1/2e(t−τ )A�
C+(t)e(t−τ )A B1/2

∣∣ = (t − τ )2(n−1)

((n − 1)!)2
q+(t).

Substituting into (2.34), one can obtain (2.42) with > being replaced by �. �
3. Lyapunov inequalities and eigenvalues

In this section and the next section, we consider linear Hamiltonian systems (1.6) of degree 1
of freedom, i.e., n = 1. The aim of this section is to establish some connection between Lyapunov
inequalities and (optimal) estimates of eigenvalues.

Let

H(t) =
(

γ (t) α(t)

α(t) β(t)

)
: R → R

2×2
s , (3.1)

where α,β,γ ∈ L1
loc(R,R). Associated with Hamiltonian system (2.7) is the following eigenvalue prob-

lem for one-dimensional stationary Dirac operator in relativistic quantum theory [18, Chapter 7]

u′(t) = J
(
λI2 + H(t)

)
u(t), t ∈ [a,b], (3.2)

x(a) = x(b) = 0. (3.3)

As usual, λ is an eigenvalue of problem (3.2)–(3.3) if Eq. (3.2) has a non-zero solution u(t) =
(x(t), y(t)) such that (3.3) is satisfied. Such a solution u(t) is called an eigen-function associated
with λ. Problem (3.2)–(3.3) has a sequence of (real) eigenvalues

· · · < λ−m(H) < · · · < λ−1(H) < λ0(H) < λ1(H) < · · · < λm(H) < · · ·
such that limm→±∞ λm(H) = ±∞. The indexing of eigenvalues is determined by the rotation of solu-
tions in the plane. See [18, Chapter 7] and [21, Formula (4.6)]. For example, if H(t) ≡ α I2, (3.2) reads
as

x′(t) = (λ + α)y(t), y′(t) = −(λ + α)x(t),

and its eigenvalues and eigen-functions are

λm(0) = mπ

b − a
− α, um(t) =

(
y0 sin mπ(t−a)

b−a

y0 cos mπ(t−a)
b−a

)
, y0 ∈ R \ {0}, m ∈ Z. (3.4)

Thus λm(H) can be either positive or negative.
By considering eigenvalues λm(H) as nonlinear functionals of H ∈ L1([a,b],R

2×2
s ), some properties

are as follows.

Lemma 3.1. In the usual L1 topology ‖ · ‖L1[a,b] of L1([a,b],R
2×2
s ), eigenvalues λm(H) are continuously

Fréchet differentiable in H, and, in the weak topology w1 of L1([a,b],R
2×2
s ), eigenvalues λm(H) are con-

tinuous in H.
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The continuity of λm(H) in H in the L1 topology ‖ · ‖L1[a,b] is a classical result. See, for exam-
ple, [31]. The (stronger) continuity of λm(H) in the weak topology w1 can be found from the recent
paper [21]. Since n = 1, all eigenvalues λm(H) are simple and isolated, the continuous Fréchet differ-
entiability of λm(H) in H can be found in [14,22]. For the extension to the p-Laplacian, see [30].

By Lemma 3.1, when H ∈ L1([a,b],R
2×2
s ) is fixed, eigenvalues λm(τ H) are continuously differ-

entiable in τ ∈ R. To deduce the derivatives of λm(τ H), let us take a normalized eigen-function
associated with λm(τ H)

um(t;τ ) =
(

xm(t;τ )

ym(t;τ )

)
,

b∫
a

∣∣um(t;τ )
∣∣2

dt = 1. (3.5)

Lemma 3.2. One has

dλm(τ H)

dτ
= −

b∫
a

u�
m(t;τ )H(t)um(t;τ )dt

= −
b∫

a

(
γ (t)x2

m(t;τ ) + 2α(t)xm(t;τ )ym(t;τ ) + β(t)y2
m(t;τ )

)
dt. (3.6)

Proof. We do as in [14,22]. Recall that eigen-functions um(·;τ ) satisfy boundary condition (3.3) and
the following equation

u′
m(t;τ ) = J

(
λm(τ H)I2 + τ H(t)

)
um(t;τ ), ′ = d

dt
. (3.7)

Denote

Um(t;τ ) := dum(t;τ )

dτ
=

( dxm(t;τ )
dτ

dym(t;τ )
dτ

)
=:

(
Xm(t;τ )

Ym(t;τ )

)
.

Then

Xm(a;τ ) = Xm(b;τ ) = 0. (3.8)

Moreover, by differentiating (3.7) with respect to τ , Um(t;τ ) satisfies the following inhomogeneous
system

U ′
m(t;τ ) = J

(
λm(τ H)I2 + τ H(t)

)
Um(t;τ ) + J

(
dλm(τ H)

dτ
I2 + H(t)

)
um(t;τ ). (3.9)

Note that J 2 = −I2. From (3.7), one has

−U�
m J u′

m = λmU�
m um + τ U�

m Hum. (3.10)

From (3.9), one has

−u�
m J U ′

m = λmu�
mUm + τu�

m HUm + dλm(τ H)
u�

mum + u�
m Hum. (3.11)
dτ
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Note that U�
m um = u�

mUm and U�
m Hum = u�

m HUm . Taking the difference of (3.10) and (3.11), we obtain

dλm(τ H)

dτ
u�

mum + u�
m Hum

= U�
m J u′

m − u�
m J U ′

m

= (Xm, Ym)

(
0 1

−1 0

)(
x′

m

y′
m

)
− (xm, ym)

(
0 1

−1 0

)(
X ′

m

Y ′
m

)

= (Xm ym − Ymxm)′.

Integrating from a to b and taking account of the normalization condition (3.5) and the boundary
conditions (3.3) and (3.8), we obtain (3.6). �

Note that in the definition of eigen-functions u(t) = (x(t), y(t)), x(t) is allowed to be identically
zero on [a,b]. This is the difference between condition (1.8) and boundary condition (3.3). In termi-
nology of eigenvalues and eigen-functions, Theorem 2.4 can be stated as follows.

Lemma 3.3.

(i) Suppose that H(t) satisfies (B0) and

N[a,b](H) < 4. (3.12)

If problem (3.2)–(3.3) has a zero eigenvalue λm(H) = 0, then its eigen-functions must take the following
form

um(t) =
(

0

ym(t)

)
.

(ii) Suppose that H(t) satisfies (B1) and

N[a,b](H) � 4. (3.13)

Then one has the same conclusion.

In the following we always assume that H(t) satisfies one set of conditions of Lemma 3.3. We will
apply the homotopy technique, as did in [33]. At first we consider the following homotopy

Ĥτ (t) :=
(

τγ (t) α(t)

α(t) τβ(t)

)
, τ ∈ [0,1].

Lemma 3.4. Assume that

λm(H) = 0 for some m ∈ Z. (3.14)

Then, with the same m, one has

λm(Ĥτ ) = 0 for all τ ∈ [0,1]. (3.15)
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Proof. Since λm(H) = 0, it follows from Lemma 3.3 that one has some eigen-function u(t) = (0, y(t)),
where y|[a,b] 
= 0. Since λ = λm(H) = 0, Eq. (3.2) takes the following form

0′ = α(t) · 0 + β(t)y(t), y′(t) = −γ (t) · 0 − α(t)y(t).

This implies

0′ = α(t) · 0 + τβ(t)y(t), y′(t) = −τγ (t) · 0 − α(t)y(t),

where τ ∈ [0,1]. This shows that 0 is also an eigenvalue for the Hamiltonian Ĥτ (and with the same
eigen-function u(t)). That is, for each τ ∈ [0,1], one has some lτ ∈ Z such that λlτ (Ĥτ ) = 0. Due to
assumption (3.14), one has l1 = m.

We will show that lτ is independent of τ ∈ [0,1]. Thus lτ ≡ l1 = m and therefore we have (3.15).
To this end, define

I := {
s ∈ [0,1]: λm(Ĥτ ) = 0 for all τ ∈ [s,1]}.

Then 1 ∈ I . Due to the continuity of λm(Ĥτ ) in τ , I = [τ0,1] is a closed interval, where τ0 ∈ [0,1].
This means that lτ = m for all τ ∈ [τ0,1]. We need only to prove that τ0 = 0. Otherwise, assume
τ0 ∈ (0,1]. It follows from the definition of the set I that there exist

τk ∈ [0, τ0), τk ↑ τ0, lτk 
= m.

Without loss of generality, one may assume that lτk � m − 1 for all k ∈ N. Thus

0 = λlτk
(Ĥτk ) � λm−1(Ĥτk ), k ∈ N.

Due to the continuity of λm−1(Ĥτ ) in τ , we obtain

λm−1(Ĥτ0) � 0.

However, as lτ0 = m, λm(Ĥτ0 ) = 0, we have

λm−1(Ĥτ0) < λm(Ĥτ0) = 0.

Such a contradiction proves the lemma. �
Lemma 3.5. There holds

λm(H) = 0 ⇒ m = 0. (3.16)

Conversely,

m 
= 0 ⇒ λm(H) 
= 0. (3.17)
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Proof. Note that for τ = 0,

Ĥ0(t) =
(

0 α(t)

α(t) 0

)
.

Let us consider another homotopy

H̃s(t) :=
(

0 sα(t)

sα(t) 0

)
, s ∈ [0,1].

Then H̃1 = Ĥ0 and H̃0 = 0. For any s ∈ [0,1], let us take any non-zero solution ys(t) of the first-order
equation

y′(t) = −sα(t)y(t), t ∈ [a,b].

Then (x(t), y(t)) := (0, ys(t)) 
= (0,0) satisfies (3.3) and the following system

x′(t) = sα(t)x(t) + 0 · y(t), y′(t) = −0 · x(t) − sα(t)y(t).

This corresponds to (3.2) with H = H̃s and λ = 0. That is, for each s ∈ [0,1], one has some ks ∈ Z

such that λks (H̃s) = 0. As H̃1 = Ĥ0, one has from Lemma 3.4 that k1 = l0 = m. Arguing as in the proof
of Lemma 3.4, ks is independent of s ∈ [0,1]. Finally, when s = 0, H̃0 = 0 and λ0(0) = 0. Therefore
m = k0 = 0. This gives (3.16). �

The connection between Lyapunov inequality (2.23) and estimates of eigenvalues of problem (3.2)–
(3.3) is as follows.

Theorem 3.6.

(i) Suppose that H(t) satisfies (B0) and (3.12). Then

λ−1(H) < 0, λ1(H) > 0. (3.18)

(ii) Suppose that H(t) satisfies (B1) and (3.13). Then

λ0(H) < 0, λ1(H) > 0. (3.19)

Proof. (i) Take the homotopy Hτ := τ H , τ ∈ [0,1]. For τ ∈ [0,1], it is easy to see that Hτ satisfies
(B0) and (3.12) because N (Hτ ) � N (H). It follows from (3.17) that λ±1(Hτ ) 
= 0 for all τ ∈ [0,1].
Note that λ±1(Hτ ) are continuous in τ ∈ [0,1]. Since λ±1(H0) = λ±1(0) = ±π/(b − a), we conclude

±π/(b − a) · λ±1(H) = λ±1(H0) · λ±1(H1) > 0.

This proves (3.18).
(ii) Arguing as above, one has also λ1(H) > 0, the second result of (3.19). Denote

Λ0(τ ) := λ0(τ H), τ ∈ [0,1].

Then Λ0(τ ) is continuously differentiable in τ .
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At first, one has

Λ0(0) = 0. (3.20)

Moreover, u0(t;0) = (0, y0), |y0| = 1/(b − a). See (3.4) and (3.5). Under (B1), we have from (3.6)

dΛ0(τ )

dτ

∣∣∣∣
τ=0

= −
( b∫

a

β(t)dt

)
y2

0 < 0. (3.21)

Thus (3.20) and (3.21) show that Λ0(τ ) < 0 for 0 < τ � 1.
Next, assume that Λ0(τ∗) = 0 for some τ∗ ∈ (0,1]. Since τ∗H satisfies (B1) and (3.13), it follows

from Lemma 3.3(ii) that x0(t;τ∗) ≡ 0 and y(t) := y0(t;τ∗) satisfies the first-order linear ODE

y′(t) = −τ∗α(t)y(t).

As y0(·;τ∗) 
= 0, we conclude that y0(t;τ∗) 
= 0 for all t ∈ [a,b]. Now (3.6) and (B1) can yield

dΛ0(τ )

dτ

∣∣∣∣
τ=τ∗

= −
b∫

a

β(t)y2
0(t;τ∗)dt < 0. (3.22)

Finally, it follows from properties (3.20)–(3.22) that Λ0(τ ) = λ0(τ H) < 0 for all τ ∈ (0,1]. In par-
ticular, we have λ0(H) < 0, the first result of (3.19). �
4. Stability criteria for planar systems

We consider planar Hamiltonian systems (1.6), where H(t) are as in (3.1). Moreover, assume that
H(t) is T -periodic: H(t + T ) ≡ H(t). In this case, system (2.7) reads as

x′(t) = α(t)x(t) + β(t)y(t), y′(t) = −γ (t)x(t) − α(t)y(t). (4.1)

Definition 4.1. System (4.1) is stable if all solutions are bounded on R, and unstable if all non-zero
solutions are unbounded on R.

A classical stability criterion for systems (4.1) was given by Krein [15, Sections 7–8].

Theorem 4.2. (See [15].) System (4.1) is stable if

β � 0, γ � 0, βγ − α2 � 0, (4.2)

T∫
0

β(t)dt ·
T∫

0

γ (t)dt −
( T∫

0

α(t)dt

)2

> 0, (4.3)

‖α‖L1[0,T ] +
√

‖β‖L1[0,T ]‖γ ‖L1[0,T ] < 2. (4.4)

Note that conditions (4.2) and (4.3) mean that H(t) � 0 for all t , and
∫ T

0 H(t)dt is strictly positive-
definite.

In papers [11,12], Theorem 4.2 has been improved by imposing stronger conditions on β and
weaker conditions on γ . One result is as follows.
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Theorem 4.3. (See [12, Corollary 3.1].) System (4.1) is stable if

β(t) > 0 for all t, (4.5)

T∫
0

β(t)γ (t) − α2(t)

β(t)
dt > 0, (4.6)

‖α‖L1[0,T ] +
√

‖β‖L1[0,T ]
∥∥γ +∥∥

L1[0,T ] < 2. (4.7)

Note in Theorem 4.3 that γ (t) is allowed to be sign-changing. Hence H(t) may not be semi-
positive definite. In Theorems 4.2 and 4.3, one has a severe restriction on ‖α‖L1[0,T ] ∈ [0,2). See (4.4)
and (4.7). In a recent paper [29], Wang has removed such a restriction and obtained an alternative
condition for (4.7).

Theorem 4.4. (See [29].) Suppose that H(t) satisfies conditions (4.5), (4.6) and

‖β‖L1[0,T ]
∥∥γ +∥∥

L1[0,T ] exp
(
2‖α‖L1[0,T ]

)
< 4. (4.8)

Then system (4.1) is stable.

We remark that in Theorems 4.2–4.4, system (4.1) is actually elliptic. See Definition 4.5 below.
Stability of system (4.1) can be analyzed using the Floquet theory [8,13]. Let

M(t) = MH (t) =
(

ϕ1(t) ϕ2(t)

ψ1(t) ψ2(t)

)
, M(0) = I2,

be the fundamental matrix solution of (4.1). The Floquet multipliers νk = νk(H), k = 1,2, real or
complex, of (4.1) are roots of

det
(
ν I2 − M(T )

) = 0,

which is equivalent to

ν2 − ρν + 1 = 0, where ρ = ρ(H) := ϕ1(T ) + ψ2(T ).

One has then ν1ν2 = 1 and ρ = ν1 +ν2. Corresponding to each Floquet multiplier νk , system (4.1) has
a non-zero solution uk(t) = (xk(t), yk(t)), real or complex, such that

uk(t + T ) ≡ νkuk(t), k = 1,2. (4.9)

These are the so-called Floquet solutions of (4.1).

Definition 4.5. System (4.1) is said to be elliptic, hyperbolic or parabolic if |ρ| < 2, |ρ| > 2 or |ρ| = 2
respectively.

Due to Floquet solutions, it is trivial that ellipticity of (4.1) implies stability.
Conditions (4.5) and (4.6) are used to deduce the following result on systems (4.1).

Lemma 4.6. Suppose that H(t) satisfies (4.5) and (4.6). If |ρ| � 2, then system (4.1) must have a non-zero
solution u(t) = (x(t), y(t)) such that x(t∗) = x(t∗ + T ) = 0 for some t∗ .
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Proof. This result has been observed in [13]. For completeness, we give the detailed proof.
Suppose that |ρ| � 2. Then one has real Floquet multipliers νk and real Floquet solutions uk(t) =

(xk(t), yk(t)), k = 1,2. Let us consider any Floquet solution, say u1(t) = (x1(t), y1(t)). We assert that
x1(t) must have some zero t∗ . Otherwise, one may assume that x1(t) > 0 for all t . Define z(t) :=
y1(t)/x1(t). Due to (4.9), z(t) is T -periodic. It is well known that z(t) satisfies the Riccati equation

z′(t) = β(t)z2(t) + 2α(t)z(t) + γ (t).

Since β satisfies (4.5), one has

z′(t) � min
v∈R

(
β(t)v2 + 2α(t)v + γ (t)

) = γ (t) − α2(t)

β(t)
, t ∈ R.

Integrating it from 0 to T and noticing that z(t) is T -periodic, we obtain

0 �
T∫

0

(
γ (t) − α2(t)

β(t)

)
dt,

a contradiction with condition (4.6).
Since x1(t) has some zero t∗ , it follows from (4.9) that x1(t∗ + T ) = ν1x1(t∗) = 0. Hence x1(t) is a

desired solution. �
Note that condition (4.8) is not a complete extension of condition (4.7). In fact, when ‖α‖L1[0,T ] is

small, (4.8) is worse than (4.7). Now we can give the following new stability criterion for systems (4.1).

Theorem 4.7. Suppose that H(t) satisfies conditions (4.5), (4.6) and

N[0,T ](H) = ‖β‖L1[0,T ]
∥∥γ +∥∥

L1[0,T ] exp
(‖α‖L1[0,T ]

)
� 4. (4.10)

Then |ρ(H)| < 2 and system (4.1) is elliptic.

Proof. Since H(t) satisfies conditions (4.5) and (4.6), if |ρ| � 2, we can take a solution u(t) =
(x(t), y(t)) of system (4.1) as in Lemma 4.6. Then u(t) satisfies boundary condition (3.3) with
[a,b] = [t∗, t∗ + T ]. Thus 0 is an eigenvalue. This is impossible, cf. Theorem 3.6(ii), because
N[t∗,t∗+T ](H) = N[0,T ](H). Hence |ρ| < 2 and (4.1) is elliptic. �

We end the paper with some remarks.

(i) By using the homotopy technique, it is possible to prove that systems (4.1) are actually in the
first elliptic zone under assumptions of Theorem 4.7.

(ii) Let us observe that condition (4.10) is a complete extension of condition (4.7). To this end, by
introducing v := ‖α‖L1[0,T ] , we can rewrite (4.7) and (4.10) as

‖β‖L1[0,T ]
∥∥γ +∥∥

L1[0,T ] < (2 − v)2, v ∈ (0,2),

‖β‖L1[0,T ]
∥∥γ +∥∥

L1[0,T ] � 4e−v , v ∈ (0,∞).

It is elementary that (2 − v)2 < 4e−v for all v ∈ (0,2). Hence condition (4.10) is always better
than (4.7).
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(iii) With the choice of α(t) ≡ 0, β(t) ≡ 1 and γ (t) ≡ q(t), Hamiltonian system (4.1) is reduced to the
Hill equation (1.1). In this case, condition (4.10) is the same as (1.5). Hence condition (4.10) is
optimal in a certain sense.
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