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Abstract

Consider planar real polynomial differential equations of the form ẋ = Lx + Xn(x), where x =
(x, y) ∈ R

2, L is a 2 × 2 matrix and Xn is a homogeneous vector field of degree n > 1. Most known 
results about these equations, valid for infinitely many n, deal with the case where the origin is a focus or a 
node and give either non-existence of limit cycles or upper bounds of one or two limit cycles surrounding 
the origin. In this paper we improve some of these results and moreover we show that for n ≥ 3 odd there 
are equations of this form having at least (n + 1)/2 limit cycles surrounding the origin. Our results include 
cases where the origin is a focus, a node, a saddle or a nilpotent singularity. We also discuss a mechanism 
for the bifurcation of limit cycles from infinity.
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1. Introduction and statement of the main results

For two dimensional real polynomial differential systems

dx

dt
= ẋ = P(x, y),

dy

dt
= ẏ = Q(x,y), (x, y) ∈ R

2, (1)

with P(x, y), Q(x, y) ∈ R[x, y] the ring of polynomials, the integer n = max{degP, degQ} is 
called the degree of the system. A limit cycle of system (1) is an isolated periodic solution in 
the set of all its periodic solutions. The second part of Hilbert’s 16th problem [16] consists in 
determining a uniform upper bound on the number of limit cycles of all polynomial differential 
systems of degree n, together with the distribution of these maximum number of limit cycles. 
For more details see e.g. [9,17,15,23] and the references therein. As we know, this problem is 
still open even for n = 2.

Here we restrict our study to the existence and number of limit cycles surrounding the ori-
gin for the real planar polynomial differential systems with homogeneous nonlinearities and a 
singularity at the origin, i.e. of the form,

(
ẋ

ẏ

)
= L

(
x

y

)
+

(
Pn(x, y)

Qn(x, y)

)
, where L =

(
a b

c d

)
, (2)

a, b, c, d ∈R, and Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n ≥ 2. One of 
the particularities of this family is that each limit cycle that surrounds the origin can be expressed 
in polar coordinates as r = R(θ), for some smooth 2π -periodic function, see for instance [3–5,
8]. This particularity makes natural to face this very special and simpler case of Hilbert’s 16th 
problem.

The number of limit cycles of (2) has been studied by many authors. When the origin is 
a focus, there are plenty of results, see for instance [3–6,10,12–14,18,21] and the references 
therein. But there are relatively few results when the origin is a node, a saddle, or a nilpotent 
singularity.

In [2] the authors studied system (2) with b = c = 0 and a = d �= 0, and proved that if n is 
even the system has no limit cycles surrounding the origin, and that if n is odd then the system 
has at most one limit cycle, and there are examples of such systems which do have one limit 
cycle. We notice that this case is the simplest one, because in polar coordinates it writes as a 
Bernoulli equation and so it is integrable.

Consider now system (2) with b = c = 0 and a �= d , ad > 0. Notice that λ = a and μ = d are 
the eigenvalues of L and system (2) is written as

ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y), (3)

with λμ > 0. In [5,19] it is proved that if n is even system (3) has no limit cycles. For n odd both 
papers provided some sufficient (and different) conditions under which the system has either 
no limit cycles or at most two limit cycles surrounding the origin. Examples of systems (3)
having exactly either two, or one, or no limit cycles surrounding the origin already appear in 
Proposition 6.3 and Remark 6.4 of [11]. In this situation, results on the existence of at most two 
limit cycles are also given in [3, Thm. A].

In [8] the authors studied conditions for the existence of limit cycles (none, one, two or three) 
of differential systems defined by the sum of two quasi-homogeneous polynomial vector fields. 
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These systems contain cases of the form (2) having the origin as a node, a saddle or a nilpotent 
singularity.

To the best of our knowledge, there are no more papers dealing with the number of limit cycles 
for system (2) with arbitrary n and the origin not being a focus.

The first aim of this paper is to go further in the study of system (2) with the origin a node, 
a saddle, a nilpotent singularity, or a focus, obtaining some new results or improving previous 
ones. As far as we know, when system (2) has the origin as a node, there are only some sufficient 
conditions mentioned above on the existence of no more than two limit cycles. Here we will 
prove that some systems (2) can have (n + 1)/2 limit cycles surrounding a node, and also obtain 
similar results around other types of singularities.

Theorem 1. Consider system (2).

(I) When n ≥ 3 is odd, there are systems of this form such that:
(a) The origin is a strong focus, or a saddle, or a node, and they have n+1

2 limit cycles 
surrounding it.

(b) The origin is a weak focus, or a nilpotent singularity, and they have n−1
2 limit cycles 

surrounding it.
(II) When n ≥ 2 is even and the origin is a node, a nilpotent singularity or a saddle, the system 

has no limit cycles surrounding the origin.

It can be easily seen that statement (II) of the theorem cannot be extended to systems having 
a focus or a weak focus at the origin. It suffices, for instance, to consider quadratic systems 
(n = 2) having limit cycles surrounding this point. We believe that a similar result to the one of 
statement (I) when n is even and the origin is a focus could be true. We have not been able to 
prove it yet.

Notice that in the situations where the origin is a saddle or a nilpotent singularity of index 
zero we know that, apart from the origin, the limit cycles must also surround other critical points, 
in such a way that the sum of all their indices is +1.

Statement (II) when the origin is an elementary node was already proved in [2,5,19].
Next we will give some results of uniqueness of limit cycles surrounding the origin, when n is 

odd. Notice that in light of Theorem 1, we must add some additional hypotheses on the nonlinear 
part.

We remark that using, if necessary, a linear change of variables, it is not restrictive to assume 
that L is written in real Jordan normal form. Hence L is:

L1 =
(

λ 0
0 μ

)
, L2 =

(
λ 0
1 λ

)
, L3 =

(
α −β

β α

)
.

Set

f (θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),

g(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ). (4)

Note that f (θ) and g(θ) are homogeneous trigonometric polynomials of degree n + 1 in the 
variables cos θ and sin θ .
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We will use the following small improvement of [8, Thm. A], where we utilize the next defi-
nition. Our improvement consists in noticing that under the hypotheses of the theorem the origin 
is the unique finite critical point of system (2). Moreover, our proof is slightly different to that 
of [8].

Definition. When we say that the stability of a critical point, a periodic orbit or infinity coincides 
with the sign of a real number p or of a real function g this will mean that when p > 0 or g > 0
(resp. p < 0 or g < 0) then the object is repeller (resp. attractor).

Theorem 2. Consider the expression of system (2) in polar coordinates,

dr

dt
= u(θ)r + f (θ)rn,

dθ

dt
= v(θ) + g(θ)rn−1,

and define

F(θ) = u(θ)g(θ) − v(θ)f (θ).

If F(θ) does not vanish (so n is odd), then the origin is the unique critical point of (2) and this 
system has at most one limit cycle which, if exists, is hyperbolic. Moreover its stability coincides 
with (is opposite to) the sign of F when it is a clockwise (counterclockwise) limit cycle.

Observe that under the hypotheses of the above result, the existence of a (hyperbolic) limit 
cycle is guaranteed by the Poincaré annular criterion when the origin and infinity have the same 
stability. As we will see, the stability of infinity can be determined when g(θ) does not vanish.

Also, as a consequence of the above theorem we can give explicit quantitative hypotheses 
under which system (2) has non-existence or uniqueness and hyperbolicity of the limit cycle.

Theorem 3. For n odd, assume that minθ∈R |g(θ)| = N > 0 and define

M1 = max
θ∈R

∣∣g(θ) cos2 θ + cos θ sin θf (θ)
∣∣,

K1 = max
θ∈R

∣∣g(θ) sin2 θ − cos θ sin θf (θ)
∣∣,

M2 = max
θ∈R

∣∣g(θ) cos θ sin θ − cos2 θf (θ)
∣∣, M3 = max

θ∈R
∣∣f (θ)

∣∣.
In each one of the following cases,

• L = L1, with λμ > 0 and |λ/μ − 1| < N/M1,
• L = L1, with λμ > 0 and |μ/λ − 1| < N/K1,
• L = L2 and |λ| > M2/N ,
• L = L3 with β �= 0 and |α/β| > M3/N ,
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system (2) has no limit cycles if

κ = ν

2π∫
0

f (θ)

|g(θ)| dθ ≥ 0, where ν =
{

λ when L = L1 or L = L2,

α when L = L3,

and has exactly one limit cycle when κ < 0, which is hyperbolic and with stability given by the 
sign of −ν.

The above theorem when L = L1, is an extension and improvement of statement (d) in [19, 
Thm. 2], where the authors proved that for |λ − μ| sufficiently small system (3) with n odd has 
at most two limit cycles. Here we have proved the non-existence or uniqueness of the limit cycle, 
and moreover we have given explicit conditions on λ and μ under which the theorem can be 
applied. We note that our results also include the star node as a special case, see [2, Thm. 2 (d)].

As we will see, there is a special case where κ can be easily computed. More concretely, when

(
ẋ

ẏ

)
= L

(
x

y

)
+ (

x2 + y2)k
(

Ax + By

Cx + Dy

)
, (5)

where L ∈ {L1, L2, L3}, then if (D − A)2 + 4BC < 0, sgn(κ) = sgn(ν(A + D)). To get this 
value and to study in more detail the situation where g(θ) �= 0 (N > 0), we present in Section 3
a method for studying the bifurcation of limit cycles from infinity under this hypothesis. Notice 
that in the particular case (5),

g(θ) = C cos2 θ + (D − A) cos θ sin θ − B sin2 θ

and then the condition g(θ) �= 0 simply reads as (D − A)2 + 4BC < 0.
As an illustration of the applicability of Theorem 3, consider system (5) with A = −B = C =

D = 1,

ẋ = λx + (
x2 + y2)k

(x − y),

ẏ = μy + (
x2 + y2)k

(x + y), (6)

k ∈ N \ {0} and λμ > 0, studied in [19] when k = 1. In that paper, the authors showed that when 
k = 1, given λ < 0, if |μ − λ| is small enough, then system (6) has a unique limit cycle around 
the origin. Using our results we prove that for λ/μ ∈ (3 − 2

√
2, 3 + 2

√
2) the system has exactly 

one limit cycle (resp. no limit cycles) when λ < 0 (resp. λ > 0), see the example at the end of 
this paper. In fact, as we will see, our result covers the values λ/μ that correspond to the cases 
of system (6) for which the origin is the unique critical point.

This paper is organized as follows. In the next section we will prove Theorem 1. The proofs 
of Theorems 2 and 3 will be given in Section 3. This last section also includes our study of the 
bifurcations at infinity.
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2. Proof of Theorem 1

2.1. Proof of statement (I)

Consider the following family of systems of the form (2),

ẋ = −yn + ε
(
ax + by + Pn(x, y)

)
,

ẏ = x + ε
(
cx + dy + Qn(x, y)

)
, (7)

where Pn, Qn are homogeneous polynomials of odd degree n ≥ 3, a, b, c, d are real numbers 
and ε is a small parameter. Let

x(θ) = Cs(θ), y(θ) = Sn(θ),

be the solution of the Cauchy problem,

ẋ = −yn, ẏ = x,

satisfying the initial conditions x(0) = √
2/(n + 1), y(0) = 0. Notice that H(x, y) = n+1

2 x2 +
yn+1 is a first integral of the system. Clearly,

n + 1

2
Cs2 θ + Snn+1 θ = 1,

d Cs θ

dθ
= −Snn θ,

d Sn θ

dθ
= Cs θ.

Following Lyapunov [22], see also [7], it follows that Cs(θ) and Sn(θ) are T periodic func-
tions with period

T = Tn = 2
√

2√
n + 1

Γ ( 1
n+1 )Γ ( 1

2 )

Γ ( 1
n+1 + 1

2 )
.

Moreover, the integrals

T∫
0

Csi θ Snj θdθ �= 0, i, j ∈ Z+,

if and only if i and j are both even, where Z+ is the set of nonnegative integers.
Take the generalized Lyapunov polar coordinate change of variables

x = ρ
n+1

2 Cs θ, y = ρ Sn θ. (8)

Then, the Hamiltonian function is written as

H(x,y) = n + 1
x2 + yn+1 = n + 1

ρn+1 Cs2 θ + ρn+1 Snn+1 θ = ρn+1.

2 2
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By the Pontryagin–Melnikov method, each simple zero ρ0 of the function

M(ρ) =
∫

H(x,y)=ρn+1

(
ax + by + Pn(x, y)

)
dy − (

cx + dy + Qn(x, y)
)
dx (9)

provides a periodic orbit of (7) with |ε| sufficiently small, and when ε → 0 this periodic orbit 
approaches H(x, y) = ρn+1

0 .
Assume that Pn and Qn have the expressions

Pn(x, y) =
n∑

i=0

aix
iyn−i , Qn(x, y) =

n∑
i=0

bix
iyn−i .

Applying the generalized polar coordinates (8) to compute M(ρ) in (9) and using the fact that n
is odd, we get

M(ρ) =
T∫

0

(
a Cs2 θ + d Snn+1 θ

)
dθρ

n+3
2

+
n−1

2∑
j=0

T∫
0

(
a2j+1 Cs2j+2 θ Snn−2j−1 θ + b2j Cs2j θ Sn2n−2j θ

)
dθρ

3n+1
2 +(n−1)j

=
(

δ +
n−1

2∑
j=0

cjρ
(n−1)(j+1)

)
ρ

n+3
2 , (10)

where

δ =
T∫

0

(
a Cs2 θ + d Snn+1 θ

)
dθ,

cj =
T∫

0

(
a2j+1 Cs2j+2 θ Snn−2j−1 θ + b2j Cs2j θ Sn2n−2j θ

)
dθ.

Clearly the function M(ρ) can have at most n+1
2 simple positive zeroes.

(a) It is not difficult to choose the parameters a, b, c and d such that the origin is a strong focus, 
a node, or a saddle and δ = |a| + |d| �= 0. For instance, to have a saddle it suffices to consider 
bε > 0 and |ε| small enough. Then, for a suitable choice of the coefficients a2j+1 of Pn and b2j

of Qn, and so of c0, . . . , c n−1
2

, M(ρ) does have n+1
2 positive simple zeros. Consequently, system 

(7) can have n+1
2 limit cycles surrounding the origin for |ε| sufficiently small, as we wanted to 

prove.

(b) When the origin is a weak focus or a nilpotent singularity, then |a| + |d| = 0 and δ = 0. So 
M(ρ) can have at most n−1 positive zeroes. Then, the proof follows as in the previous case.
2
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2.2. Proof of statement (II)

We prove this statement by distinguishing L = L1 and L = L2. Note that this is not restrictive.

Case L = L2. System (2) can be written as

ẋ = λx + Pn(x, y), ẏ = x + λy + Qn(x, y), (11)

with Pn, Qn homogeneous polynomials of degree n > 1. Taking the polar coordinate change of 
variables x = r cos θ , y = r sin θ , system (11) becomes

ṙ = (λ + cos θ sin θ)r + f (θ)rn, θ̇ = cos2 θ + g(θ)rn−1, (12)

with f (θ), g(θ) defined in (4). Recall that

g(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ).

If g(θ) has a zero at θ = −π
2 or π

2 , then g(θ) must have the factor cosθ . This implies that 
Pn(x, y) has the factor x, and so x = 0 is an invariant line of system (11). Hence system (11)
cannot have a limit cycle surrounding the origin.

Next we assume that g(−π/2)g(π/2) �= 0. Set

r∗(θ) = n−1

√
cos2 θ

−g(θ)
for g(θ) < 0.

Since n is even, g(θ) is a homogeneous trigonometric polynomial of odd degree. This means that 
g(θ) has odd number of zeroes, and so it has also odd number of zeroes in either (−π/2, π/2)

or (π/2, 3π/2). Without loss of generality we assume that g(θ) has odd number of zeroes in 
(−π/2, π/2). Let θ1 and θ2 be the zeroes of g(θ) in (−π/2, π/2), which are closest to −π/2
and π/2, respectively. Of course we may have θ1 = θ2. Then we have g(θ) < 0 in either the 
interval (−π/2, θ1) or (θ2, π/2). In the interval such that g(θ) < 0, r = r∗(θ) is a curve located 
in this interval with one end approaching the origin and the other approaching the infinity. Note 
that on the curve r = r∗(θ), we have θ̇ = 0.

From Coll et al. [8, Prop. 4] we know that the limit cycles that surround the origin have 
no points at which θ̇ = 0. This, together with the fact proved in the previous paragraph show 
that system (11) has no limit cycles surrounding the origin. We have completed the proof when 
L = L2.

Case L = L1. Recall that the result was proved by Bendjeddou et al. [2] for λ = μ �= 0, and by 
Llibre et al. [19] for μ �= λ and λμ > 0. Next we prove the remaining cases.

Subcase λ = μ = 0. System (3) is homogeneous and in polar coordinates we have that θ̇ =
g(θ)rn−1. Since n is even, g(θ) = 0 must have some real solution. It gives rise to an invariant 
line passing through the origin. This implies that the system has no limit cycles surrounding this 
point.
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Subcase λ �= 0 and μ = 0, or λ = 0 and μ �= 0. Without loss of generality we assume that the 
former happens. Then system (2), i.e. (3), written in the polar coordinates, becomes

ṙ = λ cos2 θr + f (θ)rn,

θ̇ = −λ cos θ sin θ + g(θ)rn−1, (13)

with f and g defined in (4).
If g(θ) has a zero θ0 such that either sin θ0 = 0 or cos θ0 = 0, then system (13) has either y = 0

or x = 0 as an invariant line. So the system has no limit cycles surrounding the origin.
Assume that g(θ) has no zeroes at θ = −π

2 , 0, π2 , π . Since g(θ) is a homogeneous trigono-
metric polynomial of odd degree, it must have an odd number of zeroes. So g(θ) must have an 
odd number of zeroes in at least one of the intervals (−π

2 , 0), (0, π2 ), (π
2 , π) and (π, 3π

2 ). Without 
loss of generality we assume that g(θ) has an odd number of zeroes, saying −π

2 < θ1 < . . . <

θ2l+1 < 0, in the interval (−π
2 , 0). In any case we must have λ cosθ sin θ/g(θ) > 0 for either 

θ ∈ (−π
2 , θ1) or θ ∈ (θ2l+1, 0). In such an interval the curve

r = n−1

√
λ cos θ sin θ

g(θ)
,

connects the origin and the infinity. Notice that on this curve θ̇ = 0. So, as in the proof of the 
case L = L2, we get that system (13) has no limit cycles surrounding the origin.

Subcase λμ < 0. It corresponds to the case where the origin is a saddle. The proof is quite 
similar to the one of the case studied above. In fact, in this situation, system (2) writes in polar 
coordinates as

ṙ = λ cos2 θ − μ sin2 θr + f (θ)rn,

θ̇ = (μ − λ) cos θ sin θ + g(θ)rn−1.

Then the proof simply follows replacing λ cosθ sin θ by (λ − μ) cos θ sin θ in all the formulas.

3. Proof of Theorems 2 and 3

We start proving Theorem 2, which as we have already said, is a small improvement of Theo-
rem A of [8] adapted to our interests. Our proof is different but inspired on the one given in that 
paper.

Proof of Theorem 2. First let us show that the origin is its unique critical point. Notice that

(
u(θ)r + f (θ)rn

)
v(θ) − r

(
v(θ) + f (θ)rn−1)u(θ) = −rnF (θ).

Hence on the critical points rnF (θ) = 0 and therefore r = 0.
Moreover, as in the proof of Theorem 1, the set of points where θ̇ = 0 plays an important role. 

Define Θ0 := {(r, θ) : r > 0 and v(θ) +g(θ)rn−1 = 0} and Θ± := {(r, θ) : r > 0 and ± (v(θ) +
g(θ)rn−1) > 0}. Following [3,4,7] we know that the limit cycles cannot cut the set Θ0. Moreover, 
they must surround the origin because it is the unique singularity of the system, and can be 
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expressed as r = R(θ) for some smooth function R. Notice that from these results, the limit 
cycles are also 2π -periodic solutions of the non-autonomous differential equation

dr

dθ
= u(θ)r + f (θ)rn

v(θ) + g(θ)rn−1
= S(r, θ). (14)

It is well-known that the stability of r = R(θ), as a solution of (14) is given by the sign of

2π∫
0

∂S(R(θ), θ)

∂r
dθ,

see [20]. In any case, notice that when the limit cycle is contained in Θ−, since dθ
dt

< 0 it follows 
that the stability of the limit cycle increasing θ reverses the one increasing t . Therefore, in this 
later case, the stability of the limit cycle, as solution of system (2) is opposite to the one as 
solution of (14). When the limit cycle is contained in Θ+, both stabilities coincide.

To prove the uniqueness and hyperbolicity of the limit cycle notice that

2π∫
0

∂S(R(θ), θ)

∂r
dθ =

2π∫
0

(1 − n)F (θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ +

2π∫
0

u(θ) + f (θ)Rn−1(θ)

v(θ) + g(θ)Rn−1(θ)
dθ

=
2π∫

0

(1 − n)F (θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ +

2π∫
0

R′(θ)

R(θ)
dθ

= (1 − n)

2π∫
0

F(θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ.

Hence when Θ0 is not a simply closed curve, since all limit cycles lay in the same connected 
component of R2 \ Θ0, we have that all have the same stability. Therefore the limit cycle is 
unique, hyperbolic and its stability is given by the sign of ±F when it is contained in Θ∓.

When Θ0 is a simply closed curve (not passing by the origin), following the same arguments 
that in the previous case we get that the system can have at most two limit cycles, one contained 
in Θ+ and the other one in Θ−, both hyperbolic and with different stabilities. Let us prove that 
both limit cycles cannot coexist. To do this, notice that the shape of Θ0 forces that neither v nor 
g vanish. Moreover −v/g > 0.

Let r = R(θ) be one limit cycle. Notice that

R′(θ)

R(θ)
= u(θ)

v(θ)
− F(θ)Rn−1(θ)

v(θ)(v(θ) + g(θ)Rn−1(θ))
.

Integrating both sides we get that

0 �=
2π∫

F(θ)Rn−1(θ)

v(θ)(v(θ) + g(θ)Rn−1(θ))
dθ =

2π∫
u(θ)

v(θ)
dθ = K.
0 0
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Notice that the right hand side is fixed while the sign of the left hand side changes according 
whether the limit cycle is in Θ+ or in Θ−. In short, it can only exist in the region Θε where 
sgn(εFv) = sgn(K). So it is unique. �

Observe that using the above theorem, the existence of a (hyperbolic) limit cycle is guaranteed 
when the origin and infinity have the same stability. Hence in next result we study the stability 
of infinity for some subfamilies of system (2) with n odd. In fact, in polar coordinates it writes 
as in Theorem 2,

ṙ = u(θ)r + f (θ)rn, θ̇ = v(θ) + g(θ)rn−1, (15)

with f , g defined in (4) and

u(θ) =
⎧⎨
⎩

λ cos2 θ + μ sin2 θ, if L = L1,

λ + cos θ sin θ, if L = L2,

α if L = L3,

v(θ) =
{

(μ − λ) cos θ sin θ, if L = L1,

cos2 θ, if L = L2,

β if L = L3.

In the next proposition we compute what we will call Lyapunov constants at infinity, V ∞
j , j =

1, 2. As we will see, when g(θ) does not vanish, the infinity of system (15) can be transformed 
into the origin of a new system via the change of variables R = r1−n. We have introduced this 
terminology because the expressions V ∞

j , j = 1, 2, control the stability of the origin of this new 
system and, as a consequence, the stability of infinity for system (15).

Proposition 4. Consider system (2) and its equivalent polar expression (15). Assume that its 
associated function g(θ) does not vanish. Then the stability of infinity is given by the sign of

V ∞
1 := −

2π∫
0

f (θ)

|g(θ)| dθ.

When V ∞
1 = 0 then the stability is given by the sign of

V ∞
2 := −

2π∫
0

F(θ)Φ(θ)g(θ)

|g3(θ)| dθ,

where F = ug − vf and

Φ(θ) = exp

(
(1 − n)

θ∫
0

f (s)

g(s)
ds

)
.
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Proof. Taking the change of variable R = r−(n−1), and treating θ as an independent variable, we 
get that for R > 0, small enough (equivalently, r > 0, big enough),

dR

dθ
= (1 − n)

f (θ)

g(θ)
R +

∞∑
j=2

(
− c(θ)

g(θ)

)j−2

A(θ)Rj , (16)

where

A(θ) = (n − 1)
f (θ)v(θ) − g(θ)u(θ)

g2(θ)
= (1 − n)

F (θ)

g2(θ)
.

Notice that F coincides with the function introduced in Theorem 2.
Following [1], for any small positive number ρ, consider the solution

R(θ,ρ) = R1(θ)ρ + R2(θ)ρ2 + . . . , (17)

of Eq. (16) satisfying R(0, ρ) = ρ. Then we have

R1(0) = 1, R2(0) = R3(0) = . . . = 0,

and

R′
1(θ) = (1 − n)

f (θ)

g(θ)
R1(θ),

R′
2(θ) = (1 − n)

f (θ)

g(θ)
R2(θ) +A(θ)R2

1(θ),

R′
3(θ) = (1 − n)

f (θ)

g(θ)
R3(θ) + 2A(θ)R1(θ)R2(θ) − v(θ)

g(θ)
A(θ)R3

1(θ).

The equations for Rj(θ), j > 3, can be similarly obtained.
The solutions of the above differential equations satisfying the given initial conditions are

R1(θ) = exp

(
(1 − n)

θ∫
0

f (s)

g(s)
ds

)
= Φ(θ),

R2(θ) = Φ(θ)

θ∫
0

A(s)Φ(s)ds,

R3(θ) = Φ(θ)

( θ∫
A(s)Φ(s)ds

)2

− Φ(θ)

θ∫
v(s)

g(s)
A(s)Φ2(s)ds.
0 0
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Since f (θ)/g(θ) is 2π periodic, there exists a constant q1 such that

θ∫
0

f (s)

g(s)
ds = q1θ + ϕ1(θ),

with ϕ1(θ) a 2π periodic function. In fact

q1 = 1

2π

2π∫
0

f (θ)

g(θ)
dθ.

If q1 �= 0, its sign determines the stability of system (2) at infinity, taking into account that when 
g(θ) is negative the stability increasing θ and the one increasing t are reversed. From q1 we 
easily get V ∞

1 .
If q1 = 0 then Φ(θ) is 2π periodic We set

θ∫
0

A(s)Φ(s)ds = q2θ + ϕ2(θ),

with q2 a constant and ϕ2(θ) a 2π periodic function. Similarly to the previous case from q2 we 
obtain V ∞

2 . �
Remark 5. (i) Consider a family of systems of the form (2), under the hypotheses of Proposition 4
and depending smoothly on one parameter, say s ∈R. Then, if for s = s∗ it holds that V ∞

2 (s∗) �=
0 and for |s − s∗| �= 0 small enough (s − s∗)V ∞

1 (s) < 0 then one limit cycle bifurcates from 
infinity via a Hopf-like bifurcation.

(ii) From the expression of R3 given in the proof of the above proposition we could ob-
tain an expression of V ∞

3 . Then, for two-parameter families, with parameters s ∈ R
2, such that 

V ∞
3 (s∗) �= 0 and V ∞

1 (s∗) = V ∞
2 (s∗) = 0, and satisfying some more suitable hypotheses, two 

limit cycles will bifurcate from infinity. Notice that under the hypotheses of Theorem 2, V ∞
2 �= 0, 

and the described situation never happens.
(iii) Similarly, integral expressions for V ∞

j , j ≥ 4 could be given.

To obtain algebraic expressions for V ∞
j , even for j = 1, 2 is, in general, not possible be-

cause in particular the roots of the homogeneous polynomial g are in general not computable by 
radicals. A simpler case is the one given in next lemma.

Lemma 6. Consider system (5),

ẋ = ax + by + (
x2 + y2)k

(Ax + By),

ẏ = cx + dy + (
x2 + y2)k

(Cx + Dy).

Then, using the same notation that in Proposition 4, the function g(θ) does not vanish if and only 
if 4BC + (A − D)2 < 0. Moreover, in this case,

sgn
(
V ∞) = − sgn(A + D).
1
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Proof. For this system f (θ) and g(θ) in (4) are

f (θ) = A cos2 θ + (B + C) cos θ sin θ + D sin2 θ,

g(θ) = C cos2 θ + (D − A) cos θ sin θ − B sin2 θ.

Clearly, g(θ) �= 0 if and only if 4BC + (A − D)2 < 0. Then, following the notation of Proposi-
tion 4, we get after some computations that

R1(2π) = exp

(
−2k

2π∫
0

f (θ)

g(θ)
dθ

)

= exp

(
sgn(C)

−4kπ(A + D)√−4BC − (A − D)2

)
.

From the above expression the result follows taking into account that sgn(g(θ)) = sgn(C) and 
once more that when g(θ) is negative the stability increasing θ in Eq. (16) and the one increasing 
t are reversed. �

There is an easy intuitive way to know for system (5) the sign of the first Lyapunov quantity 
at infinity. Reparametrize the system in R2 \ {(0, 0)}, as

(
x′
y′

)
= 1

(x2 + y2)k

(
ax + by

cx + dy

)
+

(
A B

C D

)(
x

y

)
.

When r2 = x2 + y2 is big enough, the system is very close to the linear system with associated 
matrix 

(
A B
C D

)
. The stability of infinity of this linear system when 4BC+(A −D)2 < 0 is opposite 

to the one of the origin. Hence it is given by minus the sign of its trace, that is − sgn(A +D). Our 
approach allows to formalize this intuition and moreover, as the next computations show, can be 
used to obtain V ∞

2 when A + D = 0. In this case, assuming that C > 0, it can be seen that

Φ(θ) =
(

C − B + (B + C) cos(2θ) + 2D sin(2θ)

2C

)k

.

To continue, we distinguish three different cases for L = L1, L2 and L3. In addition, for an 
arbitrary positive integer k it seems not easy to get the values of R2(2π) that provide V ∞

2 . For 
illustration, we only give R2(2π) for some small values of k. The computations are done with 
mathematica.

In case L = L1, with λμ > 0, we have u(θ) = λ cos2 θ + μ sin2 θ and v(θ) = (μ −
λ) cos θ sin θ . We get

R2(2π) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

C2 (μB − λC), for k = 2,

π

4C3 ((λ + μ)(BC − 2D2) − 3(μB2 + λC2)), for k = 3,

π

8C4 (5(μB3 − λC3) − (λ + 2μ)(B2C − 4BD2)

2 2
+ (2λ + μ)(BC − 4CD )), for k = 4.
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In case L = L2, we have u(θ) = λ + cos θ sin θ and v(θ) = cos2 θ . Then we obtain

R2(2π) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

C2 (λ(B − C) − D), for k = 2,

π

4C3 (3(B − C)D − λ(3B2 − 2BC + 3C2 + 4D2)), for k = 3,

απ

8C4 (λ(B − C)(5B2 + 2BC + 5C2 + 12D2)

− (5B2 − 6BC + 5C2 + 4D2)D), for k = 4.

In case L = L3, we have u(θ) = α and v(θ) = β . Hence we have

R2(2π) =

⎧⎪⎪⎨
⎪⎪⎩

απ

C2 (B − C), for k = 2,

απ

4C3 (2BC − 3(B2 + C2) − 4D2), for k = 3,

απ

8C4 (B − C)(5B2 + 2BC + 5C2 + 12D2), for k = 4.

In all the three cases, when g(θ) �= 0, if the origin is stable (or unstable) then the infinity is 
unstable (or stable). By perturbing Pn and Qn such that A + D �= 0 is sufficient small and has a 
suitable sign, then there will be a limit cycle bifurcating from infinity.

3.1. Proof of Theorem 3

We start proving that in all the situations the function F given in Theorem 2 does not vanish 
and consequently we can apply this result. Recall that F(θ) = u(θ)g(θ) − v(θ)f (θ), where u
and v are given in (15), and f and g are given in (4). For L = L1,

F(θ) = (
λ cos2 θ + μ sin2 θ

)
g(θ) − (μ − λ) cos θ sin θf (θ),

or equivalently,

F(θ) = μ
(
g(θ) + (λ/μ − 1)

(
g(θ) cos2 θ + cos θ sin θf (θ)

))
,

where we have used that μ �= 0. So, if |λ/μ − 1| < N/M1,

F(θ) = g(θ) + (λ/μ − 1)
(
g(θ) cos2 θ + cos θ sin θf (θ)

) �= 0,

for all θ as we wanted to show.
Similarly, when λ �= 0, F can be written as,

F(θ) = λ
(
g(θ) + (μ/λ − 1)

(
g(θ) sin2 θ − cos θ sin θf (θ)

))
,

and the same result as above holds when |μ/λ − 1| < N/K1.
For L = L2,

F(θ) = λg(θ) + g(θ) cos θ sin θ − cos2 θf (θ).

Then for |λ| > M2/N we have that for all θ , F(θ) �= 0.
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Finally, if L = L3 then F(θ) = αg(θ) −βf (θ). We obtain in the same way that when |α/β| >
M3/N , F(θ) �= 0.

Therefore in all cases the system has at most one (hyperbolic) limit cycle. To discern whether 
the limit cycle exists or not, we study the stability of the origin and the one of infinity. Clearly 
the stability of the origin is given by the sign of ν, that under the hypotheses of the theorem is 
different from zero.

The stability of infinity is given by the sign of

V ∞
1 := −

2π∫
0

f (θ)

|g(θ)| dθ,

see Proposition 4. Therefore it is clear that when both stabilities coincide, that is 0 < νV ∞
1 = −κ , 

the corresponding system has a limit cycle and that when κ > 0 it has no limit cycle, as we wanted 
to prove. To finish the proof it only remains to study the case κ = 0 (i.e. V ∞

1 = 0). This can be 
done using the expression of V ∞

2 in Proposition 4. From the above proof it can be easily seen 
that for all the cases, sgn(F ) = sgn(νg). Hence

sgn
(
V ∞

2

) = − sgn(Fg) = − sgn
(
νg2) = − sgn(ν).

Therefore the stabilities of the origin and infinity are opposite. Since if the limit cycle exists it 
should be unique and hyperbolic, we have proved that there are no limit cycles in this case. �

Next example shows how Theorem 3 applies in a simple example.

Example. Consider system (6),

ẋ = λx + (
x2 + y2)k

(x − y),

ẏ = μy + (
x2 + y2)k

(x + y),

with k ∈ N \ {0}, λμ �= 0. Let us compute all the constants involved in Theorem 3. Since g(θ) ≡
f (θ) ≡ 1, trivially N = 1. Moreover,

M1 = max
θ∈R

∣∣cos2 θ + cos θ sin θ
∣∣ = 1 + √

2

2
,

and similarly K1 = M1. Finally, ν = λ and by Proposition 4 and Lemma 6, κ = −νV ∞
1 and 

sgn(V ∞
1 ) = − sgn(A + D) = − sgn(2). Hence

sgn(κ) = sgn(ν) = sgn(λ).

So, by Theorem 3, if |λ/μ − 1| < N/M1 = 2(
√

2 − 1) or |μ/λ − 1| < N/K1 = 2(
√

2 − 1) we 
have existence, uniqueness and hyperbolicity of the limit cycle when λ < 0 and non-existence 
when λ > 0. Joining all the results we have completely studied the number of limit cycles of the 
system when λ/μ ∈ (3 − 2

√
2, 3 + 2

√
2). This interval is precisely the set of values of λ/μ for 

which the origin is the only critical point of the system.
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