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Abstract

In this paper, we considered the isentropic Navier–Stokes equations for compressible fluids with density-
dependent viscosities in R3. These systems come from the Boltzmann equations through the Chapman–
Enskog expansion to the second order, cf. [17], and are degenerate when vacuum appears. We firstly 
establish the existence of the unique local regular solution (see Definition 1.1 or [11]) when the initial 
data are arbitrarily large with vacuum at least appearing in the far field. Moreover it is interesting to show 
that we couldn’t obtain any global regular solution satisfying that the L∞ norm of u decays to zero as time t

goes to infinity.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Our model is motivated by the physical consideration that in the derivation of the Navier–
Stokes equations from the Boltzmann equations through the Chapman–Enskog expansion to the 
second order, cf. [17], the viscosities are not constants but depend on temperature. In particular, 
the viscosities of gas are proportional to the square root of the temperature for hard sphere col-
lision. For isentropic flow, this dependence is reduced to the dependence on density by the laws 
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of Boyle and Gay-Lussac for ideal gas. So the compressible isentropic Navier–Stokes equations 
(CINS) with degenerate viscosities in R3 can be written as

{
ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇P = divT.
(1.1)

We look for local strong solution with initial data

(ρ,u)|t=0 = (ρ0(x), u0(x)), x ∈ R
3, (1.2)

and far field behavior

(ρ,u) → (0,0) as |x| → ∞, t > 0. (1.3)

In system (1.1), x ∈ R
3 is the spatial coordinate; t ≥ 0 is the time; ρ is the density; u =

(u(1), u(2), u(3))� ∈R
3 is the velocity of fluids; we only study the polytropic fluid, so the pressure 

P has the following form

P = Aργ , 1 < γ ≤ 3, (1.4)

where A is a positive constant, γ is the adiabatic index. T is the stress tensor given by

T = μ(ρ)(∇u + (∇u)�) + λ(ρ)divuI3, (1.5)

where I3 is the 3 × 3 unit matrix, μ(ρ) = αρ is the shear viscosity, λ(ρ) = ρE(ρ) is the second 
viscosity, where the constant α and function E(ρ) satisfy

α > 0, 2α + 3E(ρ) ≥ 0, and E(ρ) ∈ C2(R+). (1.6)

For example, we can choose μ = ρ and λ(ρ) = ρb for b = 1, 2 or any b ≥ 3.
When the initial density has positive lower bound, the local existence of classical solutions for 

(1.1)–(1.2) follows from a standard Banach fixed point argument due to the contraction property 
of the solution operators of the linearized problem, cf. [26]. However, when the density function 
connects to vacuum continuously, this approach is not applicable for our system (1.1) due to the 
degeneracies caused by vacuum. Generally it cannot be avoided when some physical require-
ments are imposed, such as finite total mass and energy in the whole space R3, because at least 
we need that

ρ(t, x) → 0, as |x| → +∞.

When (μ, λ) are both constants, for the existence of 3D solutions of the isentropic flow with 
arbitrary data, the main breakthrough is due to Lions [18], where he established the global 
existence of weak solutions in R3, periodic domains or bounded domains with homogeneous
Dirichlet boundary conditions provided γ > 9/5. The restriction on γ is improved to γ > 3/2
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by Feireisl [6,7], and the corresponding result for the non-isentropic flow can be seen in [8]. 
Recently in [4,5], via introducing the following initial layer compatibility condition:

−divT0 + ∇P(ρ0) = √
ρ0g

for some g ∈ L2, a local theory for arbitrarily large strong solutions was established success-
fully; see also [21]. And Huang, Li and Xin [10] obtained the global well-posedness of classical 
solutions with small energy and vacuum to Cauchy problem for isentropic flow.

When (μ, λ) are both dependent on ρ as shown in the following form:

μ(ρ) = αρδ1, λ(ρ) = βρδ2 , (1.7)

where δ1 > 0, δ2 > 0, α > 0 and β are all real constants, system (1.1) has received a lot of 
attention recently, see [1–3,16,20,25,30,31]. However, except for the 1D problems, there are 
still only few results on the strong solutions for the multi-dimensional problems because of the 
possible degeneracy for the Lamé operator caused by the initial vacuum. This degeneracy gives 
rise to some difficulties in the regularity estimate because of the less regularizing effect of the 
viscosity on solutions. This is one of the major obstacles preventing us from utilizing a similar 
remedy proposed by Cho et al. for the case of constant viscosity coefficients. However, recently 
in 2D space, Li, Pan and Zhu [11] have obtained the existence of the unique local classical 
solutions for system (1.1) under the assumptions

ρ0 → 0, as |x| → ∞
and

δ1 = 1, δ2 = 0 or 1, α > 0, α + β ≥ 0, (1.8)

but the vacuum cannot appear in any local point. And in [12], they also proved the existence of 
the unique local classical solutions for system (1.1) under the assumption

1 < δ1 = δ2 < min
(

3,
γ + 1

2

)
, α > 0, α + β ≥ 0

with initial vacuum appearing in some open set or the far field.
In this paper, we generalize the 2D existence result obtained in [11] to R3 in H 2 space and 

assume (1.6) instead of (1.7)–(1.8). Moreover, we will show a very interesting phenomenon that 
it is impossible to obtain any global regular solution satisfying that the L∞ norm of u decays to 
zero as time t goes to infinity.

Throughout this paper, we adopt the following simplified notations for the standard homoge-
neous and inhomogeneous Sobolev space:

Dk,r = {f ∈ L1
loc(R

3) : |f |Dk,r = |∇kf |Lr < +∞}, Dk = Dk,2 (k ≥ 2),

D1 = {f ∈ L6(R3) : |f |D1 = |∇f |L2 < ∞}, ‖(f, g)‖X = ‖f ‖X + ‖g‖X,

‖f ‖s = ‖f ‖Hs(R3), |f |p = ‖f ‖Lp(R3), |f |Dk = ‖f ‖Dk(R3).

A detailed study of homogeneous Sobolev space can be found in [9].
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First we introduce the definitions of regular solutions and strong solutions to Cauchy problem 

(1.1)–(1.3). Via introducing the new variable c(t, x) = √
Aγρ

γ−1
2 (local sound speed) and ψ =

2
γ−1∇c/c = (ψ(1), ψ(2), ψ(3))�, then (1.1)–(1.3) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct + u · ∇c + γ − 1

2
c divu = 0,

ut + u · ∇u + 2

γ − 1
c∇c + Lu = ψ · Q(c,u),

(c, u)|t=0 = (c0, u0), x ∈R
3,

(c, u) → (0,0) as |x| → ∞, t > 0,

(1.9)

where L is the so-called Lamé operator given by

Lu = −div(α(∇u + (∇u)�) + E(c)divuI3),

and terms 
(
Q(c, u),E(c)

)
are given by

Q(c,u) = α(∇u + (∇u)�) + E(c)divuI3, E(c) = E
(
((Aγ )

−1
2 c)

2
γ−1

)
.

Similar to [11], the regular solution is defined via:

Definition 1.1 (Regular solutions to Cauchy problem (1.1)–(1.3)). Let T > 0 be a finite constant. 
(c, u) is called a regular solution to Cauchy problem (1.1)–(1.3) in [0, T ] ×R

3 if (c, u) satisfies

(A) (c,u) satisfies the Cauchy problem (1.9) a.e. in (t, x) ∈ (0, T ] ×R
3;

(B) c ≥ 0, c ∈ C([0, T ];H 2), ct ∈ C([0, T ];H 1);
(C) ψ ∈ C([0, T ];D1), ψt ∈ C([0, T ];L2);
(D) u ∈ C([0, T ];H 2) ∩ L2([0, T ];D3), ut ∈ C([0, T ];L2) ∩ L2([0, T ];D1).

This definition for regular solutions is similar to that of Makino, Ukai and Kawashima [23], 
which studied the local existence of classical solutions to non-isentropic Euler equations with 
initial data arbitrarily large and infρ0 = 0. Some similar definitions can also be seen in [11–14,
19,23,24,30]. And the strong solution can be given as

Definition 1.2 (Strong solutions to Cauchy problem (1.1)–(1.3)). Let T > 0 be a finite constant. 
(ρ, u) is called a strong solution to Cauchy problem (1.1)–(1.3) in [0, T ] ×R

3 if (ρ, u) satisfies

(A1) (ρ,u) satisfies the Cauchy problem (1.1)–(1.3) a.e. in (t, x) ∈ (0, T ] ×R
3;

(B1) ρ ≥ 0, ρ ∈ C([0, T ];H 2), ρt ∈ C([0, T ];H 1);
(C1) u ∈ C([0, T ];H 2) ∩ L2([0, T ];D3), ut ∈ C([0, T ];L2) ∩ L2([0, T ];D1);
(D1) ut + u · ∇u + Lu = (∇ρ/ρ) · Q(c,u) holds when ρ(t, x) = 0.
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Remark 1.1. It is obvious that condition (B) or (B1) means that the vacuum must appear at least 
in the far field.

Now we give the main existence results of this paper:

Theorem 1.1 (Existence of the unique local regular solution). Let 1 < γ ≤ 2 or γ = 3. If the 
initial data (c0, u0) satisfies the regularity condition

c0 ≥ 0, (c0, u0) ∈ H 2, ψ0 ∈ D1, (1.10)

then there exists a small time T∗ and a unique regular solution (c, u) to Cauchy problem 
(1.1)–(1.3). Moreover, we also have ρ(t, x) ∈ C([0, T∗] ×R

3).

Remark 1.2. First we remark that (1.10) identifies a class of admissible initial data that provides 
unique solvability to our problem (1.1)–(1.3). On the other hand, this set of initial data contains 
a large class of functions, for example,

ρ0(x) = 1

1 + |x|2σ
, u0(x) = 0, x ∈ R

3,

where σ > max{1, 1
γ−1 }.

Second, we remark that under the initial assumption (1.10) and ρb−1
0 ∈ H 2, the conclusion 

obtained in Theorem 1.1 still holds for the case that λ(ρ) = ρb (i.e., E(ρ) = ρb−1) when b ∈
(1, 2) ∪ (2, 3) and 1 < γ ≤ 3. The details can be seen in Subsection 3.5.

According to the conclusions obtained in Theorem 1.1 and the standard quasi-linear hyper-
bolic equations theory, we quickly have the following result:

Corollary 1.1 (Existence of strong solutions). Let 1 < γ ≤ 2 or γ = 3. Then the regular solution 
obtained in Theorem 1.1 is indeed the strong solution to Cauchy problem (1.1)–(1.3).

Next, we will show some interesting phenomenon which tells us that there does not exist any 
global regular solution to Cauchy problem (1.1)–(1.3) with the L∞ norm of velocity u decaying 
to zero as time goes to infinity. Let

P(t) =
∫
R3

ρ(t, x)u(t, x)dx (total momentum).

Theorem 1.2 (Non-existence of global solutions with L∞ decay on u). Let 1 < γ ≤ 2. Add 0 <
|P(0)| to (1.10). Then there is no global regular solution (ρ, u) obtained in Theorem 1.1 satisfy-
ing the following decay

lim sup
t→+∞

|u(t, x)|∞ = 0. (1.11)

However, via combining the arguments used in this paper and [11] in R2, we can also have 
the similar conclusions obtained above in H 2 space:
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Theorem 1.3. Let 1 < γ ≤ 2 or γ = 3. If the initial data (ρ0, u0) satisfy

0 ≤ ρ
γ−1

2
0 ∈ H 2(R2), u0 ∈ H 2(R2), ∇ρ0/ρ0 ∈ L6(R2) ∩ D1(R2),

then there exists a time T∗ > 0 and a unique regular solution (ρ, u) to the Cauchy problem 
(1.1)–(1.3) satisfying

ρ
γ−1

2 ∈ C([0, T∗];H 2(R2)), (ρ
γ−1

2 )t ∈ C([0, T∗];H 1(R2)),

∇ρ/ρ ∈ C([0, T∗];L6 ∩ D1(R2)), (∇ρ/ρ)t ∈ C([0, T∗];L2(R2)),

u ∈ C([0, T∗];H 2(R2)) ∩ L2([0, T∗];D3(R2)),

ut ∈ C([0, T∗];L2(R2)) ∩ L2([0, T∗];D1(R2)). (1.12)

Moreover, we also have ρ(t, x) ∈ C([0, T∗] ×R
3), and

ρ ∈ C([0, T∗];H 2(R2)), ρt ∈ C([0, T∗];H 1(R2)).

The rest of this paper is organized as follows. In Section 2, we give some important lemmas 
that will be used frequently in our proof. In Section 3, we prove the existence of the unique 
regular solution shown in Theorem 1.1 via establishing some a priori estimates which are in-
dependent of the lower bound of c, and these estimates can be obtained by the approximation 
process from non-vacuum to vacuum. In Section 4, based on the conclusions obtained in Sec-
tion 3, we give the proof for our main result: the local existence of strong solutions to the original 
problem (1.1)–(1.3) shown in Corollary 1.1. Finally, in Section 5, we will show the non-existence 
of global solutions with L∞ decay on u.

2. Preliminary

In this section, we show some important lemmas that will be frequently used in our proof. 
The first one is the well-known Gagliardo–Nirenberg inequality.

Lemma 2.1. (See [15].) For p ∈ [2, 6], q ∈ (1, ∞), and r ∈ (3, ∞), there exists some generic 
constant C > 0 that may depend on q and r such that for

f ∈ H 1(R3), and g ∈ Lq(R3) ∩ D1,r (R3),

we have

|f |pp ≤ C|f |(6−p)/2
2 |∇f |(3p−6)/2

2 ,

|g|∞ ≤ C|g|q(r−3)/(3r+q(r−3))
q |∇g|3r/(3r+q(r−3))

r . (2.1)

Some common versions of this inequality can be written as

|u|6 ≤ C|u|D1 , |u|∞ ≤ C|u|
1
2
6 |∇u|

1
2
6 ≤ C(|u|D1 + |u|D2), |u|∞ ≤ C‖u‖W 1,r . (2.2)

The second one can be seen in Majda [22], here we omit its proof.
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Lemma 2.2. (See [22].) Let constants r , a and b satisfy the relation

1

r
= 1

a
+ 1

b
, and 1 ≤ a, b, r ≤ ∞.

∀s ≥ 1, if f, g ∈ Ws,a ∩ Ws,b(R3), then we have

|∇s(fg) − f ∇sg|r ≤ Cs

(|∇f |a|∇s−1g|b + |∇sf |b|g|a
)
, (2.3)

|∇s(fg) − f ∇sg|r ≤ Cs

(|∇f |a|∇s−1g|b + |∇sf |a|g|b
)
, (2.4)

where Cs > 0 is a constant only depending on s.

Based on harmonic analysis, we introduce a regularity estimate result for the following elliptic 
problem in the whole domain R3:

−�u = f, u → 0 as |x| → ∞. (2.5)

Lemma 2.3. (See [29].) If u ∈ D1,p with 1 < p < ∞ is a weak solution to system (2.5), then

‖u‖D2,p(R3) ≤ C‖f ‖Lp(R3),

with C depending only on p. Moreover, if f = divh, then we also have

‖u‖D1,p(R3) ≤ C‖h‖Lp(R3).

Proof. The proof can be obtained via the classical harmonic analysis [29]. �
Finally, the last one is some result obtained via the Aubin–Lions Lemma.

Lemma 2.4. (See [28].) Let X0, X and X1 be three Banach spaces with X0 ⊂ X ⊂ X1. Suppose 
that X0 is compactly embedded in X and that X is continuously embedded in X1.

I) Let G be bounded in Lp(0, T ; X0) where 1 ≤ p < ∞, and ∂G
∂t

be bounded in L1(0, T ; X1). 
Then G is relatively compact in Lp(0, T ; X).

II) Let F be bounded in L∞(0, T ; X0) and ∂F
∂t

be bounded in Lp(0, T ; X1) with p > 1. Then 
F is relatively compact in C(0, T ; X).

3. Existence of the unique regular solutions

In this section, we will give the proof for the existence of the unique regular solutions shown 
in Theorem 1.1 by Sections 3.1–3.4.
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3.1. Linearization

For simplicity, in the following sections, we denote 1
γ−1 = θ . Now we consider the following 

linearized equations

{
ct + v · ∇c + γ−1

2 c divv = 0,

ut + v · ∇v + 2θc∇c + Lu = ψ · Q(c, v),

(3.1)

where ψ = 2θ∇c/c and

Q(c, v) = α(∇v + (∇v)�) + E(c)divvI3. (3.2)

The initial data is given by

(c,ψ,u)|t=0 = (c0,ψ0, u0), x ∈R
3. (3.3)

We assume that

c0 ≥ 0, (c0 − c∞, u0) ∈ H 2, ψ0 = 2θ∇c0/c0 ∈ D1 (3.4)

where c∞ ≥ 0 is a constant. And v = (v(1), v(2), v(3))� ∈ R
3 is a known vector satisfying

v ∈ C([0, T ];H 2) ∩ L2([0, T ];D3), vt ∈ C([0, T ];L2) ∩ L2([0, T ];D1). (3.5)

Moreover, we assume that u0 = v(t = 0, x). Then we have the following existence of a strong 
solution (c, ψ, u) to (3.1)–(3.5) by the standard methods at least in the case that the initial data 
is away from vacuum.

Lemma 3.1. Assume that the initial data (3.3) satisfy (3.4) and c0 > δ for some positive constant. 
Then there exists a unique strong solution (c, ψ, u) to (3.1)–(3.5) such that

c ≥ δ, c − c∞ ∈ C([0, T ];H 2), ct ∈ C([0, T ];H 1),

ψ ∈ C([0, T ];D1), ψt ∈ C([0, T ];L2),

u ∈ C([0, T ];H 2) ∩ L2([0, T ];D3), ut ∈ C([0, T ];L2) ∩ L2([0, T ];D1), (3.6)

where δ is a positive constant.

Proof. First, the existence of the solution c to (3.1)1 can be obtained essentially via Lemma 6 in 
[5] via the standard hyperbolic theory. And c can be written as

c(t, x) = c0(U(0; t, x)) exp
(

− γ − 1

2

t∫
divv(s,U(s; t, x))ds

)
, (3.7)
0
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where U ∈ C([0, T ] × [0, T ] ×R
3) is the solution to the initial value problem{

d
dt

U(t; s, x) = v(t,U(t; s, x)), 0 ≤ t ≤ T ,

U(s; s, x) = x, 0 ≤ s ≤ T , x ∈ R
3.

(3.8)

So we easily know that there exists a positive constant δ such that c ≥ δ.
Second, due to c ≥ δ, we quickly obtain that

ψ ∈ C([0, T ];D1), ψt ∈ C([0, T ];L2).

At last, based on the regularity of c and ψ , the desired conclusions for u can be obtained from 
the linear parabolic equations

ut + v · ∇v + 2θc∇c + Lu = ψ · Q(c, v)

via the classical Galerkin methods which can be seen in [4,5], here we omit it. �
3.2. A priori estimate

In this section, we assume that (c, ψ, u) is the unique strong solution to (3.1)–(3.5), then we 
will get some a priori estimates which are independent of the lower bound δ of c0. Now we fix a 
positive constant c0 large enough such that

2 + c∞ + |c0|∞ + ‖c0 − c∞‖2 + |ψ0|D1 + ‖u0‖2 ≤ b0, (3.9)

and

sup
0≤t≤T ∗

|v(t)|22 +
T ∗∫
0

|∇v(t)|22dt ≤ b2
1,

sup
0≤t≤T ∗

|v(t)|2
D1 +

T ∗∫
0

(
|v(t)|2

D2 + |vt (t)|22
)

dt ≤ b2
2,

sup
0≤t≤T ∗

(|v(t)|2
D2 + |vt (t)|22

) +
T ∗∫
0

(
|v(t)|2

D3 + |vt (t)|2D1

)
dt ≤ b2

3 (3.10)

for some time T ∗ ∈ (0, T ) and constants bi (i = 1, 2, 3) such that 1 < b0 ≤ b1 ≤ b2 ≤ b3. The 
constants bi (i = 1, 2, 3) and time T ∗ will be determined later and depend only on b0, the fixed 
constants α, A, γ and T (see (3.48)). Throughout this and next two subsections, we denote by 
C a generic positive constant depending only on fixed constants α, A, γ and T . Moreover, let 
1 ≤ M(·) ∈ C(R+) be a nondecreasing and continuous function, which only depends on E(·)
and the constant C. To begin with, we give some estimates for c.
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Lemma 3.2 (Estimates for c).

|c(t)|2∞ + ‖c(t) − c∞‖2
2 ≤ Cb2

0, |ct (t)|2 ≤ Cb0b2, |ct |D1 ≤ Cb0b3,

|E(c)(t)|2∞ + ‖E(c)(t) − E(c∞)‖2
2 ≤ M(b0),

|E(c)t (t)|2 ≤ M(b0)b0b2, |E(c)t (t)|D1 ≤ M(b0)b0b3

for 0 ≤ t ≤ T1 = min(T ∗, (1 + b3)
−2).

Proof. Step 1. From stand energy estimate theories introduced in [5], we easily have

‖c(t) − c∞‖2 ≤
(
‖c0 − c∞‖2 + c∞

t∫
0

‖∇v(s)‖2ds
)

exp
(
C

t∫
0

‖∇v(s)‖2ds
)
.

Therefore, observing that

t∫
0

‖∇v(s)‖2ds ≤ t
1
2

( t∫
0

‖∇v(s)‖2
2ds

) 1
2 ≤ C(b2t + b3t

1
2 ),

then the estimate for ‖c − c∞‖2 is available for 0 ≤ t ≤ T1 = min(T ∗, (1 + b3)
−2).

The estimate for ct follows from the following relation

ct = −v · ∇c − γ − 1

2
c divv,

we easily have, for 0 ≤ t ≤ T1,⎧⎨⎩ |ct (t)|2 ≤ C
(|v(t)|6|∇c(t)|3 + |c(t)|∞|divv(t)|2

) ≤ Cb0b2,

|ct (t)|D1 ≤ C
(|v(t)|∞|c(t)|D2 + |c(t)|∞|v(t)|D2 + |∇c(t)|6|∇v(t)|3

) ≤ Cb0b3.
(3.11)

Step 2. Due to 1 < γ ≤ 2 or γ = 3, and E(ρ) ∈ C2(R+), then we quickly know that

E(c) = E
(
((Aγ )

−1
2 c)

2
γ−1

) ∈ C2(R+).

So the desired estimates for E(c) follow quickly from the estimates on c. �
Next, we give some very important estimates for ψ . Due to

ψ = 2

γ − 1
∇φ/φ, and φ ≥ δ,

from (3.1)1 we deduce that ψ satisfies

ψt + ∇(v · ψ) + ∇ divv = 0, ψ0 = 2 ∇φ0/φ0 ∈ D1.

γ − 1
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A direct calculation shows that

∂iψ
(j) = ∂jψ

(i) for i, j = 1,2,3

in distribution sense, then the above Cauchy problem can be written as

ψt +
3∑

l=1

Al∂lψ + Bψ + ∇ divv = 0, ψ0 ∈ D1, (3.12)

where

Al = (al
ij )3×3, for i, j, l = 1,2,3

are symmetric with

al
ij = v(l) for i = j ; otherwise al

ij = 0,

and B = (∇v)�, which means that (3.12) is a positive symmetric hyperbolic system; then we 
have the following a priori estimate for ψ via the stand energy estimate theory for positive sym-
metric hyperbolic system. This lemma will be used to deal with the degenerate Lamé operator 
when vacuum appears for our reformulated system.

Lemma 3.3 (Estimates for ψ ).

|ψ(t)|2
D1 ≤ Cb2

0, |ψ(t)t |22 ≤ Cb4
3, 0 ≤ t ≤ T1.

Proof. According to the proof of Lemma 3.1, we know that ψ has the following regularity

ψ ∈ C([0, T ];D1), ψt ∈ C([0, T ];L2).

So, let ς = (ς1, ς2, ς3)
� (|ς | = 1 and ςi = 0, 1), differentiating (3.12) ς -times with respect to x, 

we have

(Dςψ)t +
3∑

l=1

Al∂lD
ςψ + BDςψ + Dς∇ divv

= (−Dς(Bψ) + BDςψ
) +

3∑
l=1

(−Dς(Al∂lψ) + Al∂lD
ςψ

) = �1 + �2. (3.13)

Multiplying (3.13) by 2Dςψ and integrating over R3, because Al (l = 1, 2, 3) are symmetric, we 
easily deduce that

d

dt
|Dςψ |22 ≤ C

( 3∑
l=1

|∂lAl |∞ + |B|∞
)
|Dςψ |22

+ C(|�1|2 + |�2|2 + ‖∇2v‖1)|Dςψ |2. (3.14)
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Then letting r = a = 2, b = ∞ when |ς | = 1 in (2.4), we easily have

|�1|2 = |Dς(Bψ) − BDςψ |2 ≤ C|∇2v|3|ψ |6; (3.15)

letting r = b = 2, a = ∞ when |ς | = 1 in (2.4), we easily have

|�2|2 = |Dς(Al∂lψ) − Al∂lD
ςψ |2 ≤ C|∇v|∞|∇ψ |2. (3.16)

Combining (3.14)–(3.16) and Lemma 2.1, we have

d

dt
|ψ(t)|D1 ≤ C‖∇v‖2|ψ(t)|D1 + C‖∇2v‖1.

According to Gronwall’s inequality, we have

|ψ(t)|D1 ≤
(
|ψ0|D1 +

t∫
0

‖∇2v‖1dt
)

exp
(
C

t∫
0

‖∇v‖2dt
)

for 0 ≤ t ≤ T1. Therefore, observing that

t∫
0

‖v(s)‖3ds ≤ t
1
2

( t∫
0

‖v(s)‖2
3ds

) 1
2 ≤ C(b2t + b3t

1
2 ),

the desired estimate for |ψ(t)|D1 is available for 0 ≤ t ≤ T1.
Due to the following relation

ψt = −∇(v · ψ) − ∇ divv, (3.17)

combining with Lemma 2.1, we easily have, for 0 ≤ t ≤ T1

|ψt(t)|2 ≤ C
(|v|∞|ψ |D1 + |∇v|3|ψ |6 + |v|D2

)
(t) ≤ Cb2

3. �
Now we give the estimates for the lower order terms of the velocity u.

Lemma 3.4 (Lower order estimates of the velocity u).

|u(t)|22 +
t∫

0

|∇u(s)|22ds ≤ Cb2
0

for 0 ≤ t ≤ T2 = min(T ∗, (1 + M(b0)b
4)−1).
3
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Proof. Multiplying (3.1)2 by u and integrating over R3, we have

1

2

d

dt
|u|22 + α|∇u|22 +

∫
R3

(α + E(c))|divu|2dx

=
∫
R3

(
− v · ∇v · u − 2θc∇c · u + ψ · Q(c, v) · u

)
dx ≡:

3∑
i=1

Ii . (3.18)

According to Hölder’s inequality, Lemma 2.1 and Young’s inequality, we have

I1 = −
∫
R3

v · ∇v · udx ≤ C|v|3|∇v|2|u|6 ≤ C|v|23|∇v|22 + α

10
|∇u|22,

I2 = −
∫
R3

2θc∇c · udx ≤ C|∇c|2|c|∞|u|2 ≤ C|u|22 + C|∇c|22|c|2∞,

I3 =
∫
R3

ψ · Q(c, v) · udx

≤ C(1 + |E(c)|∞)|ψ |6|∇v|3|u|2 ≤ C|u|22 + M(b0)|ψ |26|∇v|23. (3.19)

Then we have

1

2

d

dt
|u|22 + α|∇u|22 ≤ C(|u|22 + |v|23|∇v|22 + |∇c|22|c|2∞) + M(b0)|ψ |26|∇v|23. (3.20)

Integrating (3.20) over (0, t), for 0 ≤ t ≤ T1, we have

|u(t)|22 +
t∫

0

α|∇u(s)|22ds ≤ C

t∫
0

|u(s)|22ds + C|u0|22 + M(b0)b
4
3t.

According to Gronwall’s inequality, we have

|u(t)|22 +
t∫

0

α|∇u(s)|22ds ≤ C
(|u0|22 + M(b0)b

4
3t

)
exp(Ct) ≤ Cb2

0 (3.21)

for 0 ≤ t ≤ T2 = min(T ∗, (1 + M(b0)b
4
3)

−1). �
Next, in order to obtain the higher order regularity estimate for the velocity u, we need to 

introduce the effective viscous flux F and vorticity ω to deal with the c-dependent Lamé operator 
(see (3.2)), which can be given as

F = (2α + E(c))divu − (θc2 − θ(c∞)2), ω = ∇ × u, (3.22)
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then in the sense of distribution, the momentum equations (3.1)2 can be written as{�F = div(ut + v · ∇v − ψ · Q(c, v)),

�ω = ∇ × (ut + v · ∇v − ψ · Q(c, v)).
(3.23)

So we immediately have

−�u = ∇ × ω − ∇ divu = ∇ × ω − ∇
(F + θc2 − θ(c∞)2

2α + E(c)

)
. (3.24)

Lemma 3.5 (Higher order estimates of the velocity u).

|u(t)|2
D1 +

t∫
0

(
|ut (s)|22 + |u(s)|2

D2

)
ds ≤ Cb2

0,

|u(t)|2
D2 + |ut (t)|22 +

t∫
0

(
|u(s)|2

D3 + |ut (s)|2D1

)
ds ≤ M(b0)b

3
2b3,

for 0 ≤ t ≤ T3 = min(T ∗, (1 + M(b0)b
8
3)

−1).

Proof. Step 1. Via the standard elliptic estimate shown in Lemma 2.3 and (3.24), we immediately 
obtain

|u|D2 ≤ C(|∇ × ω|2 + |∇F |2 + |∇c2|2 + |∇E(c)|6|divu|3)
≤ C(|∇ × ω|2 + |∇F |2 + |∇c2|2 + |∇u|2|∇E(c)|26) + 1

2
|u|D2 ,

where we have used the fact that

divu = F + θc2 − θ(c∞)2

2α + E(c)
, and |divu|3 ≤ C|∇u|

1
2
2 |∇u|

1
2
6 . (3.25)

Then via Young’s inequality, we have

|u|D2 ≤ C(M(b0)|∇u|2 + |∇ω|2 + |∇F |2 + b2
0). (3.26)

Again from Lemma 2.3, we also have

|∇ω|2 + |∇F |2 ≤ C(|ut |2 + |v|6|∇v|3 + |ψ |6|Q(c, v)|3)
≤ C(M(b0)b

3
2 b

1
2 + |ut |2). (3.27)
2 3
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Then combining (3.26)–(3.27), we deduce that

|u|D2 ≤ C(M(b0)|∇u|2 + |ut |2 + M(b0)b
3
2
2 b

1
2
3 ). (3.28)

Step 2 (Estimate for |∇u|2). Multiplying (3.1)2 by ut and integrating over R3, we have

1

2

d

dt

∫
R3

(
α|∇u|2 + (α + E(c))|divu|2)dx + |ut |22

=
∫
R3

(1

2
E(c)t (divu)2 − (

(v · ∇v) + θ(∇c2) − (ψ · Q(c, v))
) · ut

)
dx ≡:

7∑
i=4

Ii . (3.29)

According to Hölder’s inequality, Lemma 2.1, Young’s inequality and (3.28),

I4 =
∫
R3

1

2
E(c)t (divu)2dx ≤ C|E(c)t |3|∇u|2|∇u|6

≤ ε|u|2
D2 + C(ε)|E(c)t |23|u|2

D1 ,

I5 = −
∫
R3

(v · ∇v) · utdx ≤ C|v|∞|∇v|2|ut |2

≤ C‖∇v‖2
1|∇v|22 + 1

10
|ut |22,

I6 = −
∫
R3

2θ(c∇c) · utdx ≤ C|∇c|2|c|∞|ut |2

≤ 1

10
|ut |22 + C|∇c|22|c|2∞,

I7 =
∫
R3

ψ · Q(c, v) · utdx ≤ C|ut |2|ψ |6|Q(c, v)|3

≤ 1

10
|ut |22 + C|ψ |26|Q(c, v)|23, (3.30)

where ε > 0 is a sufficiently small constant.
Combining (3.28) and (3.29)–(3.30), via letting ε be sufficiently small, we have

d

dt
|∇u|22 + |ut |22 ≤ M(b0)b

4
3|∇u|22 + M(b0)b

4
3. (3.31)

From Gronwall’s inequality, we have

|∇u(t)|22 +
t∫
|ut |22ds ≤ C(|∇u0|22 + M(b0)b

4
3t) exp(M(b0)b

4
3t) ≤ Cb2

0, (3.32)
0
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for 0 ≤ t ≤ T ′ = min(T ∗, (1 + M(b0)b
4
3)

−1), which, along with (3.28), implies that

t∫
0

|u|2
D2 ≤ C

t∫
0

(
M(b0)|∇u|2 + |ut |2 + M(b0)b

3
2
2 b

1
2
3

)2
ds ≤ Cb2

0, for 0 ≤ t ≤ T ′.

Step 3 (Estimate for |∇2u|2). We consider the estimate for |ut |2. First we differentiate (3.1)2
with respect to t :

utt + (Lu)t = −(v · ∇v)t − 2θ(c∇c)t + (ψ · Q(c, v))t . (3.33)

Then multiplying (3.33) by ut and integrating over R3, we have

1

2

d

dt
|ut |22 + α|∇ut |22 +

∫
R3

(α + E(c))|divut |2dx

=
∫
R3

( − E(c)t divudivut − (
(v · ∇v)t + θ(∇c2)t − (ψ · Q(c, v))t

) · ut

)
dx

≡:
11∑
i=8

Ii . (3.34)

According to Hölder’s inequality, Lemma 2.1 and Young’s inequality,

I8 = −
∫
R3

E(c)t divudivutdx ≤ C|E(c)t |3|∇ut |2|∇u|6

≤ α

10
|∇ut |22 + C|E(c)t |23|u|2

D2 ,

I9 = −
∫
R3

(v · ∇v)t · utdx ≤ C
(|v|∞|∇vt |2|ut |2 + |vt |6|∇v|3|ut |2

)
≤ 1

b2
3

|∇vt |22 + Cb2
3‖∇v‖2

1|ut |22,

I10 = −
∫
R3

θ(∇c2)t · utdx = θ

∫
R3

(c2)t divutdx

≤ C|ct |2|c|∞|∇ut |2 ≤ α

10
|∇ut |22 + C|ct |22|c|2∞. (3.35)

For the last term on the right side of (3.34), we have

I11 =
∫

3

ψ · Q(c, v)t · utdx +
∫

3

ψt · Q(c, v) · utdx = I11A + I11B. (3.36)
R R
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We firstly consider the term:

I11A ≤ C(1 + |E(c)|∞)|ψ |6|∇vt |2|ut |3 + C|E(c)t |2|ψ |6|∇v|∞|ut |3
≤ 1

b2
3

|∇vt |22 + α

10
|∇ut |22 + M(b0)b

8
3|ut |22 + M(b0)b

8
3, (3.37)

where we have used the fact that

|ut |3 ≤ Cut |
1
2
2 |∇ut |

1
2
2 , |Q(c, v)t |2 ≤ C(1 + |E(c)|∞)|∇vt |2 + C|E(c)t |2|∇v|∞. (3.38)

And for the second term:

I11B = −
∫
R3

(
∇(v · ψ) · Q(c, v) · ut + ∇ divv · Q(c, v) · ut

)
dx

≤ C

∫
R3

(|v||ψ ||∇Q(c, v)||ut | + |v||ψ ||Q(c, v)||∇ut | + |∇ divv||Q(c, v)||ut |
)
dx

≤ C|v|∞|ψ |6
(|∇Q(c, v)|2|ut |3 + |Q(c, v)|3|∇ut |2

) + C|∇2v|6|Q(c, v)|2|ut |3
≤ 1

b2
3

|v|2
D2,6 + α

10
|∇ut |22 + M(b0)b

8
3|ut |22 + M(b0)b

8
3, (3.39)

where we have used the fact that⎧⎨⎩
|∇Q(c, v)|2 ≤ C(1 + |E(c)|∞)|v|D2 + C|∇E(c)|3|∇v|6,

|Q(c, v)|3 ≤ C|Q(c, v)|
1
2
2 |∇Q(c, v)|

1
2
2 , |Q(c, v)|2 ≤ C(1 + |E(c)|∞)|v|D1 .

(3.40)

Combining (3.28), (3.32) and (3.34)–(3.39), we have

1

2

d

dt
|ut |22 + α|∇ut |22 +

∫
R3

(α + E(c))|divut |2dx

≤ M(b0)b
8
3|ut |22 + M(b0)b

8
3 + C

b2
3

(|∇vt |22 + |v|2
D2,6

)
. (3.41)

Integrating (3.41) over (τ, t) (τ ∈ (0, t)) for 0 < t ≤ T3, we have

|ut (t)|22 +
t∫

τ

α|∇ut (s)|22ds

≤ |ut (τ )|22 + M(b0)b
8
3t +

t∫
M(b0)b

8
3|ut |22ds + C. (3.42)
τ
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According to the momentum equations (3.1)2, we have

|ut (τ )|2 ≤ C
(|v|∞|∇v|2 + |c|∞|∇c|2 + |Lu|2 + |ψ |6|Q(c, v)|2

)
(τ ). (3.43)

Then via the assumptions (3.5)–(3.6), we easily have

lim sup
τ→0

|ut (τ )|2 ≤ C
(|v0|∞|∇v0|2 + |c0|∞|∇c0|2 + |Lu0|2 + |ψ0|6|Q(c0, v0)|2

)
≤ M(b0)b

2
0. (3.44)

So letting τ → 0 in (3.42), via Gronwall’s inequality, we have

|ut (t)|22 +
t∫

0

α|∇ut (s)|22ds ≤ (
M(b0)b

8
3t + M(b0)b

2
0

)
exp(M(b0)b

8
3t) ≤ M(b0)b

2
0, (3.45)

for 0 ≤ t ≤ T3 = min(T ∗, (1 + M(b0)b
8
3)

−1).
Step 4. Finally, we consider the estimates of the higher order terms. From estimate (3.28), 

Lemmas 2.1 and 2.3, relation (3.25) and inequality (2.2), we easily have, for 0 ≤ t ≤ T3,

|u(t)|D2 ≤ C(M(b0)|∇u|2 + |ut |2 + M(b0)b
3
2
2 b

1
2
3 ) ≤ M(b0)b

3
2
2 b

1
2
3 ,

and

|u|D3 ≤ C
(|∇ω|D1 + |∇F |D1 + |∇c2|D1 + |∇E(c)|3|∇F |6

)
+ C

(|∇E(c)|3(|∇c2|6 + |∇u|6|∇E(c)|2) + |∇u|∞|E(c)|D2

)
≤ M(b0)

(|∇ω|D1 + |∇F |D1 + b
3
2
2 b

1
2
3

) + 1

2
|u|D3 . (3.46)

Again from Lemma 2.3 and (3.23), we also have

|∇ω|D1 + |∇F |D1 ≤ C(|ut |D1 + |v · ∇v|D1 + |ψ · Q(c, v)|D1)

≤ C(|ut |D1 + M(b0)b
3
3),

which, together with (3.45)–(3.46), immediately implies the desired estimate for |u|D3 . �
Then combining the estimates obtained in Lemmas 3.2–3.5, we have

|c(t)|2∞ + ‖c(t) − c∞‖2
2 + ‖ct (t)‖2

1 ≤ M(b0)b
4
3,

|E(c)(t)|2∞ + ‖E(c)(t) − E(c∞)‖2
2 + ‖E(c)t (t)‖2

1 ≤ M(b0)b
4
3,

|ψ(t)|2
D1 + |ψ(t)t |22 ≤ M(b0)b

4
3,

‖u(t)‖2
1 +

t∫ (
|ut (s)|22 + ‖∇u(s)‖2

1

)
ds ≤ M(b0)b

2
0,
0
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|u(t)|2
D2 + |ut (t)|22 +

t∫
0

(
|u(s)|2

D3 + |ut (s)|2D1

)
ds ≤ M(b0)b

3
2b3 (3.47)

for 0 ≤ t ≤ T3. Therefore, if we define the constants bi (i = 1, 2, 3) and T ∗ by

b1 = b2 = M(b0)b0, b3 = M(b0)b
3
2 = M4(b0)b

3
0,

and T ∗ = min(T , (1 + M(b0)b3)
−8), (3.48)

then we deduce that

sup
0≤t≤T ∗

|u(t)|22 +
T ∗∫
0

|∇u(t)|22dt ≤ b2
1,

sup
0≤t≤T ∗

|u(t)|2
D1 +

T ∗∫
0

(
|u(t)|2

D2 + |ut (t)|22
)

dt ≤ b2
2,

sup
0≤t≤T ∗

(|u(t)|2
D2 + |ut (t)|22) +

T ∗∫
0

(
|u(t)|2

D3 + |ut (t)|2D1

)
dt ≤ b2

3,

sup
0≤t≤T ∗

(|c(t)|2∞ + ‖c(t) − c∞‖2
2 + ‖ct (t)‖2

1

) ≤ M(b0)b
4
3,

sup
0≤t≤T ∗

(|E(c)(t)|2∞ + ‖E(c)(t) − E(c∞)‖2
2 + ‖E(c)t (t)‖2

1

) ≤ M(b0)b
4
3,

sup
0≤t≤T ∗

(|ψ(t)|2
D1 + |ψ(t)t |22

) ≤ M(b0)b
4
3. (3.49)

3.3. Unique solvability of the linearization with vacuum

Based on the a priori estimate (3.49), we have the following existence result under the as-
sumption that c0 ≥ 0.

Lemma 3.6. Assume that the initial data (3.3) satisfy (3.4) and c0 ≥ 0. Then there exists a unique 
strong solution (c, ψ, u) to (3.1)–(3.5) such that

c ≥ 0, c ∈ C([0, T ∗];H 2), ct ∈ C([0, T ∗];H 1), ψ ∈ C([0, T ∗];D1),

ψt ∈ C([0, T ∗];L2), u ∈ C([0, T ∗];H 2) ∩ L2([0, T ∗];H 3),

ut ∈ C([0, T ∗];L2) ∩ L2([0, T ∗];D1). (3.50)

And we also have ∂iψ
(j) = ∂jψ

(i) in the distribution sense for i, j = 1, 2, 3. Moreover, (c, ψ, u)

also satisfies the local a priori estimates (3.49).
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Proof. Step 1. Existence. We firstly define

cδ0 = c0 + δ, and ψδ0 = 2θ∇c0/(c0 + δ)

for each δ ∈ (0, 1). Then according to the assumption (3.9), for all sufficiently small δ > 0,

1 + |cδ0|∞ + ‖cδ0 − δ‖2 + |ψδ0|D1 + ‖u0‖2 ≤ Cb2
0 = b0.

Therefore, corresponding to (ρδ0, u0, ψδ0) with small δ > 0, there exists a unique strong solution 
(cδ, uδ, ψδ) to the linearized problem (3.1)–(3.5) satisfying the local estimate (3.49) obtained in 
the above section.

By virtue of these uniform estimates (3.49), we know that there exists a subsequence of solu-
tions

(cδ, uδ,ψδ) converges to a limit (c, u,ψ) in weak or weak∗ sense. (3.51)

And for any R > 0, due to the compact property in Lemma 2.4 (see [28]), there exists a subse-
quence of solutions (cδ, uδ, ψδ) satisfying:

(cδ, uδ) → (c, u) in C([0, T ∗];H 1(BR)), ψδ → ψ in C([0, T ∗];L2(BR)), (3.52)

where BR is a ball centered at origin with radius R. Combining the lower semi-continuity of 
norms, the weak or weak∗ convergence of (cδ, uδ, ψδ) and (3.52), we know that (c, u, ψ) also 
satisfies the local estimates (3.49).

Then via the local estimates (3.49), the weak or weak∗ convergence in (3.51) and strong 
convergence in (3.52), in order to make sure that (c, u, ψ) is a weak solution in the sense of 
distribution to the linearized problem (3.1)–(3.5) satisfying the regularity

c ≥ 0, c ∈ L∞([0, T ∗];H 2), ct ∈ L∞([0, T ∗];H 1),

ψ ∈ L∞([0, T ∗];D1), ψt ∈ L∞([0, T ∗];L2), u ∈ L∞([0, T ∗];H 2) ∩ L2([0, T ∗];H 3),

ut ∈ L∞([0, T ∗];L2) ∩ L2([0, T ∗];D1), (3.53)

we only need to make sure that

lim
δ→0

∫
R3

(cδ
0 − c0)φ(0, x)dx = 0,

lim
δ→0

∫
R3

(ψδ
0 − ψ0)ξ(0, x)dx = 0 (3.54)

for any φ(t, x) ∈ C∞
c ([0, T ∗) × R

3) and ξ(t, x) ∈ C∞
c ([0, T ∗) × R

3)3. The proof for (3.54)1 is 
easy, so we only need to consider (3.54)2. When

suppxξ(0, x) ∩ {x ∈ R
3|c0(x) = 0} = ∅,
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then due to c0 ∈ H 2(R3) ⊂ C(R3), there must exist a positive constant δ0 such that

c0(x) > δ0 for x ∈ suppxξ(0, x), (3.55)

which immediately implies that

lim
δ→0

∫
R3

(ψδ
0 − ψ0)ξ(0, x)dx

= lim
δ→0

∫
suppxξ(0,x)

− δ

c0 + δ
ψ0ξ(0, x)dx

≤ lim
δ→0

δ

δ0 + δ
|ξ(0, x)|2|ψ0|6|suppxξ(0, x)| 1

3 → 0, (3.56)

where |suppxξ(0, x)| means the 3D Lebesgue measure of suppxξ(0, x).
And when

suppxξ(0, x) ∩ {x ∈R
3|c0(x) = 0} �= ∅,

due to ψ0 = ∇c0/c0 ∈ D1(R3), we must have

|{x ∈ R
3|c0(x) = 0}| = 0.

Then for every n ≥ 1, we have

I =
∫
R3

(ψδ
0 − ψ0)ξ(0, x)dx =

∫
suppxξ(0,x)

− δ

c0 + δ
ψ0ξ(0, x)dx

=
∫

suppxξ(0,x)∩{x∈R3|c0(x)≥ 1
n
}
− δ

c0 + δ
ψ0ξ(0, x)dx

+
∫

suppxξ(0,x)∩{x∈R3|c0(x)< 1
n
}
− δ

c0 + δ
ψ0ξ(0, x)dx = I1 + I2. (3.57)

So it is easy to see that

lim
δ→0

I = lim
n→+∞ lim

δ→0
I = lim

n→+∞ lim
δ→0

I2

≤ C|ξ(0, x)|2|ψ0|6 lim
n→+∞|suppxξ(0, x) ∩ {x ∈R

3|c0(x) < 1/n}| 1
3 = 0, (3.58)

which, together with (3.56), implies that (3.54) holds.
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Moreover, from the conclusions obtained in this step, we also know that even vacuum appears, 
ψ satisfies ∂iψ

(j) = ∂jψ
(i) (i, j = 1, 2, 3) and the following positive and symmetric hyperbolic 

system in the distribution sense:

ψt +
3∑

l=1

Al∂lψ + Bψ + ∇ divv = 0, ψ0 ∈ D1. (3.59)

Step 2. The uniqueness and time continuity for (c, ψ, u) can be obtained via the same argu-
ments used in Lemma 3.1. �
3.4. Proof of Theorem 1.1

Our proof is based on the classical iteration scheme and the existence results obtained in 
Section 3.3. Let us denote as in Section 3.2 that

2 + |c0|∞ + ‖(c0, u0)‖2 + |ψ0|D1 ≤ b0.

Next, let u0 ∈ C([0, T ∗]; H 2) ∩ L2([0, T ∗]; H 3) be the solution to the linear parabolic problem

ht − �h = 0 in (0,+∞) ×R
3 and h(0) = u0 in R

3.

Then taking a small time T ε ∈ (0, T ∗], we have

sup
0≤t≤T ε

|u0(t)|22 +
T ε∫

0

|∇u0(t)|22dt ≤ b2
1,

sup
0≤t≤T ε

|u0(t)|2
D1 +

T ε∫
0

(
|u0(t)|2

D2 + |u0
t (t)|22

)
dt ≤ b2

2,

sup
0≤t≤T ε

(|u0(t)|2
D2 + |u0

t (t)|22) +
T ε∫

0

(
|u0(t)|2

D3 + |u0
t (t)|2D1

)
dt ≤ b2

3. (3.60)

Proof. Step 1. Existence. Let v = u0; we can get (c1, ψ1, u1) as a strong solution to problem 
(3.1)–(3.5). Then we construct approximate solutions (ck+1, ψk+1, uk+1) inductively, as follows: 
assuming that (ck, ψk, uk) was defined for k ≥ 1, let (ck+1, ψk+1, uk+1) be the unique solution 
to problem (3.1)–(3.5) with v replaced by uk as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ck+1
t + uk · ∇ck+1 + γ−1

2 ck+1 divuk = 0,

ψk+1
t + ∑3

l=1 Al(u
k)∂lψ

k+1 + B(uk)ψk+1 + ∇ divuk = 0,

uk+1
t + uk · ∇uk + 2θck+1∇ck+1 = −L(ck+1)uk+1 + ψk+1 · Q(ck+1, uk),

k+1 k+1 k+1 3

(3.61)
(c ,ψ ,u )|t=0 = (c0,ψ0, u0), x ∈R ,
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where the operator L(f )g is defined as L(f )g = div(α(∇g + (∇g)�) + E(f ) divgI3). Via 
the estimates shown in Subsection 3.3, we quickly deduce that the sequences of solutions 
(ck, ψk, uk) satisfy the uniform a priori estimate (3.49).

The next task is to prove the strong convergence of the full sequence (ck, ψk, uk) of approxi-
mate solutions to a limit (c, ψ, u) satisfying (1.12) in the sense of H 1. Let

ck+1 = ck+1 − ck, ψk+1 = ψk+1 − ψk, uk+1 = uk+1 − uk,

then from (3.61), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck+1
t + uk · ∇ck+1 + uk · ∇ck + γ−1

2 (ck+1 divuk + ck divuk) = 0,

ψk+1
t + ∑3

l=1 Al(u
k)∂lψ

k+1 + B(uk)ψk+1 + ∇ divuk = ϒk
1 + ϒk

2 ,

uk+1
t + uk · ∇uk + uk · ∇uk−1 + θ∇((ck+1)2 − (ck)2) + L(ck+1)uk+1

= div((E(ck+1) − E(ck))divuk
I3) + ψk+1 · Q(ck+1, uk)

+ ψk+1 · Q(ck,uk−1) + ψk+1(E(ck+1) − E(ck))divuk−1,

(3.62)

where ϒk
1 and ϒk

2 are defined via

ϒk
1 = −

3∑
l=1

(Al(u
k)∂lψ

k − Al(u
k−1)∂lψ

k), ϒk
2 = −(B(uk)ψk − B(uk−1)ψk).

Firstly multiplying (3.62)1 by 2ck+1 and integrating over R3, we have

d

dt
|ck+1|22 = −2

∫
R3

(
uk · ∇ck+1 + uk · ∇ck + γ − 1

2
(ck+1 divuk + ck divuk)

)
ck+1dx

≤ C|∇uk|∞|ck+1|22 + C|ck+1|2|uk|6|∇ck|3 + C|ck+1|2|∇uk|2|ck|∞,

which means that (0 < η ≤ min
(

1
10 , α

10

)
is a constant)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
|ck+1(t)|22 ≤ Ak

η(t)|ck+1(t)|22 + η|∇uk(t)|22,

Ak
η(t) = C

(
‖∇uk‖2 + 1

η
‖ck‖2

2

)
, and

t∫
0

Ak
η(s)ds ≤ Ĉ + Ĉηt

(3.63)

for t ∈ [0, T ε], where Ĉη is a positive constant depending on η and constant Ĉ.
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Next, differentiating (3.62)1 ζ -times (|ζ | = 1) with respect to x, multiplying the resulting 
equation by 2Dζck+1 and integrating over R3, we have

d

dt
|Dζ ck+1|22 = −2

∫
R3

Dζ
(
uk · ∇ck+1 + uk · ∇ck + γ − 1

2
(ck+1 divuk + ck divuk)

)
Dζ ck+1dx

≤ C|∇uk|∞|∇ck+1|22 + C|∇ck|∞|∇uk|2|∇ck+1|2
+ C|∇ck+1|3|∇uk|6|∇2ck|2 + C|∇2uk|3|∇ck+1|22
+ C|∇uk|6|∇ck+1|2|∇ck|3 + C|ck|∞|∇ divuk|2|∇ck+1|2,

which means that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
|∇ck+1(t)|22 ≤ Bk

η(t)|∇ck+1(t)|22 + η|∇ divuk(t)|22 + η|∇uk(t)|22,

Bk
η(t) = C

(
‖∇uk‖2 + 1

η
‖ck‖2

2

)
, and

t∫
0

Bk
η(s)ds ≤ Ĉ + Ĉηt

(3.64)

for t ∈ [0, T ε]. Then combining (3.63)–(3.64), we easily have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
‖ck+1(t)‖2

1 ≤ �k
η(t)‖ck+1(t)‖2

1 + η‖∇uk(t)‖2
1,

t∫
0

�k
η(s)ds ≤ Ĉ + Ĉηt for t ∈ [0, T ε].

(3.65)

Secondly, multiplying (3.62)2 by 2ψk+1 and integrating over R3, we have

d

dt
|ψk+1|22 ≤ C

( 3∑
l=1

|∂lAl(u
k)|∞ + |B(uk)|∞

)
|ψk+1|22

+ C(|ϒk
1 |2 + |ϒk

2 |2 + |∇2uk|2)|ψk+1|2. (3.66)

From Hölder’s inequality, it is easy to deduce that

|ϒk
1 |2 ≤ C|∇ψk|2|uk|∞, |ϒk

2 |2 ≤ C|ψk|6|∇uk|3. (3.67)

From (3.66)–(3.67), for t ∈ [0, T ε], we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
|ψk+1(t)|22 ≤ �k

η(t)|ψk+1(t)|22 + η‖∇uk(t)‖2
1,

�k
η(t) = C

(
‖∇uk‖2 + 1

η
|ψk|2

D1 + 1

η

)
, and

t∫
�k

η(s)ds ≤ Ĉ + Ĉηt.

(3.68)
0
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Thirdly, multiplying (3.62)3 by 2uk+1 and integrating over R3, we have

d

dt
|uk+1|22 + 2α|∇uk+1|22 +

∫
R3

(α + E(ck+1))|divuk+1|2dx

= −2
∫
R3

(
−div

(
(E(ck+1) − E(ck))divuk

I3
) + uk · ∇uk + uk · ∇uk−1

)
· uk+1dx

− 2
∫
R3

(
θ∇(

(ck+1)2 − (ck)2) − ψk+1 · Q(ck+1, uk)
)

· uk+1dx

+ 2
∫
R3

(
ψk+1 · Q(ck,uk−1) + ψk+1(E(ck+1) − E(ck))divuk−1

)
· uk+1dx

≤ C|ck+1|6|divuk|3|∇uk+1|2 + C|uk|∞|∇uk|2|uk+1|2
+ C|uk|6|uk+1|2|∇uk−1|3 + C

(|ck+1|∞ + |ck|∞
)|∇uk+1|2|ck+1|2

+ C(1 + |E(c)|∞)|ψk+1|6|∇uk|2|uk+1|3 + C|ψk+1|2|Q(ck,uk−1)|∞|uk+1|2
+ C|ψk+1|6|E(ck+1) − E(ck)|2|divuk−1|6|uk+1|6,

which implies that

d

dt
|uk+1|22 + α|∇uk+1|22
≤ Ek

η(t)‖uk+1‖2
1 + Ek

2(t)‖ck+1‖2
1 + Ek

3(t)|ψk+1|22 + η|∇uk|22, (3.69)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ek
η(t) = C

(
1 + 1

η
|uk|2∞ + 1

η
|∇uk−1|23 + 1

η
|ψk+1|26

)
,

Ek
2(t) = C

(
|ck+1|∞ + |ck|∞ + |divuk|3 + |ψk+1|6|divuk−1|6

)2
,

Ek
3(t) = C|∇uk−1|2∞,

and we also have

t∫
0

(
Ek

η(s) + Ek
2(s) + Ek

3(s)
)
ds ≤ Ĉ + Ĉηt

for t ∈ [0, T ε].
Next, differentiating (3.62)3 ζ -times (|ζ | = 1) with respect to x, multiplying the resulting 

equation by Dζuk+1 and integrating over R3, we have
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1

2

d

dt
|Dζ uk+1|22 + α|∇Dζ uk+1|22 +

∫
R3

(α + E(ck+1))|Dζ divuk+1|2dx

=
∫
R3

(
div(Dζ E(ck+1)divuk+1

I3) + Dζ div((E(ck+1) − E(ck))divuk
I3)

)
· Dζ uk+1dx

×
∫
R3

Dζ
(−uk · ∇uk − uk · ∇uk−1) · Dζ uk+1dx

+
∫
R3

Dζ
(
−θ∇((ck+1)2 − (ck)2) + ψk+1 · Q(ck+1, uk)

)
· Dζ uk+1dx

+
∫
R3

Dζ
(
ψk+1 · Q(ck,uk−1) + ψk+1(E(ck+1) − E(ck))divuk−1

)
· Dζ uk+1dx

=
7∑

i=1

Ji.

Then from integration by parts, Lemma 2.1 and Hölder’s inequality,

J1 =
∫
R3

div(Dζ E(ck+1)divuk+1
I3) · Dζ uk+1dx

≤ C|∇uk+1|3|∇2uk+1|2|Dζ E(ck+1)|6 ≤ C|∇uk+1|
1
2
2 |∇2uk+1|

3
2
2 |Dζ ck+1|6,

J2 =
∫
R3

Dζ div((E(ck+1) − E(ck))divuk
I3) · Dζ uk+1dx

≤ C|∇ck+1|2|divuk|∞|∇2uk+1|2 + C|ck+1|6|∇ divuk|3|∇2uk+1|2,

J3 =
∫
R3

−Dζ (uk · ∇uk) · Dζ uk+1dx

≤ C|∇uk|6|∇uk|2|∇uk+1|3 + C|uk|∞|uk|D2 |∇uk+1|2,

J4 =
∫
R3

−Dζ (uk · ∇uk−1) · Dζ uk+1dx

≤ C|∇uk|2|∇uk+1|3|∇uk−1|6 + C|uk|6|∇uk+1|3|∇2uk−1|2,
J5 =

∫
R3

−θDζ (∇((ck+1)2 − (ck)2)) · Dζ uk+1dx

≤ C|∇ck+1 + ∇ck|3|∇2uk+1|2|ck+1|6 + C|(ck+1 + ck)|∞|∇2uk+1|2|∇ck+1|2,
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J6 =
∫
R3

Dζ
(
ψk+1 · Q(ck+1, uk)

) · Dζ uk+1dx

≤ C(1 + |E(ck+1)|∞)
(
|∇ψk+1|2|∇uk|6|∇uk+1|3 + |ψk+1|6|uk|D2 |∇uk+1|3

)
+ C|ψk+1|6|∇ck+1|6|∇uk|6|∇uk+1|2,

J7 =
∫
R3

Dζ
(
ψk+1 · Q(ck,uk−1)

) · Dζ uk+1dx

≤ C(1 + |E(ck)|∞)|ψk+1|2|∇uk−1|∞|∇Dζ uk+1|2, (3.70)

and

J8 =
∫
R3

Dζ
(
ψk+1(E(ck+1) − E(ck))divuk−1

)
· Dζ uk+1dx

≤ C|ψk+1|6|∇2uk+1|2|ck+1|3|divuk−1|∞. (3.71)

According to Young’s inequality and (3.70)–(3.71), we have

d

dt
|∇uk+1|22 + α|uk+1|2

D2

≤ Fk
η (t)|∇uk+1|22 + Fk

2 (t)‖ck+1‖2
1 + Fk

3 (t)|ψk+1|22 + η‖∇uk‖2
1, (3.72)

where⎧⎪⎪⎨⎪⎪⎩
Fk

η (t) = C
(

1 + ‖∇ck+1‖4
1 + 1

η2 (1 + ‖uk‖4
2 + ‖uk−1‖4

2 + |ψk+1|4
D1 + |ψk+1|26|∇ck+1|26)

)
,

F k
2 (t) = C

(
‖ck+1‖2 + ‖ck‖2 + ‖uk‖3 + |ψk+1|6|divuk−1|∞

)2
, F k

3 (t) = C‖∇uk−1‖2
2,

and we have 
∫ t

0

(
Fk

η (s) + Fk
2 (s) + Fk

3 (s)
)
ds ≤ Ĉ + Ĉηt for t ∈ (0, Tε].

Then combining (3.69) and (3.72), we easily have

d

dt
‖uk+1‖2

1 + α‖∇uk+1‖2
1

≤ �k
η(t)‖uk+1‖2

1 + �k
2(t)‖ck+1‖2

1 + �k
3(t)|ψk+1|22 + η‖∇uk‖2

1, (3.73)

and we also have 
∫ t

0

(
�k

η(s) + �k
2(s) + �k

3(s)
)
ds ≤ Ĉ + Ĉηt , for t ∈ (0, Tε].

Finally, let

�k+1 = ‖ck+1‖2
1 + |ψk+1|22 + ‖uk+1‖2

1;
then we have

d
�k+1 + μ‖∇uk+1‖2

1 ≤ �k
η�

k+1 + Cη‖∇uk‖2
1,
dt



S. Zhu / J. Differential Equations 259 (2015) 84–119 111
for some �k
η such that 

∫ t

0 �k
η(s)ds ≤ Ĉ + Ĉηt . According to Gronwall’s inequality, we have

�k+1 +
t∫

0

μ‖∇uk+1‖2
1ds ≤

(
Cη

t∫
0

‖∇uk‖2
1ds

)
exp (Ĉ + Ĉηt).

We can choose η > 0 and Ṫ ∈ (0, T ε) small enough such that

Cη exp Ĉ = μ

4
, and exp(ĈηṪ ) = 2.

Then we easily have

∞∑
k=1

(
sup

0≤t≤Ṫ

�k+1 +
Ṫ∫

0

μ‖∇uk+1‖2
1ds

)
≤ Ĉ < +∞,

which means that the full sequence (ck, ψk, uk) converges to a limit (c, ψ, u) in the following 
strong sense:

ck → c in L∞([0, Ṫ ];H 1(R3)),

ψk → ψ in L∞([0, Ṫ ];L2(BR)),

uk → u in L∞([0, Ṫ ];H 1(R3)) ∩ L2([0, Ṫ ];D2(R3)), (3.74)

where BR is a ball centered at origin with radius R, and R > 0 can be arbitrarily large.
Due to the local estimate (3.49) and the lower-continuity of norm for weak or weak∗ conver-

gence, we also have (c, ψ, u) satisfies the estimate (3.49). According to the strong convergence 
in (3.74), it is easy to see that (c, ψ, u) is a weak solution in the distribution sense with the 
regularity (3.53). So we have given the existence of the strong solution.

Step 2. Uniqueness. Let (c1, ψ1, u1) and (c2, ψ2, u2) be two strong solutions to Cauchy prob-
lem (3.1)–(3.5) satisfying the uniform a priori estimate (3.49). We denote that

c = c1 − c2, ψ = ψ1 − ψ2, u = u1 − u2.

Then according to (1.9), (c,ψ,u) satisfies the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct + u1 · ∇c + u · ∇c2 + γ−1
2 (c divu2 + c1 divu) = 0,

ψt + ∑3
l=1 Al(u

1)∂lψ + B(u1)ψ + ∇ divuk = ϒ1 + ϒ2,

ut + u1 · ∇u + u · ∇u2 + θ∇((c1)
2 − (c2)

2)

= −L(c1)u + div((E(c1) − (E(c2))divu2I3)

(3.75)
+ ψ1 · Q(c1, u) + ψ · Q(c2, u2) + ψ1(E(c1) − E(c2))divu2,
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where ϒ1 and ϒ2 are defined via

ϒ1 = −
3∑

l=1

(Al(u
1)∂lψ

2 − Al(u
2)∂lψ

2), ϒ2 = −(B(u1)ψ2 − B(u2)ψ2).

Via the same method used in the derivation of (3.63)–(3.69), letting

�(t) = ‖c(t)‖2
1 + |ψ(t)|22 + ‖u(t)‖2

1,

we similarly have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
�(t) + C‖∇u(t)‖2

1 ≤ G(t)�(t),

t∫
0

G(s)ds ≤ Ĉ for 0 ≤ t ≤ Ṫ .

(3.76)

Then via Gronwall’s inequality, the uniqueness follows from c = ψ = u = 0.
Step 3. The time-continuity of the classical solution. It can be obtained via the standard method 

used in the proof of Lemma 3.1 (see [5]). �
3.5. Proof of Remark 1.2

In this subsection, we will make a brief discussion on the case λ(ρ) = ρb when b ∈ (1, 2) ∪
(2, 3). Here E(ρ) = ρb−1 does not belong to C2(R+).

Similarly to the case shown in Theorem 1.1, via introducing new variables c, ψ and E(ρ) =
ρb−1, we need to consider the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct + u · ∇c + γ − 1

2
c divu = 0,

Et + u · E + (b − 1)E divu = 0,

ut + u · ∇u + 2

γ − 1
c∇c + Lu = ψ · Q(c,u),

(c,E,u)|t=0 = (c0,E0, u0), x ∈ R
3,

(c,E,u) → (0,0,0) as |x| → ∞, t > 0.

(3.77)

The corresponding existence conclusion can be given as:

Theorem 3.1 (Existence of the unique local regular solution). Let 1 < γ ≤ 3. If the initial data 
(c0, E0, u0) satisfies the regularity conditions

c0 ≥ 0, (c0,E0, u0) ∈ H 2, ψ0 ∈ D1, (3.78)
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then there exists a time T∗ > 0 and a unique regular solution (c, E, u) to Cauchy problem 
(1.1)–(1.3) with additional regularities:

E ≥ 0, E ∈ C([0, T∗];H 2), Et ∈ C([0, T∗];H 1).

Moreover, we have ρ(t, x) ∈ C([0, T∗] ×R
3).

Proof. According to the proof of Theorem 1.1 in Subsections 3.1–3.4, the assumptions

E(ρ) ∈ C2(R+), and 1 < γ ≤ 2, or γ = 3

are only used to deduce the following estimates (see (3.49)):

|E(c)(t)|2∞ + ‖E(c)(t) − E(c∞)‖2
2 + ‖E(c)t (t)‖2

1 ≤ M(b0)b
4
3,

in Subsection 3.2, and

‖E(ck+1) − E(ck)‖1 ≤ C(b0, α, γ,A,T )

in Subsection 3.4, where

E(c) = E(ρ) = E
(
((Aγ )

−1
2 c)

2
γ−1

) ∈ C2(R+).

Thus the key point of our proof for this theorem is to make sure that the desired estimates as 
above for E = ρb−1 are still available based on the additional assumption E0 ∈ H 2.

However, because Eqs. (3.77)1 and (3.77)2 have totally the same mathematical structure 
(scalar transport equation), the desired estimates as above for E(ρ) can be obtained via the com-
pletely same arguments used for c as in Subsections 3.1–3.4.

Based on this observation, we can prove this theorem via the similar arguments used in the 
proof of Theorem 1.1. Here we omit it. �
4. Existence of the local strong solution

Based on the conclusions obtained on Theorem 1.1, we will give the proof for the local exis-
tence of strong solutions to the original Cauchy problem (1.1)–(1.3).

Proof. We first give the proof for the case 1 < γ ≤ 2. From Theorem 1.1, we know there exists 
a time T∗ > 0 such that the Cauchy problem has a unique regular solution (c, ψ, u) satisfying the 
regularity (1.12), which means that

(
√

Aγρ
γ−1

2 , u) = (c, u) ∈ C((0, T∗) ×R
3). (4.1)

According to transformation

ρ(t, x) =
( c√

)2θ

(t, x),

Aγ
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and 2θ ≥ 2 due to 1 < γ ≤ 2, it is easy to show that

ρ(t, x) ∈ C((0, T∗) ×R
3) ∩ C([0, T∗];H 2).

Multiplying (1.9)1 by ∂ρ
∂c

(t, x) = 2θ√
Aγ

(
c√
Aγ

)2θ−1
(t, x) ∈ C((0, T∗) ×R

3), we get the conti-

nuity equation (1.1)1:

ρt + u · ∇ρ + ρ divu = 0. (4.2)

Then combining (4.2) and u(t, x) ∈ C([0, T∗], H 2) 
⋂

C1([0, T∗], H 1), from the linear quasi-
linear hyperbolic equation theory, we immediately have

ρ ∈ C([0, T∗],H 2) ∩ C1([0, T∗],H 1).

Multiplying (1.9)2 by 
(

c√
Aγ

)2θ = ρ(t, x) ∈ C((0, T∗) ×R
3), we get the momentum equations 

(1.1)2:

ρut + ρu · ∇u + ∇P = div
(
αρ(∇u + (∇u)�) + ρE(ρ)divuI3

)
. (4.3)

That is to say, (ρ, u) satisfies the compressible isentropic Navier–Stokes equations (1.1) a.e. in 
(0, T∗] ×R

3 and has the regularity (1.12) with

ρ ∈ C([0, T∗],H 2) ∩ C1([0, T∗],H 1).

From the continuity equation and Lemma 6 in [5], it is easy to get that the solution ρ is 
represented by the formula

ρ(t, x) = ρ0(U(0; t, x)) exp
( t∫

0

divu(s,U(s; t, x))ds
)
,

which, together with ρ0 ≥ 0, immediately implies that

ρ(t, x) ≥ 0, ∀(t, x) ∈ [0, T∗] ×R
3.

In summary, the Cauchy problem (1.1)–(1.3) has a unique strong solution (ρ, u).
Finally, when γ = 3, we quickly have the relation ρ(t, x) = 1√

Aγ
c(t, x), via the same argu-

ment used in the case 1 < γ ≤ 2 as above, the same conclusions will be obtained. �
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5. No-existence of global solutions with L∞ decay on u

In order to prove the phenomenon shown in Theorem 1.2, firstly we need to introduce some 
physical notations:

m(t) =
∫
R3

ρ(t, x)dx (total mass),

Ek(t) = 1

2

∫
R3

ρ(t, x)|u(t, x)|2dx (total kinetic energy).

Based on the existence theory established in Theorem 1.1 and the additional initial conditions 
in Theorem 1.2, we can show that there exists a unique regular solution (ρ, u)(t, x) on [0, T ] ×R

3

which has finite mass m(t), finite momentum P(t), finite kinetic energy Ek(t). Actually, due to 
1 < γ ≤ 2, we have

m(t) =
∫
R3

ρdx ≤ C

∫
R3

c
2

γ−1 dx ≤ C|c|22 < +∞,

which, together with the regularity shown in Theorem 1.1, implies that

Ek(t) =
∫
R3

1

2
ρ|u|2dx ≤ C|ρ|∞|u|22 < +∞. (5.1)

Secondly, we give the following lemmas which are the revised versions for the constant vis-
cosity case [27].

Lemma 5.1. Let 1 < γ ≤ 2 and (ρ, u) be the regular solution obtained in Theorem 1.1 with the 
additional initial conditions shown in Theorem 1.2; then

P(t) = P(0), m(t) = m(0), for t ∈ [0, T ].

Proof. According to the momentum equations, we immediately deduce that

Pt = −
∫
R3

div(ρu ⊗ u)dx −
∫
R3

∇P dx +
∫
R3

divTdx. (5.2)

We first claim that ∫
3

divTdx = 0.
R



116 S. Zhu / J. Differential Equations 259 (2015) 84–119
Letting R > 0 be an arbitrarily large constant, from Green’s formula, we only need to prove

lim
R→+∞

∫
∂BR

T · ndS = lim
R→+∞

∫
∂BR

ρ(α(∇u + (∇u)�) + E(ρ)divuI3) · ndS = 0. (5.3)

We denote

GR =
∣∣∣ ∫
∂BR

ρ∇u · ndS
∣∣∣.

According to Definition 1.1, we have

ρ ∈ C([0, T ];H 2), ∇u ∈ C([0, T ];H 1),

from Hölder’s inequality, which implies that∫
R3

ρ|∇u|dx ≤ |ρ|2|∇u|2 < ∞, for t ∈ [0, T ]. (5.4)

Next let �1 = B1, �i = Bi/Bi−1 (i ≥ 2); from (5.4), we have

∫
R3

ρ|∇u|dx =
∞∑
i=1

∫
�i

ρ|∇u|dx < ∞, for t ∈ [0, T ]. (5.5)

Then we immediately obtain that

lim
i→∞

i∫
i−1

GRdR ≤ lim
i→∞

∫
�i

ρ|∇u|dx = 0. (5.6)

Next we prove that GR is a uniformly continuous function with respect to R. Let 0 < R1 <

R2 < ∞ be two constants; we have

|GR1 − GR2 | ≤
∣∣∣ ∫
∂(BR2/BR1 )

ρ∇u · ndS
∣∣∣

=
∣∣∣ ∫
BR2/BR1

div(ρ∇u)dx
∣∣∣ ≤ ‖ρ‖W 1,6‖∇u‖1|BR2/BR1 |

1
3 , (5.7)

where |BR2/BR1 | is the three-dimensional Lebesgue measure.
At last, if

lim GR �= 0,

R→+∞
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we know that there exists a constant ε0 > 0, for arbitrarily large R > 0, there exists a constant 
R0 > R such that GR0 ≥ ε0. Due to the uniform continuity, we know that there exists a small 
constant η > 0 such that

|GR0 − GR| ≤ ε0

2
for |R0 − R| ≤ η,

which means that

GR ≥ ε0

2
, for |R0 − R| ≤ η. (5.8)

It is obvious that, for sufficiently large i, there always exists some j ≥ i such that

j∫
j−1

GRdR ≥ ηε0

2
, (5.9)

which is impossible due to (5.6). So we immediately have that

lim
R→+∞GR = 0,

which makes sure that (5.3) holds. Then via the similar arguments used to prove (5.3), we also 
can deduce that

−
∫
R3

div(ρu ⊗ u)dx −
∫
R3

∇P dx = 0,

which, together with (5.2)–(5.3), immediately implies the conservation of the momentum.
Similarly, we also can get the conservation of mass, the proof is similar without essential 

modifications, here we omit it. �
Lemma 5.2. Let 1 < γ ≤ 2 and (ρ, u) be the regular solution obtained in Theorem 1.1 with the 
additional initial conditions shown in Theorem 1.2; there exists a unique lower bound C0 which 
has no dependence on t for Ek(t) such that

Ek(t) ≥ C0 > 0 for t ∈ [0, T ].

Proof. Due to Hölder’s inequality and momentum equations, we deduce that

|P(0)| = |P(t)| ≤
∫
R3

ρ(t, x)|u|(t, x)dx

≤ √
2m

1
2 (t)E

1
2 (t) = √

2m
1
2 (0)E

1
2 (t), (5.10)
k k
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which implies that there exists a unique positive lower bound for Ek(t) such that

Ek(t) ≥ |P(0)|2
2m(0)

> 0 for t ∈ [0, T ]. � (5.11)

Remark 5.1. The positive lower bound of the total kinetic energy Ek(t) will play a key role in 
the proof of the corresponding non-existence of global regular solutions with L∞ decay on u, 
which is essentially obtained via the conservation of the momentum based on the regularity of 
regular solutions. The same conclusions can’t be obtained for the strong solutions shown in [4] or 
[5] because of the different mathematical structure, even if the initial mass density and velocity 
are both compactly supported. In this sense, the definition of regular solutions with vacuum is 
consistent with the physical background of the compressible Navier–Stokes equations.

Next we give the proof for Theorem 1.2:

Proof. Combining the definition of Ek(t) and Lemmas 5.1–5.2, we easily have

C0 ≤ Ek(t) ≤ 1

2
m(0)|u(t)|2∞ for t ∈ [0, T ],

which means that there exists a positive constant Cu such that

|u(t)|∞ ≥ Cu for t ∈ [0, T ].

Then we quickly obtain the desired conclusion as shown in Theorem 1.2. �
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