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Abstract

In this paper, we considered the isentropic Navier—Stokes equations for compressible fluids with density-
dependent viscosities in R3. These systems come from the Boltzmann equations through the Chapman—
Enskog expansion to the second order, cf. [17], and are degenerate when vacuum appears. We firstly
establish the existence of the unique local regular solution (see Definition 1.1 or [11]) when the initial
data are arbitrarily large with vacuum at least appearing in the far field. Moreover it is interesting to show
that we couldn’t obtain any global regular solution satisfying that the L°° norm of u decays to zero as time ¢
goes to infinity.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Our model is motivated by the physical consideration that in the derivation of the Navier—
Stokes equations from the Boltzmann equations through the Chapman—Enskog expansion to the
second order, cf. [17], the viscosities are not constants but depend on temperature. In particular,
the viscosities of gas are proportional to the square root of the temperature for hard sphere col-
lision. For isentropic flow, this dependence is reduced to the dependence on density by the laws
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of Boyle and Gay-Lussac for ideal gas. So the compressible isentropic Navier—Stokes equations
(CINS) with degenerate viscosities in R3 can be written as

{pz + div(pu) =0, (L
(pu); +div(pu @ u) + VP =divT. '
We look for local strong solution with initial data

(0, )li=0 = (po(x), up(x)), x €R?, (12)
and far field behavior

(p,u)—> (0,0) as |x|]—> o0, t>0. (1.3)

In system (1.1), x € R3 is the spatial coordinate; ¢ > 0 is the time; p is the density; u =
@D, u®, u®)T e R3 is the velocity of fluids; we only study the polytropic fluid, so the pressure
P has the following form

where A is a positive constant, y is the adiabatic index. T is the stress tensor given by

T = p(p)(Vu + (Vi) ) 4+ A(p) divuls, (1.5)

where I3 is the 3 x 3 unit matrix, u(p) = ap is the shear viscosity, A(p) = pE(p) is the second
viscosity, where the constant o and function E(p) satisfy

>0, 20+3E(p)>0, and E(p)e C*R"). (1.6)

For example, we can choose u = p and A(p) = pl forb=1,2or any b > 3.

When the initial density has positive lower bound, the local existence of classical solutions for
(1.1)—(1.2) follows from a standard Banach fixed point argument due to the contraction property
of the solution operators of the linearized problem, cf. [26]. However, when the density function
connects to vacuum continuously, this approach is not applicable for our system (1.1) due to the
degeneracies caused by vacuum. Generally it cannot be avoided when some physical require-
ments are imposed, such as finite total mass and energy in the whole space R, because at least
we need that

o, x)—0, as |x|— +oo.

When (i, A) are both constants, for the existence of 3D solutions of the isentropic flow with
arbitrary data, the main breakthrough is due to Lions [18], where he established the global
existence of weak solutions in R3, periodic domains or bounded domains with homogeneous
Dirichlet boundary conditions provided y > 9/5. The restriction on y is improved to y > 3/2
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by Feireisl [6,7], and the corresponding result for the non-isentropic flow can be seen in [8].
Recently in [4,5], via introducing the following initial layer compatibility condition:

—divTo + VP(po) = \/pog

for some g € L2, a local theory for arbitrarily large strong solutions was established success-
fully; see also [21]. And Huang, Li and Xin [10] obtained the global well-posedness of classical
solutions with small energy and vacuum to Cauchy problem for isentropic flow.

When (i, A) are both dependent on p as shown in the following form:

w(p) =ap’, r(p)=pp>, (1.7)

where §; > 0, 62 > 0, « > 0 and B are all real constants, system (1.1) has received a lot of
attention recently, see [1-3,16,20,25,30,31]. However, except for the 1D problems, there are
still only few results on the strong solutions for the multi-dimensional problems because of the
possible degeneracy for the Lamé operator caused by the initial vacuum. This degeneracy gives
rise to some difficulties in the regularity estimate because of the less regularizing effect of the
viscosity on solutions. This is one of the major obstacles preventing us from utilizing a similar
remedy proposed by Cho et al. for the case of constant viscosity coefficients. However, recently
in 2D space, Li, Pan and Zhu [11] have obtained the existence of the unique local classical
solutions for system (1.1) under the assumptions

po—0, as |x|— o0
and
61=1, &% =0o0rl, a>0, a+p=>0, (1.8)

but the vacuum cannot appear in any local point. And in [12], they also proved the existence of
the unique local classical solutions for system (1.1) under the assumption

1
1<61=82<min<3,%>, >0, a+p=0

with initial vacuum appearing in some open set or the far field.

In this paper, we generalize the 2D existence result obtained in [11] to R3 in H2 space and
assume (1.6) instead of (1.7)—(1.8). Moreover, we will show a very interesting phenomenon that
it is impossible to obtain any global regular solution satisfying that the L° norm of u decays to
zero as time ¢ goes to infinity.

Throughout this paper, we adopt the following simplified notations for the standard homoge-
neous and inhomogeneous Sobolev space:

DR ={felL) (R :|flper = VX flor <400}, DF=DF? (k>2),
D'={feLS®:|flpr=IVfl<ool, I(flx=IFflx+lglx,
Iflls = ||f||H.v(R3)» |f|p = ||f||Lp(R3), |flpx = ||f||Dk(R3)-

A detailed study of homogeneous Sobolev space can be found in [9].
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First we introduce the definitions of regular solutions and strong solutions to Cauchy problem

(1.1)—(1.3). Via introducing the new variable c(t, x) = /Ay pyT_l (local sound speed) and ¢ =
%Vc/c =D, @ yO)T then (1.1)~(1.3) can be written as

c,—i—u'Vc—i—y

cdivu =0,

u;+u-Vu+ cVe+ Lu =1y - Q(c, u),

2
y—1 (1.9)

(C7u)|f=0= (609 uO), X GR?’v

(c,u) —> (0,0) as |x|]—>o00, >0,

where L is the so-called Lamé operator given by

Lu=—div(e(Vu + (Vu) ") + E(c) divuls),

and terms (Q(c, u), E(c)) are given by

— — — 2
O(c,u)y=a(Vu + (Vu)T) + E(c)divul;, E(c)= E(((A)/)Tl c) ﬁ)
Similar to [11], the regular solution is defined via:

Definition 1.1 (Regular solutions to Cauchy problem (1.1)—(1.3)). Let T > 0 be a finite constant.
(c, u) is called a regular solution to Cauchy problem (1.1)—(1.3) in [0, T] x R3 if (¢, u) satisfies
(A) (c,u) satisfies the Cauchy problem (1.9) a.e. in (¢, x) € (0, T] x R3;
(B) ¢>0, ceC(0,T]; H?, ¢, €C(0,T1; H");
(C) Y eC(0,T]; DY), ¥ €C(0,T]; L*);
(D) weC(0,T]; H) N L*([0,T]; D*), u; € C([0, T]; L*) N L*([0, T]; DY).
This definition for regular solutions is similar to that of Makino, Ukai and Kawashima [23],
which studied the local existence of classical solutions to non-isentropic Euler equations with

initial data arbitrarily large and inf pg = 0. Some similar definitions can also be seen in [11-14,
19,23,24,30]. And the strong solution can be given as

Definition 1.2 (Strong solutions to Cauchy problem (1.1)—(1.3)). Let T > 0 be a finite constant.
(p, u) is called a strong solution to Cauchy problem (1.1)—(1.3) in [0, T'] x R3 if (p, u) satisfies
(A1) (p,u) satisfies the Cauchy problem (1.1)—(1.3) a.e.in (¢,x) € (0, T] x R3:
(Bl) p=0, peC(0,T]; H?), pr € C(I0,TL: H");
(Cl) ueC(0,Tl; H*) N L*([0,T1; D), u, € C([0, T1; L*) N L*([0, T1; D');
(D) us+u-Vu+Lu=(Vp/p)- - Q(c,u) holds when p(t,x)=0.
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Remark 1.1. It is obvious that condition (B) or (B1) means that the vacuum must appear at least
in the far field.

Now we give the main existence results of this paper:

Theorem 1.1 (Existence of the unique local regular solution). Let 1 <y <2 or y = 3. If the
initial data (co, uo) satisfies the regularity condition

c0>0, (co,up) € H*, yoe D', (1.10)

then there exists a small time T, and a unique regular solution (c,u) to Cauchy problem
(1.1)—(1.3). Moreover, we also have p(t,x) € C([0, T,] x R3).

Remark 1.2. First we remark that (1.10) identifies a class of admissible initial data that provides
unique solvability to our problem (1.1)—(1.3). On the other hand, this set of initial data contains
a large class of functions, for example,

po(x) = up(x) =0, xeR3,

14 |x|20°
1
where o > max{1, ﬁ}‘
Second, we remark that under the initial assumption (1.10) and pg_l € H?, the conclusion
obtained in Theorem 1.1 still holds for the case that A(p) = ,ob (.e., E(p) = pb_l) when b €
(1,2) U (2,3) and 1 < y < 3. The details can be seen in Subsection 3.5.

According to the conclusions obtained in Theorem 1.1 and the standard quasi-linear hyper-
bolic equations theory, we quickly have the following result:

Corollary 1.1 (Existence of strong solutions). Let 1 <y <2 or y = 3. Then the regular solution
obtained in Theorem 1.1 is indeed the strong solution to Cauchy problem (1.1)—(1.3).

Next, we will show some interesting phenomenon which tells us that there does not exist any
global regular solution to Cauchy problem (1.1)—(1.3) with the L norm of velocity u decaying
to zero as time goes to infinity. Let

P@) = / p(t, x)u(t,x)dx (total momentum).
R3
Theorem 1.2 (Non-existence of global solutions with L* decay onu). Let 1 <y <2. Add 0 <

[IP(0)| to (1.10). Then there is no global regular solution (p, u) obtained in Theorem 1.1 satisfy-
ing the following decay

limsup |u(?, x)|co = 0. (1.11)

t——+00

However, via combining the arguments used in this paper and [11] in R?, we can also have
the similar conclusions obtained above in H? space:
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Theorem 1.3. Let 1 <y <2 ory = 3. If the initial data (po, uo) satisfy

y—1
0<p® €eH R, wupeH R, Vpo/poe LR N D' R,
then there exists a time T, > 0 and a unique regular solution (p,u) to the Cauchy problem
(1.1)—(1.3) satisfying

—1

p'T € C0, T.); HXRY), (p'7), € C(I0, T,J; H' (R?)),

Vp/p e C(0, Tul; L° N D' (R?),  (Vp/p): € C([0, T]; L*(R?)),

u € C([0, T]; H*(R) N LX([0, T.); D*(R?)),

u; € C([0, To]; L*(R%) N L*([0, T, ); D' (R?)). (1.12)

Moreover, we also have p(t, x) € C([0, Ty] x R3), and
p € C(I0, Tyl; H*(R?), p; € C(10, T): H' (R?)).

The rest of this paper is organized as follows. In Section 2, we give some important lemmas
that will be used frequently in our proof. In Section 3, we prove the existence of the unique
regular solution shown in Theorem 1.1 via establishing some a priori estimates which are in-
dependent of the lower bound of ¢, and these estimates can be obtained by the approximation
process from non-vacuum to vacuum. In Section 4, based on the conclusions obtained in Sec-
tion 3, we give the proof for our main result: the local existence of strong solutions to the original
problem (1.1)—(1.3) shown in Corollary 1.1. Finally, in Section 5, we will show the non-existence
of global solutions with L*° decay on u.

2. Preliminary

In this section, we show some important lemmas that will be frequently used in our proof.
The first one is the well-known Gagliardo—Nirenberg inequality.

Lemma 2.1. (See [15].) For p € [2,6], g € (1,00), and r € (3, 00), there exists some generic
constant C > 0 that may depend on q and r such that for

feH'®RY, and geL!R*)ND" (R,
we have

6—p)/2 3p—6)/2
11y <CIFly PRI I,

-3)/3 -3 3r/(3 -3
|g|oo < C|g|Z(r )/ Br+q(r ))|Vg|rr/( r+q(r )) (21)

Some common versions of this inequality can be written as

I
lule < Clulpi, luloo < Clulg|Vulg < Clulpr +lulp2), lulos < Cllullyrr. (2.2)

The second one can be seen in Majda [22], here we omit its proof.
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Lemma 2.2. (See [22].) Let constants r, a and b satisfy the relation

1 1 1
—=—+4+—-, and 1<a, b, r <oc.
r a b

Vs> 1,if f,ge W"4N W”’(R3), then we have
IV (f8) = fV°glr < Cs(IV£1al V' Lo + IV* Flolgla), (2.3)
IVS(f8) = FV8lr < Cs(IV £1al V™ glo + IV° flalgls). (2.4)
where Cs > 0 is a constant only depending on s.

Based on harmonic analysis, we introduce a regularity estimate result for the following elliptic
problem in the whole domain R3:

—Au=f, u—0 as|x|— oo. 2.5)

Lemma 2.3. (See [29].) If u € D'P with 1 < p < 00 is a weak solution to system (2.5), then

lull p2.r w3y < CILf L w3

with C depending only on p. Moreover, if f = div h, then we also have

lull prr@sy < CliAlLr @3-
Proof. The proof can be obtained via the classical harmonic analysis [29]. O
Finally, the last one is some result obtained via the Aubin—Lions Lemma.

Lemma 2.4. (See [28].) Let Xo, X and X be three Banach spaces with Xo C X C X1. Suppose
that Xo is compactly embedded in X and that X is continuously embedded in X;.

I) Let G be bounded in LP (0, T; Xo) where 1 < p < 00, and % be bounded in L' O, T; X).
Then G is relatively compact in LP(0, T; X).

1) Let F be bounded in L*°(0, T; Xo) and %—f be bounded in LP(0, T; X) with p > 1. Then
F is relatively compact in C(0, T; X).

3. Existence of the unique regular solutions

In this section, we will give the proof for the existence of the unique regular solutions shown
in Theorem 1.1 by Sections 3.1-3.4.
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3.1. Linearization

For simplicity, in the following sections, we denote y% = 0. Now we consider the following
linearized equations

c,+v-Vc+%40divv=O,

u;+v-Vo+20cVe+ Lu =y - Q(c, v), G
where ¢ =20Vc¢/c and
Q(c,v) =a (Vv + (Vv) 1) + E(c) div ;. 3.2)
The initial data is given by
(e, ¥ w)li=o = (co. Yo, u0), x €R’. (3.3)
We assume that
c0>0, (co—c™,up)e H>, o=20Vcy/coe D' (3.4)
where ¢* > 0 is a constant. And v = (v(l), v®, v<3))T € R3 is a known vector satisfying
ve C(0, Tl; HH N L* ([0, T1; D), v, € C([0, TT; L*) N L*([0, T1; DY). (3.5)

Moreover, we assume that ug = v(t =0, x). Then we have the following existence of a strong
solution (c, ¥, u) to (3.1)—(3.5) by the standard methods at least in the case that the initial data
is away from vacuum.

Lemma 3.1. Assume that the initial data (3.3) satisfy (3.4) and co > & for some positive constant.
Then there exists a unique strong solution (c, Y, u) to (3.1)—(3.5) such that

c>8, c—c®eC(0,T]; H*), ¢, €C(0,T]; HY,
¥ € C(0,T]; DY, ¥, € C([0, T]; L?),
ueC(0,T]; H)NL*(0,T]; D), u; € C([0, T1; L>) N L*([0, T]; DY), (3.6)

where § is a positive constant.

Proof. First, the existence of the solution c to (3.1); can be obtained essentially via Lemma 6 in
[5] via the standard hyperbolic theory. And ¢ can be written as

t
c(t,x):co(U(O;t,x))exp<— VT_lfdivv(s, U(s;t,x))ds), 3.7)
0
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where U € C([0, T] x [0, T] x R3) is the solution to the initial value problem

LU t;5,x)=v(t, U(t;s,x)), 0=<t<T, a8)
U(s;s,x)=x, 0<s<T, xeR3.

So we easily know that there exists a positive constant § such that ¢ > §.
Second, due to ¢ > §, we quickly obtain that

¥ € C([0, T1; DY, ¥, € C([0, T1; L?).

At last, based on the regularity of ¢ and v, the desired conclusions for # can be obtained from
the linear parabolic equations

us+v-Vo+20cvVe+ Lu =y - Q(c,v)
via the classical Galerkin methods which can be seen in [4,5], here we omitit. O
3.2. A priori estimate
In this section, we assume that (c, ¥, u) is the unique strong solution to (3.1)—(3.5), then we

will get some a priori estimates which are independent of the lower bound § of ¢y. Now we fix a
positive constant cp large enough such that

2+ ¢ +|eoloo + lco — ¢ ll2 + 1Yol p1 + lluoll2 < bo, 3.9
and
T*
sup |v(t)|§+/|w<t>|§drsb%,
0<t<T*
0
T*
sup [v(N)[3, +/(|v(r)|§)z +|v,(z)|§)drsb§,
0<t<T*
0
T*
Jsup (WOl + [ (0)) +/ (0B + w0 )r < 53 (3.10)
<t<T*
T 0

for some time T* € (0, T) and constants b; (i = 1,2,3) such that 1 < by < b; < by < b3. The
constants b; (i =1, 2,3) and time T* will be determined later and depend only on by, the fixed
constants o, A, y and T (see (3.48)). Throughout this and next two subsections, we denote by
C a generic positive constant depending only on fixed constants «, A, y and T. Moreover, let
1 < M(-) € C(R") be a nondecreasing and continuous function, which only depends on E(-)
and the constant C. To begin with, we give some estimates for c.
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Lemma 3.2 (Estimates for c).

le()12 + lle() — @15 < Cb3,  |ci(t)|a < Choba, |ei|p1 < Chobs,
IE()(0)1% + 1 E(e)(t) — E(c™)|3 < M(bo),
|E(©) ()2 < M(bo)boba, |E(c):(t)|p1 < M (bo)bobs

for0<t<T;=min(T*, (1+ b3)~?).

Proof. Step I. From stand energy estimate theories introduced in [5], we easily have

t t
et = ¥l = (leo = ¥+ [1906)lads ) exp (€ [ 19005) ).
0 0

Therefore, observing that

t t
1 2 2 1
1Vo@llads <2 ([ 1V0(s)13ds)” < Clbat +bar),
0 0

then the estimate for ||c — ¢®||, is available for 0 < ¢ < T} = min(T*, (1 + b3)~2).
The estimate for ¢; follows from the following relation

c,:—v~Vc—y_

cdivu,

we easily have, for 0 <r < T,

et ()2 < C(Iv®sIVe®)|3 + le®)|ool divv(r)|2) < Choba,

3.11)
le: (D) p1t < C>Iv®)lsole® p2 + e oo lv(®) p2 + [Ve(®)|6I V() |3) < Chobs.

Step 2. Dueto 1 <y <2ory =3, and E(p) € C2(R"), then we quickly know that

— — 2 —
E(c) = E((Ay) 7 )71) e C2(R™).
So the desired estimates for E(c) follow quickly from the estimates on c. O

Next, we give some very important estimates for {. Due to

V= LV(M(X’, and ¢ =34,
y—1

from (3.1); we deduce that i satisfies

2
Y +V(-¥) + Vdive =0, Wo=mv¢0/¢0€l)l~
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A direct calculation shows that
Jy D =8, fori,j=1,2,3
in distribution sense, then the above Cauchy problem can be written as

3

Vi+ Y Ay + By + Vdive=0, ype D', (3.12)
=1

where
Ar=(a)3x3, fori,j,1=1,2,3
are symmetric with

1 _ . . o
a4jj=v fori =j; otherwise a;; =0,

and B = (Vv) ", which means that (3.12) is a positive symmetric hyperbolic system; then we
have the following a priori estimate for ¢ via the stand energy estimate theory for positive sym-
metric hyperbolic system. This lemma will be used to deal with the degenerate Lamé operator
when vacuum appears for our reformulated system.

Lemma 3.3 (Estimates for ).
[ ()5, <Cbg,  |W(t)l3<Ch;, 0<t<T.
Proof. According to the proof of Lemma 3.1, we know that v has the following regularity
Y eC(0, T DY, ¥ €C(0,TL L.

So, let ¢ = (¢1,¢2,¢3) " (lc| =1and ¢; =0, 1), differentiating (3.12) ¢-times with respect to x,
we have

3
(DY) + Y _ A1 DSy + BDSY + DSV divy
=1

3
= (—=DS(BY) + BDY) + Y (=D (Aidiy) + A DSy) =©1 + O, (3.13)
=1

Multiplying (3.13) by 2DS v and integrating over R?, because A; (I = 1, 2, 3) are symmetric, we
easily deduce that

3

d

ZID5Y13 = C( Y 1014110 + 1Bl ) DSV
=1

+C(I®1]2 + O202 + V0] DS Yo (3.14)
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Then letting r =a =2, b = 0o when |¢| =1 1in (2.4), we easily have
©1]2 =D (BY) — BD Y|, < C|V*0[3|¥l6;
letting r =b =2, a = 0o when |¢| =1 in (2.4), we easily have
@202 = [D* (A131¥) — A1 DY l2 < C|Vv|oo| V2.
Combining (3.14)—(3.16) and Lemma 2.1, we have
d 2
Elklf(t)lpl = ClIVvll2l¥)[pr + ClIV-vl1.

According to Gronwall’s inequality, we have

t t
WOl = (ol + [ 19%0her)exp (€ [ 190laar)
0 0

for 0 <t < T. Therefore, observing that

1

t t
fnv(s)nsdssr%(f lo)I3ds ) < Clbar +bar?),
0 0

the desired estimate for |1 (¢)|p1 is available for 0 <t < 7.
Due to the following relation

Yy =—V(-y¢)—Vdivu,
combining with Lemma 2.1, we easily have, for 0 <t < T
Y1 (D)2 < C(1vlool¥ [ p1 + V0l l6 + [v] p2) () < CB2.
Now we give the estimates for the lower order terms of the velocity u.

Lemma 3.4 (Lower order estimates of the velocity u).
t
Ju(®)|3 + / |Vu(s)[3ds < Cb
0

for0<t < T, =min(T*, (1+ M(bo)b})™ ).

a

95

(3.15)

(3.16)

(3.17)
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Proof. Multiplying (3.1), by u and integrating over R3, we have

1 d 2 2 - . 2
§E|u|2+a|Vu|2+ (o + E(c))| divu|~dx
R3
3
=/<—U~Vvou—29ch-u+1poQ(c,v)'u)de:ZIi. (3.18)
R3 i=1

According to Holder’s inequality, Lemma 2.1 and Young’s inequality, we have
2 2, ¢ 2
I = —/v V- udx < Clols Vol luls < CloRIVo3 + 15 1Vul3.
R3

L= —/wcvc cudx < C|Velaleloolulz < Clul3 + C|Vel3lelZ.,

R3

13=/¢'Q(c,v)~udx
R3

< CU+[E©]eo)|¥ 6| Vulslul2 < Clul3 + M Bo) Y EIVVI. (3.19)

Then we have
ld 2 2 2 2 2102 2 2
galulfralwlzSC(|u|2+|v|3IVv|2+IVCIZICIOO)+M(bo)|1/f|6|Vv|3- (3.20)

Integrating (3.20) over (0, ¢), for 0 <¢ < T}, we have

t

t
|u(z)|§+/a|W(s)|§ds < c/ lu(s)|5ds + Clug|3 + M (bo)bit.
0 0

According to Gronwall’s inequality, we have

t
lu()]3 + / | Vu(s)3ds < C(luol3 + M(bo)bit) exp(Ct) < Cbj (3.21)
0

for0 <t < T, =min(T*, (1+ M(bp)b}~"). O
Next, in order to obtain the higher order regularity estimate for the velocity u, we need to

introduce the effective viscous flux F and vorticity w to deal with the c-dependent Lamé operator
(see (3.2)), which can be given as

F=Qa+E()divu — (6c®> —0(c®)?), w=V xu, (3.22)
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then in the sense of distribution, the momentum equations (3.1); can be written as

AF =div(u; +v- Vv —v - Q(c, v)),

(3.23)
Awo=V X (u;+v-Vv—1y-Q(c,v)).
So we immediately have
F+0c? —0(c™)?
—Au:wa—Vdivu=an)—V< +0c _(C )). (3.24)
2a + E(c)

Lemma 3.5 (Higher order estimates of the velocity u).

t

By + [ (B + o) s = €83,
0

t

()3 + lur (03 + / (|u<s>|§)3 + |u,<s)|§)1)ds < M(bo)b3bs,
0

for0 <t < T3 =min(T*, (1 + M(bo)b%)~ ).

Proof. Step 1. Via the standard elliptic estimate shown in Lemma 2.3 and (3.24), we immediately
obtain

lulp2 < C(IV x wla + |[VF2 + V22 + [VE(c) 6] divul3)

— 1
< C(V x wlp +|VF + |Ve? s + |Vul[VE() 1) + Sz,

where we have used the fact that

F +60c% —0(c™)?

1 1
divu = — , and |divulz < C|Vu|?|Vu|?. 3.25
1B I I3 < ClVuly[Vulg (3.25)
Then via Young’s inequality, we have
lu| p2 5C(M(bo)|Vu|2—|—IVa)|2+|VF|2+b(2)). (3.26)

Again from Lemma 2.3, we also have

IVoly + [VF2 < C(lurl2 + vl Vuls + [¥]6] Q(c, v)[3)

31
< C(M(bo)by by + |us]2). (3.27)
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Then combining (3.26)—(3.27), we deduce that

31
lulp2 < C(M(bo)|Vulz + usl2 + M (bo)by b3).
Step 2 (Estimate for |Vu|»). Multiplying (3.1); by u, and integrating over R, we have

1d _
T (IVul® + (@ + E(c))| divul?)dx + |uc|3
R3

7
=/(%E(c),(divu)2—((v-Vv)~|—9(Vc2)—(1/f~Q(c, v)) -u,)dx E:ZI,'

B i=4

According to Holder’s inequality, Lemma 2.1, Young’s inequality and (3.28),

1— . _
I = f SE(@)(divaydx < CIE (o) 5 Vol Vul
R3

<elul3, + C@OIE@);3ul3,,
Is = —/(v V) - ydx < Clvlool Volalus 2
]R3
2 2 1 2
< CIVVIAIVV + —[u, 3,
10
Io = —fze(ch) updx < C|Velalcloo s 2
]R3

1
< E|ut|%+C|Vc|§|c|§o,

17=/w-Q<c, v) -y dx < Cluy 21¥16| O (. )13
R3

1
< Ew% + ClY 131 0(c, v) I3,

where € > 0 is a sufficiently small constant.

Combining (3.28) and (3.29)—(3.30), via letting € be sufficiently small, we have

d
EIWI% + lurl3 < M(bo)b3|Vul3 + M (bo)b3.

From Gronwall’s inequality, we have

t
|Vu(0)|3 + / lus13ds < C(|Vuol3 + M (bo)bir) exp(M (bo)b3r) < Cb,
0

(3.28)

. (3.29)

(3.30)

(3.31)

(3.32)
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for0<t<T'=min(T*, (1 + M(bo)bg)_l), which, along with (3.28), implies that

1 1
3 1N2
/|u|§)2 §C/(M(b0)|Vu|2+qu|2+M(bo)b22b32) ds <Cbj, for 0<t<T
0 0

Step 3 (Estimate for |V2u|2). We consider the estimate for |u,|,. First we differentiate (3.1),
with respect to ¢:

up + (Lu)y = —(v - Vo), —20(cVe) + (f - Q(c, v))r. (3.33)

Then multiplying (3.33) by u; and integrating over R3, we have

1d — .
EE'””% + a|Vu, |5 + /(a + E(c))|divu,|*dx

R3
= f(— E(o)r divudivu, — ((v- Vo), +0(Ve), — (¥ - Q(c, v);) - uy)dx
R3
11
=Y I. (3.34)

According to Holder’s inequality, Lemma 2.1 and Young’s inequality,

Iy = — / E(c); divudivu,dx < C|E(c):|3|Vus|2|Vuls

R3
<ﬁ|v 2. CIE 2012
=70 urly + ClE(c)|5lulpy,
Io= —/(vth uedx < C(1vlool Vorlaluts |2 + [vrl6| Vol3itel2)
R3

1
< ?Wv,@ + CH3IIVvllFluyl3,
3

Lo = —/G(ch),-utdx =0/(cz),divu,dx
R3 R3

o
< Clerlalelool Viugln < 1—O|Vu,|% + Cletl3lel’. (3.35)

For the last term on the right side of (3.34), we have

111=/¢'Q(07 v); -u,dx+/wl-Q(c, v) - urdx =I11a + Iiip. (3.36)
R3 R3
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We firstly consider the term:

Iia < CA+E©)oo) ¥ l6I Vv l2lus |3 + CILE ©)s 1219 16| VVloo s |3

1 o
< ﬁwm% + 1—0|wz|% + M (bo)bS|us |3 + M (bo)b3, (3.37)
3

where we have used the fact that
1 1 _ _
lusl3 < Cuygly [Vugly, 1Q(c, v)il2 < C(A+ |E(€)|oo) VU2 + CIE(c)1[2|VV]0o.  (3.38)
And for the second term:

Iis :—/ (V(v~1//) -Q(c,v)-u; +Vdive - Q(c, v)ou,)dx

R3

. C/ (I IIV (e, )llue] + [I[Y 11 Q(c, v)IIVug| + 1V divo]|Q(c, v)|lu, | )dx
R3
< Clulool¥l6(1V Q(c, v) a3 + 1Q(c, v) |31 Vis |2) + CIV0l6] Q(c, v) |2 lus |3

1 o
< b—2|v|332,6 + EWM% + M (bo)b3|us 3 + M (bo)b5, (3.39)
3

where we have used the fact that

IVQ(e, v)|2 < C(1+ |E(e)|oo) vl p2 + CIVE(c) 3| Vols,

(3.40)
1 1 _
1Q(c,v)[3 = ClQ(c, v)|5 IVO(c,v)l5, 1Q(c,v)l2 < C(L+|E(C)]oo) V] p1-
Combining (3.28), (3.32) and (3.34)—(3.39), we have
1d _
5%'“"3 +a|Vu, |3+ f(a + E(¢)|divu, [*dx
IR3
c

< M (bo)b5|us|3 + M (bo)b§ + b—2(|w|% + [vl306)- (3.41)

3
Integrating (3.41) over (z,t) (tr € (0,¢)) for 0 <t < T3, we have

t

|ut<r)|%+fa|wt<s)|%ds

T

t
< |us ()13 + M (bo)bSt +/M(b0)b§|u,|§ds +C. (3.42)
T
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According to the momentum equations (3.1),, we have

lur ()12 < C(1vloo] VI2 + Iclos| Velo + | Lulz + ¥ 6] O (e, v)|2) (7). (3.43)

Then via the assumptions (3.5)—(3.6), we easily have

lim sup |u;(7)|2 < C(|voloo|Vvol2 + [coloo| Veol2 + | Luol2 + [Wols| Q(co, vo)|2)

t—0
< M(bo)b}. (3.44)
So letting T — 0 in (3.42), via Gronwall’s inequality, we have

t
lu, ()13 + f | Vi (s)[3ds < (M (bo)bSt + M (bo)bg) exp(M (bo)b3t) < M(bo)bj, (3.45)
0
for0 <t < T3 =min(T*, (1 + M(bp)b3) ™).

Step 4. Finally, we consider the estimates of the higher order terms. From estimate (3.28),
Lemmas 2.1 and 2.3, relation (3.25) and inequality (2.2), we easily have, for 0 <t < T3,

()] 2 < COM () Vula + sy + M(bo)b2 b2) < M(bo)b3 b3
and
lulps < C(IVolpt + [VFIp1 + VP p1 + [VE(C) |3V Fle)
+ C(IVE©)I3(IVe?|s + [Vuls VE(©)]2) + | Vitloo | E(€) | p2)
< M(bo)(IVlp1 + |VF|p +b§b§) + %|u|D3. (3.46)
Again from Lemma 2.3 and (3.23), we also have

IVolp1 +|VF|pt <C(utlpt +|v-Vu|pt + ¢ - O(c,v)|p1)
< Clurlpr + M(bo)b3),

which, together with (3.45)—(3.46), immediately implies the desired estimate for |u|ps. O

Then combining the estimates obtained in Lemmas 3.2-3.5, we have

le() 2 + lle(t) — ¢ 113 + lle (1) 17 < M (bo)b3,
|E(©) ()% + IE(e)(t) — E(c™)|I3 + | E ) (1) I} < M(bo)b3,
1Y ()5, + W ()13 < M(bo)b3,

t

lu()I + / (1B + 1Vu() 11 )ds < M G0,

0
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t

()2 + e (O3 + / (1) By + 1, (5)12, ) ds < M(bo)b3bs (3.47)
0

for 0 <t < Tz. Therefore, if we define the constants b; (i = 1,2, 3) and T* by

by = by = M(bo)bo, by = M(bo)b3 = M*(bo)b3,

and T* = min(T, (1 + M (bo)b3) %), (3.48)
then we deduce that
T*
sup |u(t)|3 + / |Vu(t)|3dr < b,
0<t<T*
0
T*
sup [u(t)]3, +/ (|u<r)|§)2 - |u,<t)|%)dt < b3,
0<r<T*
0
T*
sup (0, + OB+ [ (o) + a0, ) < 03
0<t<T*
0
2 oo 2 2 4
sup  (lc(®)5 + lle@) — I3 + lle (D) 17) < M (bo)bs,
0<t<T*
sup (IE@) 02 + IE@)(®) — E€)I3 + IE@): ()II}) < M(bo)b3,
0<t<T*
sup (I ()15, + [¥(0)l3) < MBo)b3.  (3.49)
0<t<T*

3.3. Unique solvability of the linearization with vacuum

Based on the a priori estimate (3.49), we have the following existence result under the as-
sumption that cg > 0.

Lemma 3.6. Assume that the initial data (3.3) satisfy (3.4) and co > 0. Then there exists a unique
strong solution (c, ¥, u) to (3.1)—(3.5) such that

c>0, ceC(0,T*]; H?), ¢; € C([0, T*]; HY, v € C([0, T*]; DY),
Y, € C([0, T*]; L?), u € C([0, T*]; H*) N L*([0, T*]; HY),
u; € C([0, T*1; L>) N L*([0, T*]; D). (3.50)

And we also have a,w/f(f) = 8]-1#(") in the distribution sense for i, j = 1,2, 3. Moreover, (c, ¥, u)
also satisfies the local a priori estimates (3.49).
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Proof. Step 1. Existence. We firstly define

cso=co+38, and 50 =20Vco/(co+6)

for each 6 € (0, 1). Then according to the assumption (3.9), for all sufficiently small 6 > 0,

1+ Ics0loo + lleso — 8ll2 + [¥s0l pt + lluollz < CbG = bo.

Therefore, corresponding to (pso, g, ¥so) with small 6 > 0, there exists a unique strong solution
(?, ul, w‘s) to the linearized problem (3.1)—(3.5) satisfying the local estimate (3.49) obtained in
the above section.

By virtue of these uniform estimates (3.49), we know that there exists a subsequence of solu-
tions

(c‘g,u‘s, 1//5) converges to a limit (c,u,¥) in weak or weak™ sense. (3.51)

And for any R > 0, due to the compact property in Lemma 2.4 (see [28]), there exists a subse-
quence of solutions (c?, u®, ¥?) satisfying:

(,u’) = (c,u)in C([0,T*; H'(Br)), ¥°— v in C(0,T*]; L*(Br)), (3.52)
where Bpg is a ball centered at origin with radius R. Combining the lower semi-continuity of
norms, the weak or weak* convergence of (c‘s, ud, 1/f5) and (3.52), we know that (c, u, 1) also
satisfies the local estimates (3.49).

Then via the local estimates (3.49), the weak or weak™ convergence in (3.51) and strong

convergence in (3.52), in order to make sure that (c, u, ) is a weak solution in the sense of
distribution to the linearized problem (3.1)—(3.5) satisfying the regularity

>0, ce L®([0, T*]; H?), ¢, € L®([0, T*]; HY,
¥ € L2([0, T*]; DY, ¥, € L([0, T*]; L), u € L=([0, T*]; H) N L2 ([0, T*]; H?),
u, € L([0, T*]; L?) N L*([0, T*]; DY, (3.53)

we only need to make sure that
: §_ 0 _
lim /(c0 — )¢ (0, x)dx =0,
§—0
R3
tim [0~ y0)¢0. 05 =0 (3.54)
R3

for any ¢ (¢, x) € C2°([0, T*) x R?) and £(t, x) € C2°([0, T*) x R3)3. The proof for (3.54); is
easy, so we only need to consider (3.54);. When

supp,£(0, x) N {x € R?|co(x) = 0} =¥,
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then due to co € H2(R?) ¢ C(R?), there must exist a positive constant §y such that
co(x) > 8y for x esupp,£(0,x),

which immediately implies that

lim / W — ¥E(0, x)dx
— R3

§—0
supp,§(0,x)

8
<lim ——
§—0680+ 8

1 __8 o0
= lim / % +81ﬁ £(0, x)dx

I£(0, x) |2 |¥olslsupp, £(0, x)|5 — 0,

where [supp, £ (0, x)| means the 3D Lebesgue measure of supp,£(0, x).
And when

supp,£(0, x) N {x € R?|co(x) = 0} # 0,

due to Yo = Vco/co € D! (]R3), we must have
l{x € R3|eo(x) =0} = 0.
Then for every n > 1, we have

)
1= / W — ¥E0, x)dx = / —mwoé(o,x)dx
]R3

supp,§(0,x)

_ __ 8 0
= / CO+5¢ £(0, x)dx

supp,£(0,x)N{xeR?|co(x)> 1}

8 0
Sl 0,x)dx=11 + b».
+ / C0+81ﬁ$( x) 1+15

supp, & (0,x)N{xeR3|co(x) <1}

So it is easy to see that

Iim/= lim lim/= lim lim/,
§—0 n——+008§—0 n—+400§—0

. 1
< CI50.)2lYols lim_[supp,£(0.x) N (x € Rleo(x) < 1/n)|3 =0,

which, together with (3.56), implies that (3.54) holds.

(3.55)

(3.56)

(3.57)

(3.58)
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Moreover, from the conclusions obtained in this step, we also know that even vacuum appears,
¥ satisfies 9; ) =9 jw(’) (i, j =1,2,3) and the following positive and symmetric hyperbolic
system in the distribution sense:

3
Y+ Y Ady + By +Vdive=0, yoeD". (3.59)
=1

Step 2. The uniqueness and time continuity for (c, ¥, ) can be obtained via the same argu-
ments used in Lemma 3.1. O

3.4. Proof of Theorem 1.1

Our proof is based on the classical iteration scheme and the existence results obtained in
Section 3.3. Let us denote as in Section 3.2 that

2+ |coloo + ll(co, uo)ll2 + [¥ol p1 < bo.
Next, let u® € c ([0, T*]; HZ) N LZ([O, T*]; H3) be the solution to the linear parabolic problem
hy —Ah=0 1in (0, 400) x R and h(0)=uy in R3.

Then taking a small time 7€ € (0, T*], we have

TE
sup  [u0(0) 2 + / V() Bdr < 17,
0<t<T¢
0
TE
sup [0, + / (1@ B + 013 )dr < 13,
0<t<T¢€
0
TG
sup (10013, + ) ()13) + f (|u°(r>|i,3 + |u?<t)|§)1)dz < b3. (3.60)
0<t<T¢€
- 0

Proof. Step 1. Existence. Let v = u%; we can get (cl, wl, ul) as a strong solution to problem

(3.1)—(3.5). Then we construct approximate solutions (ck‘H, 1//k+l , uk“) inductively, as follows:
assuming that (c¥, ¥*, u¥) was defined for k > 1, let (c**!, ¥/*+1 u¥*1) be the unique solution
to problem (3.1)—(3.5) with v replaced by u¥ as follows:

Cf_H + uk . v ektl + )/T—lck+1 divuk = 0,
KLY Ak okt + Bkyyk! + Vdivuk =0, o0

I/lf-H + Mk i Vuk ~|—29€k+1VCk+l — —L(Ck+l)uk+l + wk+l i Q(Ck+1, Ltk),

(cKH1 gkl k) o = (co, Y0, u0), x € R3,
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where the operator L(f)g is defined as L(f)g = div(e(Vg + (Vg)T) + I_E(f) divglz). Via
the estimates shown in Subsection 3.3, we quickly deduce that the sequences of solutions
(ck, ¥, uk) satisfy the uniform a priori estimate (3.49).

The next task is to prove the strong convergence of the full sequence (c¥, ¥*, u*) of approxi-
mate solutions to a limit (c, ¥, u) satisfying (1.12) in the sense of H I Let

Gl — kel kel g kel kel kel k

s

then from (3.61), we have

Sk vEkH gk vk 4 L@ divak + cFdivid) =0,
PSS ARt + B gt vdivak = vk 4k,
ﬁf“ + b Vb + @k - Vb £ ov (T2 = (¢K)2) + Lk (3.62)
= div((E(Fth) — E(c*) divutTs) + A+t oK ah)
+ 1Zk-H . Q(Ck, uk—l) + Iﬂk'H(E(Ck'H) _ E(Ck)) divuk_l,

where T{‘ and Té‘ are defined via

3
Ti=—> (AHay* — A hHayh), 15 =—-BuHy* - B Hyh.

=1

Firstly multiplying (3.62); by 2851 and integrating over R>, we have

d —1
T |ck+1| = —2/ (uk cvektl gk vk + 5 @ divuk + cF divﬁk))ék‘de
R3

k) (ak+1p2 k1 ok k S R
< C|Vu*|oole" ™13 + C1E T a1a 6| VEF |5 + C1E 2| Vit 2] oo,

which means that (0 < n < min (%, %) is a constant)

d _ _ _
ST OB = A, 01 O + 0l vEt o),

' (3.63)

Ak =c (||w o+ = ||c ||2) ande’,;(s)dsgéJr@t
0

for ¢t € [0, T€], where 6,7 is a positive constant depending on 1 and constant C.
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Next, differentiating (3.62); ¢-times (|¢| = 1) with respect to x, multiplying the resulting

~k+1

equation by 2D¢&*! and integrating over R3, we have

-1
|D< 13 fo VEH pgk vk Y T > T — @ divuk + K divi*)) D dx

< CIVih || VET 3 4 C|VEH oo | Vit || VEFTT
+ CIVE T 5| Vik |6 V2K + C|V2uk 5 Va1 3
+ C| Vit 6| VET 1| Ve |5 4 ClcK oo |V div itk [ VEFT |,

which means that

|Vck+1(r>|2<B"<r>|Vck+1<r>|2+n|de )13+ 0|Vt 013,

t
1 ~ o~
Bf;(t) = C(||Vuk||2 + —||ck||%), and /B,];(s)ds <CHCyt
n
0

for t € [0, T€]. Then combining (3.63)—(3.64), we easily have

|"‘+1 O} = @5 OIS OIF + nlI Vi )17
/@k(s)ds <C+Cyt for 1e[0,T€).

Secondly, multiplying (3.62), by 2¢/**! and integrating over R>, we have
3

d — —
B = (X 1004100 e + B oo )74

=1
+ CUTF + 1052 + Vb 1) 195 .

From Holder’s inequality, it is easy to deduce that
ITFl2 < CIVY it |oo, 11512 < Cly Kl Vid .
From (3.66)—(3.67), for t € [0, T€], we have

d — _
SO = v O OB +nIvE o1,

t

vEn=c (IIVu ||2+ WA+ ) and /\p,’;(s)ds§6+a,t.

0

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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Thirdly, multiplying (3.62)3 by 2i**! and integrating over R3, we have

d —
E|ﬁk+1|%+2alvb—tk+l|%+/(a+E(ck+1))|diVﬁk+1|2dx

R3

= —2[ (= div () = B divatl) +ut - vk +a¢ - vk =1) -7 de

R3

— 2/ <0V((ck+1)2 _ (ck)Z) _ wk-‘rl X Q(Ck+1, ﬁk)) . L—tk-i-ldx

R3

—|—2/ <$k+1 O kY 4R B — E(ck))divuk*‘) kg,
]R3
< C1F ol divat [3| Vo + Clut oo |V )i |2
+ Cla*|6) a1 2 Vik 3+ C (1K oo + [cFoo) IV 215
+ CUA+ [E@Io) W 6| Vi |75 + CIY T 21 0 u* D ool o

+ ClYFT Gl E (Y — E(c®) ol diva ! gla T s,

which implies that

d _ _
ST o vt
< Ex0@ 1T+ ES@o1 1T + ES@ 1S + 0l Vit 3, (3.69)

where

1 1, 1
e =c(1+ ;|u’<|§o+ ;IVuk 24 wa"“%),

2
E5 0 = C (16 oo + 16 oo + I dival |3 + 195 ol divart " )

EX(n) = Vi1,

and we also have
t
/ (EX(s) + E5(s) + EX(5))ds < C + Cpt
0

for t € [0, T€].
Next, differentiating (3.62)3 ¢-times (|¢| = 1) with respect to x, multiplying the resulting
equation by D?#**! and integrating over R3, we have
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1 d - -
5 1D AR el VDA + /(a + E() DY divatt! Pdx
R3
— / (le(D;-E(Ck-Fl)leﬁk-i—lIb) + Df dlv((E(Ck-l—l) _ E(Ck)) leuk]I3)) . D{'ﬁk-l-ldx
R3
R3
[ D=0V P4y 0 ) Df
R3
+ / DC (,(Zk%-l . Q(Ck, uk—l) + .(pk-l—l(E(Ck-Fl) _ E(Ck)) diVMk_l) . D{ﬁk—FIdX

R3
7
=y
i=1
Then from integration by parts, Lemma 2.1 and Holder’s inequality,

J = f div(DS E (" Y diva* 1) - Dkt ldx

R3
— 1 3
< C|Vﬁk+] |3|V2L_lk+1 |2|D§E(Ck+l)|6 < C|Vﬁk+] |22 |V2b—tk+1 |22 |D{Ck+] |6,
Jr= f DS div((E(*Y) — E(%)) divuFTs) - DS % ldx
R3
< CIVEH ol divuk | oo V2 | + C1e*H 6]V div uX (3| V2 H |,
J3 = / —Dg(uk . Vﬁk) . D{b—tk+ldx
R3
< C|Vuk|6| Vit || Va5 + Club oo |i¥ | p2 | VI T,
Jus :/_Df(,;k . Vuk_l) . DS iRl dx
R3
< C|Va o Vit 3| Vg + Clatle| Vi 3| V2" o,
Js = / —ODE(V((*TH? = (8?)) - Dfa*H dx
R3

k+1 k. o2 ak+1 k41 k+1 .k 2 k1) |kt
< CIV T+ Ve 3 VEa e s + CIE T 4 ool VEI T 2| VE T,
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R3
= CU+ B0 (IV9H IVt 6 Vi s + [y gl o Vit 413 )
+ Cly* 6| Vg Vit |6 | Vit T,

J7 — / D{ (Jk-ﬁ-l . Q(Ck, Mk_l)) . D{ﬁk-i-ldx
R3
< C(1+ E( ) o) P o) VU oo [V DS a1, (3.70)

and
18:/1)4(1//"“(5((:”1)—E(ck))divuk—l)-Déuk“dx

R3

< ClY* 6V ] 3] divut oo (3.71)
According to Young’s inequality and (3.70)—(3.71), we have

d

—k+1,2 —k+1,2
dt'vu+ |2+a|’4+ |D2

< Fy IV 3+ FY & 1T + Ff O 5+l vk, (3.72)
where

FE@) = C(1+ IV 4 (14 kI + b+ [y G, 4+ [y Ve D)),
2
Fi@ = C (I o+ ekl + ks + 9+ sl divak o), FE @) = CIVak=113,

and we have [j (FX(s) + F¥(s) + Fi(s))ds < C + Cyt for t € (0, T].
Then combining (3.69) and (3.72), we easily have

d _ _
NE T + e vt
< OF Ol T+ O5O1EHIT + 51 5 + nl Vit |I7. (3.73)

and we also have [ (©%(s) + ©%(s) + ©%(s))ds < C + Cyt, for t € (0, Tc].
Finally, let

k+1 —k+12 | |Tk+12 — 412,
I =@t 4+ 1 s
then we have

d _ _
SO vat i < mrttt oo vats,
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for some H’,‘] such that fé Hﬁ (s)ds < C+C, yt. According to Gronwall’s inequality, we have

t t
rk+t 4 / V! ids < (cn / IVa* 3ds) exp (€ + Cy).
0 0

We can choose 1 > 0 and T e (0, T¢) small enough such that

CnexpC = %, and exp(aﬂ") =2.
Then we easily have
00 T
> sup TF 4 / M||Vﬁ’<+1||%ds) <C < +00,
k=1 O0<t<T 0

which means that the full sequence (c*, ¥*, u¥) converges to a limit (c, ¥, u) in the following
strong sense:

&= cin L®([0, T1; H' (RY)),

¥ = v in L=([0, 71; L*(Br)),

uk = uin L0, T1; H' (R*) N L%([0, T1; D*(R?)), (3.74)
where Bp is a ball centered at origin with radius R, and R > 0 can be arbitrarily large.

Due to the local estimate (3.49) and the lower-continuity of norm for weak or weak™ conver-
gence, we also have (c, ¥, u) satisfies the estimate (3.49). According to the strong convergence
in (3.74), it is easy to see that (c, v, u) is a weak solution in the distribution sense with the
regularity (3.53). So we have given the existence of the strong solution.

Step 2. Uniqueness. Let (c1, ¥, u1) and (c2, Y2, us) be two strong solutions to Cauchy prob-
lem (3.1)—(3.5) satisfying the uniform a priori estimate (3.49). We denote that

t=ci—c, Y=y1—v2, d=u—u.
Then according to (1.9), (c, E , u) satisfies the following system
& +uy-Ve+ii-Vey + YN Edivuy +cr divin) =0,
Ui+ Y5 AwhHdy + By + Vdivik =1 + T,

i +up-Vi+it-Vus +0V((c1)? = (c2)?) (3.75)
= —L(c1)i + div((E(c1) — (E(c2)) divuzl)

+ 1 - Q(er, it) + ¥ - Q(ca, u2) + Y1 (E(c1) — E(c2)) divug,
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where Y and Y are defined via

3
==Y (AhHay® — AwHoy?), Tr=—Bw" )y - Bw’)y?).
=1

Via the same method used in the derivation of (3.63)—(3.69), letting

(1) =13 + 1% O3 + a3,

we similarly have

d
PO+ CIVa®|; <GP @),

, (3.76)
fG(s)dsgé for 0<t<T.
0

Then via Gronwall’s inequality, the uniqueness follows from ¢ = ¢ = i1 = 0.
Step 3. The time-continuity of the classical solution. It can be obtained via the standard method
used in the proof of Lemma 3.1 (see [5]). O

3.5. Proof of Remark 1.2

In this subsection, we will make a brief discussion on the case A(p) = p? when b € (1,2) U
(2,3). Here E(p) = p?~! does not belong to CX([RH).
Similarly to the case shown in Theorem 1.1, via introducing new variables c, ¥ and E(p) =

o=, we need to consider the following Cauchy problem:

c,—l—u-Vc—i—y

cdivu =0,

E,+u-E+ (b—-1)Edivu =0,

us+u-Vu+

(¢, E,u)l=0 = (co, Eo, up), xe€R3,

(¢, E,u)— (0,0,0) as |x|]—> o0, t>0.

The corresponding existence conclusion can be given as:

Theorem 3.1 (Existence of the unique local regular solution). Let 1 <y < 3. If the initial data
(co, Eo, uo) satisfies the regularity conditions

c0=0, (co, Eo,u0) € H>, o€ D', (3.78)
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then there exists a time T, > 0 and a unique regular solution (c, E,u) to Cauchy problem
(1.1)—(1.3) with additional regularities:

E>0, EeC(0,T.]; H>, E, €C(0,T.];H".
Moreover, we have p(t, x) € C([0, T,] x R3).
Proof. According to the proof of Theorem 1.1 in Subsections 3.1-3.4, the assumptions
E(p) eC*(RY), and 1<y<2, or y=3
are only used to deduce the following estimates (see (3.49)):
IE@)0)% + IE@ @) — E®)]5 + IE@© ()] < M(bo)b3,
in Subsection 3.2, and
I = E(c)lli = Clbo, v, A, T)

in Subsection 3.4, where

2

E(©)=E(p)=E((Ay) 2 0)77) e CHR™).

Thus the key point of our proof for this theorem is to make sure that the desired estimates as
above for E = p”~! are still available based on the additional assumption Eg € H?.

However, because Eqs. (3.77); and (3.77), have totally the same mathematical structure
(scalar transport equation), the desired estimates as above for E(p) can be obtained via the com-
pletely same arguments used for ¢ as in Subsections 3.1-3.4.

Based on this observation, we can prove this theorem via the similar arguments used in the
proof of Theorem 1.1. Here we omitit. O

4. Existence of the local strong solution

Based on the conclusions obtained on Theorem 1.1, we will give the proof for the local exis-
tence of strong solutions to the original Cauchy problem (1.1)—(1.3).

Proof. We first give the proof for the case 1 < y < 2. From Theorem 1.1, we know there exists

atime T, > O such that the Cauchy problem has a unique regular solution (c, ¥, u) satisfying the
regularity (1.12), which means that

(VA7 p T 1) = (c, u) € C((0, Ty) x R3). A.1)

According to transformation

Pt x) = (ﬁ)w(r,x),
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and 20 > 2 dueto 1 <y <2, itis easy to show that

p(t,x) € C((0, Ty) x R N C([0, T]; H?).

20—1
Multiplying (1.9)1 by 2(z, x) = %( W) (t,x) € C((0, Ty) x R3), we get the conti-

nuity equation (1.1);:

or+u-Vp+pdivu =0. 4.2)

Then combining (4.2) and u(t, x) € C([0, Tx], H2)ﬂC1([0, Tk, Hl), from the linear quasi-
linear hyperbolic equation theory, we immediately have

p€C(0, T, HHNC'([0, T,.], H").

260
Multiplying (1.9); by (\/Z_V) =p(t,x) e C(0, Ty x R3), we get the momentum equations
(1.1)p:

pu; + pu - Vu + VP =div (oz,o(Vu + (Vu)T) + pE(p) divu13). “4.3)

That is to say, (p, u) satisfies the compressible isentropic Navier—Stokes equations (1.1) a.e. in
(0, Ty ] x R3 and has the regularity (1.12) with

p€C(0, T, HHNC'([0, T.], H").

From the continuity equation and Lemma 6 in [5], it is easy to get that the solution p is
represented by the formula

t

o(t, x) =,00(U(O;t,x))exp(/divu(s, U(s;t,x))ds),
0

which, together with pp > 0, immediately implies that

p(t,x) =0, Y(t,x) € [0, Ty] x R,

In summary, the Cauchy problem (1.1)—(1.3) has a unique strong solution (p, u).
Finally, when y = 3, we quickly have the relation p (¢, x) = ;Ac(t, x), via the same argu-
ment used in the case 1 < y <2 as above, the same conclusions will be obtained. O
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5. No-existence of global solutions with L*>° decay on u

In order to prove the phenomenon shown in Theorem 1.2, firstly we need to introduce some
physical notations:

m(t):/p(t,x)dx (total mass),
R3

1
E.(t) = 3 / p(t, x)|u(t, x)|2dx (total kinetic energy).
R3
Based on the existence theory established in Theorem 1.1 and the additional initial conditions
in Theorem 1.2, we can show that there exists a unique regular solution (p, u) (¢, x) on [0, T'] X R3

which has finite mass m(¢), finite momentum P(¢), finite kinetic energy Ej(z). Actually, due to
1 <y <2, wehave

2
m(t) =/,0dx < C/cﬁdx < C|c|% < 400,
R3 R3
which, together with the regularity shown in Theorem 1.1, implies that
1
Ek<z)=/5p|u|2dxscm|oo|u|% < +oo. (5.1)
R3

Secondly, we give the following lemmas which are the revised versions for the constant vis-
cosity case [27].

Lemma 5.1. Let 1 <y <2 and (p, u) be the regular solution obtained in Theorem 1.1 with the
additional initial conditions shown in Theorem 1.2; then

P(t) =P0), m()=m(), for tel0,T].

Proof. According to the momentum equations, we immediately deduce that

P, = —/div(,ou ® u)dx —/Vde +/div']I‘dx. (5.2)
R3 R3 R3

We first claim that

/div’ﬂ‘dx =0.

R3
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Letting R > 0 be an arbitrarily large constant, from Green’s formula, we only need to prove

R—+0c0
dBg dBg

We denote
Gr= ‘ / oVu ~ndS‘.
dBR
According to Definition 1.1, we have
peC(0,TI; HY), VueC(0,T];HY,
from Holder’s inequality, which implies that

/pruldx <l|pl2lVulp <oo, fortel0,T].

R3

Next let Q1 = By, ; = B;j/B;i—1 (i > 2); from (5.4), we have

o
fp|W|dx=pr|W|dx<oo, fort €[0, T).

R3 i=1g
Then we immediately obtain that

i

lim | GgdR < lim /pru|dx:O.
1—>00 11— 00
i—1 Q;

lim T-ndS = Rlim / o(a(Vu + (V)" + E(p)divulz) -ndS=0. (5.3)
—+00

(5.4)

(5.5)

(5.6)

Next we prove that G is a uniformly continuous function with respect to R. Let 0 < Ry <

R> < 00 be two constants; we have

IGr, — Gry| < ‘ / oVu -nds(

3(Br,/Br,)

. 1
=| [ aveVis| <ol VuliBe /Bl

Bg,/Br,

where |Bg,/Bg, | is the three-dimensional Lebesgue measure.
At last, if

lim Gg#0,
R— 400

(5.7)
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we know that there exists a constant €y > 0, for arbitrarily large R > 0, there exists a constant
Ro > R such that Gg, > €p. Due to the uniform continuity, we know that there exists a small
constant > 0 such that

€0
|Gry = Grl=— for [Ro—R[=n.

which means that

GR>%O, for |Ry— R|<7. (5.8)

It is obvious that, for sufficiently large i, there always exists some j > i such that

i
/ GrdR > ’7760 (5.9)
s

which is impossible due to (5.6). So we immediately have that

lim GR = 0,
R—+o00

which makes sure that (5.3) holds. Then via the similar arguments used to prove (5.3), we also
can deduce that

—fdiv(pu@u)dx—/Vde:O,
R3 R3

which, together with (5.2)—(5.3), immediately implies the conservation of the momentum.
Similarly, we also can get the conservation of mass, the proof is similar without essential
modifications, here we omit it. O

Lemma 5.2. Let 1 <y <2 and (p, u) be the regular solution obtained in Theorem 1.1 with the

additional initial conditions shown in Theorem 1.2; there exists a unique lower bound Cy which
has no dependence on t for Ei(t) such that

Ex(t)>=Co>0 for te[0,T].

Proof. Due to Holder’s inequality and momentum equations, we deduce that

PO)] = [B()| s/p(r,x>|u|<r,x)dx

R3

<V2m: (t)Ek% (t) = 2m? (O)Eé ), (5.10)
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which implies that there exists a unique positive lower bound for Ej () such that

Ek(t)>M>O for te[0,T] 0 (5.11)
= 2m(0) o ‘

Remark 5.1. The positive lower bound of the total kinetic energy Ex(¢) will play a key role in
the proof of the corresponding non-existence of global regular solutions with L°>° decay on u,
which is essentially obtained via the conservation of the momentum based on the regularity of
regular solutions. The same conclusions can’t be obtained for the strong solutions shown in [4] or
[5] because of the different mathematical structure, even if the initial mass density and velocity
are both compactly supported. In this sense, the definition of regular solutions with vacuum is
consistent with the physical background of the compressible Navier—Stokes equations.

Next we give the proof for Theorem 1.2:

Proof. Combining the definition of E(¢) and Lemmas 5.1-5.2, we easily have

Co= Ext) < sl for 1€[0,7]
which means that there exists a positive constant C,, such that
lu(t)|oo > C, for tel0,T].
Then we quickly obtain the desired conclusion as shown in Theorem 1.2. 0O
Acknowledgments

The research of S. Zhu was supported in part by National Natural Science Foundation of China
under grant 11231006, Natural Science Foundation of Shanghai under grant 14ZR1423100 and
China Scholarship Council under grant 201206230030.

References

[1] D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, Lubrication, and Shallow water
systems, Comm. Partial Differential Equations 28 (2003) 843—868.

[2] D. Bresch, B. Desjardins, G. Métivier, Recent mathematical results and open problems about shallow water equa-
tions, Anal. Simul. Fluid Dynam. (2006) 15-31.

[3] D. Bresch, B. Desjardins, Some diffusive capillary models of Korteweg type, C. R. Acad. Sci. 332 (11) (2004)
881-886.

[4] Y. Cho, H. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,
J. Math. Pures Appl. 83 (2004) 243-275.

[5] Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations 228 (2006)
377-411.

[6] E. Feireisl, A. Novotny, H. Petzeltovd, On the existence of globally defined weak solutions to the Navier—Stokes
equations, J. Math. Fluid Mech. 3 (4) (2001) 358-392.

[7] E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid, Indiana Univ. Math. J. 53 (6) (2004)
1705-1738.

[8] Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.

[9] G. Galdi, An Introduction to the Mathematical Theory of the Navier—Stokes Equations, Springer, New York, 1994.


http://refhub.elsevier.com/S0022-0396(15)00067-4/bib626432s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib626432s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6264s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6264s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib626433s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib626433s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib434B33s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib434B33s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib434Bs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib434Bs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib667531s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib667531s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib667532s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib667532s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib667533s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib67616E6469s1

S. Zhu / J. Differential Equations 259 (2015) 84-119 119

[10] X. Huang, J. Li, Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the
three-dimensional isentropic compressible Navier—Stokes equations, Comm. Pure Appl. Math. 65 (2012) 549-585.

[11] Y. Li, R. Pan, S. Zhu, 2D compressible Navier—Stokes equations with degenerate viscosities and far field vacuum,
2013, submitted for publication.

[12] Y. Li, R. Pan, S. Zhu, On regular solutions for viscous polytropic fluids with degenerate viscosities and vacuum,
preprint, 2014.

[13] Y. Li, S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with
vacuum, J. Differential Equations 256 (2014) 3943-3980.

[14] Y. Li, S. Zhu, On regular solutions of the 3D compressible isentropic Euler-Boltzmann equations with vacuum,
Discrete Contin. Dyn. Syst. Ser. A 35 (2015) 3059-3086.

[15] O. Ladyzenskaja, N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Soci-
ety, Providence, RI, 1968.

[16] H. Li, J. Li, Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equa-
tions, Comm. Math. Phys. 281 (2008) 401-444.

[17] Tatsien Li, T. Qin, Physics and Partial Differential Equations, Siam/Higher Education Press, Philadelphia/Beijing,
2014.

[18] P. Lions, Mathematical Topics in Fluid Dynamics, vol. 2: Compressible Models, Oxford University Press, 1998.

[19] T. Liu, T. Yang, Compressible Euler equations with vacuum, J. Differential Equations 140 (1997) 223-237.

[20] T. Liu, Z. Xin, T. Yang, Vacuum states for compressible flow, Discrete Contin. Dyn. Syst. 4 (1998) 1-32.

[21] Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,
Commun. Math. Sci. 10 (2012) 527-554.

[22] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math.
Sci., vol. 53, Springer-Verlag, New York, Berlin, Heidelberg, 1986.

[23] T. Makino, S. Ukai, S. Kawashima, Sur la solution a support compact de equations d’Euler compressible, Jpn. J.
Appl. Math. 33 (1986) 249-257.

[24] T. Makino, On a local existence theorem for the evolution equation of gaseous stars, Transport Theory Statist. Phys.
21 (1992) 615-624.

[25] A. Mellet, A. Vasseur, On the barotropic compressible Navier—Stokes equations, Comm. Partial Differential Equa-
tions 32 (1-3) (2007) 431-452.

[26] J. Nash, Le probleme de Cauchy pour les équations différentielles din fluide général, Bull. Soc. Math. France 90
(1962) 487-491.

[27] O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier—Stokes equa-
tions, J. Differential Equations 245 (2008) 1762-1774.

[28] J. Simon, Compact sets in Lr (0, T; B), Ann. Mat. Pura Appl. 146 (1987) 65-96.

[29] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

[30] T. Yang, C. Zhu, Compressible Navier—Stokes equations with degenerate viscosity coefficient and vacuum, Comm.
Math. Phys. 230 (2002) 329-363.

[31] T. Yang, H. Zhao, A vacuum problem for the one-dimensional compressible Navier—Stokes equations with density-
dependent viscosity, J. Differential Equations 184 (2002) 163-184.


http://refhub.elsevier.com/S0022-0396(15)00067-4/bib485831s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib485831s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib737A32s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib737A32s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib64636473s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib64636473s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6F6172s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6F6172s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6861696C69616E67s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6861696C69616E67s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib746C74s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib746C74s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6C696F6E73s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib747079s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib74616970696E67s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6C756F6C756Fs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6C756F6C756Fs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib616D6As1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib616D6As1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib746D7331s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib746D7331s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6D616B696Fs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6D616B696Fs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib7661737375s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib7661737375s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6E617368s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6E617368s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6F6C6731s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6F6C6731s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6A6Ds1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib6861726D6Fs1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib74796332s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib74796332s1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib7A796As1
http://refhub.elsevier.com/S0022-0396(15)00067-4/bib7A796As1

	Existence results for viscous polytropic ﬂuids with degenerate viscosity coefﬁcients and vacuum
	1 Introduction
	2 Preliminary
	3 Existence of the unique regular solutions
	3.1 Linearization
	3.2 A priori estimate
	3.3 Unique solvability of the linearization with vacuum
	3.4 Proof of Theorem 1.1
	3.5 Proof of Remark 1.2

	4 Existence of the local strong solution
	5 No-existence of global solutions with L∞ decay on u
	Acknowledgments
	References


