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Abstract

We verify the 3-dimensional Glassey conjecture for exterior domain (M, g), where the metric g is asymp-
totically Euclidean, provided that certain local energy assumption is satisfied. The radial Glassey conjecture 
exterior to a ball is also verified for dimension three or higher. The local energy assumption is satisfied 
for many important cases, including exterior domain with nontrapping obstacles and flat metric, exterior 
domain with star-shaped obstacle and small asymptotically Euclidean metric, as well as the nontrapping 
asymptotically Euclidean manifolds (Rn, g).
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to show how integrated local energy estimates for certain linear 
wave equations involving asymptotically Euclidean perturbations of the standard Laplacian lead 
to optimal existence theorems for the corresponding small amplitude nonlinear wave equations 
with power nonlinearities in the derivatives. The problem is an analog of the Glassey conjecture 
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in the exterior domain, see Hidano–Wang–Yokoyama [11] and the references therein. In partic-
ular, for spatial dimension three, we prove global existence of small amplitude solutions for any 
power greater than a critical power, as well as the almost global existence for the critical power. 
The critical power is the same as that on the Minkowski space. On the other hand, for dimension 
four and higher, the current technology could only apply for the radial case, and we obtain exis-
tence results with certain lower bound of the lifespan, which is sharp in general. The non-radial 
case is still open, even for the Minkowski space, when the spatial dimension is four or higher.

Let us start by describing the asymptotically Euclidean manifolds (M, g), where M = R
n\K

with smooth and compact obstacle K and n ≥ 3. Without loss of generality, when K is nonempty, 
we assume the origin lies in the interior of K and K ⊂ B1 = {x ∈R

n : |x| < 1}. By asymptotically 
Euclidean, we mean that

g = g0 + g1(r) + g2(x), g = gij (x)dxidxj =
n∑

i,j=1

gij (x)dxidxj (H1)

where (gij ) is uniformly elliptic, (g0,ij ) = Diag(1, 1, · · · , 1) is the standard Euclidean metric, the 
first perturbation g1 is radial, and

∑
ijk

∑
l≥0

2l(i+|α|−1)‖∇αgi,jk‖L∞
x (Al)�1,∀α. (H1.1)

Here, A0 = {|x| ≤ 1}, Al = {2l−1 ≤ |x| ≤ 2l} for l ≥ 1, and we say g1 is radial, if, when writing 
out the metric g, with g2 = 0, in polar coordinates x = rω with r = |x| and ω ∈ S

n−1, we have

g = g0 + g1 = g̃11(r)dr2 + g̃22(r)r
2dω2.

In this form, the assumption (H1.1) for g1 is equivalent to the following requirement

∑
l≥0

2|α|l‖∇α(g̃11 − 1, g̃22 − 1)‖L∞
x (Al)�1,∀α. (H1.2)

When g = g0 + δ(g1 + g2) with sufficient small parameter δ, we call it a small perturbation. 
Notice that this sort of assumption and its role in local energy estimates seems to have started 
with Tataru [34] for Schrödinger equations and Metcalfe–Tataru [23] for wave equations. See also 
Tataru [35], Metcalfe–Tataru–Tohaneanu [24] for similar assumptions regarding the interaction 
with rotations.

We shall consider Dirichlet-wave equations on (M, g),

⎧⎨
⎩

�gu ≡ (∂2
t − �g)u = F, x ∈ M, t > 0

u(t, x) = 0, x ∈ ∂M, t > 0
u(0, x) = φ(x), ∂tu(0, x) = ψ(x),

(1.1)

where �g is the Laplace–Beltrami operator associated with g.
Now we can state the local energy assumption that we shall make

Hypothesis 2. For any R > 1, we have

‖(∂u,u)‖ 2 2 ≤ C(‖φ‖H 1 + ‖ψ‖L2 + ‖F‖ 2 2 ), (H2)
Lt Lx(BR) Lt Lx
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for any solutions to (1.1) with data (φ, ψ) and the forcing term F(t, x) vanishes for |x| > R. 
Here ∂ = (∂t , ∇) is the space–time gradient, and the constant C may depend on R.

Let us review some important cases where the assumption (H2) is valid. First of all, when 
g1 = g2 = 0, it is true for any nontrapping obstacle K. In which case, we have

‖(∂u(t), u(t))‖L2
x (BR) ≤ α(t)(‖φ‖H 1 + ‖ψ‖L2)

with α(t)�〈t〉−(n−1) ∈ L1
t ∩ L2

t , for any homogeneous solutions to (1.1) with data (φ, ψ) sup-
ported in BR . See Melrose [18], Ralston [26] and the references therein. For the case where g is a 
compact perturbation of g0, and M is assumed to be nontrapping with respect to the metric, one 
also has (H2) for the Dirichlet-wave equation for all n ≥ 3 (Taylor [36], Burq [2]). For general 
nontrapping asymptotically Euclidean manifolds without obstacles, it is also known to be true 
(Bony–Häfner [1]), at least when (H1.1) is replaced by

|∇αg1,jk(x)|�〈x〉−|α|−δ,
∑
l≥0

2l(|α|+1)‖∇αg2,jk‖L∞
x (Al)�1, (H1.1’)

for some δ > 0, where 〈x〉 = √
1 + |x|2. At last, it is known from Metcalfe–Sogge [21] and 

Metcalfe–Tataru [22] that we still have (H2), if g is a small asymptotically Euclidean metric 
perturbation, and the obstacle is star-shaped (that is, K = {rω : 0 ≤ r ≤ γ (ω) < 1, ω ∈ S

n−1}, for 
some smooth positive function γ ).

Having described the main assumptions about the linear problem, let us now turn to the non-
linear equations. Let n ≥ 3, p > 1, we consider the following nonlinear wave equations,

⎧⎨
⎩

�gu = a(u)|∂tu|p + ∑n
j=1 aj (u)|∂ju|p ≡ Fp(u, ∂tu), x ∈ M

u(t, x) = 0, x ∈ ∂M, t > 0
u(0, x) = φ(x), ∂tu(0, x) = ψ(x),

(1.2)

for given smooth functions a and aj , as well as the radial problems (with g2 = 0, K = B1)

⎧⎨
⎩

�gu = a|∂tu|p + b|∇u|p ≡ Gp(u, ∂tu), x ∈ M

u(t, x) = 0, |x| = 1, t > 0
u(0, x) = φ(x), ∂tu(0, x) = ψ(x),

(1.3)

for given constants a, b. When K is empty, it is understood as a Cauchy problem in (1.2).
For such problems posed on the Minkowski space, it is conjectured that the critical power p

for the problem, to admit global solutions with small, smooth initial data with compact support 
is

pc = 1 + 2

n − 1

in Glassey [7] (see also Schaeffer [28], Rammaha [27]). The conjecture was verified in dimen-
sion n = 2, 3 for general data (Hidano–Tsutaya [9] and Tzvetkov [37] independently, as well as 
the radial case in Sideris [29] for n = 3). For the radial data, the existence results with sharp 
lower bound on the lifespan for any p ∈ (1, 1 + 2/(n − 2)) was recently proved in Hidano–
Wang–Yokoyama [11] (see also Fang–Wang [6] for the critical case n = 2 and p = 3), which 
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particularly verified the Glassey conjecture in the radial case. On the other hand, for any spatial 
dimension, the blow up results (together with an explicit upper bound of the lifespan) for (1.2), 
with Fp(u, ∂tu) = |∂tu|p and p ≤ pc , were obtained in Zhou [40], Zhou–Han [41] when g is 
a compact metric perturbation. Recently, in [38], the author extended the existence results in 
[9,37,11] to the setting with small space–time dependent asymptotically flat perturbation of the 
metric on Rn with n ≥ 3, as well as the three dimensional nontrapping asymptotically Euclidean 
manifolds.

We can now state our main results. The first result is about the problem (1.2) with general 
data, which verify the 3-dimensional Glassey conjecture in exterior domains, with asymptotically 
Euclidean metric perturbation, under the local energy assumption.

Theorem 1.1. Let n = 3, K be empty or smooth and compact obstacles, and p > 2. Consider 
the problem (1.2) on (M, g) satisfying (H1) and (H2). There exists a small positive constant ε0, 
such that the problem (1.2) has a unique global solution satisfying u ∈ C([0, ∞); H 3

D(M)) ∩
C1([0, ∞); H 2(M)), whenever the initial data satisfy the compatibility conditions of order 3, 
and

∑
|α|≤2

‖(∇,�)α(∇φ,ψ)‖L2(M) = ε ≤ ε0, ‖φ‖L2(M) < ∞. (1.4)

Moreover, when p = 2, there exists some c > 0, so that we have unique solution satisfying u ∈
C([0, Tε]; H 3

D(M)) ∩ C1([0, Tε]; H 2(M)), with Tε = exp(c/ε).

The almost global existence result in the case p = 2 corresponds to the semilinear version 
of the John–Klainerman theorem [13] in R3 (see Wang–Yu [39] and the references therein for 
recent related work for asymptotically Euclidean manifolds), as well as the seminal work of 
Keel–Smith–Sogge [14] for nontrapping obstacles. Notice that we have considerably improved 
the required regularity.

Here, by the compatibility conditions of order 3, we mean that

φ(x) = 0,ψ(x) = 0,�gφ + Fp(φ,ψ) = 0 (1.5)

for any x ∈ ∂M . In general, we see from Eq. (1.2) that, formally, there exist �k such that

∂k
t u(0, x) = �k(Jkφ,Jk−1ψ)

for x ∈ M , where Jkf = ∇≤kf ≡ (∇αf )|α|≤k . Then the compatibility conditions of order k + 1
is precisely �j(Jjφ, Jj−1ψ)(x) = 0 for any x ∈ ∂M and 0 ≤ j ≤ k. Similarly, for Eq. (1.1), 
formally, there exist �̃k such that

∂k
t u(0, x) = �̃k(Jkφ,Jk−1ψ,Jk−2F)

for x ∈ M , where JkF (x) = ∂≤kF (0, x). Then the compatibility conditions of order k + 1 is 
precisely �̃j (Jjφ, Jj−1ψ, Jj−2F)(x) = 0 for any x ∈ ∂M and 0 ≤ j ≤ k.

In particular, as special cases, we have the following corollaries, for which, as we have 
recalled, it is known that we have (H1) and (H2). See [1,18,26] and Lemma 3.1 for the cor-
responding local energy estimates.
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Corollary 1. Let M = R
3 and g be a nontrapping asymptotically Euclidean perturbation of the 

flat metric ((H1) with (H1.1’)), then the 3-dimensional Glassey conjecture is true.

This recover Theorem 1.1 in [38] for the case of asymptotically Euclidean manifolds. Notice 
that we have also slightly relaxed the metric assumption.

Corollary 2. Let n = 3, g = g0 and K be empty or a nontrapping obstacle, then the Glassey 
conjecture is true.

Corollary 3. Let g be a small, asymptotically Euclidean perturbation of the flat metric, and K
be a star-shaped obstacle, then the 3-dimensional Glassey conjecture is true.

Turning to the problem (1.3) with radial data, we have long time existence of the radial solu-
tions, in spirit of [11], where the lower bound of the lifespan is sharp in general [40,41].

Theorem 1.2. Let n ≥ 3, p > pc = 1 + 2/(n − 1), K = B1, g2 = 0, (M, g) satisfying (H1)
and (H2). Consider the problem (1.3) with radial data, there exists a small positive constant ε0, 
such that the problem has a unique global radial solution satisfying u ∈ C([0, ∞); H 2

D(M)) ∩
C1([0, ∞); H 1(M)), whenever the initial data satisfy the compatibility conditions of order 2, 
and

∑
|α|≤1

‖∇α(∇φ,ψ)‖L2(M) = ε ≤ ε0, ‖φ‖L2(M) < ∞. (1.6)

Moreover, when p ≤ pc , there exist some c > 0, so that we have unique radial solutions sat-
isfying u ∈ C([0, Tε]; H 2

D(M)) ∩ C1([0, Tε]; H 1(M)), with Tε = exp(cε1−p) for p = pc and 
Tε = cε2(p−1)/[(n−1)(p−1)−2] for 1 < p < pc.

Remark 1. The smallness assumption (1.6) on the initial data could be weakened to be of “mul-
tiplicative form”, as in [11].

As before, it is clear that Theorem 1.2 applies for the flat or small asymptotically Euclidean 
metric, in the domain exterior to a ball.

Corollary 4. Let g be a small, radial, asymptotically Euclidean perturbation of the flat metric, 
and K = B1, then the radial Glassey conjecture is true, for dimension n ≥ 3.

Remark 2. Comparing the current Theorem 1.2 with Theorem 1.1 in [11], we do not need to 
assume p < 1 + 2/(n − 2), which, in Rn, is partly due to the H 2 regularity. The reason, for us to 
avoid the restriction in the case of exterior domain, is that we have the radial Sobolev embedding 
H 1 ⊂ L∞ (see Lemma 2.1), which is not valid in Rn.

As in [11] and [38], one of the main ingredients in the proof is the local energy estimates 
with variable coefficients, in spirit of [21,10]. The local energy estimates first appeared in 
Morawetz [25], which are also known as the Morawetz estimates. By now there are exten-
sive literatures devoted to this topic and its applications, without being exhaustive we mention 
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[33,16,30,14,2,15,32,12,20,21,23,8,31,24,35,17]. Based on (H1) and (H2), we could prove the 
following version of the local energy estimates. See (1.14) for the notations.

Theorem 1.3. Let (M, g) satisfying (H1) and (H2), then for any solutions to (1.1) with 
(φ, ψ, F) ∈ Ḣ 1

D × L2
x × (LE∗ + L1

t L
2
x), we have u ∈ C([0, ∞); Ḣ 1

D(M)), and

‖u‖LE∩E�‖φ‖Ḣ 1
D

+ ‖ψ‖L2
x
+ ‖F‖LE∗+L1

t L
2
x
. (1.7)

To prove the existence results, we need the following higher order local energy estimates,

Proposition 1.4 (Higher order local energy estimates). For (M, g) satisfying (H1) and (H2), 
there exists R > 4 such that, we have

‖u‖LEk∩Ek
�

∑
|α|≤k

‖(∇,�)α(∇φ,ψ)‖L2
x
+ ‖ZαF‖LE∗+L1

t L
2
x

+
∑

|γ |≤k−1

‖Zγ F(0, x)‖L2
x
+ ‖∂γ F‖(L∞

t ∩L2
t )L

2
x(B2R), (1.8)

for any solutions to (1.1) satisfying compatibility condition of order k + 1. Here and in what 
follows, BR means {x ∈ M : |x| < R}.

For the existence results with p ≤ pc, we will also require a relation between the KSS type 
estimates [14,12,21] and the local energy estimates. Basically, it is known that, the local energy 
norm, together with the energy norm, could control the KSS-type norm, see, e.g., [14,19,21] and 
[38] Lemma 3.4. Moreover, a dual version also holds, see e.g., [23].

Lemma 1.5. For any μ ∈ [0, 1/2), there are positive constants Cμ and C, independent of T ≥ 2, 
such that

‖∂u‖
l
−1/2
2 (L2

T L2
x)

+ ‖r−1u‖
l
−1/2
2 (L2

T L2
x)

≤ C(lnT )1/2‖u‖LE∩E([0,T ]×M), (1.9)

‖∂u‖
l
−μ
2 (L2

T L2
x)

+ ‖r−1u‖
l
−μ
2 (L2

T L2
x)

≤ CμT 1/2−μ‖u‖LE∩E([0,T ]×M). (1.10)

Moreover, we have

‖F‖LE∗+L1
T L2

x([0,T ]×M) ≤ C(lnT )1/2‖F‖
l
1/2
2 (L2

T L2
x)

, (1.11)

‖F‖LE∗+L1
T L2

x([0,T ]×M) ≤ CμT 1/2−μ‖F‖l
μ
2 (L2

T L2
x). (1.12)

Here we use Lq
T to stand for Lq

t ([0, T ]).

This paper is organized as follows. In the next section, we recall some Sobolev type estimates, 
in relation with trace theorem and Hardy’s inequality. In Section 3, we give the proof of the 
local energy estimates, Theorem 1.3 and Proposition 1.4, based on (H1) and (H2), as well as a 
relation between the local energy estimates and KSS type estimates, Lemma 1.5. In the fourth 
section, we give the proof of the three dimensional Glassey conjecture, following the approach 
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of [11,38], adapted in the setting of exterior domains. In the last section, we prove the radial 
Glassey conjecture.

1.1. Notations

Finally we close this section by listing the notations.
• A�B means that A ≤ CB where the constant C may change from line to line.
• (x0, x1, · · · , xn) = (t, x) ∈ R

1+n, and ∂i = ∂/∂xi , 0 ≤ i ≤ n, with the abbreviations ∂ =
(∂0, ∂1, · · · , ∂n) = (∂t , ∇). ∂α = ∂

α0
0 · · ·∂αn

n with multi-indices α, β ∈ Z
n+1+ . The vector fields to 

be used will be labeled as

Y = (Y1, · · · , Yn(n+1)/2) = (∇,�),Z = (∂t , Y )

with rotational vector fields �ij = xi∂j − xj ∂i , 1 ≤ i < j ≤ n. Sometimes, we use Z≤k to denote 
(Zα)|α|≤k .

• With the Dirichlet boundary condition, we define Ḣ 1
D(M) as the closure of f ∈ C∞

0 (M), 
with respect to the norm

‖f ‖Ḣ 1
D(M) = ‖∇f ‖L2(M).

When M =R
n, Ḣ 1 means the closure of C∞

0 with respect to the Ḣ 1 norm.
• The space lsq(A) (1 ≤ q ≤ ∞) means

‖u‖lsq (A) = ‖(�j (x)u(t, x))‖lsq (A) = ‖
(
‖2js�j (x)u(t, x)‖A

)
‖l

q
j≥0

,

for a partition of unity subordinate to the (inhomogeneous) dyadic (spatial) annuli,∑
j≥0 �j(x) = 1. Typical choice could be a radial, nonnegative �0(x) ∈ C∞

0 with value 1 for 
|x| ≤ 1, and 0 for |x| ≥ 2, and �j(x) = �(2−j x) − �(21−j x) for j ≥ 1.

• ‖ · ‖Em is the energy norm of order m ≥ 0,

‖u‖E = ‖u‖E0 = ‖∂u‖L∞
t L2

x(R+×M),‖u‖Em =
∑

|α|≤m

‖Zαu‖E. (1.13)

Also, we use ‖ · ‖LE to denote the local energy norm

‖u‖LE = ‖∂u‖
l
−1/2∞ L2

t L
2
x(R+×M)

+ ‖u/r‖
l
−1/2∞ L2

t L
2
x(R+×M)

. (1.14)

On the basis of the local energy norm, we can similarly define ‖u‖LEm , and the dual norm 
LE∗ = l

1/2
1 L2

t L
2
x(R+ × M).

• ‖u‖X+Y = infu=u1+u2(‖u1‖X + ‖u2‖Y )

• For fixed R > 1, let β(x) = �0(x/R) ∈ C∞
0 such that β = 1 for |x| ≤ R and vanishes for 

|x| ≥ 2R. Based on β , we set β1(x) = β(x/2), β2(x) = β(2x),

g̃ = β(4x)g0 + (1 − β(4x))g = g0 + (1 − β(4x))(g1 + g2), (1.15)
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which agrees with g for |x| ≥ R/2 and g0 for |x| ≤ R/4. Notice that for these functions, we have 
(1 − β)(1 − β1) = 1 − β1, �g(1 − β)u = �g̃(1 − β)u, �g(1 − β2)u = �g̃(1 − β2)u.

2. Sobolev-type estimates

In this section, we recall several Sobolev type estimates in relation with the trace theorem and 
Hardy’s inequality. At first, we have the following trace theorem (see Lemma 2.2 in [11], (1.3), 
(1.7) in [5] and the references therein)

Lemma 2.1. Let n ≥ 2, then

‖r(n−1)/2u(rω)‖L2
ω
�‖u‖L2(|x|≥r) + ‖∇u‖L2(|x|≥r). (2.1)

We will also need the following variant of the Sobolev embeddings.

Lemma 2.2. Let n ≥ 2. For any m ∈R and k ≥ n/2 − n/q with q ∈ [2, ∞), we have

‖〈r〉(n−1)(1/2−1/q)+mu‖Lq(M)�
∑
|a|≤k

‖〈r〉mYau‖L2(M). (2.2)

Moreover, we have

‖〈r〉(n−1)/2+mu‖L∞(M)�
∑

|a|≤[(n+2)/2]
‖〈r〉mYau‖L2(M), (2.3)

where [a] stands for the integer part of a.

When M = R
n, it is precisely Lemma 2.2 in [38] (see also Lemma 3.1 in [17]). For the 

exterior domain, the estimates follow from a simple cutoff argument and the classical Sobolev 
embedding.

When dealing with (1.2), we need to have a local control of u, from ∇u, which is achieved by 
the Hardy inequality.

Lemma 2.3 (Hardy’s inequality). Let n ≥ 3 and M = R
n\K with smooth and compact K. Then 

for any u ∈ Ḣ 1
D(M), we have

‖u/r‖L2(M)�‖∇u‖L2(M). (2.4)

Proof. It is classical, see e.g., Colin [4], Chabrowski–Willem [3]. For reader’s convenience, we 
give an explicit proof in the case of star-shaped obstacle here. By density, it suffices to prove 
(2.4) for u ∈ C∞

0 (M). For this case, we have

∞∫
|u/r|2rn−1dr = 1

n − 2

∞∫
u2∂rr

n−2dr
γ (ω) γ (ω)
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= 1

n − 2
u2rn−2

∣∣∣∣
∞

r=γ (ω)

− 2

n − 2

∞∫
γ (ω)

rn−2u∂rudr

≤ 2

n − 2

⎛
⎜⎝

∞∫
γ (ω)

|u/r|2rn−1dr

⎞
⎟⎠

1/2 ⎛
⎜⎝

∞∫
γ (ω)

|∂ru|2rn−1dr

⎞
⎟⎠

1/2

,

which, after integrating with respect to ω, yields (2.4). �
As a direct consequence, we have

Proposition 2.4. Let n = 3 and u ∈ Ḣ 1
D(M) ∩ Ḣ 2(M), we have

‖u‖L∞(M)�
∑
|α|≤1

‖∇∇αu‖L2(M). (2.5)

Proof. Since K ⊂ B1 and R > 1, we can view (1 − β)u as a function in Rn. By the Sobolev
embedding H 2(M ∩ B2R) ⊂ L∞(M ∩ B2R), and Ḣ 1 ∩ Ḣ 2 ⊂ L∞(Rn), we have

‖u‖L∞(M) ≤ ‖βu‖L∞(M∩B2R) + ‖(1 − β)u‖L∞(Rn)

� ‖βu‖H 2(M∩B2R) + ‖(1 − β)u‖Ḣ 1∩Ḣ 2(Rn)

� ‖u‖L2(M∩B2R) +
∑
|α|≤1

‖∇∇αu‖L2(M)

�
∑
|α|≤1

‖∇∇αu‖L2(M),

where we used Hardy’s inequality in the last step. �
3. Local energy estimates

In this section, we give the proof of the local energy estimates, Theorem 1.3 and Proposi-
tion 1.4, based on (H1) and (H2). In addition, we prove Lemma 1.5.

3.1. Local energy estimates with variable coefficients

To begin, let us recall local energy estimates with variable coefficients, which are essentially 
obtained in [21,22] (see also [23,10,11,39] and [38] Lemma 3.1).

Lemma 3.1. Let n ≥ 3 and M = R
n. Consider the linear problem �gu = F with g(x) = g0 +

δh(x) satisfying

∑∑
2l|α|‖∂α

x hjk‖L∞
x (Al)�1,∀α.
jk l≥0
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Then there exists a constant δ0, such that for any 0 ≤ δ ≤ δ0, we have the following local energy 
estimates,

‖u‖LE∩E�‖∂u(0)‖L2
x
+ ‖F‖LE∗+L1

t L
2
x
. (3.1)

In addition, the same results apply for solutions to (1.1), when M =R
n\K with star-shaped K.

Notice that by the assumption, we have

�g = � − r
ij

0 (x)∂i∂j + r
j

1 (x)∂j ,

where ‖∂αr0(x)‖
l
|α|
1 L∞

x
�δ, ‖∂αr1‖l

|α|+1
1 L∞

x
�δ, for all α. With this observation, the case M = R

n

follows from [23]. In the case of star-shaped obstacle, we need only to observe further that the 
boundary term will be of favorable sign and can be disregarded, see [21,22]. We omit the details 
here.

3.2. Local energy estimates in exterior domain

With Lemma 3.1 at hand, we could give the proof of Theorem 1.3. First of all, by Duhamel’s 
principle, it suffices to prove

‖u‖LE∩E�‖φ‖Ḣ 1
D

+ ‖ψ‖L2
x
+ ‖F‖LE∗ (3.2)

for solutions to (1.1). We divide the proof into three steps: controlling the local part, the local 
energy, and the energy.

3.2.1. Controlling the local part
At first, we notice that it is possible to choose R0 ≥ 4 large enough such that, g̃, as defined in 

(1.15), satisfies the condition in Lemma 3.1 for any R ≥ R0. As a consequence, we have

‖u‖LE∩E�‖∂u(0)‖L2
x
+ ‖�g̃u‖LE∗+L1

t L
2
x
. (3.3)

Now, we define u1 as the solution of the Dirichlet-wave equation with data (β1φ, β1ψ) and 
forcing term β1F , and u2 = u − u1.

For u1, we have trivially

‖(∂u1, u1)‖L2
t L

2
x(BR)�‖β1φ‖H 1 + ‖β1ψ‖L2 + ‖β1F‖L2

t L
2
x
�‖φ‖Ḣ 1

D
+ ‖ψ‖L2

x
+ ‖F‖LE∗ , (3.4)

by (H2) and the Hardy inequality (2.4).
To estimate u2, we introduce u0 as the solution of the Cauchy problem in Rn

�g̃u0 = (1 − β1)F,u0(0, x) = (1 − β1)φ, ∂tu0(0, x) = (1 − β1)ψ.

For u0, we know from (3.3) that,

‖u0‖LE�‖φ‖ ˙ 1 + ‖ψ‖L2 + ‖F‖LE∗ . (3.5)
HD x
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Now, similar to [30], let w = u2 − (1 − β)u0, noticing that

�g[(1 − β)u0] = �g̃[(1 − β)u0] = (1 − β)�g̃u0 + [�g̃,β]u0 = (1 − β1)F + [�g̃,β]u0,

it is easy to see that

�gw = [β,�g̃]u0,w|∂M = 0,w(0, x) = 0, ∂tw(0, x) = 0

due to the support properties of K, β . Noticing that [β, �g̃]u0 is supported in |x| ≤ 2R, we could 
apply (H2) to obtain

‖(∂w,w)‖L2
t L

2
x(BR)�‖[β,�g̃]u0‖L2

t L
2
x
�‖u0‖LE. (3.6)

Recalling u = u1 + u2 = u1 + w + (1 − β)u0, (3.4)–(3.6), we arrived at

‖(∂u,u)‖L2
t L

2
x(BR)�‖φ‖Ḣ 1

D
+ ‖ψ‖L2

x
+ ‖F‖LE∗ . (3.7)

3.2.2. Controlling the local energy
Turning to the full local energy estimates, we divide u into β2u + (1 − β2)u. For (1 − β2)u, 

due to the support property, and g̃ agrees with g for |x| ≥ R/2, we observe that

�g̃(1 − β2)u = �g(1 − β2)u = (1 − β2)F + [�g,β2]u.

Viewing (1 − β2)u as a solution of the Cauchy problem, we get from (3.3) that

‖u‖LE � ‖β2u‖LE + ‖(1 − β2)u‖LE

� ‖∂(1 − β2)u(0)‖L2
x
+ ‖(1 − β2)F‖LE∗ + ‖(∂u,u)‖L2

t L
2
x(BR).

There, applying (3.7), we get

‖u‖LE�‖φ‖Ḣ 1
D

+ ‖ψ‖L2
x
+ ‖F‖LE∗ , (3.8)

which is the local energy part of (3.2).

3.2.3. Controlling the energy
It remains to control the energy norm in (3.2). For this, we introduce a modified energy norm

A(t) =
⎛
⎝∫

M

u2
t (t, x) + gij (x)∂iu(t, x)∂ju(t, x)

2

√|g|dx

⎞
⎠

1/2

,

where |g|, (gij ) are the determinant and inverse matrix to the matrix (gij ). From geometrical 
point of view, it is a natural definition of the energy. By the uniform elliptic assumption, it is 
equivalent to the classical energy norm E. For A(t), we know from the definition, after integra-
tion by parts and noticing that ∂tu|∂M = 0, that
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dA(t)2

dt
=

∫
M

utF
√|g|dx. (3.9)

After integration in time, we get for any T ,

A2(T ) ≤ A2(0) +
T∫

0

∫
M

|utF |√|g|dxdt�‖φ‖2
Ḣ 1

D

+ ‖ψ‖2
L2

x
+ ‖u‖LE‖F‖LE∗ .

Applying (3.8), we know that

‖∂u(T )‖2
L2

x
�A2(T )�‖φ‖2

Ḣ 1
D

+ ‖ψ‖2
L2

x
+ ‖F‖2

LE∗

and so

‖u‖LE∩E�‖φ‖Ḣ 1
D

+ ‖ψ‖L2
x
+ ‖F‖LE∗ ,

which is (3.2). This completes the proof of Theorem 1.3.

3.3. Higher order estimates

In this subsection, we give the proof of the higher order local energy estimates, Proposi-
tion 1.4, based on Theorem 1.3 and Lemma 3.1.

As usual, part of the difficulty comes from the fact that the vector fields do not preserve the 
boundary condition u|∂M = 0 in general. Despite of the difficulty, we know that ∂t preserves the 
boundary condition and commutates with the equation. As a consequence, provided the solution 
to (1.1) satisfies the compatibility condition of order k + 1, by Theorem 1.3, we have

∑
0≤j≤k

‖∂j
t u‖LE∩E �

∑
|α|≤k

‖∇α(∇φ,ψ)‖L2
x
+

∑
|γ |≤k−1

‖∂γ F (0, x)‖L2
x

+
∑

0≤j≤k

‖∂j
t F‖LE∗+L1

t L
2
x
. (3.10)

Here, we have expressed the initial data of ∂j
t u, through Eq. (1.1), by the combination of ∇αφ, 

∇αψ and ∂αF (0, x).
To extend the vector field from ∂t to Z, we observe first

‖Zαu‖LE∩E�‖Zαβ2u‖LE∩E + ‖Zα(1 − β2)u‖LE∩E.

For the second term, ‖Zα(1 − β2)u‖LE∩E , notice that

�g̃Z
α(1 − β2)u = [�g̃ ,Z

α](1 − β2)u − Zα[�g̃ , β2]u + Zα(1 − β2)F.

For [�g̃ , Zα], by (H1.1), we know that, for any given δ > 0, there exists R1 ≥ R0, such that for 
any R ≥ R1, there exists ci(x) such that
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|[�g̃ ,Z
α]v| ≤ c1(x)

∑
|γ |≤|α|

|Zγ ∂v| + c2(x)
∑

|γ |≤|α|
|Zγ v|

with ‖ci(x)‖li1L
∞
x

≤ δ. Here, we used the fact that the first perturbation is radial, which commu-
tates with the rotational vector fields �.

Applying Lemma 3.1, together with these information,

‖Zα(1 − β2)u‖LE∩E �
∑

|γ |≤|α|
‖(∇,�)γ (∇φ,ψ)‖L2

x
+

∑
|γ |≤|α|−1

‖Zγ F(0, x)‖L2
x

+ ‖[�g̃ ,Z
α](1 − β2)u‖LE∗ +

∑
|γ |≤|α|+1

‖∂γ u‖L2
t L

2
x(BR)

+ ‖Zα(1 − β2)F‖LE∗+L1
t L

2
x

�
∑

|γ |≤|α|
‖(∇,�)γ (∇φ,ψ)‖L2

x
+

∑
|γ |≤|α|−1

‖Zγ F(0, x)‖L2
x

+ δ
∑

|γ |≤|α|
‖Zγ (1 − β2)u‖LE +

∑
|γ |≤|α|+1

‖∂γ u‖L2
t L

2
x(BR)

+
∑

|γ |≤|α|
‖Zγ F‖LE∗+L1

t L
2
x
.

Summing over |α| ≤ k and setting δ small enough to be absorbed by the left, we conclude that

‖u‖LEk∩Ek
≤ ‖β2u‖LEk∩Ek

+ ‖(1 − β2)u‖LEk∩Ek

�
∑
|γ |≤k

‖(∇,�)γ (∇φ,ψ)‖L2
x
+ ‖Zγ F‖LE∗+L1

t L
2
x

+
∑

|γ |≤k−1

‖Zγ F(0, x)‖L2
x
+

∑
|γ |≤k

‖∂γ u‖LE∩E(BR). (3.11)

To complete the proof of Proposition 1.4, it suffices to give the control of the last term in 
(3.11).

3.3.1. Controlling the local part
Let us prove Proposition 1.4, by (3.10), (3.11), and induction.
The case k = 0 follows from Theorem 1.3. Assume it is true for some k = j ≥ 0, then for 

k = j + 1, since the problem satisfies the compatibility condition of order j + 2, we have the 
compatibility condition of order j + 1 for w = ∂tu, and

�gw = ∂tF,w|∂M = 0,w(0, x) = ψ,∂tw(0, x) = �gφ + F(0, x).

At first, we observe that

‖∂γ ∂2u‖(L2
t ∩L∞

t )L2
x(BR)�‖∂γ ∂w‖(L2

t ∩L∞
t )L2

x(BR) + ‖∂γ ∇2u‖(L2
t ∩L∞

t )L2
x(BR),

with |γ | = j . For the second term, using elliptic estimate, we get
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‖∂γ ∇2u‖L2
x(BR) � ‖�g∂

γ u‖L2
x(B2R) + ‖∂γ u‖L2

x(B2R)

� ‖∂γ �gu‖L2
x(B2R) +

∑
|α|≤j+1=k

‖∂αu‖L2
x(B2R)

� ‖∂γ ∂2
t u‖L2

x(B2R) + ‖∂γ F‖L2
x(B2R) +

∑
|α|≤j+1

‖∂αu‖L2
x(B2R),

where in the last inequality, we used Eq. (1.1).
In conclusion, we get

‖∂γ ∂2u‖(L2
t ∩L∞

t )L2
x(BR) � ‖∂γ ∂w‖(L2

t ∩L∞
t )L2

x(BR) + ‖∂γ ∇2u‖(L2
t ∩L∞

t )L2
x(BR)

� ‖∂γ ∂w‖(L2
t ∩L∞

t )L2
x(B2R) + ‖∂γ F‖(L2

t ∩L∞
t )L2

x(B2R)

+
∑

|α|≤j+1

‖∂αu‖(L2
t ∩L∞

t )L2
x(B2R)

� ‖w‖LEj ∩Ej
+ ‖u‖LEj ∩Ej

+ ‖∂γ F‖(L2
t ∩L∞

t )L2
x(B2R), (3.12)

where, in the last inequality, we have used the Hardy inequality, Lemma 2.3.
By (3.12) and the induction assumption, we have

∑
|γ |≤j+1

‖∂γ u‖LE∩E(BR) � ‖u‖LEj ∩Ej
+

∑
|γ |=j

‖∂γ ∂2u‖(L2
t ∩L∞

t )L2
x(BR)

� ‖u‖LEj ∩Ej
+ ‖w‖LEj∩Ej

+
∑

|γ |=j

‖∂γ F‖(L∞
t ∩L2

t )L
2
x(B2R)

�
∑

|γ |≤j+1

‖(∇,�)γ (∇φ,ψ)‖L2
x
+ ‖Zγ F‖LE∗+L1

t L
2
x

+
∑

|γ |≤j

‖Zγ F(0, x)‖L2
x
+

∑
|γ |≤j

‖∂γ F‖(L∞
t ∩L2

t )L
2
x(B2R).

Then, by (3.11) with k = j + 1, ‖u‖LEj+1∩Ej+1 is controlled by

∑
|γ |≤j+1

‖(∇,�)γ (∇φ,ψ)‖L2
x
+ ‖Zγ F‖LE∗+L1

t L
2
x
+

∑
|γ |≤j

‖Zγ F(0, x)‖L2
x

+
∑

|γ |≤j+1

‖∂γ u‖LE∩E(BR)

�
∑

|γ |≤j+1

‖(∇,�)γ (∇φ,ψ)‖L2
x
+ ‖Zγ F‖LE∗+L1

t L
2
x
+

∑
|γ |≤j

‖Zγ F(0, x)‖L2
x

+
∑

|γ |≤j

‖∂γ F‖(L∞
t ∩L2

t )L
2
x(B2R).

This completes the proof of Proposition 1.4.
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3.4. A relation between KSS type norm and local energy norm

In this subsection, for reader’s convenience, we give a proof of (1.11) and (1.12) in 
Lemma 1.5.

As usual, we use a cutoff argument [14]. Let F1 = Fχ|x|≤T and F2 = F − F1.

‖F‖LE∗+L1
T L2

x
� ‖F1‖LE∗ + ‖F2‖L1

T L2
x

� ‖2j/2F1(t, x)�j (x)‖l1j L2
T L2

x
+ T −1/2‖|x|1/2F2‖L1

T L2
x

� ‖2j/2F1(t, x)�j (x)‖l2j L2
T L2

x
‖1‖l21≤j≤ln T

+ ‖|x|1/2F2‖L2
T L2

x

� (lnT )1/2‖F‖
l
1/2
2 (L2

T L2
x)

.

Similarly,

‖F‖LE∗+L1
T L2

x
� ‖2j/2F1(t, x)�j (x)‖l1j L2

T L2
x
+ T −μ‖|x|μF2‖L1

T L2
x

� ‖2jμF1(t, x)�j (x)‖l2j L2
T L2

x
‖2j (1/2−μ)‖l21≤j≤ln T

+ T 1/2−μ‖|x|μF2‖L2
T L2

x

� T 1/2−μ‖F‖l
μ
2 (L2

T L2
x).

This completes the proof.

4. Glassey conjecture with dimension 3

In this section, we will prove Theorem 1.1, mainly based on Lemma 2.2 and Proposition 1.4.
As usual, we shall use iteration to give the proof. We set u0 ≡ 0 and recursively define uk+1

(k ≥ 0) be the solution to the linear equation

�guk+1 = Fp(uk, ∂tuk), uk+1(t, x)|∂M = 0, uk+1(0, x) = φ(x), ∂tuk+1(0, x) = ψ(x).

Note that the compatibility condition (1.5) ensures that, we still have the compatibility condition 
of order 3 for uk+1, and we can apply Proposition 1.4.

By the smallness condition (1.4) on the data, there is a constant C1 so that ‖u1‖LE2∩E2 ≤ C1ε, 
and

‖u‖LE2∩E2 ≤ C1‖Y≤2(∇φ,ψ)‖L2
x
+ C1‖Z≤2�gu‖L1

t L
2
x

+ C1‖Z≤1�gu(0, x)‖L2
x
+ ‖∂≤1�gu‖(L∞

t ∩L2
t )L

2
x(B2R).

We shall argue inductively to prove that there exists ε0 > 0 such that for any ε ≤ ε0, we 
have

‖uk‖LE2∩E2 ≤ 3C1ε, (4.1)

for all k ≥ 1. It has been true for k = 1. For k ≥ 1, assume we have (4.1) for any uj with 
j ≤ k.
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At first, by Proposition 2.4, we know that

‖Z≤1u‖L∞
t L∞

x
�‖u‖E2, (4.2)

which particularly gives us |Z≤1uj (t, x)|�ε, j ≤ k by the induction assumption.
It follows from the definition of Fp that,

|Z≤1Fp(uk, ∂tuk)(t, x)| ≤ C(‖uk(t, ·)‖L∞
x

)|∂uk|p−1(|Z≤1uk∂uk| + |Y≤1∂uk| + |∂2
t uk|),

where C(t) is a continuous increasing function. Thus, if ε ≤ 1, we have

∑
|α|≤1

‖ZαFp(uk, ∂tuk)(0, ·)‖L2
x
�εp−1(ε + ‖∂2

t uk(0, ·)‖L2
x
).

For ‖∂2
t uk(0, ·)‖L2

x
, using the definition of uk , we get

‖∂2
t uk(0, ·)‖L2

x
�‖�guk(0, ·)‖L2

x
+ ‖F(uk−1, ∂tuk−1)(0, ·)‖L2

x
�ε + εp�ε,

and so

∑
|α|≤1

‖ZαFp(uk, ∂tuk)(0, ·)‖L2
x
�εp. (4.3)

Similarly, |∂2
t uk|�|�guk| + |∂uk−1|p�|∇∂uk| + |∂uk−1|, and so

|∂≤1Fp(uk, ∂tuk)(t, x)| ≤ C̃(‖uk‖L∞
t,x

)|∂uk|p−1(|∇≤1∂uk| + |∂uk−1|),

for some continuous increasing function C̃. Then

‖∂≤1Fp(uk, ∂tuk)‖(L2
t ∩L∞

t )L2
x(B2R)�(‖uk‖E2 + ‖uk−1‖E2)

p−1‖uk‖LE2∩E2�εp.

Summarizing the above estimates, there exists C2 such that

‖uk+1‖LE2 ≤ C1ε + C2ε
p + C1‖Z≤2Fp(uk, ∂tuk)‖L1

t L
2
x
. (4.4)

By (4.4), to complete the proof (4.1), it suffices to show

∑
|α|≤2

‖ZαFp(u, ∂tu)‖L1
t L

2
x
�‖u‖p

LE2∩E2
. (4.5)

Notice that there exist smooth functions bi , 1 ≤ i ≤ 5, such that

|Z≤2Fp(u, ∂tu)| ≤ |b1(u)||∂u|p−1|Z≤2∂u| + |b2(u)||∂u|p−2|Z≤1∂u|2
+ |b3(u)||∂u|p−1|Zu||Z≤1∂u| + |b4(u)||∂u|p|Zu|2 + |b5(u)||∂u|p|Z2u|.
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By Lemma 2.2, we have

|∂u|�‖u‖E2

〈r〉 , |Zu|�‖u‖E2 . (4.6)

Using (4.2), smoothness of bi and (4.6), we see that u is bounded and

|Z≤2Fp(u, ∂tu)|�|∂u|p−1(|Z≤2∂u| + |Z≤2u|/〈r〉) + |∂u|p−2|Z≤1∂u|2.
The first term can be dealt with as follows, by (4.6), Lemma 2.2, and the fact that p > 2,

‖|∂u|p−1(|Z≤2∂u| + |Z≤2u|/〈r〉)‖L1
t L

2
x

�‖〈r〉∂u‖p−2
L∞

t L∞
x

‖〈r〉(3−p)/2∂u‖L2
t L

∞
x

‖〈r〉−(p−1)/2
(

|Z≤2∂u| + |Z≤2u|
〈r〉

)
‖L2

t L
2
x

�‖u‖p−2
E2

‖〈r〉−1/2−(p−2)/2(|Z≤2∂u| + |Z≤2u|/〈r〉)‖2
L2

t L
2
x

�‖u‖2
LE2

‖u‖p−2
E2

.

Similarly, for the second term, we get

‖|∂u|p−2|Z≤1∂u|2‖L1
t L

2
x
� ‖〈r〉∂u‖p−2

L∞
t L∞

x
‖〈r〉−(p−2)/2Z≤1∂u‖2

L2
t L

4
x

� ‖u‖p−2
E2

‖〈r〉−(p−2)/2−1/2Z≤2∂u‖2
L2

t L
2
x

� ‖u‖2
LE2

‖u‖p−2
E2

.

This finishes the proof of (4.5) and so is the uniform boundedness (4.1).
Similar proof will give us the convergence of the sequence {uk}

‖uk+1 − uk‖LE∩E ≤ C‖Fp(uk) − Fp(uk−1)‖L1
t L

2
x
≤ 1

2
‖uk − uk−1‖LE∩E

provided that ε0 is small enough.
Together with the uniform boundedness (4.1), we find a unique global solution u ∈ L∞

t H 3 ∩
LiptH

2 with ‖u‖LE2∩E2 ≤ 3C1ε. Strictly speaking, to complete the proof, we need also to prove 
the regularity of the solution u ∈ CtH

3 ∩C1
t H 2. As it is standard, we omit details here, and refer 

the reader to the end of Section 4 in [38] or [11] P533.
For the remaining case, p = 2, we need only to notice that by Proposition 1.4, we have for 

any T ≥ 2

‖u‖LE2∩E2 �
∑
|α|≤2

‖(∇,�)α(∇φ,ψ)‖L2
x
+ ‖ZαF‖L1

T L2
x

+
∑
|γ |≤1

‖Zγ F(0, x)‖L2
x
+ ‖∂γ F‖(L∞

T ∩L2
T )L2

x(B2R)

for solutions to (1.1) in [0, T ] × M . Previous proofs, together with Lemma 1.5 (1.9), give us
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‖u‖LE2∩E2 � ε + C̃(‖u‖E2)‖u‖2
LE2∩E2

+ ‖Z≤2∂u‖2
l
−1/2
2 (L2

T L2
x)

� ε + (C̃(‖u‖E2) + lnT )‖u‖2
LE2∩E2

which essentially give the almost global existence, as long as ε2 lnT � ε, i.e., T ≤ exp(c/ε)

with small enough c > 0.

5. Radial Glassey conjecture

In this section, we give the proof for Theorem 1.2, based on Lemma 2.1, Proposition 1.4 and 
Lemma 1.5.

We set u0 ≡ 0 and recursively define uk+1 to be the solution to the linear equation

�guk+1 = Gp(uk, ∂tuk), uk+1|x∈∂B1 = 0, uk+1(0, x) = φ, ∂tuk+1(0, x) = ψ. (5.1)

By assumption, uk are radial functions.

5.1. Global existence

Recall Lemma 2.1, M = {|x| > 1}, where r ∼ 〈r〉 and the fact that u is radial, we have

‖〈r〉(n−1)/2∂u‖L∞
x (M)�‖u‖E1 . (5.2)

By the smallness condition (1.6) on the data and the equation, we know from the definition of 
Gp that, for ε small enough, we have

‖Gp(uk, ∂tuk)(0, ·)‖L2
x
� εp�ε

‖Gp(uk, ∂tuk)‖(L2
t ∩L∞

t )L2
x(B2R) � ‖uk‖p−1

E1
‖uk‖LE∩E.

With the above estimates, it follows from Proposition 1.4 that there is a constant C3 so that 
‖u1‖LE1 ≤ C3ε, and

‖uk+1‖LE1 ≤ C3ε + C3‖∂≤1Gp(uk, ∂tuk)‖LE∗+L1
t L

2
x
+ C3‖uk‖p−1

E1
‖uk‖LE∩E. (5.3)

As in Section 4, for global existence, we need to prove the uniform boundedness and conver-
gence of the iteration series uk . Here, we only give the proof of the uniform boundedness, which 
could be reduced to the proof of

‖Gp(u, ∂tu)‖LE∗
1
�‖u‖p

LE1∩E1
, (5.4)

for any p > pc and radial u ∈ LE1 ∩ E1. In fact, by Lemma 2.1, we have
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‖Gp(u, ∂tu)‖LE∗
1
= ‖∂≤1Gp(u, ∂tu)‖

l
1/2
1 L2L2

� ‖|∂u|p−1∂≤1∂u‖
l
1/2
1 L2L2

� ‖〈r〉(n−1)/2∂u‖p−1
L∞

t,x
‖〈r〉−(n−1)(p−1)/2∂≤1∂u‖

l
1/2
1 L2L2

� ‖u‖p−1
E1

‖〈r〉−(n−1)(p−1)/2∂≤1∂u‖
l
1/2
1 L2L2

� ‖u‖p−1
E1

‖∂≤1∂u‖
l
−1/2∞ L2L2�‖u‖p

LE1∩E1

provided that (n − 1)(p − 1)/2 > 1, that is p > pc .

5.2. The critical case

For the critical case p = pc, by (5.3) and Lemma 1.5 (1.11), we have, for any T ≥ 2,

‖uk+1‖LE1∩E1 ≤ C3ε + C(lnT )1/2‖∂≤1Gp(uk, ∂tuk)‖l
1/2
2 L2

T L2
x
+ C3‖uk‖p−1

E1
‖uk‖LE∩E.

Since p = pc, i.e., (n − 1)(p − 1)/2 = 1, we have

‖∂≤1Gp(u, ∂tu)‖
l
1/2
2 L2

T L2
x
� ‖|∂u|p−1∂≤1∂u‖

l
1/2
2 L2L2

� ‖〈r〉(n−1)/2∂u‖p−1
L∞

t,x
‖〈r〉−(n−1)(p−1)/2∂≤1∂u‖

l
1/2
2 L2L2

� ‖u‖p−1
E1

‖∂≤1∂u‖
l
−1/2
2 L2L2

� (lnT )1/2‖u‖p
LE1∩E1

,

where we have used Lemma 1.5 (1.9) in the last step. In conclusion, we have obtained

‖uk+1‖LE1∩E1 ≤ C3ε + C‖uk‖p
LE1∩E1

lnT ,

which essentially give rise to the almost global existence, by choosing T such that εp lnT � ε, 
that is, T = exp(cε1−p) with certain small enough c.

5.3. The case p < pc

Similarly, for 1 < p < pc, we have μ = (n − 1)(p − 1)/4 ∈ (0, 1/2). By (5.3) and Lemma 1.5
(1.12), we get for any T ≥ 2,

‖uk+1‖LE1∩E1 ≤ C3ε + CT 1/2−μ‖∂≤1Gp(uk, ∂tuk)‖l
μ
2 L2

T L2
x
+ C3‖uk‖p−1

E1
‖uk‖LE∩E.

As before, by Lemma 1.5 (1.10),
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‖∂≤1Gp(u, ∂tu)‖l
μ
2 (L2

T L2
x) � ‖|∂u|p−1∂≤1∂u‖l

μ
2 L2L2

� ‖〈r〉(n−1)/2∂u‖p−1
L∞

x
‖〈r〉−(n−1)(p−1)/2∂≤1∂u‖l

μ
2 L2L2

� ‖u‖p−1
E1

‖∂≤1∂u‖
l
−μ
2 L2L2

� T 1/2−μ‖u‖p
LE1∩E1

.

With the above two estimates, we get

‖uk+1‖LE1∩E1 ≤ C3ε + CT 1−2μ‖uk‖p
LE1∩E1

,

and then the long time existence in the interval [0, T ] could essentially be proved, by setting T
such that εpT 1−2μ � ε, i.e.,

T = cε
2(p−1)

(n−1)(p−1)−2

with small enough c.
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